]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
mm/page_alloc: convert "report" flag of __free_one_page() to a proper flag
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 #include <linux/khugepaged.h>
73
74 #include <asm/sections.h>
75 #include <asm/tlbflush.h>
76 #include <asm/div64.h>
77 #include "internal.h"
78 #include "shuffle.h"
79 #include "page_reporting.h"
80
81 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
82 typedef int __bitwise fpi_t;
83
84 /* No special request */
85 #define FPI_NONE ((__force fpi_t)0)
86
87 /*
88 * Skip free page reporting notification for the (possibly merged) page.
89 * This does not hinder free page reporting from grabbing the page,
90 * reporting it and marking it "reported" - it only skips notifying
91 * the free page reporting infrastructure about a newly freed page. For
92 * example, used when temporarily pulling a page from a freelist and
93 * putting it back unmodified.
94 */
95 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
96
97 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
98 static DEFINE_MUTEX(pcp_batch_high_lock);
99 #define MIN_PERCPU_PAGELIST_FRACTION (8)
100
101 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
102 DEFINE_PER_CPU(int, numa_node);
103 EXPORT_PER_CPU_SYMBOL(numa_node);
104 #endif
105
106 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
107
108 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
109 /*
110 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
111 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
112 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
113 * defined in <linux/topology.h>.
114 */
115 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
116 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
117 #endif
118
119 /* work_structs for global per-cpu drains */
120 struct pcpu_drain {
121 struct zone *zone;
122 struct work_struct work;
123 };
124 static DEFINE_MUTEX(pcpu_drain_mutex);
125 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
126
127 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
128 volatile unsigned long latent_entropy __latent_entropy;
129 EXPORT_SYMBOL(latent_entropy);
130 #endif
131
132 /*
133 * Array of node states.
134 */
135 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
136 [N_POSSIBLE] = NODE_MASK_ALL,
137 [N_ONLINE] = { { [0] = 1UL } },
138 #ifndef CONFIG_NUMA
139 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
140 #ifdef CONFIG_HIGHMEM
141 [N_HIGH_MEMORY] = { { [0] = 1UL } },
142 #endif
143 [N_MEMORY] = { { [0] = 1UL } },
144 [N_CPU] = { { [0] = 1UL } },
145 #endif /* NUMA */
146 };
147 EXPORT_SYMBOL(node_states);
148
149 atomic_long_t _totalram_pages __read_mostly;
150 EXPORT_SYMBOL(_totalram_pages);
151 unsigned long totalreserve_pages __read_mostly;
152 unsigned long totalcma_pages __read_mostly;
153
154 int percpu_pagelist_fraction;
155 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
156 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
157 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
158 #else
159 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
160 #endif
161 EXPORT_SYMBOL(init_on_alloc);
162
163 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
164 DEFINE_STATIC_KEY_TRUE(init_on_free);
165 #else
166 DEFINE_STATIC_KEY_FALSE(init_on_free);
167 #endif
168 EXPORT_SYMBOL(init_on_free);
169
170 static int __init early_init_on_alloc(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 ret = kstrtobool(buf, &bool_result);
176 if (ret)
177 return ret;
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
180 if (bool_result)
181 static_branch_enable(&init_on_alloc);
182 else
183 static_branch_disable(&init_on_alloc);
184 return 0;
185 }
186 early_param("init_on_alloc", early_init_on_alloc);
187
188 static int __init early_init_on_free(char *buf)
189 {
190 int ret;
191 bool bool_result;
192
193 ret = kstrtobool(buf, &bool_result);
194 if (ret)
195 return ret;
196 if (bool_result && page_poisoning_enabled())
197 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
198 if (bool_result)
199 static_branch_enable(&init_on_free);
200 else
201 static_branch_disable(&init_on_free);
202 return 0;
203 }
204 early_param("init_on_free", early_init_on_free);
205
206 /*
207 * A cached value of the page's pageblock's migratetype, used when the page is
208 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
209 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
210 * Also the migratetype set in the page does not necessarily match the pcplist
211 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
212 * other index - this ensures that it will be put on the correct CMA freelist.
213 */
214 static inline int get_pcppage_migratetype(struct page *page)
215 {
216 return page->index;
217 }
218
219 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
220 {
221 page->index = migratetype;
222 }
223
224 #ifdef CONFIG_PM_SLEEP
225 /*
226 * The following functions are used by the suspend/hibernate code to temporarily
227 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
228 * while devices are suspended. To avoid races with the suspend/hibernate code,
229 * they should always be called with system_transition_mutex held
230 * (gfp_allowed_mask also should only be modified with system_transition_mutex
231 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
232 * with that modification).
233 */
234
235 static gfp_t saved_gfp_mask;
236
237 void pm_restore_gfp_mask(void)
238 {
239 WARN_ON(!mutex_is_locked(&system_transition_mutex));
240 if (saved_gfp_mask) {
241 gfp_allowed_mask = saved_gfp_mask;
242 saved_gfp_mask = 0;
243 }
244 }
245
246 void pm_restrict_gfp_mask(void)
247 {
248 WARN_ON(!mutex_is_locked(&system_transition_mutex));
249 WARN_ON(saved_gfp_mask);
250 saved_gfp_mask = gfp_allowed_mask;
251 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
252 }
253
254 bool pm_suspended_storage(void)
255 {
256 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
257 return false;
258 return true;
259 }
260 #endif /* CONFIG_PM_SLEEP */
261
262 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
263 unsigned int pageblock_order __read_mostly;
264 #endif
265
266 static void __free_pages_ok(struct page *page, unsigned int order);
267
268 /*
269 * results with 256, 32 in the lowmem_reserve sysctl:
270 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
271 * 1G machine -> (16M dma, 784M normal, 224M high)
272 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
273 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
274 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
275 *
276 * TBD: should special case ZONE_DMA32 machines here - in those we normally
277 * don't need any ZONE_NORMAL reservation
278 */
279 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
280 #ifdef CONFIG_ZONE_DMA
281 [ZONE_DMA] = 256,
282 #endif
283 #ifdef CONFIG_ZONE_DMA32
284 [ZONE_DMA32] = 256,
285 #endif
286 [ZONE_NORMAL] = 32,
287 #ifdef CONFIG_HIGHMEM
288 [ZONE_HIGHMEM] = 0,
289 #endif
290 [ZONE_MOVABLE] = 0,
291 };
292
293 static char * const zone_names[MAX_NR_ZONES] = {
294 #ifdef CONFIG_ZONE_DMA
295 "DMA",
296 #endif
297 #ifdef CONFIG_ZONE_DMA32
298 "DMA32",
299 #endif
300 "Normal",
301 #ifdef CONFIG_HIGHMEM
302 "HighMem",
303 #endif
304 "Movable",
305 #ifdef CONFIG_ZONE_DEVICE
306 "Device",
307 #endif
308 };
309
310 const char * const migratetype_names[MIGRATE_TYPES] = {
311 "Unmovable",
312 "Movable",
313 "Reclaimable",
314 "HighAtomic",
315 #ifdef CONFIG_CMA
316 "CMA",
317 #endif
318 #ifdef CONFIG_MEMORY_ISOLATION
319 "Isolate",
320 #endif
321 };
322
323 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
324 [NULL_COMPOUND_DTOR] = NULL,
325 [COMPOUND_PAGE_DTOR] = free_compound_page,
326 #ifdef CONFIG_HUGETLB_PAGE
327 [HUGETLB_PAGE_DTOR] = free_huge_page,
328 #endif
329 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
330 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
331 #endif
332 };
333
334 int min_free_kbytes = 1024;
335 int user_min_free_kbytes = -1;
336 #ifdef CONFIG_DISCONTIGMEM
337 /*
338 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
339 * are not on separate NUMA nodes. Functionally this works but with
340 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
341 * quite small. By default, do not boost watermarks on discontigmem as in
342 * many cases very high-order allocations like THP are likely to be
343 * unsupported and the premature reclaim offsets the advantage of long-term
344 * fragmentation avoidance.
345 */
346 int watermark_boost_factor __read_mostly;
347 #else
348 int watermark_boost_factor __read_mostly = 15000;
349 #endif
350 int watermark_scale_factor = 10;
351
352 static unsigned long nr_kernel_pages __initdata;
353 static unsigned long nr_all_pages __initdata;
354 static unsigned long dma_reserve __initdata;
355
356 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
357 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
358 static unsigned long required_kernelcore __initdata;
359 static unsigned long required_kernelcore_percent __initdata;
360 static unsigned long required_movablecore __initdata;
361 static unsigned long required_movablecore_percent __initdata;
362 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
363 static bool mirrored_kernelcore __meminitdata;
364
365 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
366 int movable_zone;
367 EXPORT_SYMBOL(movable_zone);
368
369 #if MAX_NUMNODES > 1
370 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
371 unsigned int nr_online_nodes __read_mostly = 1;
372 EXPORT_SYMBOL(nr_node_ids);
373 EXPORT_SYMBOL(nr_online_nodes);
374 #endif
375
376 int page_group_by_mobility_disabled __read_mostly;
377
378 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
379 /*
380 * During boot we initialize deferred pages on-demand, as needed, but once
381 * page_alloc_init_late() has finished, the deferred pages are all initialized,
382 * and we can permanently disable that path.
383 */
384 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
385
386 /*
387 * Calling kasan_free_pages() only after deferred memory initialization
388 * has completed. Poisoning pages during deferred memory init will greatly
389 * lengthen the process and cause problem in large memory systems as the
390 * deferred pages initialization is done with interrupt disabled.
391 *
392 * Assuming that there will be no reference to those newly initialized
393 * pages before they are ever allocated, this should have no effect on
394 * KASAN memory tracking as the poison will be properly inserted at page
395 * allocation time. The only corner case is when pages are allocated by
396 * on-demand allocation and then freed again before the deferred pages
397 * initialization is done, but this is not likely to happen.
398 */
399 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
400 {
401 if (!static_branch_unlikely(&deferred_pages))
402 kasan_free_pages(page, order);
403 }
404
405 /* Returns true if the struct page for the pfn is uninitialised */
406 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
407 {
408 int nid = early_pfn_to_nid(pfn);
409
410 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
411 return true;
412
413 return false;
414 }
415
416 /*
417 * Returns true when the remaining initialisation should be deferred until
418 * later in the boot cycle when it can be parallelised.
419 */
420 static bool __meminit
421 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
422 {
423 static unsigned long prev_end_pfn, nr_initialised;
424
425 /*
426 * prev_end_pfn static that contains the end of previous zone
427 * No need to protect because called very early in boot before smp_init.
428 */
429 if (prev_end_pfn != end_pfn) {
430 prev_end_pfn = end_pfn;
431 nr_initialised = 0;
432 }
433
434 /* Always populate low zones for address-constrained allocations */
435 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
436 return false;
437
438 /*
439 * We start only with one section of pages, more pages are added as
440 * needed until the rest of deferred pages are initialized.
441 */
442 nr_initialised++;
443 if ((nr_initialised > PAGES_PER_SECTION) &&
444 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
445 NODE_DATA(nid)->first_deferred_pfn = pfn;
446 return true;
447 }
448 return false;
449 }
450 #else
451 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
452
453 static inline bool early_page_uninitialised(unsigned long pfn)
454 {
455 return false;
456 }
457
458 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
459 {
460 return false;
461 }
462 #endif
463
464 /* Return a pointer to the bitmap storing bits affecting a block of pages */
465 static inline unsigned long *get_pageblock_bitmap(struct page *page,
466 unsigned long pfn)
467 {
468 #ifdef CONFIG_SPARSEMEM
469 return section_to_usemap(__pfn_to_section(pfn));
470 #else
471 return page_zone(page)->pageblock_flags;
472 #endif /* CONFIG_SPARSEMEM */
473 }
474
475 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
476 {
477 #ifdef CONFIG_SPARSEMEM
478 pfn &= (PAGES_PER_SECTION-1);
479 #else
480 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
481 #endif /* CONFIG_SPARSEMEM */
482 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
483 }
484
485 /**
486 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
487 * @page: The page within the block of interest
488 * @pfn: The target page frame number
489 * @mask: mask of bits that the caller is interested in
490 *
491 * Return: pageblock_bits flags
492 */
493 static __always_inline
494 unsigned long __get_pfnblock_flags_mask(struct page *page,
495 unsigned long pfn,
496 unsigned long mask)
497 {
498 unsigned long *bitmap;
499 unsigned long bitidx, word_bitidx;
500 unsigned long word;
501
502 bitmap = get_pageblock_bitmap(page, pfn);
503 bitidx = pfn_to_bitidx(page, pfn);
504 word_bitidx = bitidx / BITS_PER_LONG;
505 bitidx &= (BITS_PER_LONG-1);
506
507 word = bitmap[word_bitidx];
508 return (word >> bitidx) & mask;
509 }
510
511 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
512 unsigned long mask)
513 {
514 return __get_pfnblock_flags_mask(page, pfn, mask);
515 }
516
517 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
518 {
519 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
520 }
521
522 /**
523 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
524 * @page: The page within the block of interest
525 * @flags: The flags to set
526 * @pfn: The target page frame number
527 * @mask: mask of bits that the caller is interested in
528 */
529 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
530 unsigned long pfn,
531 unsigned long mask)
532 {
533 unsigned long *bitmap;
534 unsigned long bitidx, word_bitidx;
535 unsigned long old_word, word;
536
537 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
538 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
539
540 bitmap = get_pageblock_bitmap(page, pfn);
541 bitidx = pfn_to_bitidx(page, pfn);
542 word_bitidx = bitidx / BITS_PER_LONG;
543 bitidx &= (BITS_PER_LONG-1);
544
545 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
546
547 mask <<= bitidx;
548 flags <<= bitidx;
549
550 word = READ_ONCE(bitmap[word_bitidx]);
551 for (;;) {
552 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
553 if (word == old_word)
554 break;
555 word = old_word;
556 }
557 }
558
559 void set_pageblock_migratetype(struct page *page, int migratetype)
560 {
561 if (unlikely(page_group_by_mobility_disabled &&
562 migratetype < MIGRATE_PCPTYPES))
563 migratetype = MIGRATE_UNMOVABLE;
564
565 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
566 page_to_pfn(page), MIGRATETYPE_MASK);
567 }
568
569 #ifdef CONFIG_DEBUG_VM
570 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
571 {
572 int ret = 0;
573 unsigned seq;
574 unsigned long pfn = page_to_pfn(page);
575 unsigned long sp, start_pfn;
576
577 do {
578 seq = zone_span_seqbegin(zone);
579 start_pfn = zone->zone_start_pfn;
580 sp = zone->spanned_pages;
581 if (!zone_spans_pfn(zone, pfn))
582 ret = 1;
583 } while (zone_span_seqretry(zone, seq));
584
585 if (ret)
586 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
587 pfn, zone_to_nid(zone), zone->name,
588 start_pfn, start_pfn + sp);
589
590 return ret;
591 }
592
593 static int page_is_consistent(struct zone *zone, struct page *page)
594 {
595 if (!pfn_valid_within(page_to_pfn(page)))
596 return 0;
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601 }
602 /*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613 }
614 #else
615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 return 0;
618 }
619 #endif
620
621 static void bad_page(struct page *page, const char *reason)
622 {
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 __dump_page(page, reason);
650 dump_page_owner(page);
651
652 print_modules();
653 dump_stack();
654 out:
655 /* Leave bad fields for debug, except PageBuddy could make trouble */
656 page_mapcount_reset(page); /* remove PageBuddy */
657 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
658 }
659
660 /*
661 * Higher-order pages are called "compound pages". They are structured thusly:
662 *
663 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
664 *
665 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
666 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
667 *
668 * The first tail page's ->compound_dtor holds the offset in array of compound
669 * page destructors. See compound_page_dtors.
670 *
671 * The first tail page's ->compound_order holds the order of allocation.
672 * This usage means that zero-order pages may not be compound.
673 */
674
675 void free_compound_page(struct page *page)
676 {
677 mem_cgroup_uncharge(page);
678 __free_pages_ok(page, compound_order(page));
679 }
680
681 void prep_compound_page(struct page *page, unsigned int order)
682 {
683 int i;
684 int nr_pages = 1 << order;
685
686 __SetPageHead(page);
687 for (i = 1; i < nr_pages; i++) {
688 struct page *p = page + i;
689 set_page_count(p, 0);
690 p->mapping = TAIL_MAPPING;
691 set_compound_head(p, page);
692 }
693
694 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
695 set_compound_order(page, order);
696 atomic_set(compound_mapcount_ptr(page), -1);
697 if (hpage_pincount_available(page))
698 atomic_set(compound_pincount_ptr(page), 0);
699 }
700
701 #ifdef CONFIG_DEBUG_PAGEALLOC
702 unsigned int _debug_guardpage_minorder;
703
704 bool _debug_pagealloc_enabled_early __read_mostly
705 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
706 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
707 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
708 EXPORT_SYMBOL(_debug_pagealloc_enabled);
709
710 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
711
712 static int __init early_debug_pagealloc(char *buf)
713 {
714 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
715 }
716 early_param("debug_pagealloc", early_debug_pagealloc);
717
718 void init_debug_pagealloc(void)
719 {
720 if (!debug_pagealloc_enabled())
721 return;
722
723 static_branch_enable(&_debug_pagealloc_enabled);
724
725 if (!debug_guardpage_minorder())
726 return;
727
728 static_branch_enable(&_debug_guardpage_enabled);
729 }
730
731 static int __init debug_guardpage_minorder_setup(char *buf)
732 {
733 unsigned long res;
734
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
736 pr_err("Bad debug_guardpage_minorder value\n");
737 return 0;
738 }
739 _debug_guardpage_minorder = res;
740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 return 0;
742 }
743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744
745 static inline bool set_page_guard(struct zone *zone, struct page *page,
746 unsigned int order, int migratetype)
747 {
748 if (!debug_guardpage_enabled())
749 return false;
750
751 if (order >= debug_guardpage_minorder())
752 return false;
753
754 __SetPageGuard(page);
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
759
760 return true;
761 }
762
763 static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
765 {
766 if (!debug_guardpage_enabled())
767 return;
768
769 __ClearPageGuard(page);
770
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
774 }
775 #else
776 static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
778 static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
780 #endif
781
782 static inline void set_page_order(struct page *page, unsigned int order)
783 {
784 set_page_private(page, order);
785 __SetPageBuddy(page);
786 }
787
788 /*
789 * This function checks whether a page is free && is the buddy
790 * we can coalesce a page and its buddy if
791 * (a) the buddy is not in a hole (check before calling!) &&
792 * (b) the buddy is in the buddy system &&
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
795 *
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
798 *
799 * For recording page's order, we use page_private(page).
800 */
801 static inline bool page_is_buddy(struct page *page, struct page *buddy,
802 unsigned int order)
803 {
804 if (!page_is_guard(buddy) && !PageBuddy(buddy))
805 return false;
806
807 if (page_order(buddy) != order)
808 return false;
809
810 /*
811 * zone check is done late to avoid uselessly calculating
812 * zone/node ids for pages that could never merge.
813 */
814 if (page_zone_id(page) != page_zone_id(buddy))
815 return false;
816
817 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
818
819 return true;
820 }
821
822 #ifdef CONFIG_COMPACTION
823 static inline struct capture_control *task_capc(struct zone *zone)
824 {
825 struct capture_control *capc = current->capture_control;
826
827 return unlikely(capc) &&
828 !(current->flags & PF_KTHREAD) &&
829 !capc->page &&
830 capc->cc->zone == zone ? capc : NULL;
831 }
832
833 static inline bool
834 compaction_capture(struct capture_control *capc, struct page *page,
835 int order, int migratetype)
836 {
837 if (!capc || order != capc->cc->order)
838 return false;
839
840 /* Do not accidentally pollute CMA or isolated regions*/
841 if (is_migrate_cma(migratetype) ||
842 is_migrate_isolate(migratetype))
843 return false;
844
845 /*
846 * Do not let lower order allocations polluate a movable pageblock.
847 * This might let an unmovable request use a reclaimable pageblock
848 * and vice-versa but no more than normal fallback logic which can
849 * have trouble finding a high-order free page.
850 */
851 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
852 return false;
853
854 capc->page = page;
855 return true;
856 }
857
858 #else
859 static inline struct capture_control *task_capc(struct zone *zone)
860 {
861 return NULL;
862 }
863
864 static inline bool
865 compaction_capture(struct capture_control *capc, struct page *page,
866 int order, int migratetype)
867 {
868 return false;
869 }
870 #endif /* CONFIG_COMPACTION */
871
872 /* Used for pages not on another list */
873 static inline void add_to_free_list(struct page *page, struct zone *zone,
874 unsigned int order, int migratetype)
875 {
876 struct free_area *area = &zone->free_area[order];
877
878 list_add(&page->lru, &area->free_list[migratetype]);
879 area->nr_free++;
880 }
881
882 /* Used for pages not on another list */
883 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
884 unsigned int order, int migratetype)
885 {
886 struct free_area *area = &zone->free_area[order];
887
888 list_add_tail(&page->lru, &area->free_list[migratetype]);
889 area->nr_free++;
890 }
891
892 /* Used for pages which are on another list */
893 static inline void move_to_free_list(struct page *page, struct zone *zone,
894 unsigned int order, int migratetype)
895 {
896 struct free_area *area = &zone->free_area[order];
897
898 list_move(&page->lru, &area->free_list[migratetype]);
899 }
900
901 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
902 unsigned int order)
903 {
904 /* clear reported state and update reported page count */
905 if (page_reported(page))
906 __ClearPageReported(page);
907
908 list_del(&page->lru);
909 __ClearPageBuddy(page);
910 set_page_private(page, 0);
911 zone->free_area[order].nr_free--;
912 }
913
914 /*
915 * If this is not the largest possible page, check if the buddy
916 * of the next-highest order is free. If it is, it's possible
917 * that pages are being freed that will coalesce soon. In case,
918 * that is happening, add the free page to the tail of the list
919 * so it's less likely to be used soon and more likely to be merged
920 * as a higher order page
921 */
922 static inline bool
923 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
924 struct page *page, unsigned int order)
925 {
926 struct page *higher_page, *higher_buddy;
927 unsigned long combined_pfn;
928
929 if (order >= MAX_ORDER - 2)
930 return false;
931
932 if (!pfn_valid_within(buddy_pfn))
933 return false;
934
935 combined_pfn = buddy_pfn & pfn;
936 higher_page = page + (combined_pfn - pfn);
937 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
938 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
939
940 return pfn_valid_within(buddy_pfn) &&
941 page_is_buddy(higher_page, higher_buddy, order + 1);
942 }
943
944 /*
945 * Freeing function for a buddy system allocator.
946 *
947 * The concept of a buddy system is to maintain direct-mapped table
948 * (containing bit values) for memory blocks of various "orders".
949 * The bottom level table contains the map for the smallest allocatable
950 * units of memory (here, pages), and each level above it describes
951 * pairs of units from the levels below, hence, "buddies".
952 * At a high level, all that happens here is marking the table entry
953 * at the bottom level available, and propagating the changes upward
954 * as necessary, plus some accounting needed to play nicely with other
955 * parts of the VM system.
956 * At each level, we keep a list of pages, which are heads of continuous
957 * free pages of length of (1 << order) and marked with PageBuddy.
958 * Page's order is recorded in page_private(page) field.
959 * So when we are allocating or freeing one, we can derive the state of the
960 * other. That is, if we allocate a small block, and both were
961 * free, the remainder of the region must be split into blocks.
962 * If a block is freed, and its buddy is also free, then this
963 * triggers coalescing into a block of larger size.
964 *
965 * -- nyc
966 */
967
968 static inline void __free_one_page(struct page *page,
969 unsigned long pfn,
970 struct zone *zone, unsigned int order,
971 int migratetype, fpi_t fpi_flags)
972 {
973 struct capture_control *capc = task_capc(zone);
974 unsigned long buddy_pfn;
975 unsigned long combined_pfn;
976 unsigned int max_order;
977 struct page *buddy;
978 bool to_tail;
979
980 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
981
982 VM_BUG_ON(!zone_is_initialized(zone));
983 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
984
985 VM_BUG_ON(migratetype == -1);
986 if (likely(!is_migrate_isolate(migratetype)))
987 __mod_zone_freepage_state(zone, 1 << order, migratetype);
988
989 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
990 VM_BUG_ON_PAGE(bad_range(zone, page), page);
991
992 continue_merging:
993 while (order < max_order - 1) {
994 if (compaction_capture(capc, page, order, migratetype)) {
995 __mod_zone_freepage_state(zone, -(1 << order),
996 migratetype);
997 return;
998 }
999 buddy_pfn = __find_buddy_pfn(pfn, order);
1000 buddy = page + (buddy_pfn - pfn);
1001
1002 if (!pfn_valid_within(buddy_pfn))
1003 goto done_merging;
1004 if (!page_is_buddy(page, buddy, order))
1005 goto done_merging;
1006 /*
1007 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1008 * merge with it and move up one order.
1009 */
1010 if (page_is_guard(buddy))
1011 clear_page_guard(zone, buddy, order, migratetype);
1012 else
1013 del_page_from_free_list(buddy, zone, order);
1014 combined_pfn = buddy_pfn & pfn;
1015 page = page + (combined_pfn - pfn);
1016 pfn = combined_pfn;
1017 order++;
1018 }
1019 if (max_order < MAX_ORDER) {
1020 /* If we are here, it means order is >= pageblock_order.
1021 * We want to prevent merge between freepages on isolate
1022 * pageblock and normal pageblock. Without this, pageblock
1023 * isolation could cause incorrect freepage or CMA accounting.
1024 *
1025 * We don't want to hit this code for the more frequent
1026 * low-order merging.
1027 */
1028 if (unlikely(has_isolate_pageblock(zone))) {
1029 int buddy_mt;
1030
1031 buddy_pfn = __find_buddy_pfn(pfn, order);
1032 buddy = page + (buddy_pfn - pfn);
1033 buddy_mt = get_pageblock_migratetype(buddy);
1034
1035 if (migratetype != buddy_mt
1036 && (is_migrate_isolate(migratetype) ||
1037 is_migrate_isolate(buddy_mt)))
1038 goto done_merging;
1039 }
1040 max_order++;
1041 goto continue_merging;
1042 }
1043
1044 done_merging:
1045 set_page_order(page, order);
1046
1047 if (is_shuffle_order(order))
1048 to_tail = shuffle_pick_tail();
1049 else
1050 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1051
1052 if (to_tail)
1053 add_to_free_list_tail(page, zone, order, migratetype);
1054 else
1055 add_to_free_list(page, zone, order, migratetype);
1056
1057 /* Notify page reporting subsystem of freed page */
1058 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1059 page_reporting_notify_free(order);
1060 }
1061
1062 /*
1063 * A bad page could be due to a number of fields. Instead of multiple branches,
1064 * try and check multiple fields with one check. The caller must do a detailed
1065 * check if necessary.
1066 */
1067 static inline bool page_expected_state(struct page *page,
1068 unsigned long check_flags)
1069 {
1070 if (unlikely(atomic_read(&page->_mapcount) != -1))
1071 return false;
1072
1073 if (unlikely((unsigned long)page->mapping |
1074 page_ref_count(page) |
1075 #ifdef CONFIG_MEMCG
1076 (unsigned long)page->mem_cgroup |
1077 #endif
1078 (page->flags & check_flags)))
1079 return false;
1080
1081 return true;
1082 }
1083
1084 static const char *page_bad_reason(struct page *page, unsigned long flags)
1085 {
1086 const char *bad_reason = NULL;
1087
1088 if (unlikely(atomic_read(&page->_mapcount) != -1))
1089 bad_reason = "nonzero mapcount";
1090 if (unlikely(page->mapping != NULL))
1091 bad_reason = "non-NULL mapping";
1092 if (unlikely(page_ref_count(page) != 0))
1093 bad_reason = "nonzero _refcount";
1094 if (unlikely(page->flags & flags)) {
1095 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1096 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1097 else
1098 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1099 }
1100 #ifdef CONFIG_MEMCG
1101 if (unlikely(page->mem_cgroup))
1102 bad_reason = "page still charged to cgroup";
1103 #endif
1104 return bad_reason;
1105 }
1106
1107 static void check_free_page_bad(struct page *page)
1108 {
1109 bad_page(page,
1110 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1111 }
1112
1113 static inline int check_free_page(struct page *page)
1114 {
1115 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1116 return 0;
1117
1118 /* Something has gone sideways, find it */
1119 check_free_page_bad(page);
1120 return 1;
1121 }
1122
1123 static int free_tail_pages_check(struct page *head_page, struct page *page)
1124 {
1125 int ret = 1;
1126
1127 /*
1128 * We rely page->lru.next never has bit 0 set, unless the page
1129 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1130 */
1131 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1132
1133 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1134 ret = 0;
1135 goto out;
1136 }
1137 switch (page - head_page) {
1138 case 1:
1139 /* the first tail page: ->mapping may be compound_mapcount() */
1140 if (unlikely(compound_mapcount(page))) {
1141 bad_page(page, "nonzero compound_mapcount");
1142 goto out;
1143 }
1144 break;
1145 case 2:
1146 /*
1147 * the second tail page: ->mapping is
1148 * deferred_list.next -- ignore value.
1149 */
1150 break;
1151 default:
1152 if (page->mapping != TAIL_MAPPING) {
1153 bad_page(page, "corrupted mapping in tail page");
1154 goto out;
1155 }
1156 break;
1157 }
1158 if (unlikely(!PageTail(page))) {
1159 bad_page(page, "PageTail not set");
1160 goto out;
1161 }
1162 if (unlikely(compound_head(page) != head_page)) {
1163 bad_page(page, "compound_head not consistent");
1164 goto out;
1165 }
1166 ret = 0;
1167 out:
1168 page->mapping = NULL;
1169 clear_compound_head(page);
1170 return ret;
1171 }
1172
1173 static void kernel_init_free_pages(struct page *page, int numpages)
1174 {
1175 int i;
1176
1177 /* s390's use of memset() could override KASAN redzones. */
1178 kasan_disable_current();
1179 for (i = 0; i < numpages; i++)
1180 clear_highpage(page + i);
1181 kasan_enable_current();
1182 }
1183
1184 static __always_inline bool free_pages_prepare(struct page *page,
1185 unsigned int order, bool check_free)
1186 {
1187 int bad = 0;
1188
1189 VM_BUG_ON_PAGE(PageTail(page), page);
1190
1191 trace_mm_page_free(page, order);
1192
1193 if (unlikely(PageHWPoison(page)) && !order) {
1194 /*
1195 * Do not let hwpoison pages hit pcplists/buddy
1196 * Untie memcg state and reset page's owner
1197 */
1198 if (memcg_kmem_enabled() && PageKmemcg(page))
1199 __memcg_kmem_uncharge_page(page, order);
1200 reset_page_owner(page, order);
1201 return false;
1202 }
1203
1204 /*
1205 * Check tail pages before head page information is cleared to
1206 * avoid checking PageCompound for order-0 pages.
1207 */
1208 if (unlikely(order)) {
1209 bool compound = PageCompound(page);
1210 int i;
1211
1212 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1213
1214 if (compound)
1215 ClearPageDoubleMap(page);
1216 for (i = 1; i < (1 << order); i++) {
1217 if (compound)
1218 bad += free_tail_pages_check(page, page + i);
1219 if (unlikely(check_free_page(page + i))) {
1220 bad++;
1221 continue;
1222 }
1223 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1224 }
1225 }
1226 if (PageMappingFlags(page))
1227 page->mapping = NULL;
1228 if (memcg_kmem_enabled() && PageKmemcg(page))
1229 __memcg_kmem_uncharge_page(page, order);
1230 if (check_free)
1231 bad += check_free_page(page);
1232 if (bad)
1233 return false;
1234
1235 page_cpupid_reset_last(page);
1236 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1237 reset_page_owner(page, order);
1238
1239 if (!PageHighMem(page)) {
1240 debug_check_no_locks_freed(page_address(page),
1241 PAGE_SIZE << order);
1242 debug_check_no_obj_freed(page_address(page),
1243 PAGE_SIZE << order);
1244 }
1245 if (want_init_on_free())
1246 kernel_init_free_pages(page, 1 << order);
1247
1248 kernel_poison_pages(page, 1 << order, 0);
1249 /*
1250 * arch_free_page() can make the page's contents inaccessible. s390
1251 * does this. So nothing which can access the page's contents should
1252 * happen after this.
1253 */
1254 arch_free_page(page, order);
1255
1256 if (debug_pagealloc_enabled_static())
1257 kernel_map_pages(page, 1 << order, 0);
1258
1259 kasan_free_nondeferred_pages(page, order);
1260
1261 return true;
1262 }
1263
1264 #ifdef CONFIG_DEBUG_VM
1265 /*
1266 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1267 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1268 * moved from pcp lists to free lists.
1269 */
1270 static bool free_pcp_prepare(struct page *page)
1271 {
1272 return free_pages_prepare(page, 0, true);
1273 }
1274
1275 static bool bulkfree_pcp_prepare(struct page *page)
1276 {
1277 if (debug_pagealloc_enabled_static())
1278 return check_free_page(page);
1279 else
1280 return false;
1281 }
1282 #else
1283 /*
1284 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1285 * moving from pcp lists to free list in order to reduce overhead. With
1286 * debug_pagealloc enabled, they are checked also immediately when being freed
1287 * to the pcp lists.
1288 */
1289 static bool free_pcp_prepare(struct page *page)
1290 {
1291 if (debug_pagealloc_enabled_static())
1292 return free_pages_prepare(page, 0, true);
1293 else
1294 return free_pages_prepare(page, 0, false);
1295 }
1296
1297 static bool bulkfree_pcp_prepare(struct page *page)
1298 {
1299 return check_free_page(page);
1300 }
1301 #endif /* CONFIG_DEBUG_VM */
1302
1303 static inline void prefetch_buddy(struct page *page)
1304 {
1305 unsigned long pfn = page_to_pfn(page);
1306 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1307 struct page *buddy = page + (buddy_pfn - pfn);
1308
1309 prefetch(buddy);
1310 }
1311
1312 /*
1313 * Frees a number of pages from the PCP lists
1314 * Assumes all pages on list are in same zone, and of same order.
1315 * count is the number of pages to free.
1316 *
1317 * If the zone was previously in an "all pages pinned" state then look to
1318 * see if this freeing clears that state.
1319 *
1320 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1321 * pinned" detection logic.
1322 */
1323 static void free_pcppages_bulk(struct zone *zone, int count,
1324 struct per_cpu_pages *pcp)
1325 {
1326 int migratetype = 0;
1327 int batch_free = 0;
1328 int prefetch_nr = 0;
1329 bool isolated_pageblocks;
1330 struct page *page, *tmp;
1331 LIST_HEAD(head);
1332
1333 /*
1334 * Ensure proper count is passed which otherwise would stuck in the
1335 * below while (list_empty(list)) loop.
1336 */
1337 count = min(pcp->count, count);
1338 while (count) {
1339 struct list_head *list;
1340
1341 /*
1342 * Remove pages from lists in a round-robin fashion. A
1343 * batch_free count is maintained that is incremented when an
1344 * empty list is encountered. This is so more pages are freed
1345 * off fuller lists instead of spinning excessively around empty
1346 * lists
1347 */
1348 do {
1349 batch_free++;
1350 if (++migratetype == MIGRATE_PCPTYPES)
1351 migratetype = 0;
1352 list = &pcp->lists[migratetype];
1353 } while (list_empty(list));
1354
1355 /* This is the only non-empty list. Free them all. */
1356 if (batch_free == MIGRATE_PCPTYPES)
1357 batch_free = count;
1358
1359 do {
1360 page = list_last_entry(list, struct page, lru);
1361 /* must delete to avoid corrupting pcp list */
1362 list_del(&page->lru);
1363 pcp->count--;
1364
1365 if (bulkfree_pcp_prepare(page))
1366 continue;
1367
1368 list_add_tail(&page->lru, &head);
1369
1370 /*
1371 * We are going to put the page back to the global
1372 * pool, prefetch its buddy to speed up later access
1373 * under zone->lock. It is believed the overhead of
1374 * an additional test and calculating buddy_pfn here
1375 * can be offset by reduced memory latency later. To
1376 * avoid excessive prefetching due to large count, only
1377 * prefetch buddy for the first pcp->batch nr of pages.
1378 */
1379 if (prefetch_nr++ < pcp->batch)
1380 prefetch_buddy(page);
1381 } while (--count && --batch_free && !list_empty(list));
1382 }
1383
1384 spin_lock(&zone->lock);
1385 isolated_pageblocks = has_isolate_pageblock(zone);
1386
1387 /*
1388 * Use safe version since after __free_one_page(),
1389 * page->lru.next will not point to original list.
1390 */
1391 list_for_each_entry_safe(page, tmp, &head, lru) {
1392 int mt = get_pcppage_migratetype(page);
1393 /* MIGRATE_ISOLATE page should not go to pcplists */
1394 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1395 /* Pageblock could have been isolated meanwhile */
1396 if (unlikely(isolated_pageblocks))
1397 mt = get_pageblock_migratetype(page);
1398
1399 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1400 trace_mm_page_pcpu_drain(page, 0, mt);
1401 }
1402 spin_unlock(&zone->lock);
1403 }
1404
1405 static void free_one_page(struct zone *zone,
1406 struct page *page, unsigned long pfn,
1407 unsigned int order,
1408 int migratetype)
1409 {
1410 spin_lock(&zone->lock);
1411 if (unlikely(has_isolate_pageblock(zone) ||
1412 is_migrate_isolate(migratetype))) {
1413 migratetype = get_pfnblock_migratetype(page, pfn);
1414 }
1415 __free_one_page(page, pfn, zone, order, migratetype, FPI_NONE);
1416 spin_unlock(&zone->lock);
1417 }
1418
1419 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1420 unsigned long zone, int nid)
1421 {
1422 mm_zero_struct_page(page);
1423 set_page_links(page, zone, nid, pfn);
1424 init_page_count(page);
1425 page_mapcount_reset(page);
1426 page_cpupid_reset_last(page);
1427 page_kasan_tag_reset(page);
1428
1429 INIT_LIST_HEAD(&page->lru);
1430 #ifdef WANT_PAGE_VIRTUAL
1431 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1432 if (!is_highmem_idx(zone))
1433 set_page_address(page, __va(pfn << PAGE_SHIFT));
1434 #endif
1435 }
1436
1437 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1438 static void __meminit init_reserved_page(unsigned long pfn)
1439 {
1440 pg_data_t *pgdat;
1441 int nid, zid;
1442
1443 if (!early_page_uninitialised(pfn))
1444 return;
1445
1446 nid = early_pfn_to_nid(pfn);
1447 pgdat = NODE_DATA(nid);
1448
1449 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1450 struct zone *zone = &pgdat->node_zones[zid];
1451
1452 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1453 break;
1454 }
1455 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1456 }
1457 #else
1458 static inline void init_reserved_page(unsigned long pfn)
1459 {
1460 }
1461 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1462
1463 /*
1464 * Initialised pages do not have PageReserved set. This function is
1465 * called for each range allocated by the bootmem allocator and
1466 * marks the pages PageReserved. The remaining valid pages are later
1467 * sent to the buddy page allocator.
1468 */
1469 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1470 {
1471 unsigned long start_pfn = PFN_DOWN(start);
1472 unsigned long end_pfn = PFN_UP(end);
1473
1474 for (; start_pfn < end_pfn; start_pfn++) {
1475 if (pfn_valid(start_pfn)) {
1476 struct page *page = pfn_to_page(start_pfn);
1477
1478 init_reserved_page(start_pfn);
1479
1480 /* Avoid false-positive PageTail() */
1481 INIT_LIST_HEAD(&page->lru);
1482
1483 /*
1484 * no need for atomic set_bit because the struct
1485 * page is not visible yet so nobody should
1486 * access it yet.
1487 */
1488 __SetPageReserved(page);
1489 }
1490 }
1491 }
1492
1493 static void __free_pages_ok(struct page *page, unsigned int order)
1494 {
1495 unsigned long flags;
1496 int migratetype;
1497 unsigned long pfn = page_to_pfn(page);
1498
1499 if (!free_pages_prepare(page, order, true))
1500 return;
1501
1502 migratetype = get_pfnblock_migratetype(page, pfn);
1503 local_irq_save(flags);
1504 __count_vm_events(PGFREE, 1 << order);
1505 free_one_page(page_zone(page), page, pfn, order, migratetype);
1506 local_irq_restore(flags);
1507 }
1508
1509 void __free_pages_core(struct page *page, unsigned int order)
1510 {
1511 unsigned int nr_pages = 1 << order;
1512 struct page *p = page;
1513 unsigned int loop;
1514
1515 prefetchw(p);
1516 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1517 prefetchw(p + 1);
1518 __ClearPageReserved(p);
1519 set_page_count(p, 0);
1520 }
1521 __ClearPageReserved(p);
1522 set_page_count(p, 0);
1523
1524 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1525 set_page_refcounted(page);
1526 __free_pages(page, order);
1527 }
1528
1529 #ifdef CONFIG_NEED_MULTIPLE_NODES
1530
1531 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1532
1533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1534
1535 /*
1536 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1537 */
1538 int __meminit __early_pfn_to_nid(unsigned long pfn,
1539 struct mminit_pfnnid_cache *state)
1540 {
1541 unsigned long start_pfn, end_pfn;
1542 int nid;
1543
1544 if (state->last_start <= pfn && pfn < state->last_end)
1545 return state->last_nid;
1546
1547 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1548 if (nid != NUMA_NO_NODE) {
1549 state->last_start = start_pfn;
1550 state->last_end = end_pfn;
1551 state->last_nid = nid;
1552 }
1553
1554 return nid;
1555 }
1556 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1557
1558 int __meminit early_pfn_to_nid(unsigned long pfn)
1559 {
1560 static DEFINE_SPINLOCK(early_pfn_lock);
1561 int nid;
1562
1563 spin_lock(&early_pfn_lock);
1564 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1565 if (nid < 0)
1566 nid = first_online_node;
1567 spin_unlock(&early_pfn_lock);
1568
1569 return nid;
1570 }
1571 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1572
1573 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1574 unsigned int order)
1575 {
1576 if (early_page_uninitialised(pfn))
1577 return;
1578 __free_pages_core(page, order);
1579 }
1580
1581 /*
1582 * Check that the whole (or subset of) a pageblock given by the interval of
1583 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1584 * with the migration of free compaction scanner. The scanners then need to
1585 * use only pfn_valid_within() check for arches that allow holes within
1586 * pageblocks.
1587 *
1588 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1589 *
1590 * It's possible on some configurations to have a setup like node0 node1 node0
1591 * i.e. it's possible that all pages within a zones range of pages do not
1592 * belong to a single zone. We assume that a border between node0 and node1
1593 * can occur within a single pageblock, but not a node0 node1 node0
1594 * interleaving within a single pageblock. It is therefore sufficient to check
1595 * the first and last page of a pageblock and avoid checking each individual
1596 * page in a pageblock.
1597 */
1598 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1599 unsigned long end_pfn, struct zone *zone)
1600 {
1601 struct page *start_page;
1602 struct page *end_page;
1603
1604 /* end_pfn is one past the range we are checking */
1605 end_pfn--;
1606
1607 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1608 return NULL;
1609
1610 start_page = pfn_to_online_page(start_pfn);
1611 if (!start_page)
1612 return NULL;
1613
1614 if (page_zone(start_page) != zone)
1615 return NULL;
1616
1617 end_page = pfn_to_page(end_pfn);
1618
1619 /* This gives a shorter code than deriving page_zone(end_page) */
1620 if (page_zone_id(start_page) != page_zone_id(end_page))
1621 return NULL;
1622
1623 return start_page;
1624 }
1625
1626 void set_zone_contiguous(struct zone *zone)
1627 {
1628 unsigned long block_start_pfn = zone->zone_start_pfn;
1629 unsigned long block_end_pfn;
1630
1631 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1632 for (; block_start_pfn < zone_end_pfn(zone);
1633 block_start_pfn = block_end_pfn,
1634 block_end_pfn += pageblock_nr_pages) {
1635
1636 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1637
1638 if (!__pageblock_pfn_to_page(block_start_pfn,
1639 block_end_pfn, zone))
1640 return;
1641 cond_resched();
1642 }
1643
1644 /* We confirm that there is no hole */
1645 zone->contiguous = true;
1646 }
1647
1648 void clear_zone_contiguous(struct zone *zone)
1649 {
1650 zone->contiguous = false;
1651 }
1652
1653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1654 static void __init deferred_free_range(unsigned long pfn,
1655 unsigned long nr_pages)
1656 {
1657 struct page *page;
1658 unsigned long i;
1659
1660 if (!nr_pages)
1661 return;
1662
1663 page = pfn_to_page(pfn);
1664
1665 /* Free a large naturally-aligned chunk if possible */
1666 if (nr_pages == pageblock_nr_pages &&
1667 (pfn & (pageblock_nr_pages - 1)) == 0) {
1668 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1669 __free_pages_core(page, pageblock_order);
1670 return;
1671 }
1672
1673 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1674 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1675 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1676 __free_pages_core(page, 0);
1677 }
1678 }
1679
1680 /* Completion tracking for deferred_init_memmap() threads */
1681 static atomic_t pgdat_init_n_undone __initdata;
1682 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1683
1684 static inline void __init pgdat_init_report_one_done(void)
1685 {
1686 if (atomic_dec_and_test(&pgdat_init_n_undone))
1687 complete(&pgdat_init_all_done_comp);
1688 }
1689
1690 /*
1691 * Returns true if page needs to be initialized or freed to buddy allocator.
1692 *
1693 * First we check if pfn is valid on architectures where it is possible to have
1694 * holes within pageblock_nr_pages. On systems where it is not possible, this
1695 * function is optimized out.
1696 *
1697 * Then, we check if a current large page is valid by only checking the validity
1698 * of the head pfn.
1699 */
1700 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1701 {
1702 if (!pfn_valid_within(pfn))
1703 return false;
1704 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1705 return false;
1706 return true;
1707 }
1708
1709 /*
1710 * Free pages to buddy allocator. Try to free aligned pages in
1711 * pageblock_nr_pages sizes.
1712 */
1713 static void __init deferred_free_pages(unsigned long pfn,
1714 unsigned long end_pfn)
1715 {
1716 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1717 unsigned long nr_free = 0;
1718
1719 for (; pfn < end_pfn; pfn++) {
1720 if (!deferred_pfn_valid(pfn)) {
1721 deferred_free_range(pfn - nr_free, nr_free);
1722 nr_free = 0;
1723 } else if (!(pfn & nr_pgmask)) {
1724 deferred_free_range(pfn - nr_free, nr_free);
1725 nr_free = 1;
1726 } else {
1727 nr_free++;
1728 }
1729 }
1730 /* Free the last block of pages to allocator */
1731 deferred_free_range(pfn - nr_free, nr_free);
1732 }
1733
1734 /*
1735 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1736 * by performing it only once every pageblock_nr_pages.
1737 * Return number of pages initialized.
1738 */
1739 static unsigned long __init deferred_init_pages(struct zone *zone,
1740 unsigned long pfn,
1741 unsigned long end_pfn)
1742 {
1743 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1744 int nid = zone_to_nid(zone);
1745 unsigned long nr_pages = 0;
1746 int zid = zone_idx(zone);
1747 struct page *page = NULL;
1748
1749 for (; pfn < end_pfn; pfn++) {
1750 if (!deferred_pfn_valid(pfn)) {
1751 page = NULL;
1752 continue;
1753 } else if (!page || !(pfn & nr_pgmask)) {
1754 page = pfn_to_page(pfn);
1755 } else {
1756 page++;
1757 }
1758 __init_single_page(page, pfn, zid, nid);
1759 nr_pages++;
1760 }
1761 return (nr_pages);
1762 }
1763
1764 /*
1765 * This function is meant to pre-load the iterator for the zone init.
1766 * Specifically it walks through the ranges until we are caught up to the
1767 * first_init_pfn value and exits there. If we never encounter the value we
1768 * return false indicating there are no valid ranges left.
1769 */
1770 static bool __init
1771 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1772 unsigned long *spfn, unsigned long *epfn,
1773 unsigned long first_init_pfn)
1774 {
1775 u64 j;
1776
1777 /*
1778 * Start out by walking through the ranges in this zone that have
1779 * already been initialized. We don't need to do anything with them
1780 * so we just need to flush them out of the system.
1781 */
1782 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1783 if (*epfn <= first_init_pfn)
1784 continue;
1785 if (*spfn < first_init_pfn)
1786 *spfn = first_init_pfn;
1787 *i = j;
1788 return true;
1789 }
1790
1791 return false;
1792 }
1793
1794 /*
1795 * Initialize and free pages. We do it in two loops: first we initialize
1796 * struct page, then free to buddy allocator, because while we are
1797 * freeing pages we can access pages that are ahead (computing buddy
1798 * page in __free_one_page()).
1799 *
1800 * In order to try and keep some memory in the cache we have the loop
1801 * broken along max page order boundaries. This way we will not cause
1802 * any issues with the buddy page computation.
1803 */
1804 static unsigned long __init
1805 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1806 unsigned long *end_pfn)
1807 {
1808 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1809 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1810 unsigned long nr_pages = 0;
1811 u64 j = *i;
1812
1813 /* First we loop through and initialize the page values */
1814 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1815 unsigned long t;
1816
1817 if (mo_pfn <= *start_pfn)
1818 break;
1819
1820 t = min(mo_pfn, *end_pfn);
1821 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1822
1823 if (mo_pfn < *end_pfn) {
1824 *start_pfn = mo_pfn;
1825 break;
1826 }
1827 }
1828
1829 /* Reset values and now loop through freeing pages as needed */
1830 swap(j, *i);
1831
1832 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1833 unsigned long t;
1834
1835 if (mo_pfn <= spfn)
1836 break;
1837
1838 t = min(mo_pfn, epfn);
1839 deferred_free_pages(spfn, t);
1840
1841 if (mo_pfn <= epfn)
1842 break;
1843 }
1844
1845 return nr_pages;
1846 }
1847
1848 static void __init
1849 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1850 void *arg)
1851 {
1852 unsigned long spfn, epfn;
1853 struct zone *zone = arg;
1854 u64 i;
1855
1856 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1857
1858 /*
1859 * Initialize and free pages in MAX_ORDER sized increments so that we
1860 * can avoid introducing any issues with the buddy allocator.
1861 */
1862 while (spfn < end_pfn) {
1863 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1864 cond_resched();
1865 }
1866 }
1867
1868 /* An arch may override for more concurrency. */
1869 __weak int __init
1870 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1871 {
1872 return 1;
1873 }
1874
1875 /* Initialise remaining memory on a node */
1876 static int __init deferred_init_memmap(void *data)
1877 {
1878 pg_data_t *pgdat = data;
1879 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1880 unsigned long spfn = 0, epfn = 0;
1881 unsigned long first_init_pfn, flags;
1882 unsigned long start = jiffies;
1883 struct zone *zone;
1884 int zid, max_threads;
1885 u64 i;
1886
1887 /* Bind memory initialisation thread to a local node if possible */
1888 if (!cpumask_empty(cpumask))
1889 set_cpus_allowed_ptr(current, cpumask);
1890
1891 pgdat_resize_lock(pgdat, &flags);
1892 first_init_pfn = pgdat->first_deferred_pfn;
1893 if (first_init_pfn == ULONG_MAX) {
1894 pgdat_resize_unlock(pgdat, &flags);
1895 pgdat_init_report_one_done();
1896 return 0;
1897 }
1898
1899 /* Sanity check boundaries */
1900 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1901 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1902 pgdat->first_deferred_pfn = ULONG_MAX;
1903
1904 /*
1905 * Once we unlock here, the zone cannot be grown anymore, thus if an
1906 * interrupt thread must allocate this early in boot, zone must be
1907 * pre-grown prior to start of deferred page initialization.
1908 */
1909 pgdat_resize_unlock(pgdat, &flags);
1910
1911 /* Only the highest zone is deferred so find it */
1912 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1913 zone = pgdat->node_zones + zid;
1914 if (first_init_pfn < zone_end_pfn(zone))
1915 break;
1916 }
1917
1918 /* If the zone is empty somebody else may have cleared out the zone */
1919 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1920 first_init_pfn))
1921 goto zone_empty;
1922
1923 max_threads = deferred_page_init_max_threads(cpumask);
1924
1925 while (spfn < epfn) {
1926 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1927 struct padata_mt_job job = {
1928 .thread_fn = deferred_init_memmap_chunk,
1929 .fn_arg = zone,
1930 .start = spfn,
1931 .size = epfn_align - spfn,
1932 .align = PAGES_PER_SECTION,
1933 .min_chunk = PAGES_PER_SECTION,
1934 .max_threads = max_threads,
1935 };
1936
1937 padata_do_multithreaded(&job);
1938 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1939 epfn_align);
1940 }
1941 zone_empty:
1942 /* Sanity check that the next zone really is unpopulated */
1943 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1944
1945 pr_info("node %d deferred pages initialised in %ums\n",
1946 pgdat->node_id, jiffies_to_msecs(jiffies - start));
1947
1948 pgdat_init_report_one_done();
1949 return 0;
1950 }
1951
1952 /*
1953 * If this zone has deferred pages, try to grow it by initializing enough
1954 * deferred pages to satisfy the allocation specified by order, rounded up to
1955 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1956 * of SECTION_SIZE bytes by initializing struct pages in increments of
1957 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1958 *
1959 * Return true when zone was grown, otherwise return false. We return true even
1960 * when we grow less than requested, to let the caller decide if there are
1961 * enough pages to satisfy the allocation.
1962 *
1963 * Note: We use noinline because this function is needed only during boot, and
1964 * it is called from a __ref function _deferred_grow_zone. This way we are
1965 * making sure that it is not inlined into permanent text section.
1966 */
1967 static noinline bool __init
1968 deferred_grow_zone(struct zone *zone, unsigned int order)
1969 {
1970 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1971 pg_data_t *pgdat = zone->zone_pgdat;
1972 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1973 unsigned long spfn, epfn, flags;
1974 unsigned long nr_pages = 0;
1975 u64 i;
1976
1977 /* Only the last zone may have deferred pages */
1978 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1979 return false;
1980
1981 pgdat_resize_lock(pgdat, &flags);
1982
1983 /*
1984 * If someone grew this zone while we were waiting for spinlock, return
1985 * true, as there might be enough pages already.
1986 */
1987 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1988 pgdat_resize_unlock(pgdat, &flags);
1989 return true;
1990 }
1991
1992 /* If the zone is empty somebody else may have cleared out the zone */
1993 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1994 first_deferred_pfn)) {
1995 pgdat->first_deferred_pfn = ULONG_MAX;
1996 pgdat_resize_unlock(pgdat, &flags);
1997 /* Retry only once. */
1998 return first_deferred_pfn != ULONG_MAX;
1999 }
2000
2001 /*
2002 * Initialize and free pages in MAX_ORDER sized increments so
2003 * that we can avoid introducing any issues with the buddy
2004 * allocator.
2005 */
2006 while (spfn < epfn) {
2007 /* update our first deferred PFN for this section */
2008 first_deferred_pfn = spfn;
2009
2010 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2011 touch_nmi_watchdog();
2012
2013 /* We should only stop along section boundaries */
2014 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2015 continue;
2016
2017 /* If our quota has been met we can stop here */
2018 if (nr_pages >= nr_pages_needed)
2019 break;
2020 }
2021
2022 pgdat->first_deferred_pfn = spfn;
2023 pgdat_resize_unlock(pgdat, &flags);
2024
2025 return nr_pages > 0;
2026 }
2027
2028 /*
2029 * deferred_grow_zone() is __init, but it is called from
2030 * get_page_from_freelist() during early boot until deferred_pages permanently
2031 * disables this call. This is why we have refdata wrapper to avoid warning,
2032 * and to ensure that the function body gets unloaded.
2033 */
2034 static bool __ref
2035 _deferred_grow_zone(struct zone *zone, unsigned int order)
2036 {
2037 return deferred_grow_zone(zone, order);
2038 }
2039
2040 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2041
2042 void __init page_alloc_init_late(void)
2043 {
2044 struct zone *zone;
2045 int nid;
2046
2047 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2048
2049 /* There will be num_node_state(N_MEMORY) threads */
2050 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2051 for_each_node_state(nid, N_MEMORY) {
2052 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2053 }
2054
2055 /* Block until all are initialised */
2056 wait_for_completion(&pgdat_init_all_done_comp);
2057
2058 /*
2059 * The number of managed pages has changed due to the initialisation
2060 * so the pcpu batch and high limits needs to be updated or the limits
2061 * will be artificially small.
2062 */
2063 for_each_populated_zone(zone)
2064 zone_pcp_update(zone);
2065
2066 /*
2067 * We initialized the rest of the deferred pages. Permanently disable
2068 * on-demand struct page initialization.
2069 */
2070 static_branch_disable(&deferred_pages);
2071
2072 /* Reinit limits that are based on free pages after the kernel is up */
2073 files_maxfiles_init();
2074 #endif
2075
2076 /* Discard memblock private memory */
2077 memblock_discard();
2078
2079 for_each_node_state(nid, N_MEMORY)
2080 shuffle_free_memory(NODE_DATA(nid));
2081
2082 for_each_populated_zone(zone)
2083 set_zone_contiguous(zone);
2084 }
2085
2086 #ifdef CONFIG_CMA
2087 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2088 void __init init_cma_reserved_pageblock(struct page *page)
2089 {
2090 unsigned i = pageblock_nr_pages;
2091 struct page *p = page;
2092
2093 do {
2094 __ClearPageReserved(p);
2095 set_page_count(p, 0);
2096 } while (++p, --i);
2097
2098 set_pageblock_migratetype(page, MIGRATE_CMA);
2099
2100 if (pageblock_order >= MAX_ORDER) {
2101 i = pageblock_nr_pages;
2102 p = page;
2103 do {
2104 set_page_refcounted(p);
2105 __free_pages(p, MAX_ORDER - 1);
2106 p += MAX_ORDER_NR_PAGES;
2107 } while (i -= MAX_ORDER_NR_PAGES);
2108 } else {
2109 set_page_refcounted(page);
2110 __free_pages(page, pageblock_order);
2111 }
2112
2113 adjust_managed_page_count(page, pageblock_nr_pages);
2114 }
2115 #endif
2116
2117 /*
2118 * The order of subdivision here is critical for the IO subsystem.
2119 * Please do not alter this order without good reasons and regression
2120 * testing. Specifically, as large blocks of memory are subdivided,
2121 * the order in which smaller blocks are delivered depends on the order
2122 * they're subdivided in this function. This is the primary factor
2123 * influencing the order in which pages are delivered to the IO
2124 * subsystem according to empirical testing, and this is also justified
2125 * by considering the behavior of a buddy system containing a single
2126 * large block of memory acted on by a series of small allocations.
2127 * This behavior is a critical factor in sglist merging's success.
2128 *
2129 * -- nyc
2130 */
2131 static inline void expand(struct zone *zone, struct page *page,
2132 int low, int high, int migratetype)
2133 {
2134 unsigned long size = 1 << high;
2135
2136 while (high > low) {
2137 high--;
2138 size >>= 1;
2139 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2140
2141 /*
2142 * Mark as guard pages (or page), that will allow to
2143 * merge back to allocator when buddy will be freed.
2144 * Corresponding page table entries will not be touched,
2145 * pages will stay not present in virtual address space
2146 */
2147 if (set_page_guard(zone, &page[size], high, migratetype))
2148 continue;
2149
2150 add_to_free_list(&page[size], zone, high, migratetype);
2151 set_page_order(&page[size], high);
2152 }
2153 }
2154
2155 static void check_new_page_bad(struct page *page)
2156 {
2157 if (unlikely(page->flags & __PG_HWPOISON)) {
2158 /* Don't complain about hwpoisoned pages */
2159 page_mapcount_reset(page); /* remove PageBuddy */
2160 return;
2161 }
2162
2163 bad_page(page,
2164 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2165 }
2166
2167 /*
2168 * This page is about to be returned from the page allocator
2169 */
2170 static inline int check_new_page(struct page *page)
2171 {
2172 if (likely(page_expected_state(page,
2173 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2174 return 0;
2175
2176 check_new_page_bad(page);
2177 return 1;
2178 }
2179
2180 static inline bool free_pages_prezeroed(void)
2181 {
2182 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2183 page_poisoning_enabled()) || want_init_on_free();
2184 }
2185
2186 #ifdef CONFIG_DEBUG_VM
2187 /*
2188 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2189 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2190 * also checked when pcp lists are refilled from the free lists.
2191 */
2192 static inline bool check_pcp_refill(struct page *page)
2193 {
2194 if (debug_pagealloc_enabled_static())
2195 return check_new_page(page);
2196 else
2197 return false;
2198 }
2199
2200 static inline bool check_new_pcp(struct page *page)
2201 {
2202 return check_new_page(page);
2203 }
2204 #else
2205 /*
2206 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2207 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2208 * enabled, they are also checked when being allocated from the pcp lists.
2209 */
2210 static inline bool check_pcp_refill(struct page *page)
2211 {
2212 return check_new_page(page);
2213 }
2214 static inline bool check_new_pcp(struct page *page)
2215 {
2216 if (debug_pagealloc_enabled_static())
2217 return check_new_page(page);
2218 else
2219 return false;
2220 }
2221 #endif /* CONFIG_DEBUG_VM */
2222
2223 static bool check_new_pages(struct page *page, unsigned int order)
2224 {
2225 int i;
2226 for (i = 0; i < (1 << order); i++) {
2227 struct page *p = page + i;
2228
2229 if (unlikely(check_new_page(p)))
2230 return true;
2231 }
2232
2233 return false;
2234 }
2235
2236 inline void post_alloc_hook(struct page *page, unsigned int order,
2237 gfp_t gfp_flags)
2238 {
2239 set_page_private(page, 0);
2240 set_page_refcounted(page);
2241
2242 arch_alloc_page(page, order);
2243 if (debug_pagealloc_enabled_static())
2244 kernel_map_pages(page, 1 << order, 1);
2245 kasan_alloc_pages(page, order);
2246 kernel_poison_pages(page, 1 << order, 1);
2247 set_page_owner(page, order, gfp_flags);
2248 }
2249
2250 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2251 unsigned int alloc_flags)
2252 {
2253 post_alloc_hook(page, order, gfp_flags);
2254
2255 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2256 kernel_init_free_pages(page, 1 << order);
2257
2258 if (order && (gfp_flags & __GFP_COMP))
2259 prep_compound_page(page, order);
2260
2261 /*
2262 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2263 * allocate the page. The expectation is that the caller is taking
2264 * steps that will free more memory. The caller should avoid the page
2265 * being used for !PFMEMALLOC purposes.
2266 */
2267 if (alloc_flags & ALLOC_NO_WATERMARKS)
2268 set_page_pfmemalloc(page);
2269 else
2270 clear_page_pfmemalloc(page);
2271 }
2272
2273 /*
2274 * Go through the free lists for the given migratetype and remove
2275 * the smallest available page from the freelists
2276 */
2277 static __always_inline
2278 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2279 int migratetype)
2280 {
2281 unsigned int current_order;
2282 struct free_area *area;
2283 struct page *page;
2284
2285 /* Find a page of the appropriate size in the preferred list */
2286 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2287 area = &(zone->free_area[current_order]);
2288 page = get_page_from_free_area(area, migratetype);
2289 if (!page)
2290 continue;
2291 del_page_from_free_list(page, zone, current_order);
2292 expand(zone, page, order, current_order, migratetype);
2293 set_pcppage_migratetype(page, migratetype);
2294 return page;
2295 }
2296
2297 return NULL;
2298 }
2299
2300
2301 /*
2302 * This array describes the order lists are fallen back to when
2303 * the free lists for the desirable migrate type are depleted
2304 */
2305 static int fallbacks[MIGRATE_TYPES][3] = {
2306 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2307 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2308 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2309 #ifdef CONFIG_CMA
2310 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2311 #endif
2312 #ifdef CONFIG_MEMORY_ISOLATION
2313 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2314 #endif
2315 };
2316
2317 #ifdef CONFIG_CMA
2318 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2319 unsigned int order)
2320 {
2321 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2322 }
2323 #else
2324 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2325 unsigned int order) { return NULL; }
2326 #endif
2327
2328 /*
2329 * Move the free pages in a range to the free lists of the requested type.
2330 * Note that start_page and end_pages are not aligned on a pageblock
2331 * boundary. If alignment is required, use move_freepages_block()
2332 */
2333 static int move_freepages(struct zone *zone,
2334 struct page *start_page, struct page *end_page,
2335 int migratetype, int *num_movable)
2336 {
2337 struct page *page;
2338 unsigned int order;
2339 int pages_moved = 0;
2340
2341 for (page = start_page; page <= end_page;) {
2342 if (!pfn_valid_within(page_to_pfn(page))) {
2343 page++;
2344 continue;
2345 }
2346
2347 if (!PageBuddy(page)) {
2348 /*
2349 * We assume that pages that could be isolated for
2350 * migration are movable. But we don't actually try
2351 * isolating, as that would be expensive.
2352 */
2353 if (num_movable &&
2354 (PageLRU(page) || __PageMovable(page)))
2355 (*num_movable)++;
2356
2357 page++;
2358 continue;
2359 }
2360
2361 /* Make sure we are not inadvertently changing nodes */
2362 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2363 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2364
2365 order = page_order(page);
2366 move_to_free_list(page, zone, order, migratetype);
2367 page += 1 << order;
2368 pages_moved += 1 << order;
2369 }
2370
2371 return pages_moved;
2372 }
2373
2374 int move_freepages_block(struct zone *zone, struct page *page,
2375 int migratetype, int *num_movable)
2376 {
2377 unsigned long start_pfn, end_pfn;
2378 struct page *start_page, *end_page;
2379
2380 if (num_movable)
2381 *num_movable = 0;
2382
2383 start_pfn = page_to_pfn(page);
2384 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2385 start_page = pfn_to_page(start_pfn);
2386 end_page = start_page + pageblock_nr_pages - 1;
2387 end_pfn = start_pfn + pageblock_nr_pages - 1;
2388
2389 /* Do not cross zone boundaries */
2390 if (!zone_spans_pfn(zone, start_pfn))
2391 start_page = page;
2392 if (!zone_spans_pfn(zone, end_pfn))
2393 return 0;
2394
2395 return move_freepages(zone, start_page, end_page, migratetype,
2396 num_movable);
2397 }
2398
2399 static void change_pageblock_range(struct page *pageblock_page,
2400 int start_order, int migratetype)
2401 {
2402 int nr_pageblocks = 1 << (start_order - pageblock_order);
2403
2404 while (nr_pageblocks--) {
2405 set_pageblock_migratetype(pageblock_page, migratetype);
2406 pageblock_page += pageblock_nr_pages;
2407 }
2408 }
2409
2410 /*
2411 * When we are falling back to another migratetype during allocation, try to
2412 * steal extra free pages from the same pageblocks to satisfy further
2413 * allocations, instead of polluting multiple pageblocks.
2414 *
2415 * If we are stealing a relatively large buddy page, it is likely there will
2416 * be more free pages in the pageblock, so try to steal them all. For
2417 * reclaimable and unmovable allocations, we steal regardless of page size,
2418 * as fragmentation caused by those allocations polluting movable pageblocks
2419 * is worse than movable allocations stealing from unmovable and reclaimable
2420 * pageblocks.
2421 */
2422 static bool can_steal_fallback(unsigned int order, int start_mt)
2423 {
2424 /*
2425 * Leaving this order check is intended, although there is
2426 * relaxed order check in next check. The reason is that
2427 * we can actually steal whole pageblock if this condition met,
2428 * but, below check doesn't guarantee it and that is just heuristic
2429 * so could be changed anytime.
2430 */
2431 if (order >= pageblock_order)
2432 return true;
2433
2434 if (order >= pageblock_order / 2 ||
2435 start_mt == MIGRATE_RECLAIMABLE ||
2436 start_mt == MIGRATE_UNMOVABLE ||
2437 page_group_by_mobility_disabled)
2438 return true;
2439
2440 return false;
2441 }
2442
2443 static inline void boost_watermark(struct zone *zone)
2444 {
2445 unsigned long max_boost;
2446
2447 if (!watermark_boost_factor)
2448 return;
2449 /*
2450 * Don't bother in zones that are unlikely to produce results.
2451 * On small machines, including kdump capture kernels running
2452 * in a small area, boosting the watermark can cause an out of
2453 * memory situation immediately.
2454 */
2455 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2456 return;
2457
2458 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2459 watermark_boost_factor, 10000);
2460
2461 /*
2462 * high watermark may be uninitialised if fragmentation occurs
2463 * very early in boot so do not boost. We do not fall
2464 * through and boost by pageblock_nr_pages as failing
2465 * allocations that early means that reclaim is not going
2466 * to help and it may even be impossible to reclaim the
2467 * boosted watermark resulting in a hang.
2468 */
2469 if (!max_boost)
2470 return;
2471
2472 max_boost = max(pageblock_nr_pages, max_boost);
2473
2474 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2475 max_boost);
2476 }
2477
2478 /*
2479 * This function implements actual steal behaviour. If order is large enough,
2480 * we can steal whole pageblock. If not, we first move freepages in this
2481 * pageblock to our migratetype and determine how many already-allocated pages
2482 * are there in the pageblock with a compatible migratetype. If at least half
2483 * of pages are free or compatible, we can change migratetype of the pageblock
2484 * itself, so pages freed in the future will be put on the correct free list.
2485 */
2486 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2487 unsigned int alloc_flags, int start_type, bool whole_block)
2488 {
2489 unsigned int current_order = page_order(page);
2490 int free_pages, movable_pages, alike_pages;
2491 int old_block_type;
2492
2493 old_block_type = get_pageblock_migratetype(page);
2494
2495 /*
2496 * This can happen due to races and we want to prevent broken
2497 * highatomic accounting.
2498 */
2499 if (is_migrate_highatomic(old_block_type))
2500 goto single_page;
2501
2502 /* Take ownership for orders >= pageblock_order */
2503 if (current_order >= pageblock_order) {
2504 change_pageblock_range(page, current_order, start_type);
2505 goto single_page;
2506 }
2507
2508 /*
2509 * Boost watermarks to increase reclaim pressure to reduce the
2510 * likelihood of future fallbacks. Wake kswapd now as the node
2511 * may be balanced overall and kswapd will not wake naturally.
2512 */
2513 boost_watermark(zone);
2514 if (alloc_flags & ALLOC_KSWAPD)
2515 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2516
2517 /* We are not allowed to try stealing from the whole block */
2518 if (!whole_block)
2519 goto single_page;
2520
2521 free_pages = move_freepages_block(zone, page, start_type,
2522 &movable_pages);
2523 /*
2524 * Determine how many pages are compatible with our allocation.
2525 * For movable allocation, it's the number of movable pages which
2526 * we just obtained. For other types it's a bit more tricky.
2527 */
2528 if (start_type == MIGRATE_MOVABLE) {
2529 alike_pages = movable_pages;
2530 } else {
2531 /*
2532 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2533 * to MOVABLE pageblock, consider all non-movable pages as
2534 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2535 * vice versa, be conservative since we can't distinguish the
2536 * exact migratetype of non-movable pages.
2537 */
2538 if (old_block_type == MIGRATE_MOVABLE)
2539 alike_pages = pageblock_nr_pages
2540 - (free_pages + movable_pages);
2541 else
2542 alike_pages = 0;
2543 }
2544
2545 /* moving whole block can fail due to zone boundary conditions */
2546 if (!free_pages)
2547 goto single_page;
2548
2549 /*
2550 * If a sufficient number of pages in the block are either free or of
2551 * comparable migratability as our allocation, claim the whole block.
2552 */
2553 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2554 page_group_by_mobility_disabled)
2555 set_pageblock_migratetype(page, start_type);
2556
2557 return;
2558
2559 single_page:
2560 move_to_free_list(page, zone, current_order, start_type);
2561 }
2562
2563 /*
2564 * Check whether there is a suitable fallback freepage with requested order.
2565 * If only_stealable is true, this function returns fallback_mt only if
2566 * we can steal other freepages all together. This would help to reduce
2567 * fragmentation due to mixed migratetype pages in one pageblock.
2568 */
2569 int find_suitable_fallback(struct free_area *area, unsigned int order,
2570 int migratetype, bool only_stealable, bool *can_steal)
2571 {
2572 int i;
2573 int fallback_mt;
2574
2575 if (area->nr_free == 0)
2576 return -1;
2577
2578 *can_steal = false;
2579 for (i = 0;; i++) {
2580 fallback_mt = fallbacks[migratetype][i];
2581 if (fallback_mt == MIGRATE_TYPES)
2582 break;
2583
2584 if (free_area_empty(area, fallback_mt))
2585 continue;
2586
2587 if (can_steal_fallback(order, migratetype))
2588 *can_steal = true;
2589
2590 if (!only_stealable)
2591 return fallback_mt;
2592
2593 if (*can_steal)
2594 return fallback_mt;
2595 }
2596
2597 return -1;
2598 }
2599
2600 /*
2601 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2602 * there are no empty page blocks that contain a page with a suitable order
2603 */
2604 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2605 unsigned int alloc_order)
2606 {
2607 int mt;
2608 unsigned long max_managed, flags;
2609
2610 /*
2611 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2612 * Check is race-prone but harmless.
2613 */
2614 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2615 if (zone->nr_reserved_highatomic >= max_managed)
2616 return;
2617
2618 spin_lock_irqsave(&zone->lock, flags);
2619
2620 /* Recheck the nr_reserved_highatomic limit under the lock */
2621 if (zone->nr_reserved_highatomic >= max_managed)
2622 goto out_unlock;
2623
2624 /* Yoink! */
2625 mt = get_pageblock_migratetype(page);
2626 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2627 && !is_migrate_cma(mt)) {
2628 zone->nr_reserved_highatomic += pageblock_nr_pages;
2629 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2630 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2631 }
2632
2633 out_unlock:
2634 spin_unlock_irqrestore(&zone->lock, flags);
2635 }
2636
2637 /*
2638 * Used when an allocation is about to fail under memory pressure. This
2639 * potentially hurts the reliability of high-order allocations when under
2640 * intense memory pressure but failed atomic allocations should be easier
2641 * to recover from than an OOM.
2642 *
2643 * If @force is true, try to unreserve a pageblock even though highatomic
2644 * pageblock is exhausted.
2645 */
2646 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2647 bool force)
2648 {
2649 struct zonelist *zonelist = ac->zonelist;
2650 unsigned long flags;
2651 struct zoneref *z;
2652 struct zone *zone;
2653 struct page *page;
2654 int order;
2655 bool ret;
2656
2657 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2658 ac->nodemask) {
2659 /*
2660 * Preserve at least one pageblock unless memory pressure
2661 * is really high.
2662 */
2663 if (!force && zone->nr_reserved_highatomic <=
2664 pageblock_nr_pages)
2665 continue;
2666
2667 spin_lock_irqsave(&zone->lock, flags);
2668 for (order = 0; order < MAX_ORDER; order++) {
2669 struct free_area *area = &(zone->free_area[order]);
2670
2671 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2672 if (!page)
2673 continue;
2674
2675 /*
2676 * In page freeing path, migratetype change is racy so
2677 * we can counter several free pages in a pageblock
2678 * in this loop althoug we changed the pageblock type
2679 * from highatomic to ac->migratetype. So we should
2680 * adjust the count once.
2681 */
2682 if (is_migrate_highatomic_page(page)) {
2683 /*
2684 * It should never happen but changes to
2685 * locking could inadvertently allow a per-cpu
2686 * drain to add pages to MIGRATE_HIGHATOMIC
2687 * while unreserving so be safe and watch for
2688 * underflows.
2689 */
2690 zone->nr_reserved_highatomic -= min(
2691 pageblock_nr_pages,
2692 zone->nr_reserved_highatomic);
2693 }
2694
2695 /*
2696 * Convert to ac->migratetype and avoid the normal
2697 * pageblock stealing heuristics. Minimally, the caller
2698 * is doing the work and needs the pages. More
2699 * importantly, if the block was always converted to
2700 * MIGRATE_UNMOVABLE or another type then the number
2701 * of pageblocks that cannot be completely freed
2702 * may increase.
2703 */
2704 set_pageblock_migratetype(page, ac->migratetype);
2705 ret = move_freepages_block(zone, page, ac->migratetype,
2706 NULL);
2707 if (ret) {
2708 spin_unlock_irqrestore(&zone->lock, flags);
2709 return ret;
2710 }
2711 }
2712 spin_unlock_irqrestore(&zone->lock, flags);
2713 }
2714
2715 return false;
2716 }
2717
2718 /*
2719 * Try finding a free buddy page on the fallback list and put it on the free
2720 * list of requested migratetype, possibly along with other pages from the same
2721 * block, depending on fragmentation avoidance heuristics. Returns true if
2722 * fallback was found so that __rmqueue_smallest() can grab it.
2723 *
2724 * The use of signed ints for order and current_order is a deliberate
2725 * deviation from the rest of this file, to make the for loop
2726 * condition simpler.
2727 */
2728 static __always_inline bool
2729 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2730 unsigned int alloc_flags)
2731 {
2732 struct free_area *area;
2733 int current_order;
2734 int min_order = order;
2735 struct page *page;
2736 int fallback_mt;
2737 bool can_steal;
2738
2739 /*
2740 * Do not steal pages from freelists belonging to other pageblocks
2741 * i.e. orders < pageblock_order. If there are no local zones free,
2742 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2743 */
2744 if (alloc_flags & ALLOC_NOFRAGMENT)
2745 min_order = pageblock_order;
2746
2747 /*
2748 * Find the largest available free page in the other list. This roughly
2749 * approximates finding the pageblock with the most free pages, which
2750 * would be too costly to do exactly.
2751 */
2752 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2753 --current_order) {
2754 area = &(zone->free_area[current_order]);
2755 fallback_mt = find_suitable_fallback(area, current_order,
2756 start_migratetype, false, &can_steal);
2757 if (fallback_mt == -1)
2758 continue;
2759
2760 /*
2761 * We cannot steal all free pages from the pageblock and the
2762 * requested migratetype is movable. In that case it's better to
2763 * steal and split the smallest available page instead of the
2764 * largest available page, because even if the next movable
2765 * allocation falls back into a different pageblock than this
2766 * one, it won't cause permanent fragmentation.
2767 */
2768 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2769 && current_order > order)
2770 goto find_smallest;
2771
2772 goto do_steal;
2773 }
2774
2775 return false;
2776
2777 find_smallest:
2778 for (current_order = order; current_order < MAX_ORDER;
2779 current_order++) {
2780 area = &(zone->free_area[current_order]);
2781 fallback_mt = find_suitable_fallback(area, current_order,
2782 start_migratetype, false, &can_steal);
2783 if (fallback_mt != -1)
2784 break;
2785 }
2786
2787 /*
2788 * This should not happen - we already found a suitable fallback
2789 * when looking for the largest page.
2790 */
2791 VM_BUG_ON(current_order == MAX_ORDER);
2792
2793 do_steal:
2794 page = get_page_from_free_area(area, fallback_mt);
2795
2796 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2797 can_steal);
2798
2799 trace_mm_page_alloc_extfrag(page, order, current_order,
2800 start_migratetype, fallback_mt);
2801
2802 return true;
2803
2804 }
2805
2806 /*
2807 * Do the hard work of removing an element from the buddy allocator.
2808 * Call me with the zone->lock already held.
2809 */
2810 static __always_inline struct page *
2811 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2812 unsigned int alloc_flags)
2813 {
2814 struct page *page;
2815
2816 #ifdef CONFIG_CMA
2817 /*
2818 * Balance movable allocations between regular and CMA areas by
2819 * allocating from CMA when over half of the zone's free memory
2820 * is in the CMA area.
2821 */
2822 if (alloc_flags & ALLOC_CMA &&
2823 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2824 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2825 page = __rmqueue_cma_fallback(zone, order);
2826 if (page)
2827 return page;
2828 }
2829 #endif
2830 retry:
2831 page = __rmqueue_smallest(zone, order, migratetype);
2832 if (unlikely(!page)) {
2833 if (alloc_flags & ALLOC_CMA)
2834 page = __rmqueue_cma_fallback(zone, order);
2835
2836 if (!page && __rmqueue_fallback(zone, order, migratetype,
2837 alloc_flags))
2838 goto retry;
2839 }
2840
2841 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2842 return page;
2843 }
2844
2845 /*
2846 * Obtain a specified number of elements from the buddy allocator, all under
2847 * a single hold of the lock, for efficiency. Add them to the supplied list.
2848 * Returns the number of new pages which were placed at *list.
2849 */
2850 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2851 unsigned long count, struct list_head *list,
2852 int migratetype, unsigned int alloc_flags)
2853 {
2854 int i, alloced = 0;
2855
2856 spin_lock(&zone->lock);
2857 for (i = 0; i < count; ++i) {
2858 struct page *page = __rmqueue(zone, order, migratetype,
2859 alloc_flags);
2860 if (unlikely(page == NULL))
2861 break;
2862
2863 if (unlikely(check_pcp_refill(page)))
2864 continue;
2865
2866 /*
2867 * Split buddy pages returned by expand() are received here in
2868 * physical page order. The page is added to the tail of
2869 * caller's list. From the callers perspective, the linked list
2870 * is ordered by page number under some conditions. This is
2871 * useful for IO devices that can forward direction from the
2872 * head, thus also in the physical page order. This is useful
2873 * for IO devices that can merge IO requests if the physical
2874 * pages are ordered properly.
2875 */
2876 list_add_tail(&page->lru, list);
2877 alloced++;
2878 if (is_migrate_cma(get_pcppage_migratetype(page)))
2879 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2880 -(1 << order));
2881 }
2882
2883 /*
2884 * i pages were removed from the buddy list even if some leak due
2885 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2886 * on i. Do not confuse with 'alloced' which is the number of
2887 * pages added to the pcp list.
2888 */
2889 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2890 spin_unlock(&zone->lock);
2891 return alloced;
2892 }
2893
2894 #ifdef CONFIG_NUMA
2895 /*
2896 * Called from the vmstat counter updater to drain pagesets of this
2897 * currently executing processor on remote nodes after they have
2898 * expired.
2899 *
2900 * Note that this function must be called with the thread pinned to
2901 * a single processor.
2902 */
2903 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2904 {
2905 unsigned long flags;
2906 int to_drain, batch;
2907
2908 local_irq_save(flags);
2909 batch = READ_ONCE(pcp->batch);
2910 to_drain = min(pcp->count, batch);
2911 if (to_drain > 0)
2912 free_pcppages_bulk(zone, to_drain, pcp);
2913 local_irq_restore(flags);
2914 }
2915 #endif
2916
2917 /*
2918 * Drain pcplists of the indicated processor and zone.
2919 *
2920 * The processor must either be the current processor and the
2921 * thread pinned to the current processor or a processor that
2922 * is not online.
2923 */
2924 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2925 {
2926 unsigned long flags;
2927 struct per_cpu_pageset *pset;
2928 struct per_cpu_pages *pcp;
2929
2930 local_irq_save(flags);
2931 pset = per_cpu_ptr(zone->pageset, cpu);
2932
2933 pcp = &pset->pcp;
2934 if (pcp->count)
2935 free_pcppages_bulk(zone, pcp->count, pcp);
2936 local_irq_restore(flags);
2937 }
2938
2939 /*
2940 * Drain pcplists of all zones on the indicated processor.
2941 *
2942 * The processor must either be the current processor and the
2943 * thread pinned to the current processor or a processor that
2944 * is not online.
2945 */
2946 static void drain_pages(unsigned int cpu)
2947 {
2948 struct zone *zone;
2949
2950 for_each_populated_zone(zone) {
2951 drain_pages_zone(cpu, zone);
2952 }
2953 }
2954
2955 /*
2956 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2957 *
2958 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2959 * the single zone's pages.
2960 */
2961 void drain_local_pages(struct zone *zone)
2962 {
2963 int cpu = smp_processor_id();
2964
2965 if (zone)
2966 drain_pages_zone(cpu, zone);
2967 else
2968 drain_pages(cpu);
2969 }
2970
2971 static void drain_local_pages_wq(struct work_struct *work)
2972 {
2973 struct pcpu_drain *drain;
2974
2975 drain = container_of(work, struct pcpu_drain, work);
2976
2977 /*
2978 * drain_all_pages doesn't use proper cpu hotplug protection so
2979 * we can race with cpu offline when the WQ can move this from
2980 * a cpu pinned worker to an unbound one. We can operate on a different
2981 * cpu which is allright but we also have to make sure to not move to
2982 * a different one.
2983 */
2984 preempt_disable();
2985 drain_local_pages(drain->zone);
2986 preempt_enable();
2987 }
2988
2989 /*
2990 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2991 *
2992 * When zone parameter is non-NULL, spill just the single zone's pages.
2993 *
2994 * Note that this can be extremely slow as the draining happens in a workqueue.
2995 */
2996 void drain_all_pages(struct zone *zone)
2997 {
2998 int cpu;
2999
3000 /*
3001 * Allocate in the BSS so we wont require allocation in
3002 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3003 */
3004 static cpumask_t cpus_with_pcps;
3005
3006 /*
3007 * Make sure nobody triggers this path before mm_percpu_wq is fully
3008 * initialized.
3009 */
3010 if (WARN_ON_ONCE(!mm_percpu_wq))
3011 return;
3012
3013 /*
3014 * Do not drain if one is already in progress unless it's specific to
3015 * a zone. Such callers are primarily CMA and memory hotplug and need
3016 * the drain to be complete when the call returns.
3017 */
3018 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3019 if (!zone)
3020 return;
3021 mutex_lock(&pcpu_drain_mutex);
3022 }
3023
3024 /*
3025 * We don't care about racing with CPU hotplug event
3026 * as offline notification will cause the notified
3027 * cpu to drain that CPU pcps and on_each_cpu_mask
3028 * disables preemption as part of its processing
3029 */
3030 for_each_online_cpu(cpu) {
3031 struct per_cpu_pageset *pcp;
3032 struct zone *z;
3033 bool has_pcps = false;
3034
3035 if (zone) {
3036 pcp = per_cpu_ptr(zone->pageset, cpu);
3037 if (pcp->pcp.count)
3038 has_pcps = true;
3039 } else {
3040 for_each_populated_zone(z) {
3041 pcp = per_cpu_ptr(z->pageset, cpu);
3042 if (pcp->pcp.count) {
3043 has_pcps = true;
3044 break;
3045 }
3046 }
3047 }
3048
3049 if (has_pcps)
3050 cpumask_set_cpu(cpu, &cpus_with_pcps);
3051 else
3052 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3053 }
3054
3055 for_each_cpu(cpu, &cpus_with_pcps) {
3056 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3057
3058 drain->zone = zone;
3059 INIT_WORK(&drain->work, drain_local_pages_wq);
3060 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3061 }
3062 for_each_cpu(cpu, &cpus_with_pcps)
3063 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3064
3065 mutex_unlock(&pcpu_drain_mutex);
3066 }
3067
3068 #ifdef CONFIG_HIBERNATION
3069
3070 /*
3071 * Touch the watchdog for every WD_PAGE_COUNT pages.
3072 */
3073 #define WD_PAGE_COUNT (128*1024)
3074
3075 void mark_free_pages(struct zone *zone)
3076 {
3077 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3078 unsigned long flags;
3079 unsigned int order, t;
3080 struct page *page;
3081
3082 if (zone_is_empty(zone))
3083 return;
3084
3085 spin_lock_irqsave(&zone->lock, flags);
3086
3087 max_zone_pfn = zone_end_pfn(zone);
3088 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3089 if (pfn_valid(pfn)) {
3090 page = pfn_to_page(pfn);
3091
3092 if (!--page_count) {
3093 touch_nmi_watchdog();
3094 page_count = WD_PAGE_COUNT;
3095 }
3096
3097 if (page_zone(page) != zone)
3098 continue;
3099
3100 if (!swsusp_page_is_forbidden(page))
3101 swsusp_unset_page_free(page);
3102 }
3103
3104 for_each_migratetype_order(order, t) {
3105 list_for_each_entry(page,
3106 &zone->free_area[order].free_list[t], lru) {
3107 unsigned long i;
3108
3109 pfn = page_to_pfn(page);
3110 for (i = 0; i < (1UL << order); i++) {
3111 if (!--page_count) {
3112 touch_nmi_watchdog();
3113 page_count = WD_PAGE_COUNT;
3114 }
3115 swsusp_set_page_free(pfn_to_page(pfn + i));
3116 }
3117 }
3118 }
3119 spin_unlock_irqrestore(&zone->lock, flags);
3120 }
3121 #endif /* CONFIG_PM */
3122
3123 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3124 {
3125 int migratetype;
3126
3127 if (!free_pcp_prepare(page))
3128 return false;
3129
3130 migratetype = get_pfnblock_migratetype(page, pfn);
3131 set_pcppage_migratetype(page, migratetype);
3132 return true;
3133 }
3134
3135 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3136 {
3137 struct zone *zone = page_zone(page);
3138 struct per_cpu_pages *pcp;
3139 int migratetype;
3140
3141 migratetype = get_pcppage_migratetype(page);
3142 __count_vm_event(PGFREE);
3143
3144 /*
3145 * We only track unmovable, reclaimable and movable on pcp lists.
3146 * Free ISOLATE pages back to the allocator because they are being
3147 * offlined but treat HIGHATOMIC as movable pages so we can get those
3148 * areas back if necessary. Otherwise, we may have to free
3149 * excessively into the page allocator
3150 */
3151 if (migratetype >= MIGRATE_PCPTYPES) {
3152 if (unlikely(is_migrate_isolate(migratetype))) {
3153 free_one_page(zone, page, pfn, 0, migratetype);
3154 return;
3155 }
3156 migratetype = MIGRATE_MOVABLE;
3157 }
3158
3159 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3160 list_add(&page->lru, &pcp->lists[migratetype]);
3161 pcp->count++;
3162 if (pcp->count >= pcp->high) {
3163 unsigned long batch = READ_ONCE(pcp->batch);
3164 free_pcppages_bulk(zone, batch, pcp);
3165 }
3166 }
3167
3168 /*
3169 * Free a 0-order page
3170 */
3171 void free_unref_page(struct page *page)
3172 {
3173 unsigned long flags;
3174 unsigned long pfn = page_to_pfn(page);
3175
3176 if (!free_unref_page_prepare(page, pfn))
3177 return;
3178
3179 local_irq_save(flags);
3180 free_unref_page_commit(page, pfn);
3181 local_irq_restore(flags);
3182 }
3183
3184 /*
3185 * Free a list of 0-order pages
3186 */
3187 void free_unref_page_list(struct list_head *list)
3188 {
3189 struct page *page, *next;
3190 unsigned long flags, pfn;
3191 int batch_count = 0;
3192
3193 /* Prepare pages for freeing */
3194 list_for_each_entry_safe(page, next, list, lru) {
3195 pfn = page_to_pfn(page);
3196 if (!free_unref_page_prepare(page, pfn))
3197 list_del(&page->lru);
3198 set_page_private(page, pfn);
3199 }
3200
3201 local_irq_save(flags);
3202 list_for_each_entry_safe(page, next, list, lru) {
3203 unsigned long pfn = page_private(page);
3204
3205 set_page_private(page, 0);
3206 trace_mm_page_free_batched(page);
3207 free_unref_page_commit(page, pfn);
3208
3209 /*
3210 * Guard against excessive IRQ disabled times when we get
3211 * a large list of pages to free.
3212 */
3213 if (++batch_count == SWAP_CLUSTER_MAX) {
3214 local_irq_restore(flags);
3215 batch_count = 0;
3216 local_irq_save(flags);
3217 }
3218 }
3219 local_irq_restore(flags);
3220 }
3221
3222 /*
3223 * split_page takes a non-compound higher-order page, and splits it into
3224 * n (1<<order) sub-pages: page[0..n]
3225 * Each sub-page must be freed individually.
3226 *
3227 * Note: this is probably too low level an operation for use in drivers.
3228 * Please consult with lkml before using this in your driver.
3229 */
3230 void split_page(struct page *page, unsigned int order)
3231 {
3232 int i;
3233
3234 VM_BUG_ON_PAGE(PageCompound(page), page);
3235 VM_BUG_ON_PAGE(!page_count(page), page);
3236
3237 for (i = 1; i < (1 << order); i++)
3238 set_page_refcounted(page + i);
3239 split_page_owner(page, 1 << order);
3240 }
3241 EXPORT_SYMBOL_GPL(split_page);
3242
3243 int __isolate_free_page(struct page *page, unsigned int order)
3244 {
3245 unsigned long watermark;
3246 struct zone *zone;
3247 int mt;
3248
3249 BUG_ON(!PageBuddy(page));
3250
3251 zone = page_zone(page);
3252 mt = get_pageblock_migratetype(page);
3253
3254 if (!is_migrate_isolate(mt)) {
3255 /*
3256 * Obey watermarks as if the page was being allocated. We can
3257 * emulate a high-order watermark check with a raised order-0
3258 * watermark, because we already know our high-order page
3259 * exists.
3260 */
3261 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3262 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3263 return 0;
3264
3265 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3266 }
3267
3268 /* Remove page from free list */
3269
3270 del_page_from_free_list(page, zone, order);
3271
3272 /*
3273 * Set the pageblock if the isolated page is at least half of a
3274 * pageblock
3275 */
3276 if (order >= pageblock_order - 1) {
3277 struct page *endpage = page + (1 << order) - 1;
3278 for (; page < endpage; page += pageblock_nr_pages) {
3279 int mt = get_pageblock_migratetype(page);
3280 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3281 && !is_migrate_highatomic(mt))
3282 set_pageblock_migratetype(page,
3283 MIGRATE_MOVABLE);
3284 }
3285 }
3286
3287
3288 return 1UL << order;
3289 }
3290
3291 /**
3292 * __putback_isolated_page - Return a now-isolated page back where we got it
3293 * @page: Page that was isolated
3294 * @order: Order of the isolated page
3295 * @mt: The page's pageblock's migratetype
3296 *
3297 * This function is meant to return a page pulled from the free lists via
3298 * __isolate_free_page back to the free lists they were pulled from.
3299 */
3300 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3301 {
3302 struct zone *zone = page_zone(page);
3303
3304 /* zone lock should be held when this function is called */
3305 lockdep_assert_held(&zone->lock);
3306
3307 /* Return isolated page to tail of freelist. */
3308 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3309 FPI_SKIP_REPORT_NOTIFY);
3310 }
3311
3312 /*
3313 * Update NUMA hit/miss statistics
3314 *
3315 * Must be called with interrupts disabled.
3316 */
3317 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3318 {
3319 #ifdef CONFIG_NUMA
3320 enum numa_stat_item local_stat = NUMA_LOCAL;
3321
3322 /* skip numa counters update if numa stats is disabled */
3323 if (!static_branch_likely(&vm_numa_stat_key))
3324 return;
3325
3326 if (zone_to_nid(z) != numa_node_id())
3327 local_stat = NUMA_OTHER;
3328
3329 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3330 __inc_numa_state(z, NUMA_HIT);
3331 else {
3332 __inc_numa_state(z, NUMA_MISS);
3333 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3334 }
3335 __inc_numa_state(z, local_stat);
3336 #endif
3337 }
3338
3339 /* Remove page from the per-cpu list, caller must protect the list */
3340 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3341 unsigned int alloc_flags,
3342 struct per_cpu_pages *pcp,
3343 struct list_head *list)
3344 {
3345 struct page *page;
3346
3347 do {
3348 if (list_empty(list)) {
3349 pcp->count += rmqueue_bulk(zone, 0,
3350 pcp->batch, list,
3351 migratetype, alloc_flags);
3352 if (unlikely(list_empty(list)))
3353 return NULL;
3354 }
3355
3356 page = list_first_entry(list, struct page, lru);
3357 list_del(&page->lru);
3358 pcp->count--;
3359 } while (check_new_pcp(page));
3360
3361 return page;
3362 }
3363
3364 /* Lock and remove page from the per-cpu list */
3365 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3366 struct zone *zone, gfp_t gfp_flags,
3367 int migratetype, unsigned int alloc_flags)
3368 {
3369 struct per_cpu_pages *pcp;
3370 struct list_head *list;
3371 struct page *page;
3372 unsigned long flags;
3373
3374 local_irq_save(flags);
3375 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3376 list = &pcp->lists[migratetype];
3377 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3378 if (page) {
3379 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3380 zone_statistics(preferred_zone, zone);
3381 }
3382 local_irq_restore(flags);
3383 return page;
3384 }
3385
3386 /*
3387 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3388 */
3389 static inline
3390 struct page *rmqueue(struct zone *preferred_zone,
3391 struct zone *zone, unsigned int order,
3392 gfp_t gfp_flags, unsigned int alloc_flags,
3393 int migratetype)
3394 {
3395 unsigned long flags;
3396 struct page *page;
3397
3398 if (likely(order == 0)) {
3399 /*
3400 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3401 * we need to skip it when CMA area isn't allowed.
3402 */
3403 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3404 migratetype != MIGRATE_MOVABLE) {
3405 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3406 migratetype, alloc_flags);
3407 goto out;
3408 }
3409 }
3410
3411 /*
3412 * We most definitely don't want callers attempting to
3413 * allocate greater than order-1 page units with __GFP_NOFAIL.
3414 */
3415 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3416 spin_lock_irqsave(&zone->lock, flags);
3417
3418 do {
3419 page = NULL;
3420 /*
3421 * order-0 request can reach here when the pcplist is skipped
3422 * due to non-CMA allocation context. HIGHATOMIC area is
3423 * reserved for high-order atomic allocation, so order-0
3424 * request should skip it.
3425 */
3426 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3427 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3428 if (page)
3429 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3430 }
3431 if (!page)
3432 page = __rmqueue(zone, order, migratetype, alloc_flags);
3433 } while (page && check_new_pages(page, order));
3434 spin_unlock(&zone->lock);
3435 if (!page)
3436 goto failed;
3437 __mod_zone_freepage_state(zone, -(1 << order),
3438 get_pcppage_migratetype(page));
3439
3440 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3441 zone_statistics(preferred_zone, zone);
3442 local_irq_restore(flags);
3443
3444 out:
3445 /* Separate test+clear to avoid unnecessary atomics */
3446 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3447 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3448 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3449 }
3450
3451 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3452 return page;
3453
3454 failed:
3455 local_irq_restore(flags);
3456 return NULL;
3457 }
3458
3459 #ifdef CONFIG_FAIL_PAGE_ALLOC
3460
3461 static struct {
3462 struct fault_attr attr;
3463
3464 bool ignore_gfp_highmem;
3465 bool ignore_gfp_reclaim;
3466 u32 min_order;
3467 } fail_page_alloc = {
3468 .attr = FAULT_ATTR_INITIALIZER,
3469 .ignore_gfp_reclaim = true,
3470 .ignore_gfp_highmem = true,
3471 .min_order = 1,
3472 };
3473
3474 static int __init setup_fail_page_alloc(char *str)
3475 {
3476 return setup_fault_attr(&fail_page_alloc.attr, str);
3477 }
3478 __setup("fail_page_alloc=", setup_fail_page_alloc);
3479
3480 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3481 {
3482 if (order < fail_page_alloc.min_order)
3483 return false;
3484 if (gfp_mask & __GFP_NOFAIL)
3485 return false;
3486 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3487 return false;
3488 if (fail_page_alloc.ignore_gfp_reclaim &&
3489 (gfp_mask & __GFP_DIRECT_RECLAIM))
3490 return false;
3491
3492 return should_fail(&fail_page_alloc.attr, 1 << order);
3493 }
3494
3495 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3496
3497 static int __init fail_page_alloc_debugfs(void)
3498 {
3499 umode_t mode = S_IFREG | 0600;
3500 struct dentry *dir;
3501
3502 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3503 &fail_page_alloc.attr);
3504
3505 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3506 &fail_page_alloc.ignore_gfp_reclaim);
3507 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3508 &fail_page_alloc.ignore_gfp_highmem);
3509 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3510
3511 return 0;
3512 }
3513
3514 late_initcall(fail_page_alloc_debugfs);
3515
3516 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3517
3518 #else /* CONFIG_FAIL_PAGE_ALLOC */
3519
3520 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3521 {
3522 return false;
3523 }
3524
3525 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3526
3527 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3528 {
3529 return __should_fail_alloc_page(gfp_mask, order);
3530 }
3531 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3532
3533 static inline long __zone_watermark_unusable_free(struct zone *z,
3534 unsigned int order, unsigned int alloc_flags)
3535 {
3536 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3537 long unusable_free = (1 << order) - 1;
3538
3539 /*
3540 * If the caller does not have rights to ALLOC_HARDER then subtract
3541 * the high-atomic reserves. This will over-estimate the size of the
3542 * atomic reserve but it avoids a search.
3543 */
3544 if (likely(!alloc_harder))
3545 unusable_free += z->nr_reserved_highatomic;
3546
3547 #ifdef CONFIG_CMA
3548 /* If allocation can't use CMA areas don't use free CMA pages */
3549 if (!(alloc_flags & ALLOC_CMA))
3550 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3551 #endif
3552
3553 return unusable_free;
3554 }
3555
3556 /*
3557 * Return true if free base pages are above 'mark'. For high-order checks it
3558 * will return true of the order-0 watermark is reached and there is at least
3559 * one free page of a suitable size. Checking now avoids taking the zone lock
3560 * to check in the allocation paths if no pages are free.
3561 */
3562 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3563 int highest_zoneidx, unsigned int alloc_flags,
3564 long free_pages)
3565 {
3566 long min = mark;
3567 int o;
3568 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3569
3570 /* free_pages may go negative - that's OK */
3571 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3572
3573 if (alloc_flags & ALLOC_HIGH)
3574 min -= min / 2;
3575
3576 if (unlikely(alloc_harder)) {
3577 /*
3578 * OOM victims can try even harder than normal ALLOC_HARDER
3579 * users on the grounds that it's definitely going to be in
3580 * the exit path shortly and free memory. Any allocation it
3581 * makes during the free path will be small and short-lived.
3582 */
3583 if (alloc_flags & ALLOC_OOM)
3584 min -= min / 2;
3585 else
3586 min -= min / 4;
3587 }
3588
3589 /*
3590 * Check watermarks for an order-0 allocation request. If these
3591 * are not met, then a high-order request also cannot go ahead
3592 * even if a suitable page happened to be free.
3593 */
3594 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3595 return false;
3596
3597 /* If this is an order-0 request then the watermark is fine */
3598 if (!order)
3599 return true;
3600
3601 /* For a high-order request, check at least one suitable page is free */
3602 for (o = order; o < MAX_ORDER; o++) {
3603 struct free_area *area = &z->free_area[o];
3604 int mt;
3605
3606 if (!area->nr_free)
3607 continue;
3608
3609 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3610 if (!free_area_empty(area, mt))
3611 return true;
3612 }
3613
3614 #ifdef CONFIG_CMA
3615 if ((alloc_flags & ALLOC_CMA) &&
3616 !free_area_empty(area, MIGRATE_CMA)) {
3617 return true;
3618 }
3619 #endif
3620 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3621 return true;
3622 }
3623 return false;
3624 }
3625
3626 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3627 int highest_zoneidx, unsigned int alloc_flags)
3628 {
3629 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3630 zone_page_state(z, NR_FREE_PAGES));
3631 }
3632
3633 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3634 unsigned long mark, int highest_zoneidx,
3635 unsigned int alloc_flags, gfp_t gfp_mask)
3636 {
3637 long free_pages;
3638
3639 free_pages = zone_page_state(z, NR_FREE_PAGES);
3640
3641 /*
3642 * Fast check for order-0 only. If this fails then the reserves
3643 * need to be calculated.
3644 */
3645 if (!order) {
3646 long fast_free;
3647
3648 fast_free = free_pages;
3649 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3650 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3651 return true;
3652 }
3653
3654 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3655 free_pages))
3656 return true;
3657 /*
3658 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3659 * when checking the min watermark. The min watermark is the
3660 * point where boosting is ignored so that kswapd is woken up
3661 * when below the low watermark.
3662 */
3663 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3664 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3665 mark = z->_watermark[WMARK_MIN];
3666 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3667 alloc_flags, free_pages);
3668 }
3669
3670 return false;
3671 }
3672
3673 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3674 unsigned long mark, int highest_zoneidx)
3675 {
3676 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3677
3678 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3679 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3680
3681 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3682 free_pages);
3683 }
3684
3685 #ifdef CONFIG_NUMA
3686 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3687 {
3688 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3689 node_reclaim_distance;
3690 }
3691 #else /* CONFIG_NUMA */
3692 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3693 {
3694 return true;
3695 }
3696 #endif /* CONFIG_NUMA */
3697
3698 /*
3699 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3700 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3701 * premature use of a lower zone may cause lowmem pressure problems that
3702 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3703 * probably too small. It only makes sense to spread allocations to avoid
3704 * fragmentation between the Normal and DMA32 zones.
3705 */
3706 static inline unsigned int
3707 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3708 {
3709 unsigned int alloc_flags;
3710
3711 /*
3712 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3713 * to save a branch.
3714 */
3715 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3716
3717 #ifdef CONFIG_ZONE_DMA32
3718 if (!zone)
3719 return alloc_flags;
3720
3721 if (zone_idx(zone) != ZONE_NORMAL)
3722 return alloc_flags;
3723
3724 /*
3725 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3726 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3727 * on UMA that if Normal is populated then so is DMA32.
3728 */
3729 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3730 if (nr_online_nodes > 1 && !populated_zone(--zone))
3731 return alloc_flags;
3732
3733 alloc_flags |= ALLOC_NOFRAGMENT;
3734 #endif /* CONFIG_ZONE_DMA32 */
3735 return alloc_flags;
3736 }
3737
3738 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3739 unsigned int alloc_flags)
3740 {
3741 #ifdef CONFIG_CMA
3742 unsigned int pflags = current->flags;
3743
3744 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3745 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3746 alloc_flags |= ALLOC_CMA;
3747
3748 #endif
3749 return alloc_flags;
3750 }
3751
3752 /*
3753 * get_page_from_freelist goes through the zonelist trying to allocate
3754 * a page.
3755 */
3756 static struct page *
3757 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3758 const struct alloc_context *ac)
3759 {
3760 struct zoneref *z;
3761 struct zone *zone;
3762 struct pglist_data *last_pgdat_dirty_limit = NULL;
3763 bool no_fallback;
3764
3765 retry:
3766 /*
3767 * Scan zonelist, looking for a zone with enough free.
3768 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3769 */
3770 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3771 z = ac->preferred_zoneref;
3772 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3773 ac->nodemask) {
3774 struct page *page;
3775 unsigned long mark;
3776
3777 if (cpusets_enabled() &&
3778 (alloc_flags & ALLOC_CPUSET) &&
3779 !__cpuset_zone_allowed(zone, gfp_mask))
3780 continue;
3781 /*
3782 * When allocating a page cache page for writing, we
3783 * want to get it from a node that is within its dirty
3784 * limit, such that no single node holds more than its
3785 * proportional share of globally allowed dirty pages.
3786 * The dirty limits take into account the node's
3787 * lowmem reserves and high watermark so that kswapd
3788 * should be able to balance it without having to
3789 * write pages from its LRU list.
3790 *
3791 * XXX: For now, allow allocations to potentially
3792 * exceed the per-node dirty limit in the slowpath
3793 * (spread_dirty_pages unset) before going into reclaim,
3794 * which is important when on a NUMA setup the allowed
3795 * nodes are together not big enough to reach the
3796 * global limit. The proper fix for these situations
3797 * will require awareness of nodes in the
3798 * dirty-throttling and the flusher threads.
3799 */
3800 if (ac->spread_dirty_pages) {
3801 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3802 continue;
3803
3804 if (!node_dirty_ok(zone->zone_pgdat)) {
3805 last_pgdat_dirty_limit = zone->zone_pgdat;
3806 continue;
3807 }
3808 }
3809
3810 if (no_fallback && nr_online_nodes > 1 &&
3811 zone != ac->preferred_zoneref->zone) {
3812 int local_nid;
3813
3814 /*
3815 * If moving to a remote node, retry but allow
3816 * fragmenting fallbacks. Locality is more important
3817 * than fragmentation avoidance.
3818 */
3819 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3820 if (zone_to_nid(zone) != local_nid) {
3821 alloc_flags &= ~ALLOC_NOFRAGMENT;
3822 goto retry;
3823 }
3824 }
3825
3826 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3827 if (!zone_watermark_fast(zone, order, mark,
3828 ac->highest_zoneidx, alloc_flags,
3829 gfp_mask)) {
3830 int ret;
3831
3832 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3833 /*
3834 * Watermark failed for this zone, but see if we can
3835 * grow this zone if it contains deferred pages.
3836 */
3837 if (static_branch_unlikely(&deferred_pages)) {
3838 if (_deferred_grow_zone(zone, order))
3839 goto try_this_zone;
3840 }
3841 #endif
3842 /* Checked here to keep the fast path fast */
3843 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3844 if (alloc_flags & ALLOC_NO_WATERMARKS)
3845 goto try_this_zone;
3846
3847 if (node_reclaim_mode == 0 ||
3848 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3849 continue;
3850
3851 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3852 switch (ret) {
3853 case NODE_RECLAIM_NOSCAN:
3854 /* did not scan */
3855 continue;
3856 case NODE_RECLAIM_FULL:
3857 /* scanned but unreclaimable */
3858 continue;
3859 default:
3860 /* did we reclaim enough */
3861 if (zone_watermark_ok(zone, order, mark,
3862 ac->highest_zoneidx, alloc_flags))
3863 goto try_this_zone;
3864
3865 continue;
3866 }
3867 }
3868
3869 try_this_zone:
3870 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3871 gfp_mask, alloc_flags, ac->migratetype);
3872 if (page) {
3873 prep_new_page(page, order, gfp_mask, alloc_flags);
3874
3875 /*
3876 * If this is a high-order atomic allocation then check
3877 * if the pageblock should be reserved for the future
3878 */
3879 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3880 reserve_highatomic_pageblock(page, zone, order);
3881
3882 return page;
3883 } else {
3884 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3885 /* Try again if zone has deferred pages */
3886 if (static_branch_unlikely(&deferred_pages)) {
3887 if (_deferred_grow_zone(zone, order))
3888 goto try_this_zone;
3889 }
3890 #endif
3891 }
3892 }
3893
3894 /*
3895 * It's possible on a UMA machine to get through all zones that are
3896 * fragmented. If avoiding fragmentation, reset and try again.
3897 */
3898 if (no_fallback) {
3899 alloc_flags &= ~ALLOC_NOFRAGMENT;
3900 goto retry;
3901 }
3902
3903 return NULL;
3904 }
3905
3906 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3907 {
3908 unsigned int filter = SHOW_MEM_FILTER_NODES;
3909
3910 /*
3911 * This documents exceptions given to allocations in certain
3912 * contexts that are allowed to allocate outside current's set
3913 * of allowed nodes.
3914 */
3915 if (!(gfp_mask & __GFP_NOMEMALLOC))
3916 if (tsk_is_oom_victim(current) ||
3917 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3918 filter &= ~SHOW_MEM_FILTER_NODES;
3919 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3920 filter &= ~SHOW_MEM_FILTER_NODES;
3921
3922 show_mem(filter, nodemask);
3923 }
3924
3925 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3926 {
3927 struct va_format vaf;
3928 va_list args;
3929 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3930
3931 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3932 return;
3933
3934 va_start(args, fmt);
3935 vaf.fmt = fmt;
3936 vaf.va = &args;
3937 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3938 current->comm, &vaf, gfp_mask, &gfp_mask,
3939 nodemask_pr_args(nodemask));
3940 va_end(args);
3941
3942 cpuset_print_current_mems_allowed();
3943 pr_cont("\n");
3944 dump_stack();
3945 warn_alloc_show_mem(gfp_mask, nodemask);
3946 }
3947
3948 static inline struct page *
3949 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3950 unsigned int alloc_flags,
3951 const struct alloc_context *ac)
3952 {
3953 struct page *page;
3954
3955 page = get_page_from_freelist(gfp_mask, order,
3956 alloc_flags|ALLOC_CPUSET, ac);
3957 /*
3958 * fallback to ignore cpuset restriction if our nodes
3959 * are depleted
3960 */
3961 if (!page)
3962 page = get_page_from_freelist(gfp_mask, order,
3963 alloc_flags, ac);
3964
3965 return page;
3966 }
3967
3968 static inline struct page *
3969 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3970 const struct alloc_context *ac, unsigned long *did_some_progress)
3971 {
3972 struct oom_control oc = {
3973 .zonelist = ac->zonelist,
3974 .nodemask = ac->nodemask,
3975 .memcg = NULL,
3976 .gfp_mask = gfp_mask,
3977 .order = order,
3978 };
3979 struct page *page;
3980
3981 *did_some_progress = 0;
3982
3983 /*
3984 * Acquire the oom lock. If that fails, somebody else is
3985 * making progress for us.
3986 */
3987 if (!mutex_trylock(&oom_lock)) {
3988 *did_some_progress = 1;
3989 schedule_timeout_uninterruptible(1);
3990 return NULL;
3991 }
3992
3993 /*
3994 * Go through the zonelist yet one more time, keep very high watermark
3995 * here, this is only to catch a parallel oom killing, we must fail if
3996 * we're still under heavy pressure. But make sure that this reclaim
3997 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3998 * allocation which will never fail due to oom_lock already held.
3999 */
4000 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4001 ~__GFP_DIRECT_RECLAIM, order,
4002 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4003 if (page)
4004 goto out;
4005
4006 /* Coredumps can quickly deplete all memory reserves */
4007 if (current->flags & PF_DUMPCORE)
4008 goto out;
4009 /* The OOM killer will not help higher order allocs */
4010 if (order > PAGE_ALLOC_COSTLY_ORDER)
4011 goto out;
4012 /*
4013 * We have already exhausted all our reclaim opportunities without any
4014 * success so it is time to admit defeat. We will skip the OOM killer
4015 * because it is very likely that the caller has a more reasonable
4016 * fallback than shooting a random task.
4017 *
4018 * The OOM killer may not free memory on a specific node.
4019 */
4020 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4021 goto out;
4022 /* The OOM killer does not needlessly kill tasks for lowmem */
4023 if (ac->highest_zoneidx < ZONE_NORMAL)
4024 goto out;
4025 if (pm_suspended_storage())
4026 goto out;
4027 /*
4028 * XXX: GFP_NOFS allocations should rather fail than rely on
4029 * other request to make a forward progress.
4030 * We are in an unfortunate situation where out_of_memory cannot
4031 * do much for this context but let's try it to at least get
4032 * access to memory reserved if the current task is killed (see
4033 * out_of_memory). Once filesystems are ready to handle allocation
4034 * failures more gracefully we should just bail out here.
4035 */
4036
4037 /* Exhausted what can be done so it's blame time */
4038 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4039 *did_some_progress = 1;
4040
4041 /*
4042 * Help non-failing allocations by giving them access to memory
4043 * reserves
4044 */
4045 if (gfp_mask & __GFP_NOFAIL)
4046 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4047 ALLOC_NO_WATERMARKS, ac);
4048 }
4049 out:
4050 mutex_unlock(&oom_lock);
4051 return page;
4052 }
4053
4054 /*
4055 * Maximum number of compaction retries wit a progress before OOM
4056 * killer is consider as the only way to move forward.
4057 */
4058 #define MAX_COMPACT_RETRIES 16
4059
4060 #ifdef CONFIG_COMPACTION
4061 /* Try memory compaction for high-order allocations before reclaim */
4062 static struct page *
4063 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4064 unsigned int alloc_flags, const struct alloc_context *ac,
4065 enum compact_priority prio, enum compact_result *compact_result)
4066 {
4067 struct page *page = NULL;
4068 unsigned long pflags;
4069 unsigned int noreclaim_flag;
4070
4071 if (!order)
4072 return NULL;
4073
4074 psi_memstall_enter(&pflags);
4075 noreclaim_flag = memalloc_noreclaim_save();
4076
4077 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4078 prio, &page);
4079
4080 memalloc_noreclaim_restore(noreclaim_flag);
4081 psi_memstall_leave(&pflags);
4082
4083 /*
4084 * At least in one zone compaction wasn't deferred or skipped, so let's
4085 * count a compaction stall
4086 */
4087 count_vm_event(COMPACTSTALL);
4088
4089 /* Prep a captured page if available */
4090 if (page)
4091 prep_new_page(page, order, gfp_mask, alloc_flags);
4092
4093 /* Try get a page from the freelist if available */
4094 if (!page)
4095 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4096
4097 if (page) {
4098 struct zone *zone = page_zone(page);
4099
4100 zone->compact_blockskip_flush = false;
4101 compaction_defer_reset(zone, order, true);
4102 count_vm_event(COMPACTSUCCESS);
4103 return page;
4104 }
4105
4106 /*
4107 * It's bad if compaction run occurs and fails. The most likely reason
4108 * is that pages exist, but not enough to satisfy watermarks.
4109 */
4110 count_vm_event(COMPACTFAIL);
4111
4112 cond_resched();
4113
4114 return NULL;
4115 }
4116
4117 static inline bool
4118 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4119 enum compact_result compact_result,
4120 enum compact_priority *compact_priority,
4121 int *compaction_retries)
4122 {
4123 int max_retries = MAX_COMPACT_RETRIES;
4124 int min_priority;
4125 bool ret = false;
4126 int retries = *compaction_retries;
4127 enum compact_priority priority = *compact_priority;
4128
4129 if (!order)
4130 return false;
4131
4132 if (compaction_made_progress(compact_result))
4133 (*compaction_retries)++;
4134
4135 /*
4136 * compaction considers all the zone as desperately out of memory
4137 * so it doesn't really make much sense to retry except when the
4138 * failure could be caused by insufficient priority
4139 */
4140 if (compaction_failed(compact_result))
4141 goto check_priority;
4142
4143 /*
4144 * compaction was skipped because there are not enough order-0 pages
4145 * to work with, so we retry only if it looks like reclaim can help.
4146 */
4147 if (compaction_needs_reclaim(compact_result)) {
4148 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4149 goto out;
4150 }
4151
4152 /*
4153 * make sure the compaction wasn't deferred or didn't bail out early
4154 * due to locks contention before we declare that we should give up.
4155 * But the next retry should use a higher priority if allowed, so
4156 * we don't just keep bailing out endlessly.
4157 */
4158 if (compaction_withdrawn(compact_result)) {
4159 goto check_priority;
4160 }
4161
4162 /*
4163 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4164 * costly ones because they are de facto nofail and invoke OOM
4165 * killer to move on while costly can fail and users are ready
4166 * to cope with that. 1/4 retries is rather arbitrary but we
4167 * would need much more detailed feedback from compaction to
4168 * make a better decision.
4169 */
4170 if (order > PAGE_ALLOC_COSTLY_ORDER)
4171 max_retries /= 4;
4172 if (*compaction_retries <= max_retries) {
4173 ret = true;
4174 goto out;
4175 }
4176
4177 /*
4178 * Make sure there are attempts at the highest priority if we exhausted
4179 * all retries or failed at the lower priorities.
4180 */
4181 check_priority:
4182 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4183 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4184
4185 if (*compact_priority > min_priority) {
4186 (*compact_priority)--;
4187 *compaction_retries = 0;
4188 ret = true;
4189 }
4190 out:
4191 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4192 return ret;
4193 }
4194 #else
4195 static inline struct page *
4196 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4197 unsigned int alloc_flags, const struct alloc_context *ac,
4198 enum compact_priority prio, enum compact_result *compact_result)
4199 {
4200 *compact_result = COMPACT_SKIPPED;
4201 return NULL;
4202 }
4203
4204 static inline bool
4205 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4206 enum compact_result compact_result,
4207 enum compact_priority *compact_priority,
4208 int *compaction_retries)
4209 {
4210 struct zone *zone;
4211 struct zoneref *z;
4212
4213 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4214 return false;
4215
4216 /*
4217 * There are setups with compaction disabled which would prefer to loop
4218 * inside the allocator rather than hit the oom killer prematurely.
4219 * Let's give them a good hope and keep retrying while the order-0
4220 * watermarks are OK.
4221 */
4222 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4223 ac->highest_zoneidx, ac->nodemask) {
4224 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4225 ac->highest_zoneidx, alloc_flags))
4226 return true;
4227 }
4228 return false;
4229 }
4230 #endif /* CONFIG_COMPACTION */
4231
4232 #ifdef CONFIG_LOCKDEP
4233 static struct lockdep_map __fs_reclaim_map =
4234 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4235
4236 static bool __need_fs_reclaim(gfp_t gfp_mask)
4237 {
4238 gfp_mask = current_gfp_context(gfp_mask);
4239
4240 /* no reclaim without waiting on it */
4241 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4242 return false;
4243
4244 /* this guy won't enter reclaim */
4245 if (current->flags & PF_MEMALLOC)
4246 return false;
4247
4248 /* We're only interested __GFP_FS allocations for now */
4249 if (!(gfp_mask & __GFP_FS))
4250 return false;
4251
4252 if (gfp_mask & __GFP_NOLOCKDEP)
4253 return false;
4254
4255 return true;
4256 }
4257
4258 void __fs_reclaim_acquire(void)
4259 {
4260 lock_map_acquire(&__fs_reclaim_map);
4261 }
4262
4263 void __fs_reclaim_release(void)
4264 {
4265 lock_map_release(&__fs_reclaim_map);
4266 }
4267
4268 void fs_reclaim_acquire(gfp_t gfp_mask)
4269 {
4270 if (__need_fs_reclaim(gfp_mask))
4271 __fs_reclaim_acquire();
4272 }
4273 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4274
4275 void fs_reclaim_release(gfp_t gfp_mask)
4276 {
4277 if (__need_fs_reclaim(gfp_mask))
4278 __fs_reclaim_release();
4279 }
4280 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4281 #endif
4282
4283 /* Perform direct synchronous page reclaim */
4284 static unsigned long
4285 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4286 const struct alloc_context *ac)
4287 {
4288 unsigned int noreclaim_flag;
4289 unsigned long pflags, progress;
4290
4291 cond_resched();
4292
4293 /* We now go into synchronous reclaim */
4294 cpuset_memory_pressure_bump();
4295 psi_memstall_enter(&pflags);
4296 fs_reclaim_acquire(gfp_mask);
4297 noreclaim_flag = memalloc_noreclaim_save();
4298
4299 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4300 ac->nodemask);
4301
4302 memalloc_noreclaim_restore(noreclaim_flag);
4303 fs_reclaim_release(gfp_mask);
4304 psi_memstall_leave(&pflags);
4305
4306 cond_resched();
4307
4308 return progress;
4309 }
4310
4311 /* The really slow allocator path where we enter direct reclaim */
4312 static inline struct page *
4313 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4314 unsigned int alloc_flags, const struct alloc_context *ac,
4315 unsigned long *did_some_progress)
4316 {
4317 struct page *page = NULL;
4318 bool drained = false;
4319
4320 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4321 if (unlikely(!(*did_some_progress)))
4322 return NULL;
4323
4324 retry:
4325 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4326
4327 /*
4328 * If an allocation failed after direct reclaim, it could be because
4329 * pages are pinned on the per-cpu lists or in high alloc reserves.
4330 * Shrink them and try again
4331 */
4332 if (!page && !drained) {
4333 unreserve_highatomic_pageblock(ac, false);
4334 drain_all_pages(NULL);
4335 drained = true;
4336 goto retry;
4337 }
4338
4339 return page;
4340 }
4341
4342 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4343 const struct alloc_context *ac)
4344 {
4345 struct zoneref *z;
4346 struct zone *zone;
4347 pg_data_t *last_pgdat = NULL;
4348 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4349
4350 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4351 ac->nodemask) {
4352 if (last_pgdat != zone->zone_pgdat)
4353 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4354 last_pgdat = zone->zone_pgdat;
4355 }
4356 }
4357
4358 static inline unsigned int
4359 gfp_to_alloc_flags(gfp_t gfp_mask)
4360 {
4361 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4362
4363 /*
4364 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4365 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4366 * to save two branches.
4367 */
4368 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4369 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4370
4371 /*
4372 * The caller may dip into page reserves a bit more if the caller
4373 * cannot run direct reclaim, or if the caller has realtime scheduling
4374 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4375 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4376 */
4377 alloc_flags |= (__force int)
4378 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4379
4380 if (gfp_mask & __GFP_ATOMIC) {
4381 /*
4382 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4383 * if it can't schedule.
4384 */
4385 if (!(gfp_mask & __GFP_NOMEMALLOC))
4386 alloc_flags |= ALLOC_HARDER;
4387 /*
4388 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4389 * comment for __cpuset_node_allowed().
4390 */
4391 alloc_flags &= ~ALLOC_CPUSET;
4392 } else if (unlikely(rt_task(current)) && !in_interrupt())
4393 alloc_flags |= ALLOC_HARDER;
4394
4395 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4396
4397 return alloc_flags;
4398 }
4399
4400 static bool oom_reserves_allowed(struct task_struct *tsk)
4401 {
4402 if (!tsk_is_oom_victim(tsk))
4403 return false;
4404
4405 /*
4406 * !MMU doesn't have oom reaper so give access to memory reserves
4407 * only to the thread with TIF_MEMDIE set
4408 */
4409 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4410 return false;
4411
4412 return true;
4413 }
4414
4415 /*
4416 * Distinguish requests which really need access to full memory
4417 * reserves from oom victims which can live with a portion of it
4418 */
4419 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4420 {
4421 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4422 return 0;
4423 if (gfp_mask & __GFP_MEMALLOC)
4424 return ALLOC_NO_WATERMARKS;
4425 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4426 return ALLOC_NO_WATERMARKS;
4427 if (!in_interrupt()) {
4428 if (current->flags & PF_MEMALLOC)
4429 return ALLOC_NO_WATERMARKS;
4430 else if (oom_reserves_allowed(current))
4431 return ALLOC_OOM;
4432 }
4433
4434 return 0;
4435 }
4436
4437 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4438 {
4439 return !!__gfp_pfmemalloc_flags(gfp_mask);
4440 }
4441
4442 /*
4443 * Checks whether it makes sense to retry the reclaim to make a forward progress
4444 * for the given allocation request.
4445 *
4446 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4447 * without success, or when we couldn't even meet the watermark if we
4448 * reclaimed all remaining pages on the LRU lists.
4449 *
4450 * Returns true if a retry is viable or false to enter the oom path.
4451 */
4452 static inline bool
4453 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4454 struct alloc_context *ac, int alloc_flags,
4455 bool did_some_progress, int *no_progress_loops)
4456 {
4457 struct zone *zone;
4458 struct zoneref *z;
4459 bool ret = false;
4460
4461 /*
4462 * Costly allocations might have made a progress but this doesn't mean
4463 * their order will become available due to high fragmentation so
4464 * always increment the no progress counter for them
4465 */
4466 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4467 *no_progress_loops = 0;
4468 else
4469 (*no_progress_loops)++;
4470
4471 /*
4472 * Make sure we converge to OOM if we cannot make any progress
4473 * several times in the row.
4474 */
4475 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4476 /* Before OOM, exhaust highatomic_reserve */
4477 return unreserve_highatomic_pageblock(ac, true);
4478 }
4479
4480 /*
4481 * Keep reclaiming pages while there is a chance this will lead
4482 * somewhere. If none of the target zones can satisfy our allocation
4483 * request even if all reclaimable pages are considered then we are
4484 * screwed and have to go OOM.
4485 */
4486 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4487 ac->highest_zoneidx, ac->nodemask) {
4488 unsigned long available;
4489 unsigned long reclaimable;
4490 unsigned long min_wmark = min_wmark_pages(zone);
4491 bool wmark;
4492
4493 available = reclaimable = zone_reclaimable_pages(zone);
4494 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4495
4496 /*
4497 * Would the allocation succeed if we reclaimed all
4498 * reclaimable pages?
4499 */
4500 wmark = __zone_watermark_ok(zone, order, min_wmark,
4501 ac->highest_zoneidx, alloc_flags, available);
4502 trace_reclaim_retry_zone(z, order, reclaimable,
4503 available, min_wmark, *no_progress_loops, wmark);
4504 if (wmark) {
4505 /*
4506 * If we didn't make any progress and have a lot of
4507 * dirty + writeback pages then we should wait for
4508 * an IO to complete to slow down the reclaim and
4509 * prevent from pre mature OOM
4510 */
4511 if (!did_some_progress) {
4512 unsigned long write_pending;
4513
4514 write_pending = zone_page_state_snapshot(zone,
4515 NR_ZONE_WRITE_PENDING);
4516
4517 if (2 * write_pending > reclaimable) {
4518 congestion_wait(BLK_RW_ASYNC, HZ/10);
4519 return true;
4520 }
4521 }
4522
4523 ret = true;
4524 goto out;
4525 }
4526 }
4527
4528 out:
4529 /*
4530 * Memory allocation/reclaim might be called from a WQ context and the
4531 * current implementation of the WQ concurrency control doesn't
4532 * recognize that a particular WQ is congested if the worker thread is
4533 * looping without ever sleeping. Therefore we have to do a short sleep
4534 * here rather than calling cond_resched().
4535 */
4536 if (current->flags & PF_WQ_WORKER)
4537 schedule_timeout_uninterruptible(1);
4538 else
4539 cond_resched();
4540 return ret;
4541 }
4542
4543 static inline bool
4544 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4545 {
4546 /*
4547 * It's possible that cpuset's mems_allowed and the nodemask from
4548 * mempolicy don't intersect. This should be normally dealt with by
4549 * policy_nodemask(), but it's possible to race with cpuset update in
4550 * such a way the check therein was true, and then it became false
4551 * before we got our cpuset_mems_cookie here.
4552 * This assumes that for all allocations, ac->nodemask can come only
4553 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4554 * when it does not intersect with the cpuset restrictions) or the
4555 * caller can deal with a violated nodemask.
4556 */
4557 if (cpusets_enabled() && ac->nodemask &&
4558 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4559 ac->nodemask = NULL;
4560 return true;
4561 }
4562
4563 /*
4564 * When updating a task's mems_allowed or mempolicy nodemask, it is
4565 * possible to race with parallel threads in such a way that our
4566 * allocation can fail while the mask is being updated. If we are about
4567 * to fail, check if the cpuset changed during allocation and if so,
4568 * retry.
4569 */
4570 if (read_mems_allowed_retry(cpuset_mems_cookie))
4571 return true;
4572
4573 return false;
4574 }
4575
4576 static inline struct page *
4577 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4578 struct alloc_context *ac)
4579 {
4580 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4581 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4582 struct page *page = NULL;
4583 unsigned int alloc_flags;
4584 unsigned long did_some_progress;
4585 enum compact_priority compact_priority;
4586 enum compact_result compact_result;
4587 int compaction_retries;
4588 int no_progress_loops;
4589 unsigned int cpuset_mems_cookie;
4590 int reserve_flags;
4591
4592 /*
4593 * We also sanity check to catch abuse of atomic reserves being used by
4594 * callers that are not in atomic context.
4595 */
4596 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4597 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4598 gfp_mask &= ~__GFP_ATOMIC;
4599
4600 retry_cpuset:
4601 compaction_retries = 0;
4602 no_progress_loops = 0;
4603 compact_priority = DEF_COMPACT_PRIORITY;
4604 cpuset_mems_cookie = read_mems_allowed_begin();
4605
4606 /*
4607 * The fast path uses conservative alloc_flags to succeed only until
4608 * kswapd needs to be woken up, and to avoid the cost of setting up
4609 * alloc_flags precisely. So we do that now.
4610 */
4611 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4612
4613 /*
4614 * We need to recalculate the starting point for the zonelist iterator
4615 * because we might have used different nodemask in the fast path, or
4616 * there was a cpuset modification and we are retrying - otherwise we
4617 * could end up iterating over non-eligible zones endlessly.
4618 */
4619 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4620 ac->highest_zoneidx, ac->nodemask);
4621 if (!ac->preferred_zoneref->zone)
4622 goto nopage;
4623
4624 if (alloc_flags & ALLOC_KSWAPD)
4625 wake_all_kswapds(order, gfp_mask, ac);
4626
4627 /*
4628 * The adjusted alloc_flags might result in immediate success, so try
4629 * that first
4630 */
4631 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4632 if (page)
4633 goto got_pg;
4634
4635 /*
4636 * For costly allocations, try direct compaction first, as it's likely
4637 * that we have enough base pages and don't need to reclaim. For non-
4638 * movable high-order allocations, do that as well, as compaction will
4639 * try prevent permanent fragmentation by migrating from blocks of the
4640 * same migratetype.
4641 * Don't try this for allocations that are allowed to ignore
4642 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4643 */
4644 if (can_direct_reclaim &&
4645 (costly_order ||
4646 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4647 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4648 page = __alloc_pages_direct_compact(gfp_mask, order,
4649 alloc_flags, ac,
4650 INIT_COMPACT_PRIORITY,
4651 &compact_result);
4652 if (page)
4653 goto got_pg;
4654
4655 /*
4656 * Checks for costly allocations with __GFP_NORETRY, which
4657 * includes some THP page fault allocations
4658 */
4659 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4660 /*
4661 * If allocating entire pageblock(s) and compaction
4662 * failed because all zones are below low watermarks
4663 * or is prohibited because it recently failed at this
4664 * order, fail immediately unless the allocator has
4665 * requested compaction and reclaim retry.
4666 *
4667 * Reclaim is
4668 * - potentially very expensive because zones are far
4669 * below their low watermarks or this is part of very
4670 * bursty high order allocations,
4671 * - not guaranteed to help because isolate_freepages()
4672 * may not iterate over freed pages as part of its
4673 * linear scan, and
4674 * - unlikely to make entire pageblocks free on its
4675 * own.
4676 */
4677 if (compact_result == COMPACT_SKIPPED ||
4678 compact_result == COMPACT_DEFERRED)
4679 goto nopage;
4680
4681 /*
4682 * Looks like reclaim/compaction is worth trying, but
4683 * sync compaction could be very expensive, so keep
4684 * using async compaction.
4685 */
4686 compact_priority = INIT_COMPACT_PRIORITY;
4687 }
4688 }
4689
4690 retry:
4691 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4692 if (alloc_flags & ALLOC_KSWAPD)
4693 wake_all_kswapds(order, gfp_mask, ac);
4694
4695 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4696 if (reserve_flags)
4697 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4698
4699 /*
4700 * Reset the nodemask and zonelist iterators if memory policies can be
4701 * ignored. These allocations are high priority and system rather than
4702 * user oriented.
4703 */
4704 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4705 ac->nodemask = NULL;
4706 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4707 ac->highest_zoneidx, ac->nodemask);
4708 }
4709
4710 /* Attempt with potentially adjusted zonelist and alloc_flags */
4711 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4712 if (page)
4713 goto got_pg;
4714
4715 /* Caller is not willing to reclaim, we can't balance anything */
4716 if (!can_direct_reclaim)
4717 goto nopage;
4718
4719 /* Avoid recursion of direct reclaim */
4720 if (current->flags & PF_MEMALLOC)
4721 goto nopage;
4722
4723 /* Try direct reclaim and then allocating */
4724 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4725 &did_some_progress);
4726 if (page)
4727 goto got_pg;
4728
4729 /* Try direct compaction and then allocating */
4730 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4731 compact_priority, &compact_result);
4732 if (page)
4733 goto got_pg;
4734
4735 /* Do not loop if specifically requested */
4736 if (gfp_mask & __GFP_NORETRY)
4737 goto nopage;
4738
4739 /*
4740 * Do not retry costly high order allocations unless they are
4741 * __GFP_RETRY_MAYFAIL
4742 */
4743 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4744 goto nopage;
4745
4746 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4747 did_some_progress > 0, &no_progress_loops))
4748 goto retry;
4749
4750 /*
4751 * It doesn't make any sense to retry for the compaction if the order-0
4752 * reclaim is not able to make any progress because the current
4753 * implementation of the compaction depends on the sufficient amount
4754 * of free memory (see __compaction_suitable)
4755 */
4756 if (did_some_progress > 0 &&
4757 should_compact_retry(ac, order, alloc_flags,
4758 compact_result, &compact_priority,
4759 &compaction_retries))
4760 goto retry;
4761
4762
4763 /* Deal with possible cpuset update races before we start OOM killing */
4764 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4765 goto retry_cpuset;
4766
4767 /* Reclaim has failed us, start killing things */
4768 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4769 if (page)
4770 goto got_pg;
4771
4772 /* Avoid allocations with no watermarks from looping endlessly */
4773 if (tsk_is_oom_victim(current) &&
4774 (alloc_flags & ALLOC_OOM ||
4775 (gfp_mask & __GFP_NOMEMALLOC)))
4776 goto nopage;
4777
4778 /* Retry as long as the OOM killer is making progress */
4779 if (did_some_progress) {
4780 no_progress_loops = 0;
4781 goto retry;
4782 }
4783
4784 nopage:
4785 /* Deal with possible cpuset update races before we fail */
4786 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4787 goto retry_cpuset;
4788
4789 /*
4790 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4791 * we always retry
4792 */
4793 if (gfp_mask & __GFP_NOFAIL) {
4794 /*
4795 * All existing users of the __GFP_NOFAIL are blockable, so warn
4796 * of any new users that actually require GFP_NOWAIT
4797 */
4798 if (WARN_ON_ONCE(!can_direct_reclaim))
4799 goto fail;
4800
4801 /*
4802 * PF_MEMALLOC request from this context is rather bizarre
4803 * because we cannot reclaim anything and only can loop waiting
4804 * for somebody to do a work for us
4805 */
4806 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4807
4808 /*
4809 * non failing costly orders are a hard requirement which we
4810 * are not prepared for much so let's warn about these users
4811 * so that we can identify them and convert them to something
4812 * else.
4813 */
4814 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4815
4816 /*
4817 * Help non-failing allocations by giving them access to memory
4818 * reserves but do not use ALLOC_NO_WATERMARKS because this
4819 * could deplete whole memory reserves which would just make
4820 * the situation worse
4821 */
4822 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4823 if (page)
4824 goto got_pg;
4825
4826 cond_resched();
4827 goto retry;
4828 }
4829 fail:
4830 warn_alloc(gfp_mask, ac->nodemask,
4831 "page allocation failure: order:%u", order);
4832 got_pg:
4833 return page;
4834 }
4835
4836 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4837 int preferred_nid, nodemask_t *nodemask,
4838 struct alloc_context *ac, gfp_t *alloc_mask,
4839 unsigned int *alloc_flags)
4840 {
4841 ac->highest_zoneidx = gfp_zone(gfp_mask);
4842 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4843 ac->nodemask = nodemask;
4844 ac->migratetype = gfp_migratetype(gfp_mask);
4845
4846 if (cpusets_enabled()) {
4847 *alloc_mask |= __GFP_HARDWALL;
4848 /*
4849 * When we are in the interrupt context, it is irrelevant
4850 * to the current task context. It means that any node ok.
4851 */
4852 if (!in_interrupt() && !ac->nodemask)
4853 ac->nodemask = &cpuset_current_mems_allowed;
4854 else
4855 *alloc_flags |= ALLOC_CPUSET;
4856 }
4857
4858 fs_reclaim_acquire(gfp_mask);
4859 fs_reclaim_release(gfp_mask);
4860
4861 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4862
4863 if (should_fail_alloc_page(gfp_mask, order))
4864 return false;
4865
4866 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4867
4868 /* Dirty zone balancing only done in the fast path */
4869 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4870
4871 /*
4872 * The preferred zone is used for statistics but crucially it is
4873 * also used as the starting point for the zonelist iterator. It
4874 * may get reset for allocations that ignore memory policies.
4875 */
4876 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4877 ac->highest_zoneidx, ac->nodemask);
4878
4879 return true;
4880 }
4881
4882 /*
4883 * This is the 'heart' of the zoned buddy allocator.
4884 */
4885 struct page *
4886 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4887 nodemask_t *nodemask)
4888 {
4889 struct page *page;
4890 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4891 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4892 struct alloc_context ac = { };
4893
4894 /*
4895 * There are several places where we assume that the order value is sane
4896 * so bail out early if the request is out of bound.
4897 */
4898 if (unlikely(order >= MAX_ORDER)) {
4899 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4900 return NULL;
4901 }
4902
4903 gfp_mask &= gfp_allowed_mask;
4904 alloc_mask = gfp_mask;
4905 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4906 return NULL;
4907
4908 /*
4909 * Forbid the first pass from falling back to types that fragment
4910 * memory until all local zones are considered.
4911 */
4912 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4913
4914 /* First allocation attempt */
4915 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4916 if (likely(page))
4917 goto out;
4918
4919 /*
4920 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4921 * resp. GFP_NOIO which has to be inherited for all allocation requests
4922 * from a particular context which has been marked by
4923 * memalloc_no{fs,io}_{save,restore}.
4924 */
4925 alloc_mask = current_gfp_context(gfp_mask);
4926 ac.spread_dirty_pages = false;
4927
4928 /*
4929 * Restore the original nodemask if it was potentially replaced with
4930 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4931 */
4932 ac.nodemask = nodemask;
4933
4934 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4935
4936 out:
4937 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4938 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4939 __free_pages(page, order);
4940 page = NULL;
4941 }
4942
4943 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4944
4945 return page;
4946 }
4947 EXPORT_SYMBOL(__alloc_pages_nodemask);
4948
4949 /*
4950 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4951 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4952 * you need to access high mem.
4953 */
4954 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4955 {
4956 struct page *page;
4957
4958 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4959 if (!page)
4960 return 0;
4961 return (unsigned long) page_address(page);
4962 }
4963 EXPORT_SYMBOL(__get_free_pages);
4964
4965 unsigned long get_zeroed_page(gfp_t gfp_mask)
4966 {
4967 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4968 }
4969 EXPORT_SYMBOL(get_zeroed_page);
4970
4971 static inline void free_the_page(struct page *page, unsigned int order)
4972 {
4973 if (order == 0) /* Via pcp? */
4974 free_unref_page(page);
4975 else
4976 __free_pages_ok(page, order);
4977 }
4978
4979 void __free_pages(struct page *page, unsigned int order)
4980 {
4981 if (put_page_testzero(page))
4982 free_the_page(page, order);
4983 else if (!PageHead(page))
4984 while (order-- > 0)
4985 free_the_page(page + (1 << order), order);
4986 }
4987 EXPORT_SYMBOL(__free_pages);
4988
4989 void free_pages(unsigned long addr, unsigned int order)
4990 {
4991 if (addr != 0) {
4992 VM_BUG_ON(!virt_addr_valid((void *)addr));
4993 __free_pages(virt_to_page((void *)addr), order);
4994 }
4995 }
4996
4997 EXPORT_SYMBOL(free_pages);
4998
4999 /*
5000 * Page Fragment:
5001 * An arbitrary-length arbitrary-offset area of memory which resides
5002 * within a 0 or higher order page. Multiple fragments within that page
5003 * are individually refcounted, in the page's reference counter.
5004 *
5005 * The page_frag functions below provide a simple allocation framework for
5006 * page fragments. This is used by the network stack and network device
5007 * drivers to provide a backing region of memory for use as either an
5008 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5009 */
5010 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5011 gfp_t gfp_mask)
5012 {
5013 struct page *page = NULL;
5014 gfp_t gfp = gfp_mask;
5015
5016 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5017 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5018 __GFP_NOMEMALLOC;
5019 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5020 PAGE_FRAG_CACHE_MAX_ORDER);
5021 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5022 #endif
5023 if (unlikely(!page))
5024 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5025
5026 nc->va = page ? page_address(page) : NULL;
5027
5028 return page;
5029 }
5030
5031 void __page_frag_cache_drain(struct page *page, unsigned int count)
5032 {
5033 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5034
5035 if (page_ref_sub_and_test(page, count))
5036 free_the_page(page, compound_order(page));
5037 }
5038 EXPORT_SYMBOL(__page_frag_cache_drain);
5039
5040 void *page_frag_alloc(struct page_frag_cache *nc,
5041 unsigned int fragsz, gfp_t gfp_mask)
5042 {
5043 unsigned int size = PAGE_SIZE;
5044 struct page *page;
5045 int offset;
5046
5047 if (unlikely(!nc->va)) {
5048 refill:
5049 page = __page_frag_cache_refill(nc, gfp_mask);
5050 if (!page)
5051 return NULL;
5052
5053 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5054 /* if size can vary use size else just use PAGE_SIZE */
5055 size = nc->size;
5056 #endif
5057 /* Even if we own the page, we do not use atomic_set().
5058 * This would break get_page_unless_zero() users.
5059 */
5060 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5061
5062 /* reset page count bias and offset to start of new frag */
5063 nc->pfmemalloc = page_is_pfmemalloc(page);
5064 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5065 nc->offset = size;
5066 }
5067
5068 offset = nc->offset - fragsz;
5069 if (unlikely(offset < 0)) {
5070 page = virt_to_page(nc->va);
5071
5072 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5073 goto refill;
5074
5075 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5076 /* if size can vary use size else just use PAGE_SIZE */
5077 size = nc->size;
5078 #endif
5079 /* OK, page count is 0, we can safely set it */
5080 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5081
5082 /* reset page count bias and offset to start of new frag */
5083 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5084 offset = size - fragsz;
5085 }
5086
5087 nc->pagecnt_bias--;
5088 nc->offset = offset;
5089
5090 return nc->va + offset;
5091 }
5092 EXPORT_SYMBOL(page_frag_alloc);
5093
5094 /*
5095 * Frees a page fragment allocated out of either a compound or order 0 page.
5096 */
5097 void page_frag_free(void *addr)
5098 {
5099 struct page *page = virt_to_head_page(addr);
5100
5101 if (unlikely(put_page_testzero(page)))
5102 free_the_page(page, compound_order(page));
5103 }
5104 EXPORT_SYMBOL(page_frag_free);
5105
5106 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5107 size_t size)
5108 {
5109 if (addr) {
5110 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5111 unsigned long used = addr + PAGE_ALIGN(size);
5112
5113 split_page(virt_to_page((void *)addr), order);
5114 while (used < alloc_end) {
5115 free_page(used);
5116 used += PAGE_SIZE;
5117 }
5118 }
5119 return (void *)addr;
5120 }
5121
5122 /**
5123 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5124 * @size: the number of bytes to allocate
5125 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5126 *
5127 * This function is similar to alloc_pages(), except that it allocates the
5128 * minimum number of pages to satisfy the request. alloc_pages() can only
5129 * allocate memory in power-of-two pages.
5130 *
5131 * This function is also limited by MAX_ORDER.
5132 *
5133 * Memory allocated by this function must be released by free_pages_exact().
5134 *
5135 * Return: pointer to the allocated area or %NULL in case of error.
5136 */
5137 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5138 {
5139 unsigned int order = get_order(size);
5140 unsigned long addr;
5141
5142 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5143 gfp_mask &= ~__GFP_COMP;
5144
5145 addr = __get_free_pages(gfp_mask, order);
5146 return make_alloc_exact(addr, order, size);
5147 }
5148 EXPORT_SYMBOL(alloc_pages_exact);
5149
5150 /**
5151 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5152 * pages on a node.
5153 * @nid: the preferred node ID where memory should be allocated
5154 * @size: the number of bytes to allocate
5155 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5156 *
5157 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5158 * back.
5159 *
5160 * Return: pointer to the allocated area or %NULL in case of error.
5161 */
5162 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5163 {
5164 unsigned int order = get_order(size);
5165 struct page *p;
5166
5167 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5168 gfp_mask &= ~__GFP_COMP;
5169
5170 p = alloc_pages_node(nid, gfp_mask, order);
5171 if (!p)
5172 return NULL;
5173 return make_alloc_exact((unsigned long)page_address(p), order, size);
5174 }
5175
5176 /**
5177 * free_pages_exact - release memory allocated via alloc_pages_exact()
5178 * @virt: the value returned by alloc_pages_exact.
5179 * @size: size of allocation, same value as passed to alloc_pages_exact().
5180 *
5181 * Release the memory allocated by a previous call to alloc_pages_exact.
5182 */
5183 void free_pages_exact(void *virt, size_t size)
5184 {
5185 unsigned long addr = (unsigned long)virt;
5186 unsigned long end = addr + PAGE_ALIGN(size);
5187
5188 while (addr < end) {
5189 free_page(addr);
5190 addr += PAGE_SIZE;
5191 }
5192 }
5193 EXPORT_SYMBOL(free_pages_exact);
5194
5195 /**
5196 * nr_free_zone_pages - count number of pages beyond high watermark
5197 * @offset: The zone index of the highest zone
5198 *
5199 * nr_free_zone_pages() counts the number of pages which are beyond the
5200 * high watermark within all zones at or below a given zone index. For each
5201 * zone, the number of pages is calculated as:
5202 *
5203 * nr_free_zone_pages = managed_pages - high_pages
5204 *
5205 * Return: number of pages beyond high watermark.
5206 */
5207 static unsigned long nr_free_zone_pages(int offset)
5208 {
5209 struct zoneref *z;
5210 struct zone *zone;
5211
5212 /* Just pick one node, since fallback list is circular */
5213 unsigned long sum = 0;
5214
5215 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5216
5217 for_each_zone_zonelist(zone, z, zonelist, offset) {
5218 unsigned long size = zone_managed_pages(zone);
5219 unsigned long high = high_wmark_pages(zone);
5220 if (size > high)
5221 sum += size - high;
5222 }
5223
5224 return sum;
5225 }
5226
5227 /**
5228 * nr_free_buffer_pages - count number of pages beyond high watermark
5229 *
5230 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5231 * watermark within ZONE_DMA and ZONE_NORMAL.
5232 *
5233 * Return: number of pages beyond high watermark within ZONE_DMA and
5234 * ZONE_NORMAL.
5235 */
5236 unsigned long nr_free_buffer_pages(void)
5237 {
5238 return nr_free_zone_pages(gfp_zone(GFP_USER));
5239 }
5240 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5241
5242 static inline void show_node(struct zone *zone)
5243 {
5244 if (IS_ENABLED(CONFIG_NUMA))
5245 printk("Node %d ", zone_to_nid(zone));
5246 }
5247
5248 long si_mem_available(void)
5249 {
5250 long available;
5251 unsigned long pagecache;
5252 unsigned long wmark_low = 0;
5253 unsigned long pages[NR_LRU_LISTS];
5254 unsigned long reclaimable;
5255 struct zone *zone;
5256 int lru;
5257
5258 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5259 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5260
5261 for_each_zone(zone)
5262 wmark_low += low_wmark_pages(zone);
5263
5264 /*
5265 * Estimate the amount of memory available for userspace allocations,
5266 * without causing swapping.
5267 */
5268 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5269
5270 /*
5271 * Not all the page cache can be freed, otherwise the system will
5272 * start swapping. Assume at least half of the page cache, or the
5273 * low watermark worth of cache, needs to stay.
5274 */
5275 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5276 pagecache -= min(pagecache / 2, wmark_low);
5277 available += pagecache;
5278
5279 /*
5280 * Part of the reclaimable slab and other kernel memory consists of
5281 * items that are in use, and cannot be freed. Cap this estimate at the
5282 * low watermark.
5283 */
5284 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5285 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5286 available += reclaimable - min(reclaimable / 2, wmark_low);
5287
5288 if (available < 0)
5289 available = 0;
5290 return available;
5291 }
5292 EXPORT_SYMBOL_GPL(si_mem_available);
5293
5294 void si_meminfo(struct sysinfo *val)
5295 {
5296 val->totalram = totalram_pages();
5297 val->sharedram = global_node_page_state(NR_SHMEM);
5298 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5299 val->bufferram = nr_blockdev_pages();
5300 val->totalhigh = totalhigh_pages();
5301 val->freehigh = nr_free_highpages();
5302 val->mem_unit = PAGE_SIZE;
5303 }
5304
5305 EXPORT_SYMBOL(si_meminfo);
5306
5307 #ifdef CONFIG_NUMA
5308 void si_meminfo_node(struct sysinfo *val, int nid)
5309 {
5310 int zone_type; /* needs to be signed */
5311 unsigned long managed_pages = 0;
5312 unsigned long managed_highpages = 0;
5313 unsigned long free_highpages = 0;
5314 pg_data_t *pgdat = NODE_DATA(nid);
5315
5316 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5317 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5318 val->totalram = managed_pages;
5319 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5320 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5321 #ifdef CONFIG_HIGHMEM
5322 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5323 struct zone *zone = &pgdat->node_zones[zone_type];
5324
5325 if (is_highmem(zone)) {
5326 managed_highpages += zone_managed_pages(zone);
5327 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5328 }
5329 }
5330 val->totalhigh = managed_highpages;
5331 val->freehigh = free_highpages;
5332 #else
5333 val->totalhigh = managed_highpages;
5334 val->freehigh = free_highpages;
5335 #endif
5336 val->mem_unit = PAGE_SIZE;
5337 }
5338 #endif
5339
5340 /*
5341 * Determine whether the node should be displayed or not, depending on whether
5342 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5343 */
5344 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5345 {
5346 if (!(flags & SHOW_MEM_FILTER_NODES))
5347 return false;
5348
5349 /*
5350 * no node mask - aka implicit memory numa policy. Do not bother with
5351 * the synchronization - read_mems_allowed_begin - because we do not
5352 * have to be precise here.
5353 */
5354 if (!nodemask)
5355 nodemask = &cpuset_current_mems_allowed;
5356
5357 return !node_isset(nid, *nodemask);
5358 }
5359
5360 #define K(x) ((x) << (PAGE_SHIFT-10))
5361
5362 static void show_migration_types(unsigned char type)
5363 {
5364 static const char types[MIGRATE_TYPES] = {
5365 [MIGRATE_UNMOVABLE] = 'U',
5366 [MIGRATE_MOVABLE] = 'M',
5367 [MIGRATE_RECLAIMABLE] = 'E',
5368 [MIGRATE_HIGHATOMIC] = 'H',
5369 #ifdef CONFIG_CMA
5370 [MIGRATE_CMA] = 'C',
5371 #endif
5372 #ifdef CONFIG_MEMORY_ISOLATION
5373 [MIGRATE_ISOLATE] = 'I',
5374 #endif
5375 };
5376 char tmp[MIGRATE_TYPES + 1];
5377 char *p = tmp;
5378 int i;
5379
5380 for (i = 0; i < MIGRATE_TYPES; i++) {
5381 if (type & (1 << i))
5382 *p++ = types[i];
5383 }
5384
5385 *p = '\0';
5386 printk(KERN_CONT "(%s) ", tmp);
5387 }
5388
5389 /*
5390 * Show free area list (used inside shift_scroll-lock stuff)
5391 * We also calculate the percentage fragmentation. We do this by counting the
5392 * memory on each free list with the exception of the first item on the list.
5393 *
5394 * Bits in @filter:
5395 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5396 * cpuset.
5397 */
5398 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5399 {
5400 unsigned long free_pcp = 0;
5401 int cpu;
5402 struct zone *zone;
5403 pg_data_t *pgdat;
5404
5405 for_each_populated_zone(zone) {
5406 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5407 continue;
5408
5409 for_each_online_cpu(cpu)
5410 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5411 }
5412
5413 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5414 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5415 " unevictable:%lu dirty:%lu writeback:%lu\n"
5416 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5417 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5418 " free:%lu free_pcp:%lu free_cma:%lu\n",
5419 global_node_page_state(NR_ACTIVE_ANON),
5420 global_node_page_state(NR_INACTIVE_ANON),
5421 global_node_page_state(NR_ISOLATED_ANON),
5422 global_node_page_state(NR_ACTIVE_FILE),
5423 global_node_page_state(NR_INACTIVE_FILE),
5424 global_node_page_state(NR_ISOLATED_FILE),
5425 global_node_page_state(NR_UNEVICTABLE),
5426 global_node_page_state(NR_FILE_DIRTY),
5427 global_node_page_state(NR_WRITEBACK),
5428 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5429 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5430 global_node_page_state(NR_FILE_MAPPED),
5431 global_node_page_state(NR_SHMEM),
5432 global_zone_page_state(NR_PAGETABLE),
5433 global_zone_page_state(NR_BOUNCE),
5434 global_zone_page_state(NR_FREE_PAGES),
5435 free_pcp,
5436 global_zone_page_state(NR_FREE_CMA_PAGES));
5437
5438 for_each_online_pgdat(pgdat) {
5439 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5440 continue;
5441
5442 printk("Node %d"
5443 " active_anon:%lukB"
5444 " inactive_anon:%lukB"
5445 " active_file:%lukB"
5446 " inactive_file:%lukB"
5447 " unevictable:%lukB"
5448 " isolated(anon):%lukB"
5449 " isolated(file):%lukB"
5450 " mapped:%lukB"
5451 " dirty:%lukB"
5452 " writeback:%lukB"
5453 " shmem:%lukB"
5454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5455 " shmem_thp: %lukB"
5456 " shmem_pmdmapped: %lukB"
5457 " anon_thp: %lukB"
5458 #endif
5459 " writeback_tmp:%lukB"
5460 " kernel_stack:%lukB"
5461 #ifdef CONFIG_SHADOW_CALL_STACK
5462 " shadow_call_stack:%lukB"
5463 #endif
5464 " all_unreclaimable? %s"
5465 "\n",
5466 pgdat->node_id,
5467 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5468 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5469 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5470 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5471 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5472 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5473 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5474 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5475 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5476 K(node_page_state(pgdat, NR_WRITEBACK)),
5477 K(node_page_state(pgdat, NR_SHMEM)),
5478 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5479 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5480 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5481 * HPAGE_PMD_NR),
5482 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5483 #endif
5484 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5485 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5486 #ifdef CONFIG_SHADOW_CALL_STACK
5487 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5488 #endif
5489 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5490 "yes" : "no");
5491 }
5492
5493 for_each_populated_zone(zone) {
5494 int i;
5495
5496 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5497 continue;
5498
5499 free_pcp = 0;
5500 for_each_online_cpu(cpu)
5501 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5502
5503 show_node(zone);
5504 printk(KERN_CONT
5505 "%s"
5506 " free:%lukB"
5507 " min:%lukB"
5508 " low:%lukB"
5509 " high:%lukB"
5510 " reserved_highatomic:%luKB"
5511 " active_anon:%lukB"
5512 " inactive_anon:%lukB"
5513 " active_file:%lukB"
5514 " inactive_file:%lukB"
5515 " unevictable:%lukB"
5516 " writepending:%lukB"
5517 " present:%lukB"
5518 " managed:%lukB"
5519 " mlocked:%lukB"
5520 " pagetables:%lukB"
5521 " bounce:%lukB"
5522 " free_pcp:%lukB"
5523 " local_pcp:%ukB"
5524 " free_cma:%lukB"
5525 "\n",
5526 zone->name,
5527 K(zone_page_state(zone, NR_FREE_PAGES)),
5528 K(min_wmark_pages(zone)),
5529 K(low_wmark_pages(zone)),
5530 K(high_wmark_pages(zone)),
5531 K(zone->nr_reserved_highatomic),
5532 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5533 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5534 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5535 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5536 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5537 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5538 K(zone->present_pages),
5539 K(zone_managed_pages(zone)),
5540 K(zone_page_state(zone, NR_MLOCK)),
5541 K(zone_page_state(zone, NR_PAGETABLE)),
5542 K(zone_page_state(zone, NR_BOUNCE)),
5543 K(free_pcp),
5544 K(this_cpu_read(zone->pageset->pcp.count)),
5545 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5546 printk("lowmem_reserve[]:");
5547 for (i = 0; i < MAX_NR_ZONES; i++)
5548 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5549 printk(KERN_CONT "\n");
5550 }
5551
5552 for_each_populated_zone(zone) {
5553 unsigned int order;
5554 unsigned long nr[MAX_ORDER], flags, total = 0;
5555 unsigned char types[MAX_ORDER];
5556
5557 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5558 continue;
5559 show_node(zone);
5560 printk(KERN_CONT "%s: ", zone->name);
5561
5562 spin_lock_irqsave(&zone->lock, flags);
5563 for (order = 0; order < MAX_ORDER; order++) {
5564 struct free_area *area = &zone->free_area[order];
5565 int type;
5566
5567 nr[order] = area->nr_free;
5568 total += nr[order] << order;
5569
5570 types[order] = 0;
5571 for (type = 0; type < MIGRATE_TYPES; type++) {
5572 if (!free_area_empty(area, type))
5573 types[order] |= 1 << type;
5574 }
5575 }
5576 spin_unlock_irqrestore(&zone->lock, flags);
5577 for (order = 0; order < MAX_ORDER; order++) {
5578 printk(KERN_CONT "%lu*%lukB ",
5579 nr[order], K(1UL) << order);
5580 if (nr[order])
5581 show_migration_types(types[order]);
5582 }
5583 printk(KERN_CONT "= %lukB\n", K(total));
5584 }
5585
5586 hugetlb_show_meminfo();
5587
5588 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5589
5590 show_swap_cache_info();
5591 }
5592
5593 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5594 {
5595 zoneref->zone = zone;
5596 zoneref->zone_idx = zone_idx(zone);
5597 }
5598
5599 /*
5600 * Builds allocation fallback zone lists.
5601 *
5602 * Add all populated zones of a node to the zonelist.
5603 */
5604 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5605 {
5606 struct zone *zone;
5607 enum zone_type zone_type = MAX_NR_ZONES;
5608 int nr_zones = 0;
5609
5610 do {
5611 zone_type--;
5612 zone = pgdat->node_zones + zone_type;
5613 if (managed_zone(zone)) {
5614 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5615 check_highest_zone(zone_type);
5616 }
5617 } while (zone_type);
5618
5619 return nr_zones;
5620 }
5621
5622 #ifdef CONFIG_NUMA
5623
5624 static int __parse_numa_zonelist_order(char *s)
5625 {
5626 /*
5627 * We used to support different zonlists modes but they turned
5628 * out to be just not useful. Let's keep the warning in place
5629 * if somebody still use the cmd line parameter so that we do
5630 * not fail it silently
5631 */
5632 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5633 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5634 return -EINVAL;
5635 }
5636 return 0;
5637 }
5638
5639 char numa_zonelist_order[] = "Node";
5640
5641 /*
5642 * sysctl handler for numa_zonelist_order
5643 */
5644 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5645 void *buffer, size_t *length, loff_t *ppos)
5646 {
5647 if (write)
5648 return __parse_numa_zonelist_order(buffer);
5649 return proc_dostring(table, write, buffer, length, ppos);
5650 }
5651
5652
5653 #define MAX_NODE_LOAD (nr_online_nodes)
5654 static int node_load[MAX_NUMNODES];
5655
5656 /**
5657 * find_next_best_node - find the next node that should appear in a given node's fallback list
5658 * @node: node whose fallback list we're appending
5659 * @used_node_mask: nodemask_t of already used nodes
5660 *
5661 * We use a number of factors to determine which is the next node that should
5662 * appear on a given node's fallback list. The node should not have appeared
5663 * already in @node's fallback list, and it should be the next closest node
5664 * according to the distance array (which contains arbitrary distance values
5665 * from each node to each node in the system), and should also prefer nodes
5666 * with no CPUs, since presumably they'll have very little allocation pressure
5667 * on them otherwise.
5668 *
5669 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5670 */
5671 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5672 {
5673 int n, val;
5674 int min_val = INT_MAX;
5675 int best_node = NUMA_NO_NODE;
5676
5677 /* Use the local node if we haven't already */
5678 if (!node_isset(node, *used_node_mask)) {
5679 node_set(node, *used_node_mask);
5680 return node;
5681 }
5682
5683 for_each_node_state(n, N_MEMORY) {
5684
5685 /* Don't want a node to appear more than once */
5686 if (node_isset(n, *used_node_mask))
5687 continue;
5688
5689 /* Use the distance array to find the distance */
5690 val = node_distance(node, n);
5691
5692 /* Penalize nodes under us ("prefer the next node") */
5693 val += (n < node);
5694
5695 /* Give preference to headless and unused nodes */
5696 if (!cpumask_empty(cpumask_of_node(n)))
5697 val += PENALTY_FOR_NODE_WITH_CPUS;
5698
5699 /* Slight preference for less loaded node */
5700 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5701 val += node_load[n];
5702
5703 if (val < min_val) {
5704 min_val = val;
5705 best_node = n;
5706 }
5707 }
5708
5709 if (best_node >= 0)
5710 node_set(best_node, *used_node_mask);
5711
5712 return best_node;
5713 }
5714
5715
5716 /*
5717 * Build zonelists ordered by node and zones within node.
5718 * This results in maximum locality--normal zone overflows into local
5719 * DMA zone, if any--but risks exhausting DMA zone.
5720 */
5721 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5722 unsigned nr_nodes)
5723 {
5724 struct zoneref *zonerefs;
5725 int i;
5726
5727 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5728
5729 for (i = 0; i < nr_nodes; i++) {
5730 int nr_zones;
5731
5732 pg_data_t *node = NODE_DATA(node_order[i]);
5733
5734 nr_zones = build_zonerefs_node(node, zonerefs);
5735 zonerefs += nr_zones;
5736 }
5737 zonerefs->zone = NULL;
5738 zonerefs->zone_idx = 0;
5739 }
5740
5741 /*
5742 * Build gfp_thisnode zonelists
5743 */
5744 static void build_thisnode_zonelists(pg_data_t *pgdat)
5745 {
5746 struct zoneref *zonerefs;
5747 int nr_zones;
5748
5749 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5750 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5751 zonerefs += nr_zones;
5752 zonerefs->zone = NULL;
5753 zonerefs->zone_idx = 0;
5754 }
5755
5756 /*
5757 * Build zonelists ordered by zone and nodes within zones.
5758 * This results in conserving DMA zone[s] until all Normal memory is
5759 * exhausted, but results in overflowing to remote node while memory
5760 * may still exist in local DMA zone.
5761 */
5762
5763 static void build_zonelists(pg_data_t *pgdat)
5764 {
5765 static int node_order[MAX_NUMNODES];
5766 int node, load, nr_nodes = 0;
5767 nodemask_t used_mask = NODE_MASK_NONE;
5768 int local_node, prev_node;
5769
5770 /* NUMA-aware ordering of nodes */
5771 local_node = pgdat->node_id;
5772 load = nr_online_nodes;
5773 prev_node = local_node;
5774
5775 memset(node_order, 0, sizeof(node_order));
5776 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5777 /*
5778 * We don't want to pressure a particular node.
5779 * So adding penalty to the first node in same
5780 * distance group to make it round-robin.
5781 */
5782 if (node_distance(local_node, node) !=
5783 node_distance(local_node, prev_node))
5784 node_load[node] = load;
5785
5786 node_order[nr_nodes++] = node;
5787 prev_node = node;
5788 load--;
5789 }
5790
5791 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5792 build_thisnode_zonelists(pgdat);
5793 }
5794
5795 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5796 /*
5797 * Return node id of node used for "local" allocations.
5798 * I.e., first node id of first zone in arg node's generic zonelist.
5799 * Used for initializing percpu 'numa_mem', which is used primarily
5800 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5801 */
5802 int local_memory_node(int node)
5803 {
5804 struct zoneref *z;
5805
5806 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5807 gfp_zone(GFP_KERNEL),
5808 NULL);
5809 return zone_to_nid(z->zone);
5810 }
5811 #endif
5812
5813 static void setup_min_unmapped_ratio(void);
5814 static void setup_min_slab_ratio(void);
5815 #else /* CONFIG_NUMA */
5816
5817 static void build_zonelists(pg_data_t *pgdat)
5818 {
5819 int node, local_node;
5820 struct zoneref *zonerefs;
5821 int nr_zones;
5822
5823 local_node = pgdat->node_id;
5824
5825 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5826 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5827 zonerefs += nr_zones;
5828
5829 /*
5830 * Now we build the zonelist so that it contains the zones
5831 * of all the other nodes.
5832 * We don't want to pressure a particular node, so when
5833 * building the zones for node N, we make sure that the
5834 * zones coming right after the local ones are those from
5835 * node N+1 (modulo N)
5836 */
5837 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5838 if (!node_online(node))
5839 continue;
5840 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5841 zonerefs += nr_zones;
5842 }
5843 for (node = 0; node < local_node; node++) {
5844 if (!node_online(node))
5845 continue;
5846 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5847 zonerefs += nr_zones;
5848 }
5849
5850 zonerefs->zone = NULL;
5851 zonerefs->zone_idx = 0;
5852 }
5853
5854 #endif /* CONFIG_NUMA */
5855
5856 /*
5857 * Boot pageset table. One per cpu which is going to be used for all
5858 * zones and all nodes. The parameters will be set in such a way
5859 * that an item put on a list will immediately be handed over to
5860 * the buddy list. This is safe since pageset manipulation is done
5861 * with interrupts disabled.
5862 *
5863 * The boot_pagesets must be kept even after bootup is complete for
5864 * unused processors and/or zones. They do play a role for bootstrapping
5865 * hotplugged processors.
5866 *
5867 * zoneinfo_show() and maybe other functions do
5868 * not check if the processor is online before following the pageset pointer.
5869 * Other parts of the kernel may not check if the zone is available.
5870 */
5871 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5872 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5873 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5874
5875 static void __build_all_zonelists(void *data)
5876 {
5877 int nid;
5878 int __maybe_unused cpu;
5879 pg_data_t *self = data;
5880 static DEFINE_SPINLOCK(lock);
5881
5882 spin_lock(&lock);
5883
5884 #ifdef CONFIG_NUMA
5885 memset(node_load, 0, sizeof(node_load));
5886 #endif
5887
5888 /*
5889 * This node is hotadded and no memory is yet present. So just
5890 * building zonelists is fine - no need to touch other nodes.
5891 */
5892 if (self && !node_online(self->node_id)) {
5893 build_zonelists(self);
5894 } else {
5895 for_each_online_node(nid) {
5896 pg_data_t *pgdat = NODE_DATA(nid);
5897
5898 build_zonelists(pgdat);
5899 }
5900
5901 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5902 /*
5903 * We now know the "local memory node" for each node--
5904 * i.e., the node of the first zone in the generic zonelist.
5905 * Set up numa_mem percpu variable for on-line cpus. During
5906 * boot, only the boot cpu should be on-line; we'll init the
5907 * secondary cpus' numa_mem as they come on-line. During
5908 * node/memory hotplug, we'll fixup all on-line cpus.
5909 */
5910 for_each_online_cpu(cpu)
5911 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5912 #endif
5913 }
5914
5915 spin_unlock(&lock);
5916 }
5917
5918 static noinline void __init
5919 build_all_zonelists_init(void)
5920 {
5921 int cpu;
5922
5923 __build_all_zonelists(NULL);
5924
5925 /*
5926 * Initialize the boot_pagesets that are going to be used
5927 * for bootstrapping processors. The real pagesets for
5928 * each zone will be allocated later when the per cpu
5929 * allocator is available.
5930 *
5931 * boot_pagesets are used also for bootstrapping offline
5932 * cpus if the system is already booted because the pagesets
5933 * are needed to initialize allocators on a specific cpu too.
5934 * F.e. the percpu allocator needs the page allocator which
5935 * needs the percpu allocator in order to allocate its pagesets
5936 * (a chicken-egg dilemma).
5937 */
5938 for_each_possible_cpu(cpu)
5939 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5940
5941 mminit_verify_zonelist();
5942 cpuset_init_current_mems_allowed();
5943 }
5944
5945 /*
5946 * unless system_state == SYSTEM_BOOTING.
5947 *
5948 * __ref due to call of __init annotated helper build_all_zonelists_init
5949 * [protected by SYSTEM_BOOTING].
5950 */
5951 void __ref build_all_zonelists(pg_data_t *pgdat)
5952 {
5953 unsigned long vm_total_pages;
5954
5955 if (system_state == SYSTEM_BOOTING) {
5956 build_all_zonelists_init();
5957 } else {
5958 __build_all_zonelists(pgdat);
5959 /* cpuset refresh routine should be here */
5960 }
5961 /* Get the number of free pages beyond high watermark in all zones. */
5962 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5963 /*
5964 * Disable grouping by mobility if the number of pages in the
5965 * system is too low to allow the mechanism to work. It would be
5966 * more accurate, but expensive to check per-zone. This check is
5967 * made on memory-hotadd so a system can start with mobility
5968 * disabled and enable it later
5969 */
5970 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5971 page_group_by_mobility_disabled = 1;
5972 else
5973 page_group_by_mobility_disabled = 0;
5974
5975 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5976 nr_online_nodes,
5977 page_group_by_mobility_disabled ? "off" : "on",
5978 vm_total_pages);
5979 #ifdef CONFIG_NUMA
5980 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5981 #endif
5982 }
5983
5984 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5985 static bool __meminit
5986 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5987 {
5988 static struct memblock_region *r;
5989
5990 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5991 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5992 for_each_mem_region(r) {
5993 if (*pfn < memblock_region_memory_end_pfn(r))
5994 break;
5995 }
5996 }
5997 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5998 memblock_is_mirror(r)) {
5999 *pfn = memblock_region_memory_end_pfn(r);
6000 return true;
6001 }
6002 }
6003 return false;
6004 }
6005
6006 /*
6007 * Initially all pages are reserved - free ones are freed
6008 * up by memblock_free_all() once the early boot process is
6009 * done. Non-atomic initialization, single-pass.
6010 *
6011 * All aligned pageblocks are initialized to the specified migratetype
6012 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6013 * zone stats (e.g., nr_isolate_pageblock) are touched.
6014 */
6015 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6016 unsigned long start_pfn,
6017 enum meminit_context context,
6018 struct vmem_altmap *altmap, int migratetype)
6019 {
6020 unsigned long pfn, end_pfn = start_pfn + size;
6021 struct page *page;
6022
6023 if (highest_memmap_pfn < end_pfn - 1)
6024 highest_memmap_pfn = end_pfn - 1;
6025
6026 #ifdef CONFIG_ZONE_DEVICE
6027 /*
6028 * Honor reservation requested by the driver for this ZONE_DEVICE
6029 * memory. We limit the total number of pages to initialize to just
6030 * those that might contain the memory mapping. We will defer the
6031 * ZONE_DEVICE page initialization until after we have released
6032 * the hotplug lock.
6033 */
6034 if (zone == ZONE_DEVICE) {
6035 if (!altmap)
6036 return;
6037
6038 if (start_pfn == altmap->base_pfn)
6039 start_pfn += altmap->reserve;
6040 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6041 }
6042 #endif
6043
6044 for (pfn = start_pfn; pfn < end_pfn; ) {
6045 /*
6046 * There can be holes in boot-time mem_map[]s handed to this
6047 * function. They do not exist on hotplugged memory.
6048 */
6049 if (context == MEMINIT_EARLY) {
6050 if (overlap_memmap_init(zone, &pfn))
6051 continue;
6052 if (defer_init(nid, pfn, end_pfn))
6053 break;
6054 }
6055
6056 page = pfn_to_page(pfn);
6057 __init_single_page(page, pfn, zone, nid);
6058 if (context == MEMINIT_HOTPLUG)
6059 __SetPageReserved(page);
6060
6061 /*
6062 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6063 * such that unmovable allocations won't be scattered all
6064 * over the place during system boot.
6065 */
6066 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6067 set_pageblock_migratetype(page, migratetype);
6068 cond_resched();
6069 }
6070 pfn++;
6071 }
6072 }
6073
6074 #ifdef CONFIG_ZONE_DEVICE
6075 void __ref memmap_init_zone_device(struct zone *zone,
6076 unsigned long start_pfn,
6077 unsigned long nr_pages,
6078 struct dev_pagemap *pgmap)
6079 {
6080 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6081 struct pglist_data *pgdat = zone->zone_pgdat;
6082 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6083 unsigned long zone_idx = zone_idx(zone);
6084 unsigned long start = jiffies;
6085 int nid = pgdat->node_id;
6086
6087 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6088 return;
6089
6090 /*
6091 * The call to memmap_init_zone should have already taken care
6092 * of the pages reserved for the memmap, so we can just jump to
6093 * the end of that region and start processing the device pages.
6094 */
6095 if (altmap) {
6096 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6097 nr_pages = end_pfn - start_pfn;
6098 }
6099
6100 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6101 struct page *page = pfn_to_page(pfn);
6102
6103 __init_single_page(page, pfn, zone_idx, nid);
6104
6105 /*
6106 * Mark page reserved as it will need to wait for onlining
6107 * phase for it to be fully associated with a zone.
6108 *
6109 * We can use the non-atomic __set_bit operation for setting
6110 * the flag as we are still initializing the pages.
6111 */
6112 __SetPageReserved(page);
6113
6114 /*
6115 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6116 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6117 * ever freed or placed on a driver-private list.
6118 */
6119 page->pgmap = pgmap;
6120 page->zone_device_data = NULL;
6121
6122 /*
6123 * Mark the block movable so that blocks are reserved for
6124 * movable at startup. This will force kernel allocations
6125 * to reserve their blocks rather than leaking throughout
6126 * the address space during boot when many long-lived
6127 * kernel allocations are made.
6128 *
6129 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6130 * because this is done early in section_activate()
6131 */
6132 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6133 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6134 cond_resched();
6135 }
6136 }
6137
6138 pr_info("%s initialised %lu pages in %ums\n", __func__,
6139 nr_pages, jiffies_to_msecs(jiffies - start));
6140 }
6141
6142 #endif
6143 static void __meminit zone_init_free_lists(struct zone *zone)
6144 {
6145 unsigned int order, t;
6146 for_each_migratetype_order(order, t) {
6147 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6148 zone->free_area[order].nr_free = 0;
6149 }
6150 }
6151
6152 void __meminit __weak memmap_init(unsigned long size, int nid,
6153 unsigned long zone,
6154 unsigned long range_start_pfn)
6155 {
6156 unsigned long start_pfn, end_pfn;
6157 unsigned long range_end_pfn = range_start_pfn + size;
6158 int i;
6159
6160 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6161 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6162 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6163
6164 if (end_pfn > start_pfn) {
6165 size = end_pfn - start_pfn;
6166 memmap_init_zone(size, nid, zone, start_pfn,
6167 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6168 }
6169 }
6170 }
6171
6172 static int zone_batchsize(struct zone *zone)
6173 {
6174 #ifdef CONFIG_MMU
6175 int batch;
6176
6177 /*
6178 * The per-cpu-pages pools are set to around 1000th of the
6179 * size of the zone.
6180 */
6181 batch = zone_managed_pages(zone) / 1024;
6182 /* But no more than a meg. */
6183 if (batch * PAGE_SIZE > 1024 * 1024)
6184 batch = (1024 * 1024) / PAGE_SIZE;
6185 batch /= 4; /* We effectively *= 4 below */
6186 if (batch < 1)
6187 batch = 1;
6188
6189 /*
6190 * Clamp the batch to a 2^n - 1 value. Having a power
6191 * of 2 value was found to be more likely to have
6192 * suboptimal cache aliasing properties in some cases.
6193 *
6194 * For example if 2 tasks are alternately allocating
6195 * batches of pages, one task can end up with a lot
6196 * of pages of one half of the possible page colors
6197 * and the other with pages of the other colors.
6198 */
6199 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6200
6201 return batch;
6202
6203 #else
6204 /* The deferral and batching of frees should be suppressed under NOMMU
6205 * conditions.
6206 *
6207 * The problem is that NOMMU needs to be able to allocate large chunks
6208 * of contiguous memory as there's no hardware page translation to
6209 * assemble apparent contiguous memory from discontiguous pages.
6210 *
6211 * Queueing large contiguous runs of pages for batching, however,
6212 * causes the pages to actually be freed in smaller chunks. As there
6213 * can be a significant delay between the individual batches being
6214 * recycled, this leads to the once large chunks of space being
6215 * fragmented and becoming unavailable for high-order allocations.
6216 */
6217 return 0;
6218 #endif
6219 }
6220
6221 /*
6222 * pcp->high and pcp->batch values are related and dependent on one another:
6223 * ->batch must never be higher then ->high.
6224 * The following function updates them in a safe manner without read side
6225 * locking.
6226 *
6227 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6228 * those fields changing asynchronously (acording to the above rule).
6229 *
6230 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6231 * outside of boot time (or some other assurance that no concurrent updaters
6232 * exist).
6233 */
6234 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6235 unsigned long batch)
6236 {
6237 /* start with a fail safe value for batch */
6238 pcp->batch = 1;
6239 smp_wmb();
6240
6241 /* Update high, then batch, in order */
6242 pcp->high = high;
6243 smp_wmb();
6244
6245 pcp->batch = batch;
6246 }
6247
6248 /* a companion to pageset_set_high() */
6249 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6250 {
6251 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6252 }
6253
6254 static void pageset_init(struct per_cpu_pageset *p)
6255 {
6256 struct per_cpu_pages *pcp;
6257 int migratetype;
6258
6259 memset(p, 0, sizeof(*p));
6260
6261 pcp = &p->pcp;
6262 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6263 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6264 }
6265
6266 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6267 {
6268 pageset_init(p);
6269 pageset_set_batch(p, batch);
6270 }
6271
6272 /*
6273 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6274 * to the value high for the pageset p.
6275 */
6276 static void pageset_set_high(struct per_cpu_pageset *p,
6277 unsigned long high)
6278 {
6279 unsigned long batch = max(1UL, high / 4);
6280 if ((high / 4) > (PAGE_SHIFT * 8))
6281 batch = PAGE_SHIFT * 8;
6282
6283 pageset_update(&p->pcp, high, batch);
6284 }
6285
6286 static void pageset_set_high_and_batch(struct zone *zone,
6287 struct per_cpu_pageset *pcp)
6288 {
6289 if (percpu_pagelist_fraction)
6290 pageset_set_high(pcp,
6291 (zone_managed_pages(zone) /
6292 percpu_pagelist_fraction));
6293 else
6294 pageset_set_batch(pcp, zone_batchsize(zone));
6295 }
6296
6297 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6298 {
6299 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6300
6301 pageset_init(pcp);
6302 pageset_set_high_and_batch(zone, pcp);
6303 }
6304
6305 void __meminit setup_zone_pageset(struct zone *zone)
6306 {
6307 int cpu;
6308 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6309 for_each_possible_cpu(cpu)
6310 zone_pageset_init(zone, cpu);
6311 }
6312
6313 /*
6314 * Allocate per cpu pagesets and initialize them.
6315 * Before this call only boot pagesets were available.
6316 */
6317 void __init setup_per_cpu_pageset(void)
6318 {
6319 struct pglist_data *pgdat;
6320 struct zone *zone;
6321 int __maybe_unused cpu;
6322
6323 for_each_populated_zone(zone)
6324 setup_zone_pageset(zone);
6325
6326 #ifdef CONFIG_NUMA
6327 /*
6328 * Unpopulated zones continue using the boot pagesets.
6329 * The numa stats for these pagesets need to be reset.
6330 * Otherwise, they will end up skewing the stats of
6331 * the nodes these zones are associated with.
6332 */
6333 for_each_possible_cpu(cpu) {
6334 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6335 memset(pcp->vm_numa_stat_diff, 0,
6336 sizeof(pcp->vm_numa_stat_diff));
6337 }
6338 #endif
6339
6340 for_each_online_pgdat(pgdat)
6341 pgdat->per_cpu_nodestats =
6342 alloc_percpu(struct per_cpu_nodestat);
6343 }
6344
6345 static __meminit void zone_pcp_init(struct zone *zone)
6346 {
6347 /*
6348 * per cpu subsystem is not up at this point. The following code
6349 * relies on the ability of the linker to provide the
6350 * offset of a (static) per cpu variable into the per cpu area.
6351 */
6352 zone->pageset = &boot_pageset;
6353
6354 if (populated_zone(zone))
6355 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6356 zone->name, zone->present_pages,
6357 zone_batchsize(zone));
6358 }
6359
6360 void __meminit init_currently_empty_zone(struct zone *zone,
6361 unsigned long zone_start_pfn,
6362 unsigned long size)
6363 {
6364 struct pglist_data *pgdat = zone->zone_pgdat;
6365 int zone_idx = zone_idx(zone) + 1;
6366
6367 if (zone_idx > pgdat->nr_zones)
6368 pgdat->nr_zones = zone_idx;
6369
6370 zone->zone_start_pfn = zone_start_pfn;
6371
6372 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6373 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6374 pgdat->node_id,
6375 (unsigned long)zone_idx(zone),
6376 zone_start_pfn, (zone_start_pfn + size));
6377
6378 zone_init_free_lists(zone);
6379 zone->initialized = 1;
6380 }
6381
6382 /**
6383 * get_pfn_range_for_nid - Return the start and end page frames for a node
6384 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6385 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6386 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6387 *
6388 * It returns the start and end page frame of a node based on information
6389 * provided by memblock_set_node(). If called for a node
6390 * with no available memory, a warning is printed and the start and end
6391 * PFNs will be 0.
6392 */
6393 void __init get_pfn_range_for_nid(unsigned int nid,
6394 unsigned long *start_pfn, unsigned long *end_pfn)
6395 {
6396 unsigned long this_start_pfn, this_end_pfn;
6397 int i;
6398
6399 *start_pfn = -1UL;
6400 *end_pfn = 0;
6401
6402 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6403 *start_pfn = min(*start_pfn, this_start_pfn);
6404 *end_pfn = max(*end_pfn, this_end_pfn);
6405 }
6406
6407 if (*start_pfn == -1UL)
6408 *start_pfn = 0;
6409 }
6410
6411 /*
6412 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6413 * assumption is made that zones within a node are ordered in monotonic
6414 * increasing memory addresses so that the "highest" populated zone is used
6415 */
6416 static void __init find_usable_zone_for_movable(void)
6417 {
6418 int zone_index;
6419 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6420 if (zone_index == ZONE_MOVABLE)
6421 continue;
6422
6423 if (arch_zone_highest_possible_pfn[zone_index] >
6424 arch_zone_lowest_possible_pfn[zone_index])
6425 break;
6426 }
6427
6428 VM_BUG_ON(zone_index == -1);
6429 movable_zone = zone_index;
6430 }
6431
6432 /*
6433 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6434 * because it is sized independent of architecture. Unlike the other zones,
6435 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6436 * in each node depending on the size of each node and how evenly kernelcore
6437 * is distributed. This helper function adjusts the zone ranges
6438 * provided by the architecture for a given node by using the end of the
6439 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6440 * zones within a node are in order of monotonic increases memory addresses
6441 */
6442 static void __init adjust_zone_range_for_zone_movable(int nid,
6443 unsigned long zone_type,
6444 unsigned long node_start_pfn,
6445 unsigned long node_end_pfn,
6446 unsigned long *zone_start_pfn,
6447 unsigned long *zone_end_pfn)
6448 {
6449 /* Only adjust if ZONE_MOVABLE is on this node */
6450 if (zone_movable_pfn[nid]) {
6451 /* Size ZONE_MOVABLE */
6452 if (zone_type == ZONE_MOVABLE) {
6453 *zone_start_pfn = zone_movable_pfn[nid];
6454 *zone_end_pfn = min(node_end_pfn,
6455 arch_zone_highest_possible_pfn[movable_zone]);
6456
6457 /* Adjust for ZONE_MOVABLE starting within this range */
6458 } else if (!mirrored_kernelcore &&
6459 *zone_start_pfn < zone_movable_pfn[nid] &&
6460 *zone_end_pfn > zone_movable_pfn[nid]) {
6461 *zone_end_pfn = zone_movable_pfn[nid];
6462
6463 /* Check if this whole range is within ZONE_MOVABLE */
6464 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6465 *zone_start_pfn = *zone_end_pfn;
6466 }
6467 }
6468
6469 /*
6470 * Return the number of pages a zone spans in a node, including holes
6471 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6472 */
6473 static unsigned long __init zone_spanned_pages_in_node(int nid,
6474 unsigned long zone_type,
6475 unsigned long node_start_pfn,
6476 unsigned long node_end_pfn,
6477 unsigned long *zone_start_pfn,
6478 unsigned long *zone_end_pfn)
6479 {
6480 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6481 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6482 /* When hotadd a new node from cpu_up(), the node should be empty */
6483 if (!node_start_pfn && !node_end_pfn)
6484 return 0;
6485
6486 /* Get the start and end of the zone */
6487 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6488 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6489 adjust_zone_range_for_zone_movable(nid, zone_type,
6490 node_start_pfn, node_end_pfn,
6491 zone_start_pfn, zone_end_pfn);
6492
6493 /* Check that this node has pages within the zone's required range */
6494 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6495 return 0;
6496
6497 /* Move the zone boundaries inside the node if necessary */
6498 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6499 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6500
6501 /* Return the spanned pages */
6502 return *zone_end_pfn - *zone_start_pfn;
6503 }
6504
6505 /*
6506 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6507 * then all holes in the requested range will be accounted for.
6508 */
6509 unsigned long __init __absent_pages_in_range(int nid,
6510 unsigned long range_start_pfn,
6511 unsigned long range_end_pfn)
6512 {
6513 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6514 unsigned long start_pfn, end_pfn;
6515 int i;
6516
6517 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6518 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6519 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6520 nr_absent -= end_pfn - start_pfn;
6521 }
6522 return nr_absent;
6523 }
6524
6525 /**
6526 * absent_pages_in_range - Return number of page frames in holes within a range
6527 * @start_pfn: The start PFN to start searching for holes
6528 * @end_pfn: The end PFN to stop searching for holes
6529 *
6530 * Return: the number of pages frames in memory holes within a range.
6531 */
6532 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6533 unsigned long end_pfn)
6534 {
6535 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6536 }
6537
6538 /* Return the number of page frames in holes in a zone on a node */
6539 static unsigned long __init zone_absent_pages_in_node(int nid,
6540 unsigned long zone_type,
6541 unsigned long node_start_pfn,
6542 unsigned long node_end_pfn)
6543 {
6544 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6545 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6546 unsigned long zone_start_pfn, zone_end_pfn;
6547 unsigned long nr_absent;
6548
6549 /* When hotadd a new node from cpu_up(), the node should be empty */
6550 if (!node_start_pfn && !node_end_pfn)
6551 return 0;
6552
6553 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6554 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6555
6556 adjust_zone_range_for_zone_movable(nid, zone_type,
6557 node_start_pfn, node_end_pfn,
6558 &zone_start_pfn, &zone_end_pfn);
6559 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6560
6561 /*
6562 * ZONE_MOVABLE handling.
6563 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6564 * and vice versa.
6565 */
6566 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6567 unsigned long start_pfn, end_pfn;
6568 struct memblock_region *r;
6569
6570 for_each_mem_region(r) {
6571 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6572 zone_start_pfn, zone_end_pfn);
6573 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6574 zone_start_pfn, zone_end_pfn);
6575
6576 if (zone_type == ZONE_MOVABLE &&
6577 memblock_is_mirror(r))
6578 nr_absent += end_pfn - start_pfn;
6579
6580 if (zone_type == ZONE_NORMAL &&
6581 !memblock_is_mirror(r))
6582 nr_absent += end_pfn - start_pfn;
6583 }
6584 }
6585
6586 return nr_absent;
6587 }
6588
6589 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6590 unsigned long node_start_pfn,
6591 unsigned long node_end_pfn)
6592 {
6593 unsigned long realtotalpages = 0, totalpages = 0;
6594 enum zone_type i;
6595
6596 for (i = 0; i < MAX_NR_ZONES; i++) {
6597 struct zone *zone = pgdat->node_zones + i;
6598 unsigned long zone_start_pfn, zone_end_pfn;
6599 unsigned long spanned, absent;
6600 unsigned long size, real_size;
6601
6602 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6603 node_start_pfn,
6604 node_end_pfn,
6605 &zone_start_pfn,
6606 &zone_end_pfn);
6607 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6608 node_start_pfn,
6609 node_end_pfn);
6610
6611 size = spanned;
6612 real_size = size - absent;
6613
6614 if (size)
6615 zone->zone_start_pfn = zone_start_pfn;
6616 else
6617 zone->zone_start_pfn = 0;
6618 zone->spanned_pages = size;
6619 zone->present_pages = real_size;
6620
6621 totalpages += size;
6622 realtotalpages += real_size;
6623 }
6624
6625 pgdat->node_spanned_pages = totalpages;
6626 pgdat->node_present_pages = realtotalpages;
6627 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6628 realtotalpages);
6629 }
6630
6631 #ifndef CONFIG_SPARSEMEM
6632 /*
6633 * Calculate the size of the zone->blockflags rounded to an unsigned long
6634 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6635 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6636 * round what is now in bits to nearest long in bits, then return it in
6637 * bytes.
6638 */
6639 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6640 {
6641 unsigned long usemapsize;
6642
6643 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6644 usemapsize = roundup(zonesize, pageblock_nr_pages);
6645 usemapsize = usemapsize >> pageblock_order;
6646 usemapsize *= NR_PAGEBLOCK_BITS;
6647 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6648
6649 return usemapsize / 8;
6650 }
6651
6652 static void __ref setup_usemap(struct pglist_data *pgdat,
6653 struct zone *zone,
6654 unsigned long zone_start_pfn,
6655 unsigned long zonesize)
6656 {
6657 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6658 zone->pageblock_flags = NULL;
6659 if (usemapsize) {
6660 zone->pageblock_flags =
6661 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6662 pgdat->node_id);
6663 if (!zone->pageblock_flags)
6664 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6665 usemapsize, zone->name, pgdat->node_id);
6666 }
6667 }
6668 #else
6669 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6670 unsigned long zone_start_pfn, unsigned long zonesize) {}
6671 #endif /* CONFIG_SPARSEMEM */
6672
6673 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6674
6675 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6676 void __init set_pageblock_order(void)
6677 {
6678 unsigned int order;
6679
6680 /* Check that pageblock_nr_pages has not already been setup */
6681 if (pageblock_order)
6682 return;
6683
6684 if (HPAGE_SHIFT > PAGE_SHIFT)
6685 order = HUGETLB_PAGE_ORDER;
6686 else
6687 order = MAX_ORDER - 1;
6688
6689 /*
6690 * Assume the largest contiguous order of interest is a huge page.
6691 * This value may be variable depending on boot parameters on IA64 and
6692 * powerpc.
6693 */
6694 pageblock_order = order;
6695 }
6696 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6697
6698 /*
6699 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6700 * is unused as pageblock_order is set at compile-time. See
6701 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6702 * the kernel config
6703 */
6704 void __init set_pageblock_order(void)
6705 {
6706 }
6707
6708 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6709
6710 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6711 unsigned long present_pages)
6712 {
6713 unsigned long pages = spanned_pages;
6714
6715 /*
6716 * Provide a more accurate estimation if there are holes within
6717 * the zone and SPARSEMEM is in use. If there are holes within the
6718 * zone, each populated memory region may cost us one or two extra
6719 * memmap pages due to alignment because memmap pages for each
6720 * populated regions may not be naturally aligned on page boundary.
6721 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6722 */
6723 if (spanned_pages > present_pages + (present_pages >> 4) &&
6724 IS_ENABLED(CONFIG_SPARSEMEM))
6725 pages = present_pages;
6726
6727 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6728 }
6729
6730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6731 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6732 {
6733 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6734
6735 spin_lock_init(&ds_queue->split_queue_lock);
6736 INIT_LIST_HEAD(&ds_queue->split_queue);
6737 ds_queue->split_queue_len = 0;
6738 }
6739 #else
6740 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6741 #endif
6742
6743 #ifdef CONFIG_COMPACTION
6744 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6745 {
6746 init_waitqueue_head(&pgdat->kcompactd_wait);
6747 }
6748 #else
6749 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6750 #endif
6751
6752 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6753 {
6754 pgdat_resize_init(pgdat);
6755
6756 pgdat_init_split_queue(pgdat);
6757 pgdat_init_kcompactd(pgdat);
6758
6759 init_waitqueue_head(&pgdat->kswapd_wait);
6760 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6761
6762 pgdat_page_ext_init(pgdat);
6763 spin_lock_init(&pgdat->lru_lock);
6764 lruvec_init(&pgdat->__lruvec);
6765 }
6766
6767 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6768 unsigned long remaining_pages)
6769 {
6770 atomic_long_set(&zone->managed_pages, remaining_pages);
6771 zone_set_nid(zone, nid);
6772 zone->name = zone_names[idx];
6773 zone->zone_pgdat = NODE_DATA(nid);
6774 spin_lock_init(&zone->lock);
6775 zone_seqlock_init(zone);
6776 zone_pcp_init(zone);
6777 }
6778
6779 /*
6780 * Set up the zone data structures
6781 * - init pgdat internals
6782 * - init all zones belonging to this node
6783 *
6784 * NOTE: this function is only called during memory hotplug
6785 */
6786 #ifdef CONFIG_MEMORY_HOTPLUG
6787 void __ref free_area_init_core_hotplug(int nid)
6788 {
6789 enum zone_type z;
6790 pg_data_t *pgdat = NODE_DATA(nid);
6791
6792 pgdat_init_internals(pgdat);
6793 for (z = 0; z < MAX_NR_ZONES; z++)
6794 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6795 }
6796 #endif
6797
6798 /*
6799 * Set up the zone data structures:
6800 * - mark all pages reserved
6801 * - mark all memory queues empty
6802 * - clear the memory bitmaps
6803 *
6804 * NOTE: pgdat should get zeroed by caller.
6805 * NOTE: this function is only called during early init.
6806 */
6807 static void __init free_area_init_core(struct pglist_data *pgdat)
6808 {
6809 enum zone_type j;
6810 int nid = pgdat->node_id;
6811
6812 pgdat_init_internals(pgdat);
6813 pgdat->per_cpu_nodestats = &boot_nodestats;
6814
6815 for (j = 0; j < MAX_NR_ZONES; j++) {
6816 struct zone *zone = pgdat->node_zones + j;
6817 unsigned long size, freesize, memmap_pages;
6818 unsigned long zone_start_pfn = zone->zone_start_pfn;
6819
6820 size = zone->spanned_pages;
6821 freesize = zone->present_pages;
6822
6823 /*
6824 * Adjust freesize so that it accounts for how much memory
6825 * is used by this zone for memmap. This affects the watermark
6826 * and per-cpu initialisations
6827 */
6828 memmap_pages = calc_memmap_size(size, freesize);
6829 if (!is_highmem_idx(j)) {
6830 if (freesize >= memmap_pages) {
6831 freesize -= memmap_pages;
6832 if (memmap_pages)
6833 printk(KERN_DEBUG
6834 " %s zone: %lu pages used for memmap\n",
6835 zone_names[j], memmap_pages);
6836 } else
6837 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6838 zone_names[j], memmap_pages, freesize);
6839 }
6840
6841 /* Account for reserved pages */
6842 if (j == 0 && freesize > dma_reserve) {
6843 freesize -= dma_reserve;
6844 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6845 zone_names[0], dma_reserve);
6846 }
6847
6848 if (!is_highmem_idx(j))
6849 nr_kernel_pages += freesize;
6850 /* Charge for highmem memmap if there are enough kernel pages */
6851 else if (nr_kernel_pages > memmap_pages * 2)
6852 nr_kernel_pages -= memmap_pages;
6853 nr_all_pages += freesize;
6854
6855 /*
6856 * Set an approximate value for lowmem here, it will be adjusted
6857 * when the bootmem allocator frees pages into the buddy system.
6858 * And all highmem pages will be managed by the buddy system.
6859 */
6860 zone_init_internals(zone, j, nid, freesize);
6861
6862 if (!size)
6863 continue;
6864
6865 set_pageblock_order();
6866 setup_usemap(pgdat, zone, zone_start_pfn, size);
6867 init_currently_empty_zone(zone, zone_start_pfn, size);
6868 memmap_init(size, nid, j, zone_start_pfn);
6869 }
6870 }
6871
6872 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6873 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6874 {
6875 unsigned long __maybe_unused start = 0;
6876 unsigned long __maybe_unused offset = 0;
6877
6878 /* Skip empty nodes */
6879 if (!pgdat->node_spanned_pages)
6880 return;
6881
6882 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6883 offset = pgdat->node_start_pfn - start;
6884 /* ia64 gets its own node_mem_map, before this, without bootmem */
6885 if (!pgdat->node_mem_map) {
6886 unsigned long size, end;
6887 struct page *map;
6888
6889 /*
6890 * The zone's endpoints aren't required to be MAX_ORDER
6891 * aligned but the node_mem_map endpoints must be in order
6892 * for the buddy allocator to function correctly.
6893 */
6894 end = pgdat_end_pfn(pgdat);
6895 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6896 size = (end - start) * sizeof(struct page);
6897 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6898 pgdat->node_id);
6899 if (!map)
6900 panic("Failed to allocate %ld bytes for node %d memory map\n",
6901 size, pgdat->node_id);
6902 pgdat->node_mem_map = map + offset;
6903 }
6904 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6905 __func__, pgdat->node_id, (unsigned long)pgdat,
6906 (unsigned long)pgdat->node_mem_map);
6907 #ifndef CONFIG_NEED_MULTIPLE_NODES
6908 /*
6909 * With no DISCONTIG, the global mem_map is just set as node 0's
6910 */
6911 if (pgdat == NODE_DATA(0)) {
6912 mem_map = NODE_DATA(0)->node_mem_map;
6913 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6914 mem_map -= offset;
6915 }
6916 #endif
6917 }
6918 #else
6919 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6920 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6921
6922 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6923 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6924 {
6925 pgdat->first_deferred_pfn = ULONG_MAX;
6926 }
6927 #else
6928 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6929 #endif
6930
6931 static void __init free_area_init_node(int nid)
6932 {
6933 pg_data_t *pgdat = NODE_DATA(nid);
6934 unsigned long start_pfn = 0;
6935 unsigned long end_pfn = 0;
6936
6937 /* pg_data_t should be reset to zero when it's allocated */
6938 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6939
6940 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6941
6942 pgdat->node_id = nid;
6943 pgdat->node_start_pfn = start_pfn;
6944 pgdat->per_cpu_nodestats = NULL;
6945
6946 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6947 (u64)start_pfn << PAGE_SHIFT,
6948 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6949 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6950
6951 alloc_node_mem_map(pgdat);
6952 pgdat_set_deferred_range(pgdat);
6953
6954 free_area_init_core(pgdat);
6955 }
6956
6957 void __init free_area_init_memoryless_node(int nid)
6958 {
6959 free_area_init_node(nid);
6960 }
6961
6962 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6963 /*
6964 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6965 * PageReserved(). Return the number of struct pages that were initialized.
6966 */
6967 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6968 {
6969 unsigned long pfn;
6970 u64 pgcnt = 0;
6971
6972 for (pfn = spfn; pfn < epfn; pfn++) {
6973 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6974 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6975 + pageblock_nr_pages - 1;
6976 continue;
6977 }
6978 /*
6979 * Use a fake node/zone (0) for now. Some of these pages
6980 * (in memblock.reserved but not in memblock.memory) will
6981 * get re-initialized via reserve_bootmem_region() later.
6982 */
6983 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6984 __SetPageReserved(pfn_to_page(pfn));
6985 pgcnt++;
6986 }
6987
6988 return pgcnt;
6989 }
6990
6991 /*
6992 * Only struct pages that are backed by physical memory are zeroed and
6993 * initialized by going through __init_single_page(). But, there are some
6994 * struct pages which are reserved in memblock allocator and their fields
6995 * may be accessed (for example page_to_pfn() on some configuration accesses
6996 * flags). We must explicitly initialize those struct pages.
6997 *
6998 * This function also addresses a similar issue where struct pages are left
6999 * uninitialized because the physical address range is not covered by
7000 * memblock.memory or memblock.reserved. That could happen when memblock
7001 * layout is manually configured via memmap=, or when the highest physical
7002 * address (max_pfn) does not end on a section boundary.
7003 */
7004 static void __init init_unavailable_mem(void)
7005 {
7006 phys_addr_t start, end;
7007 u64 i, pgcnt;
7008 phys_addr_t next = 0;
7009
7010 /*
7011 * Loop through unavailable ranges not covered by memblock.memory.
7012 */
7013 pgcnt = 0;
7014 for_each_mem_range(i, &start, &end) {
7015 if (next < start)
7016 pgcnt += init_unavailable_range(PFN_DOWN(next),
7017 PFN_UP(start));
7018 next = end;
7019 }
7020
7021 /*
7022 * Early sections always have a fully populated memmap for the whole
7023 * section - see pfn_valid(). If the last section has holes at the
7024 * end and that section is marked "online", the memmap will be
7025 * considered initialized. Make sure that memmap has a well defined
7026 * state.
7027 */
7028 pgcnt += init_unavailable_range(PFN_DOWN(next),
7029 round_up(max_pfn, PAGES_PER_SECTION));
7030
7031 /*
7032 * Struct pages that do not have backing memory. This could be because
7033 * firmware is using some of this memory, or for some other reasons.
7034 */
7035 if (pgcnt)
7036 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7037 }
7038 #else
7039 static inline void __init init_unavailable_mem(void)
7040 {
7041 }
7042 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7043
7044 #if MAX_NUMNODES > 1
7045 /*
7046 * Figure out the number of possible node ids.
7047 */
7048 void __init setup_nr_node_ids(void)
7049 {
7050 unsigned int highest;
7051
7052 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7053 nr_node_ids = highest + 1;
7054 }
7055 #endif
7056
7057 /**
7058 * node_map_pfn_alignment - determine the maximum internode alignment
7059 *
7060 * This function should be called after node map is populated and sorted.
7061 * It calculates the maximum power of two alignment which can distinguish
7062 * all the nodes.
7063 *
7064 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7065 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7066 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7067 * shifted, 1GiB is enough and this function will indicate so.
7068 *
7069 * This is used to test whether pfn -> nid mapping of the chosen memory
7070 * model has fine enough granularity to avoid incorrect mapping for the
7071 * populated node map.
7072 *
7073 * Return: the determined alignment in pfn's. 0 if there is no alignment
7074 * requirement (single node).
7075 */
7076 unsigned long __init node_map_pfn_alignment(void)
7077 {
7078 unsigned long accl_mask = 0, last_end = 0;
7079 unsigned long start, end, mask;
7080 int last_nid = NUMA_NO_NODE;
7081 int i, nid;
7082
7083 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7084 if (!start || last_nid < 0 || last_nid == nid) {
7085 last_nid = nid;
7086 last_end = end;
7087 continue;
7088 }
7089
7090 /*
7091 * Start with a mask granular enough to pin-point to the
7092 * start pfn and tick off bits one-by-one until it becomes
7093 * too coarse to separate the current node from the last.
7094 */
7095 mask = ~((1 << __ffs(start)) - 1);
7096 while (mask && last_end <= (start & (mask << 1)))
7097 mask <<= 1;
7098
7099 /* accumulate all internode masks */
7100 accl_mask |= mask;
7101 }
7102
7103 /* convert mask to number of pages */
7104 return ~accl_mask + 1;
7105 }
7106
7107 /**
7108 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7109 *
7110 * Return: the minimum PFN based on information provided via
7111 * memblock_set_node().
7112 */
7113 unsigned long __init find_min_pfn_with_active_regions(void)
7114 {
7115 return PHYS_PFN(memblock_start_of_DRAM());
7116 }
7117
7118 /*
7119 * early_calculate_totalpages()
7120 * Sum pages in active regions for movable zone.
7121 * Populate N_MEMORY for calculating usable_nodes.
7122 */
7123 static unsigned long __init early_calculate_totalpages(void)
7124 {
7125 unsigned long totalpages = 0;
7126 unsigned long start_pfn, end_pfn;
7127 int i, nid;
7128
7129 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7130 unsigned long pages = end_pfn - start_pfn;
7131
7132 totalpages += pages;
7133 if (pages)
7134 node_set_state(nid, N_MEMORY);
7135 }
7136 return totalpages;
7137 }
7138
7139 /*
7140 * Find the PFN the Movable zone begins in each node. Kernel memory
7141 * is spread evenly between nodes as long as the nodes have enough
7142 * memory. When they don't, some nodes will have more kernelcore than
7143 * others
7144 */
7145 static void __init find_zone_movable_pfns_for_nodes(void)
7146 {
7147 int i, nid;
7148 unsigned long usable_startpfn;
7149 unsigned long kernelcore_node, kernelcore_remaining;
7150 /* save the state before borrow the nodemask */
7151 nodemask_t saved_node_state = node_states[N_MEMORY];
7152 unsigned long totalpages = early_calculate_totalpages();
7153 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7154 struct memblock_region *r;
7155
7156 /* Need to find movable_zone earlier when movable_node is specified. */
7157 find_usable_zone_for_movable();
7158
7159 /*
7160 * If movable_node is specified, ignore kernelcore and movablecore
7161 * options.
7162 */
7163 if (movable_node_is_enabled()) {
7164 for_each_mem_region(r) {
7165 if (!memblock_is_hotpluggable(r))
7166 continue;
7167
7168 nid = memblock_get_region_node(r);
7169
7170 usable_startpfn = PFN_DOWN(r->base);
7171 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7172 min(usable_startpfn, zone_movable_pfn[nid]) :
7173 usable_startpfn;
7174 }
7175
7176 goto out2;
7177 }
7178
7179 /*
7180 * If kernelcore=mirror is specified, ignore movablecore option
7181 */
7182 if (mirrored_kernelcore) {
7183 bool mem_below_4gb_not_mirrored = false;
7184
7185 for_each_mem_region(r) {
7186 if (memblock_is_mirror(r))
7187 continue;
7188
7189 nid = memblock_get_region_node(r);
7190
7191 usable_startpfn = memblock_region_memory_base_pfn(r);
7192
7193 if (usable_startpfn < 0x100000) {
7194 mem_below_4gb_not_mirrored = true;
7195 continue;
7196 }
7197
7198 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7199 min(usable_startpfn, zone_movable_pfn[nid]) :
7200 usable_startpfn;
7201 }
7202
7203 if (mem_below_4gb_not_mirrored)
7204 pr_warn("This configuration results in unmirrored kernel memory.\n");
7205
7206 goto out2;
7207 }
7208
7209 /*
7210 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7211 * amount of necessary memory.
7212 */
7213 if (required_kernelcore_percent)
7214 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7215 10000UL;
7216 if (required_movablecore_percent)
7217 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7218 10000UL;
7219
7220 /*
7221 * If movablecore= was specified, calculate what size of
7222 * kernelcore that corresponds so that memory usable for
7223 * any allocation type is evenly spread. If both kernelcore
7224 * and movablecore are specified, then the value of kernelcore
7225 * will be used for required_kernelcore if it's greater than
7226 * what movablecore would have allowed.
7227 */
7228 if (required_movablecore) {
7229 unsigned long corepages;
7230
7231 /*
7232 * Round-up so that ZONE_MOVABLE is at least as large as what
7233 * was requested by the user
7234 */
7235 required_movablecore =
7236 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7237 required_movablecore = min(totalpages, required_movablecore);
7238 corepages = totalpages - required_movablecore;
7239
7240 required_kernelcore = max(required_kernelcore, corepages);
7241 }
7242
7243 /*
7244 * If kernelcore was not specified or kernelcore size is larger
7245 * than totalpages, there is no ZONE_MOVABLE.
7246 */
7247 if (!required_kernelcore || required_kernelcore >= totalpages)
7248 goto out;
7249
7250 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7251 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7252
7253 restart:
7254 /* Spread kernelcore memory as evenly as possible throughout nodes */
7255 kernelcore_node = required_kernelcore / usable_nodes;
7256 for_each_node_state(nid, N_MEMORY) {
7257 unsigned long start_pfn, end_pfn;
7258
7259 /*
7260 * Recalculate kernelcore_node if the division per node
7261 * now exceeds what is necessary to satisfy the requested
7262 * amount of memory for the kernel
7263 */
7264 if (required_kernelcore < kernelcore_node)
7265 kernelcore_node = required_kernelcore / usable_nodes;
7266
7267 /*
7268 * As the map is walked, we track how much memory is usable
7269 * by the kernel using kernelcore_remaining. When it is
7270 * 0, the rest of the node is usable by ZONE_MOVABLE
7271 */
7272 kernelcore_remaining = kernelcore_node;
7273
7274 /* Go through each range of PFNs within this node */
7275 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7276 unsigned long size_pages;
7277
7278 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7279 if (start_pfn >= end_pfn)
7280 continue;
7281
7282 /* Account for what is only usable for kernelcore */
7283 if (start_pfn < usable_startpfn) {
7284 unsigned long kernel_pages;
7285 kernel_pages = min(end_pfn, usable_startpfn)
7286 - start_pfn;
7287
7288 kernelcore_remaining -= min(kernel_pages,
7289 kernelcore_remaining);
7290 required_kernelcore -= min(kernel_pages,
7291 required_kernelcore);
7292
7293 /* Continue if range is now fully accounted */
7294 if (end_pfn <= usable_startpfn) {
7295
7296 /*
7297 * Push zone_movable_pfn to the end so
7298 * that if we have to rebalance
7299 * kernelcore across nodes, we will
7300 * not double account here
7301 */
7302 zone_movable_pfn[nid] = end_pfn;
7303 continue;
7304 }
7305 start_pfn = usable_startpfn;
7306 }
7307
7308 /*
7309 * The usable PFN range for ZONE_MOVABLE is from
7310 * start_pfn->end_pfn. Calculate size_pages as the
7311 * number of pages used as kernelcore
7312 */
7313 size_pages = end_pfn - start_pfn;
7314 if (size_pages > kernelcore_remaining)
7315 size_pages = kernelcore_remaining;
7316 zone_movable_pfn[nid] = start_pfn + size_pages;
7317
7318 /*
7319 * Some kernelcore has been met, update counts and
7320 * break if the kernelcore for this node has been
7321 * satisfied
7322 */
7323 required_kernelcore -= min(required_kernelcore,
7324 size_pages);
7325 kernelcore_remaining -= size_pages;
7326 if (!kernelcore_remaining)
7327 break;
7328 }
7329 }
7330
7331 /*
7332 * If there is still required_kernelcore, we do another pass with one
7333 * less node in the count. This will push zone_movable_pfn[nid] further
7334 * along on the nodes that still have memory until kernelcore is
7335 * satisfied
7336 */
7337 usable_nodes--;
7338 if (usable_nodes && required_kernelcore > usable_nodes)
7339 goto restart;
7340
7341 out2:
7342 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7343 for (nid = 0; nid < MAX_NUMNODES; nid++)
7344 zone_movable_pfn[nid] =
7345 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7346
7347 out:
7348 /* restore the node_state */
7349 node_states[N_MEMORY] = saved_node_state;
7350 }
7351
7352 /* Any regular or high memory on that node ? */
7353 static void check_for_memory(pg_data_t *pgdat, int nid)
7354 {
7355 enum zone_type zone_type;
7356
7357 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7358 struct zone *zone = &pgdat->node_zones[zone_type];
7359 if (populated_zone(zone)) {
7360 if (IS_ENABLED(CONFIG_HIGHMEM))
7361 node_set_state(nid, N_HIGH_MEMORY);
7362 if (zone_type <= ZONE_NORMAL)
7363 node_set_state(nid, N_NORMAL_MEMORY);
7364 break;
7365 }
7366 }
7367 }
7368
7369 /*
7370 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7371 * such cases we allow max_zone_pfn sorted in the descending order
7372 */
7373 bool __weak arch_has_descending_max_zone_pfns(void)
7374 {
7375 return false;
7376 }
7377
7378 /**
7379 * free_area_init - Initialise all pg_data_t and zone data
7380 * @max_zone_pfn: an array of max PFNs for each zone
7381 *
7382 * This will call free_area_init_node() for each active node in the system.
7383 * Using the page ranges provided by memblock_set_node(), the size of each
7384 * zone in each node and their holes is calculated. If the maximum PFN
7385 * between two adjacent zones match, it is assumed that the zone is empty.
7386 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7387 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7388 * starts where the previous one ended. For example, ZONE_DMA32 starts
7389 * at arch_max_dma_pfn.
7390 */
7391 void __init free_area_init(unsigned long *max_zone_pfn)
7392 {
7393 unsigned long start_pfn, end_pfn;
7394 int i, nid, zone;
7395 bool descending;
7396
7397 /* Record where the zone boundaries are */
7398 memset(arch_zone_lowest_possible_pfn, 0,
7399 sizeof(arch_zone_lowest_possible_pfn));
7400 memset(arch_zone_highest_possible_pfn, 0,
7401 sizeof(arch_zone_highest_possible_pfn));
7402
7403 start_pfn = find_min_pfn_with_active_regions();
7404 descending = arch_has_descending_max_zone_pfns();
7405
7406 for (i = 0; i < MAX_NR_ZONES; i++) {
7407 if (descending)
7408 zone = MAX_NR_ZONES - i - 1;
7409 else
7410 zone = i;
7411
7412 if (zone == ZONE_MOVABLE)
7413 continue;
7414
7415 end_pfn = max(max_zone_pfn[zone], start_pfn);
7416 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7417 arch_zone_highest_possible_pfn[zone] = end_pfn;
7418
7419 start_pfn = end_pfn;
7420 }
7421
7422 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7423 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7424 find_zone_movable_pfns_for_nodes();
7425
7426 /* Print out the zone ranges */
7427 pr_info("Zone ranges:\n");
7428 for (i = 0; i < MAX_NR_ZONES; i++) {
7429 if (i == ZONE_MOVABLE)
7430 continue;
7431 pr_info(" %-8s ", zone_names[i]);
7432 if (arch_zone_lowest_possible_pfn[i] ==
7433 arch_zone_highest_possible_pfn[i])
7434 pr_cont("empty\n");
7435 else
7436 pr_cont("[mem %#018Lx-%#018Lx]\n",
7437 (u64)arch_zone_lowest_possible_pfn[i]
7438 << PAGE_SHIFT,
7439 ((u64)arch_zone_highest_possible_pfn[i]
7440 << PAGE_SHIFT) - 1);
7441 }
7442
7443 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7444 pr_info("Movable zone start for each node\n");
7445 for (i = 0; i < MAX_NUMNODES; i++) {
7446 if (zone_movable_pfn[i])
7447 pr_info(" Node %d: %#018Lx\n", i,
7448 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7449 }
7450
7451 /*
7452 * Print out the early node map, and initialize the
7453 * subsection-map relative to active online memory ranges to
7454 * enable future "sub-section" extensions of the memory map.
7455 */
7456 pr_info("Early memory node ranges\n");
7457 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7458 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7459 (u64)start_pfn << PAGE_SHIFT,
7460 ((u64)end_pfn << PAGE_SHIFT) - 1);
7461 subsection_map_init(start_pfn, end_pfn - start_pfn);
7462 }
7463
7464 /* Initialise every node */
7465 mminit_verify_pageflags_layout();
7466 setup_nr_node_ids();
7467 init_unavailable_mem();
7468 for_each_online_node(nid) {
7469 pg_data_t *pgdat = NODE_DATA(nid);
7470 free_area_init_node(nid);
7471
7472 /* Any memory on that node */
7473 if (pgdat->node_present_pages)
7474 node_set_state(nid, N_MEMORY);
7475 check_for_memory(pgdat, nid);
7476 }
7477 }
7478
7479 static int __init cmdline_parse_core(char *p, unsigned long *core,
7480 unsigned long *percent)
7481 {
7482 unsigned long long coremem;
7483 char *endptr;
7484
7485 if (!p)
7486 return -EINVAL;
7487
7488 /* Value may be a percentage of total memory, otherwise bytes */
7489 coremem = simple_strtoull(p, &endptr, 0);
7490 if (*endptr == '%') {
7491 /* Paranoid check for percent values greater than 100 */
7492 WARN_ON(coremem > 100);
7493
7494 *percent = coremem;
7495 } else {
7496 coremem = memparse(p, &p);
7497 /* Paranoid check that UL is enough for the coremem value */
7498 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7499
7500 *core = coremem >> PAGE_SHIFT;
7501 *percent = 0UL;
7502 }
7503 return 0;
7504 }
7505
7506 /*
7507 * kernelcore=size sets the amount of memory for use for allocations that
7508 * cannot be reclaimed or migrated.
7509 */
7510 static int __init cmdline_parse_kernelcore(char *p)
7511 {
7512 /* parse kernelcore=mirror */
7513 if (parse_option_str(p, "mirror")) {
7514 mirrored_kernelcore = true;
7515 return 0;
7516 }
7517
7518 return cmdline_parse_core(p, &required_kernelcore,
7519 &required_kernelcore_percent);
7520 }
7521
7522 /*
7523 * movablecore=size sets the amount of memory for use for allocations that
7524 * can be reclaimed or migrated.
7525 */
7526 static int __init cmdline_parse_movablecore(char *p)
7527 {
7528 return cmdline_parse_core(p, &required_movablecore,
7529 &required_movablecore_percent);
7530 }
7531
7532 early_param("kernelcore", cmdline_parse_kernelcore);
7533 early_param("movablecore", cmdline_parse_movablecore);
7534
7535 void adjust_managed_page_count(struct page *page, long count)
7536 {
7537 atomic_long_add(count, &page_zone(page)->managed_pages);
7538 totalram_pages_add(count);
7539 #ifdef CONFIG_HIGHMEM
7540 if (PageHighMem(page))
7541 totalhigh_pages_add(count);
7542 #endif
7543 }
7544 EXPORT_SYMBOL(adjust_managed_page_count);
7545
7546 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7547 {
7548 void *pos;
7549 unsigned long pages = 0;
7550
7551 start = (void *)PAGE_ALIGN((unsigned long)start);
7552 end = (void *)((unsigned long)end & PAGE_MASK);
7553 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7554 struct page *page = virt_to_page(pos);
7555 void *direct_map_addr;
7556
7557 /*
7558 * 'direct_map_addr' might be different from 'pos'
7559 * because some architectures' virt_to_page()
7560 * work with aliases. Getting the direct map
7561 * address ensures that we get a _writeable_
7562 * alias for the memset().
7563 */
7564 direct_map_addr = page_address(page);
7565 if ((unsigned int)poison <= 0xFF)
7566 memset(direct_map_addr, poison, PAGE_SIZE);
7567
7568 free_reserved_page(page);
7569 }
7570
7571 if (pages && s)
7572 pr_info("Freeing %s memory: %ldK\n",
7573 s, pages << (PAGE_SHIFT - 10));
7574
7575 return pages;
7576 }
7577
7578 #ifdef CONFIG_HIGHMEM
7579 void free_highmem_page(struct page *page)
7580 {
7581 __free_reserved_page(page);
7582 totalram_pages_inc();
7583 atomic_long_inc(&page_zone(page)->managed_pages);
7584 totalhigh_pages_inc();
7585 }
7586 #endif
7587
7588
7589 void __init mem_init_print_info(const char *str)
7590 {
7591 unsigned long physpages, codesize, datasize, rosize, bss_size;
7592 unsigned long init_code_size, init_data_size;
7593
7594 physpages = get_num_physpages();
7595 codesize = _etext - _stext;
7596 datasize = _edata - _sdata;
7597 rosize = __end_rodata - __start_rodata;
7598 bss_size = __bss_stop - __bss_start;
7599 init_data_size = __init_end - __init_begin;
7600 init_code_size = _einittext - _sinittext;
7601
7602 /*
7603 * Detect special cases and adjust section sizes accordingly:
7604 * 1) .init.* may be embedded into .data sections
7605 * 2) .init.text.* may be out of [__init_begin, __init_end],
7606 * please refer to arch/tile/kernel/vmlinux.lds.S.
7607 * 3) .rodata.* may be embedded into .text or .data sections.
7608 */
7609 #define adj_init_size(start, end, size, pos, adj) \
7610 do { \
7611 if (start <= pos && pos < end && size > adj) \
7612 size -= adj; \
7613 } while (0)
7614
7615 adj_init_size(__init_begin, __init_end, init_data_size,
7616 _sinittext, init_code_size);
7617 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7618 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7619 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7620 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7621
7622 #undef adj_init_size
7623
7624 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7625 #ifdef CONFIG_HIGHMEM
7626 ", %luK highmem"
7627 #endif
7628 "%s%s)\n",
7629 nr_free_pages() << (PAGE_SHIFT - 10),
7630 physpages << (PAGE_SHIFT - 10),
7631 codesize >> 10, datasize >> 10, rosize >> 10,
7632 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7633 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7634 totalcma_pages << (PAGE_SHIFT - 10),
7635 #ifdef CONFIG_HIGHMEM
7636 totalhigh_pages() << (PAGE_SHIFT - 10),
7637 #endif
7638 str ? ", " : "", str ? str : "");
7639 }
7640
7641 /**
7642 * set_dma_reserve - set the specified number of pages reserved in the first zone
7643 * @new_dma_reserve: The number of pages to mark reserved
7644 *
7645 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7646 * In the DMA zone, a significant percentage may be consumed by kernel image
7647 * and other unfreeable allocations which can skew the watermarks badly. This
7648 * function may optionally be used to account for unfreeable pages in the
7649 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7650 * smaller per-cpu batchsize.
7651 */
7652 void __init set_dma_reserve(unsigned long new_dma_reserve)
7653 {
7654 dma_reserve = new_dma_reserve;
7655 }
7656
7657 static int page_alloc_cpu_dead(unsigned int cpu)
7658 {
7659
7660 lru_add_drain_cpu(cpu);
7661 drain_pages(cpu);
7662
7663 /*
7664 * Spill the event counters of the dead processor
7665 * into the current processors event counters.
7666 * This artificially elevates the count of the current
7667 * processor.
7668 */
7669 vm_events_fold_cpu(cpu);
7670
7671 /*
7672 * Zero the differential counters of the dead processor
7673 * so that the vm statistics are consistent.
7674 *
7675 * This is only okay since the processor is dead and cannot
7676 * race with what we are doing.
7677 */
7678 cpu_vm_stats_fold(cpu);
7679 return 0;
7680 }
7681
7682 #ifdef CONFIG_NUMA
7683 int hashdist = HASHDIST_DEFAULT;
7684
7685 static int __init set_hashdist(char *str)
7686 {
7687 if (!str)
7688 return 0;
7689 hashdist = simple_strtoul(str, &str, 0);
7690 return 1;
7691 }
7692 __setup("hashdist=", set_hashdist);
7693 #endif
7694
7695 void __init page_alloc_init(void)
7696 {
7697 int ret;
7698
7699 #ifdef CONFIG_NUMA
7700 if (num_node_state(N_MEMORY) == 1)
7701 hashdist = 0;
7702 #endif
7703
7704 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7705 "mm/page_alloc:dead", NULL,
7706 page_alloc_cpu_dead);
7707 WARN_ON(ret < 0);
7708 }
7709
7710 /*
7711 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7712 * or min_free_kbytes changes.
7713 */
7714 static void calculate_totalreserve_pages(void)
7715 {
7716 struct pglist_data *pgdat;
7717 unsigned long reserve_pages = 0;
7718 enum zone_type i, j;
7719
7720 for_each_online_pgdat(pgdat) {
7721
7722 pgdat->totalreserve_pages = 0;
7723
7724 for (i = 0; i < MAX_NR_ZONES; i++) {
7725 struct zone *zone = pgdat->node_zones + i;
7726 long max = 0;
7727 unsigned long managed_pages = zone_managed_pages(zone);
7728
7729 /* Find valid and maximum lowmem_reserve in the zone */
7730 for (j = i; j < MAX_NR_ZONES; j++) {
7731 if (zone->lowmem_reserve[j] > max)
7732 max = zone->lowmem_reserve[j];
7733 }
7734
7735 /* we treat the high watermark as reserved pages. */
7736 max += high_wmark_pages(zone);
7737
7738 if (max > managed_pages)
7739 max = managed_pages;
7740
7741 pgdat->totalreserve_pages += max;
7742
7743 reserve_pages += max;
7744 }
7745 }
7746 totalreserve_pages = reserve_pages;
7747 }
7748
7749 /*
7750 * setup_per_zone_lowmem_reserve - called whenever
7751 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7752 * has a correct pages reserved value, so an adequate number of
7753 * pages are left in the zone after a successful __alloc_pages().
7754 */
7755 static void setup_per_zone_lowmem_reserve(void)
7756 {
7757 struct pglist_data *pgdat;
7758 enum zone_type j, idx;
7759
7760 for_each_online_pgdat(pgdat) {
7761 for (j = 0; j < MAX_NR_ZONES; j++) {
7762 struct zone *zone = pgdat->node_zones + j;
7763 unsigned long managed_pages = zone_managed_pages(zone);
7764
7765 zone->lowmem_reserve[j] = 0;
7766
7767 idx = j;
7768 while (idx) {
7769 struct zone *lower_zone;
7770
7771 idx--;
7772 lower_zone = pgdat->node_zones + idx;
7773
7774 if (!sysctl_lowmem_reserve_ratio[idx] ||
7775 !zone_managed_pages(lower_zone)) {
7776 lower_zone->lowmem_reserve[j] = 0;
7777 continue;
7778 } else {
7779 lower_zone->lowmem_reserve[j] =
7780 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7781 }
7782 managed_pages += zone_managed_pages(lower_zone);
7783 }
7784 }
7785 }
7786
7787 /* update totalreserve_pages */
7788 calculate_totalreserve_pages();
7789 }
7790
7791 static void __setup_per_zone_wmarks(void)
7792 {
7793 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7794 unsigned long lowmem_pages = 0;
7795 struct zone *zone;
7796 unsigned long flags;
7797
7798 /* Calculate total number of !ZONE_HIGHMEM pages */
7799 for_each_zone(zone) {
7800 if (!is_highmem(zone))
7801 lowmem_pages += zone_managed_pages(zone);
7802 }
7803
7804 for_each_zone(zone) {
7805 u64 tmp;
7806
7807 spin_lock_irqsave(&zone->lock, flags);
7808 tmp = (u64)pages_min * zone_managed_pages(zone);
7809 do_div(tmp, lowmem_pages);
7810 if (is_highmem(zone)) {
7811 /*
7812 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7813 * need highmem pages, so cap pages_min to a small
7814 * value here.
7815 *
7816 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7817 * deltas control async page reclaim, and so should
7818 * not be capped for highmem.
7819 */
7820 unsigned long min_pages;
7821
7822 min_pages = zone_managed_pages(zone) / 1024;
7823 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7824 zone->_watermark[WMARK_MIN] = min_pages;
7825 } else {
7826 /*
7827 * If it's a lowmem zone, reserve a number of pages
7828 * proportionate to the zone's size.
7829 */
7830 zone->_watermark[WMARK_MIN] = tmp;
7831 }
7832
7833 /*
7834 * Set the kswapd watermarks distance according to the
7835 * scale factor in proportion to available memory, but
7836 * ensure a minimum size on small systems.
7837 */
7838 tmp = max_t(u64, tmp >> 2,
7839 mult_frac(zone_managed_pages(zone),
7840 watermark_scale_factor, 10000));
7841
7842 zone->watermark_boost = 0;
7843 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7844 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7845
7846 spin_unlock_irqrestore(&zone->lock, flags);
7847 }
7848
7849 /* update totalreserve_pages */
7850 calculate_totalreserve_pages();
7851 }
7852
7853 /**
7854 * setup_per_zone_wmarks - called when min_free_kbytes changes
7855 * or when memory is hot-{added|removed}
7856 *
7857 * Ensures that the watermark[min,low,high] values for each zone are set
7858 * correctly with respect to min_free_kbytes.
7859 */
7860 void setup_per_zone_wmarks(void)
7861 {
7862 static DEFINE_SPINLOCK(lock);
7863
7864 spin_lock(&lock);
7865 __setup_per_zone_wmarks();
7866 spin_unlock(&lock);
7867 }
7868
7869 /*
7870 * Initialise min_free_kbytes.
7871 *
7872 * For small machines we want it small (128k min). For large machines
7873 * we want it large (256MB max). But it is not linear, because network
7874 * bandwidth does not increase linearly with machine size. We use
7875 *
7876 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7877 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7878 *
7879 * which yields
7880 *
7881 * 16MB: 512k
7882 * 32MB: 724k
7883 * 64MB: 1024k
7884 * 128MB: 1448k
7885 * 256MB: 2048k
7886 * 512MB: 2896k
7887 * 1024MB: 4096k
7888 * 2048MB: 5792k
7889 * 4096MB: 8192k
7890 * 8192MB: 11584k
7891 * 16384MB: 16384k
7892 */
7893 int __meminit init_per_zone_wmark_min(void)
7894 {
7895 unsigned long lowmem_kbytes;
7896 int new_min_free_kbytes;
7897
7898 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7899 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7900
7901 if (new_min_free_kbytes > user_min_free_kbytes) {
7902 min_free_kbytes = new_min_free_kbytes;
7903 if (min_free_kbytes < 128)
7904 min_free_kbytes = 128;
7905 if (min_free_kbytes > 262144)
7906 min_free_kbytes = 262144;
7907 } else {
7908 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7909 new_min_free_kbytes, user_min_free_kbytes);
7910 }
7911 setup_per_zone_wmarks();
7912 refresh_zone_stat_thresholds();
7913 setup_per_zone_lowmem_reserve();
7914
7915 #ifdef CONFIG_NUMA
7916 setup_min_unmapped_ratio();
7917 setup_min_slab_ratio();
7918 #endif
7919
7920 khugepaged_min_free_kbytes_update();
7921
7922 return 0;
7923 }
7924 postcore_initcall(init_per_zone_wmark_min)
7925
7926 /*
7927 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7928 * that we can call two helper functions whenever min_free_kbytes
7929 * changes.
7930 */
7931 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7932 void *buffer, size_t *length, loff_t *ppos)
7933 {
7934 int rc;
7935
7936 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7937 if (rc)
7938 return rc;
7939
7940 if (write) {
7941 user_min_free_kbytes = min_free_kbytes;
7942 setup_per_zone_wmarks();
7943 }
7944 return 0;
7945 }
7946
7947 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7948 void *buffer, size_t *length, loff_t *ppos)
7949 {
7950 int rc;
7951
7952 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7953 if (rc)
7954 return rc;
7955
7956 if (write)
7957 setup_per_zone_wmarks();
7958
7959 return 0;
7960 }
7961
7962 #ifdef CONFIG_NUMA
7963 static void setup_min_unmapped_ratio(void)
7964 {
7965 pg_data_t *pgdat;
7966 struct zone *zone;
7967
7968 for_each_online_pgdat(pgdat)
7969 pgdat->min_unmapped_pages = 0;
7970
7971 for_each_zone(zone)
7972 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7973 sysctl_min_unmapped_ratio) / 100;
7974 }
7975
7976
7977 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7978 void *buffer, size_t *length, loff_t *ppos)
7979 {
7980 int rc;
7981
7982 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7983 if (rc)
7984 return rc;
7985
7986 setup_min_unmapped_ratio();
7987
7988 return 0;
7989 }
7990
7991 static void setup_min_slab_ratio(void)
7992 {
7993 pg_data_t *pgdat;
7994 struct zone *zone;
7995
7996 for_each_online_pgdat(pgdat)
7997 pgdat->min_slab_pages = 0;
7998
7999 for_each_zone(zone)
8000 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8001 sysctl_min_slab_ratio) / 100;
8002 }
8003
8004 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8005 void *buffer, size_t *length, loff_t *ppos)
8006 {
8007 int rc;
8008
8009 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8010 if (rc)
8011 return rc;
8012
8013 setup_min_slab_ratio();
8014
8015 return 0;
8016 }
8017 #endif
8018
8019 /*
8020 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8021 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8022 * whenever sysctl_lowmem_reserve_ratio changes.
8023 *
8024 * The reserve ratio obviously has absolutely no relation with the
8025 * minimum watermarks. The lowmem reserve ratio can only make sense
8026 * if in function of the boot time zone sizes.
8027 */
8028 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8029 void *buffer, size_t *length, loff_t *ppos)
8030 {
8031 int i;
8032
8033 proc_dointvec_minmax(table, write, buffer, length, ppos);
8034
8035 for (i = 0; i < MAX_NR_ZONES; i++) {
8036 if (sysctl_lowmem_reserve_ratio[i] < 1)
8037 sysctl_lowmem_reserve_ratio[i] = 0;
8038 }
8039
8040 setup_per_zone_lowmem_reserve();
8041 return 0;
8042 }
8043
8044 static void __zone_pcp_update(struct zone *zone)
8045 {
8046 unsigned int cpu;
8047
8048 for_each_possible_cpu(cpu)
8049 pageset_set_high_and_batch(zone,
8050 per_cpu_ptr(zone->pageset, cpu));
8051 }
8052
8053 /*
8054 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8055 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8056 * pagelist can have before it gets flushed back to buddy allocator.
8057 */
8058 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8059 void *buffer, size_t *length, loff_t *ppos)
8060 {
8061 struct zone *zone;
8062 int old_percpu_pagelist_fraction;
8063 int ret;
8064
8065 mutex_lock(&pcp_batch_high_lock);
8066 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8067
8068 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8069 if (!write || ret < 0)
8070 goto out;
8071
8072 /* Sanity checking to avoid pcp imbalance */
8073 if (percpu_pagelist_fraction &&
8074 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8075 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8076 ret = -EINVAL;
8077 goto out;
8078 }
8079
8080 /* No change? */
8081 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8082 goto out;
8083
8084 for_each_populated_zone(zone)
8085 __zone_pcp_update(zone);
8086 out:
8087 mutex_unlock(&pcp_batch_high_lock);
8088 return ret;
8089 }
8090
8091 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8092 /*
8093 * Returns the number of pages that arch has reserved but
8094 * is not known to alloc_large_system_hash().
8095 */
8096 static unsigned long __init arch_reserved_kernel_pages(void)
8097 {
8098 return 0;
8099 }
8100 #endif
8101
8102 /*
8103 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8104 * machines. As memory size is increased the scale is also increased but at
8105 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8106 * quadruples the scale is increased by one, which means the size of hash table
8107 * only doubles, instead of quadrupling as well.
8108 * Because 32-bit systems cannot have large physical memory, where this scaling
8109 * makes sense, it is disabled on such platforms.
8110 */
8111 #if __BITS_PER_LONG > 32
8112 #define ADAPT_SCALE_BASE (64ul << 30)
8113 #define ADAPT_SCALE_SHIFT 2
8114 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8115 #endif
8116
8117 /*
8118 * allocate a large system hash table from bootmem
8119 * - it is assumed that the hash table must contain an exact power-of-2
8120 * quantity of entries
8121 * - limit is the number of hash buckets, not the total allocation size
8122 */
8123 void *__init alloc_large_system_hash(const char *tablename,
8124 unsigned long bucketsize,
8125 unsigned long numentries,
8126 int scale,
8127 int flags,
8128 unsigned int *_hash_shift,
8129 unsigned int *_hash_mask,
8130 unsigned long low_limit,
8131 unsigned long high_limit)
8132 {
8133 unsigned long long max = high_limit;
8134 unsigned long log2qty, size;
8135 void *table = NULL;
8136 gfp_t gfp_flags;
8137 bool virt;
8138
8139 /* allow the kernel cmdline to have a say */
8140 if (!numentries) {
8141 /* round applicable memory size up to nearest megabyte */
8142 numentries = nr_kernel_pages;
8143 numentries -= arch_reserved_kernel_pages();
8144
8145 /* It isn't necessary when PAGE_SIZE >= 1MB */
8146 if (PAGE_SHIFT < 20)
8147 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8148
8149 #if __BITS_PER_LONG > 32
8150 if (!high_limit) {
8151 unsigned long adapt;
8152
8153 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8154 adapt <<= ADAPT_SCALE_SHIFT)
8155 scale++;
8156 }
8157 #endif
8158
8159 /* limit to 1 bucket per 2^scale bytes of low memory */
8160 if (scale > PAGE_SHIFT)
8161 numentries >>= (scale - PAGE_SHIFT);
8162 else
8163 numentries <<= (PAGE_SHIFT - scale);
8164
8165 /* Make sure we've got at least a 0-order allocation.. */
8166 if (unlikely(flags & HASH_SMALL)) {
8167 /* Makes no sense without HASH_EARLY */
8168 WARN_ON(!(flags & HASH_EARLY));
8169 if (!(numentries >> *_hash_shift)) {
8170 numentries = 1UL << *_hash_shift;
8171 BUG_ON(!numentries);
8172 }
8173 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8174 numentries = PAGE_SIZE / bucketsize;
8175 }
8176 numentries = roundup_pow_of_two(numentries);
8177
8178 /* limit allocation size to 1/16 total memory by default */
8179 if (max == 0) {
8180 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8181 do_div(max, bucketsize);
8182 }
8183 max = min(max, 0x80000000ULL);
8184
8185 if (numentries < low_limit)
8186 numentries = low_limit;
8187 if (numentries > max)
8188 numentries = max;
8189
8190 log2qty = ilog2(numentries);
8191
8192 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8193 do {
8194 virt = false;
8195 size = bucketsize << log2qty;
8196 if (flags & HASH_EARLY) {
8197 if (flags & HASH_ZERO)
8198 table = memblock_alloc(size, SMP_CACHE_BYTES);
8199 else
8200 table = memblock_alloc_raw(size,
8201 SMP_CACHE_BYTES);
8202 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8203 table = __vmalloc(size, gfp_flags);
8204 virt = true;
8205 } else {
8206 /*
8207 * If bucketsize is not a power-of-two, we may free
8208 * some pages at the end of hash table which
8209 * alloc_pages_exact() automatically does
8210 */
8211 table = alloc_pages_exact(size, gfp_flags);
8212 kmemleak_alloc(table, size, 1, gfp_flags);
8213 }
8214 } while (!table && size > PAGE_SIZE && --log2qty);
8215
8216 if (!table)
8217 panic("Failed to allocate %s hash table\n", tablename);
8218
8219 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8220 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8221 virt ? "vmalloc" : "linear");
8222
8223 if (_hash_shift)
8224 *_hash_shift = log2qty;
8225 if (_hash_mask)
8226 *_hash_mask = (1 << log2qty) - 1;
8227
8228 return table;
8229 }
8230
8231 /*
8232 * This function checks whether pageblock includes unmovable pages or not.
8233 *
8234 * PageLRU check without isolation or lru_lock could race so that
8235 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8236 * check without lock_page also may miss some movable non-lru pages at
8237 * race condition. So you can't expect this function should be exact.
8238 *
8239 * Returns a page without holding a reference. If the caller wants to
8240 * dereference that page (e.g., dumping), it has to make sure that it
8241 * cannot get removed (e.g., via memory unplug) concurrently.
8242 *
8243 */
8244 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8245 int migratetype, int flags)
8246 {
8247 unsigned long iter = 0;
8248 unsigned long pfn = page_to_pfn(page);
8249 unsigned long offset = pfn % pageblock_nr_pages;
8250
8251 if (is_migrate_cma_page(page)) {
8252 /*
8253 * CMA allocations (alloc_contig_range) really need to mark
8254 * isolate CMA pageblocks even when they are not movable in fact
8255 * so consider them movable here.
8256 */
8257 if (is_migrate_cma(migratetype))
8258 return NULL;
8259
8260 return page;
8261 }
8262
8263 for (; iter < pageblock_nr_pages - offset; iter++) {
8264 if (!pfn_valid_within(pfn + iter))
8265 continue;
8266
8267 page = pfn_to_page(pfn + iter);
8268
8269 /*
8270 * Both, bootmem allocations and memory holes are marked
8271 * PG_reserved and are unmovable. We can even have unmovable
8272 * allocations inside ZONE_MOVABLE, for example when
8273 * specifying "movablecore".
8274 */
8275 if (PageReserved(page))
8276 return page;
8277
8278 /*
8279 * If the zone is movable and we have ruled out all reserved
8280 * pages then it should be reasonably safe to assume the rest
8281 * is movable.
8282 */
8283 if (zone_idx(zone) == ZONE_MOVABLE)
8284 continue;
8285
8286 /*
8287 * Hugepages are not in LRU lists, but they're movable.
8288 * THPs are on the LRU, but need to be counted as #small pages.
8289 * We need not scan over tail pages because we don't
8290 * handle each tail page individually in migration.
8291 */
8292 if (PageHuge(page) || PageTransCompound(page)) {
8293 struct page *head = compound_head(page);
8294 unsigned int skip_pages;
8295
8296 if (PageHuge(page)) {
8297 if (!hugepage_migration_supported(page_hstate(head)))
8298 return page;
8299 } else if (!PageLRU(head) && !__PageMovable(head)) {
8300 return page;
8301 }
8302
8303 skip_pages = compound_nr(head) - (page - head);
8304 iter += skip_pages - 1;
8305 continue;
8306 }
8307
8308 /*
8309 * We can't use page_count without pin a page
8310 * because another CPU can free compound page.
8311 * This check already skips compound tails of THP
8312 * because their page->_refcount is zero at all time.
8313 */
8314 if (!page_ref_count(page)) {
8315 if (PageBuddy(page))
8316 iter += (1 << page_order(page)) - 1;
8317 continue;
8318 }
8319
8320 /*
8321 * The HWPoisoned page may be not in buddy system, and
8322 * page_count() is not 0.
8323 */
8324 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8325 continue;
8326
8327 /*
8328 * We treat all PageOffline() pages as movable when offlining
8329 * to give drivers a chance to decrement their reference count
8330 * in MEM_GOING_OFFLINE in order to indicate that these pages
8331 * can be offlined as there are no direct references anymore.
8332 * For actually unmovable PageOffline() where the driver does
8333 * not support this, we will fail later when trying to actually
8334 * move these pages that still have a reference count > 0.
8335 * (false negatives in this function only)
8336 */
8337 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8338 continue;
8339
8340 if (__PageMovable(page) || PageLRU(page))
8341 continue;
8342
8343 /*
8344 * If there are RECLAIMABLE pages, we need to check
8345 * it. But now, memory offline itself doesn't call
8346 * shrink_node_slabs() and it still to be fixed.
8347 */
8348 return page;
8349 }
8350 return NULL;
8351 }
8352
8353 #ifdef CONFIG_CONTIG_ALLOC
8354 static unsigned long pfn_max_align_down(unsigned long pfn)
8355 {
8356 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8357 pageblock_nr_pages) - 1);
8358 }
8359
8360 static unsigned long pfn_max_align_up(unsigned long pfn)
8361 {
8362 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8363 pageblock_nr_pages));
8364 }
8365
8366 /* [start, end) must belong to a single zone. */
8367 static int __alloc_contig_migrate_range(struct compact_control *cc,
8368 unsigned long start, unsigned long end)
8369 {
8370 /* This function is based on compact_zone() from compaction.c. */
8371 unsigned int nr_reclaimed;
8372 unsigned long pfn = start;
8373 unsigned int tries = 0;
8374 int ret = 0;
8375 struct migration_target_control mtc = {
8376 .nid = zone_to_nid(cc->zone),
8377 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8378 };
8379
8380 migrate_prep();
8381
8382 while (pfn < end || !list_empty(&cc->migratepages)) {
8383 if (fatal_signal_pending(current)) {
8384 ret = -EINTR;
8385 break;
8386 }
8387
8388 if (list_empty(&cc->migratepages)) {
8389 cc->nr_migratepages = 0;
8390 pfn = isolate_migratepages_range(cc, pfn, end);
8391 if (!pfn) {
8392 ret = -EINTR;
8393 break;
8394 }
8395 tries = 0;
8396 } else if (++tries == 5) {
8397 ret = ret < 0 ? ret : -EBUSY;
8398 break;
8399 }
8400
8401 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8402 &cc->migratepages);
8403 cc->nr_migratepages -= nr_reclaimed;
8404
8405 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8406 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8407 }
8408 if (ret < 0) {
8409 putback_movable_pages(&cc->migratepages);
8410 return ret;
8411 }
8412 return 0;
8413 }
8414
8415 /**
8416 * alloc_contig_range() -- tries to allocate given range of pages
8417 * @start: start PFN to allocate
8418 * @end: one-past-the-last PFN to allocate
8419 * @migratetype: migratetype of the underlaying pageblocks (either
8420 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8421 * in range must have the same migratetype and it must
8422 * be either of the two.
8423 * @gfp_mask: GFP mask to use during compaction
8424 *
8425 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8426 * aligned. The PFN range must belong to a single zone.
8427 *
8428 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8429 * pageblocks in the range. Once isolated, the pageblocks should not
8430 * be modified by others.
8431 *
8432 * Return: zero on success or negative error code. On success all
8433 * pages which PFN is in [start, end) are allocated for the caller and
8434 * need to be freed with free_contig_range().
8435 */
8436 int alloc_contig_range(unsigned long start, unsigned long end,
8437 unsigned migratetype, gfp_t gfp_mask)
8438 {
8439 unsigned long outer_start, outer_end;
8440 unsigned int order;
8441 int ret = 0;
8442
8443 struct compact_control cc = {
8444 .nr_migratepages = 0,
8445 .order = -1,
8446 .zone = page_zone(pfn_to_page(start)),
8447 .mode = MIGRATE_SYNC,
8448 .ignore_skip_hint = true,
8449 .no_set_skip_hint = true,
8450 .gfp_mask = current_gfp_context(gfp_mask),
8451 .alloc_contig = true,
8452 };
8453 INIT_LIST_HEAD(&cc.migratepages);
8454
8455 /*
8456 * What we do here is we mark all pageblocks in range as
8457 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8458 * have different sizes, and due to the way page allocator
8459 * work, we align the range to biggest of the two pages so
8460 * that page allocator won't try to merge buddies from
8461 * different pageblocks and change MIGRATE_ISOLATE to some
8462 * other migration type.
8463 *
8464 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8465 * migrate the pages from an unaligned range (ie. pages that
8466 * we are interested in). This will put all the pages in
8467 * range back to page allocator as MIGRATE_ISOLATE.
8468 *
8469 * When this is done, we take the pages in range from page
8470 * allocator removing them from the buddy system. This way
8471 * page allocator will never consider using them.
8472 *
8473 * This lets us mark the pageblocks back as
8474 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8475 * aligned range but not in the unaligned, original range are
8476 * put back to page allocator so that buddy can use them.
8477 */
8478
8479 ret = start_isolate_page_range(pfn_max_align_down(start),
8480 pfn_max_align_up(end), migratetype, 0);
8481 if (ret)
8482 return ret;
8483
8484 /*
8485 * In case of -EBUSY, we'd like to know which page causes problem.
8486 * So, just fall through. test_pages_isolated() has a tracepoint
8487 * which will report the busy page.
8488 *
8489 * It is possible that busy pages could become available before
8490 * the call to test_pages_isolated, and the range will actually be
8491 * allocated. So, if we fall through be sure to clear ret so that
8492 * -EBUSY is not accidentally used or returned to caller.
8493 */
8494 ret = __alloc_contig_migrate_range(&cc, start, end);
8495 if (ret && ret != -EBUSY)
8496 goto done;
8497 ret =0;
8498
8499 /*
8500 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8501 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8502 * more, all pages in [start, end) are free in page allocator.
8503 * What we are going to do is to allocate all pages from
8504 * [start, end) (that is remove them from page allocator).
8505 *
8506 * The only problem is that pages at the beginning and at the
8507 * end of interesting range may be not aligned with pages that
8508 * page allocator holds, ie. they can be part of higher order
8509 * pages. Because of this, we reserve the bigger range and
8510 * once this is done free the pages we are not interested in.
8511 *
8512 * We don't have to hold zone->lock here because the pages are
8513 * isolated thus they won't get removed from buddy.
8514 */
8515
8516 lru_add_drain_all();
8517
8518 order = 0;
8519 outer_start = start;
8520 while (!PageBuddy(pfn_to_page(outer_start))) {
8521 if (++order >= MAX_ORDER) {
8522 outer_start = start;
8523 break;
8524 }
8525 outer_start &= ~0UL << order;
8526 }
8527
8528 if (outer_start != start) {
8529 order = page_order(pfn_to_page(outer_start));
8530
8531 /*
8532 * outer_start page could be small order buddy page and
8533 * it doesn't include start page. Adjust outer_start
8534 * in this case to report failed page properly
8535 * on tracepoint in test_pages_isolated()
8536 */
8537 if (outer_start + (1UL << order) <= start)
8538 outer_start = start;
8539 }
8540
8541 /* Make sure the range is really isolated. */
8542 if (test_pages_isolated(outer_start, end, 0)) {
8543 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8544 __func__, outer_start, end);
8545 ret = -EBUSY;
8546 goto done;
8547 }
8548
8549 /* Grab isolated pages from freelists. */
8550 outer_end = isolate_freepages_range(&cc, outer_start, end);
8551 if (!outer_end) {
8552 ret = -EBUSY;
8553 goto done;
8554 }
8555
8556 /* Free head and tail (if any) */
8557 if (start != outer_start)
8558 free_contig_range(outer_start, start - outer_start);
8559 if (end != outer_end)
8560 free_contig_range(end, outer_end - end);
8561
8562 done:
8563 undo_isolate_page_range(pfn_max_align_down(start),
8564 pfn_max_align_up(end), migratetype);
8565 return ret;
8566 }
8567 EXPORT_SYMBOL(alloc_contig_range);
8568
8569 static int __alloc_contig_pages(unsigned long start_pfn,
8570 unsigned long nr_pages, gfp_t gfp_mask)
8571 {
8572 unsigned long end_pfn = start_pfn + nr_pages;
8573
8574 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8575 gfp_mask);
8576 }
8577
8578 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8579 unsigned long nr_pages)
8580 {
8581 unsigned long i, end_pfn = start_pfn + nr_pages;
8582 struct page *page;
8583
8584 for (i = start_pfn; i < end_pfn; i++) {
8585 page = pfn_to_online_page(i);
8586 if (!page)
8587 return false;
8588
8589 if (page_zone(page) != z)
8590 return false;
8591
8592 if (PageReserved(page))
8593 return false;
8594
8595 if (page_count(page) > 0)
8596 return false;
8597
8598 if (PageHuge(page))
8599 return false;
8600 }
8601 return true;
8602 }
8603
8604 static bool zone_spans_last_pfn(const struct zone *zone,
8605 unsigned long start_pfn, unsigned long nr_pages)
8606 {
8607 unsigned long last_pfn = start_pfn + nr_pages - 1;
8608
8609 return zone_spans_pfn(zone, last_pfn);
8610 }
8611
8612 /**
8613 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8614 * @nr_pages: Number of contiguous pages to allocate
8615 * @gfp_mask: GFP mask to limit search and used during compaction
8616 * @nid: Target node
8617 * @nodemask: Mask for other possible nodes
8618 *
8619 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8620 * on an applicable zonelist to find a contiguous pfn range which can then be
8621 * tried for allocation with alloc_contig_range(). This routine is intended
8622 * for allocation requests which can not be fulfilled with the buddy allocator.
8623 *
8624 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8625 * power of two then the alignment is guaranteed to be to the given nr_pages
8626 * (e.g. 1GB request would be aligned to 1GB).
8627 *
8628 * Allocated pages can be freed with free_contig_range() or by manually calling
8629 * __free_page() on each allocated page.
8630 *
8631 * Return: pointer to contiguous pages on success, or NULL if not successful.
8632 */
8633 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8634 int nid, nodemask_t *nodemask)
8635 {
8636 unsigned long ret, pfn, flags;
8637 struct zonelist *zonelist;
8638 struct zone *zone;
8639 struct zoneref *z;
8640
8641 zonelist = node_zonelist(nid, gfp_mask);
8642 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8643 gfp_zone(gfp_mask), nodemask) {
8644 spin_lock_irqsave(&zone->lock, flags);
8645
8646 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8647 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8648 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8649 /*
8650 * We release the zone lock here because
8651 * alloc_contig_range() will also lock the zone
8652 * at some point. If there's an allocation
8653 * spinning on this lock, it may win the race
8654 * and cause alloc_contig_range() to fail...
8655 */
8656 spin_unlock_irqrestore(&zone->lock, flags);
8657 ret = __alloc_contig_pages(pfn, nr_pages,
8658 gfp_mask);
8659 if (!ret)
8660 return pfn_to_page(pfn);
8661 spin_lock_irqsave(&zone->lock, flags);
8662 }
8663 pfn += nr_pages;
8664 }
8665 spin_unlock_irqrestore(&zone->lock, flags);
8666 }
8667 return NULL;
8668 }
8669 #endif /* CONFIG_CONTIG_ALLOC */
8670
8671 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8672 {
8673 unsigned int count = 0;
8674
8675 for (; nr_pages--; pfn++) {
8676 struct page *page = pfn_to_page(pfn);
8677
8678 count += page_count(page) != 1;
8679 __free_page(page);
8680 }
8681 WARN(count != 0, "%d pages are still in use!\n", count);
8682 }
8683 EXPORT_SYMBOL(free_contig_range);
8684
8685 /*
8686 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8687 * page high values need to be recalulated.
8688 */
8689 void __meminit zone_pcp_update(struct zone *zone)
8690 {
8691 mutex_lock(&pcp_batch_high_lock);
8692 __zone_pcp_update(zone);
8693 mutex_unlock(&pcp_batch_high_lock);
8694 }
8695
8696 void zone_pcp_reset(struct zone *zone)
8697 {
8698 unsigned long flags;
8699 int cpu;
8700 struct per_cpu_pageset *pset;
8701
8702 /* avoid races with drain_pages() */
8703 local_irq_save(flags);
8704 if (zone->pageset != &boot_pageset) {
8705 for_each_online_cpu(cpu) {
8706 pset = per_cpu_ptr(zone->pageset, cpu);
8707 drain_zonestat(zone, pset);
8708 }
8709 free_percpu(zone->pageset);
8710 zone->pageset = &boot_pageset;
8711 }
8712 local_irq_restore(flags);
8713 }
8714
8715 #ifdef CONFIG_MEMORY_HOTREMOVE
8716 /*
8717 * All pages in the range must be in a single zone, must not contain holes,
8718 * must span full sections, and must be isolated before calling this function.
8719 */
8720 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8721 {
8722 unsigned long pfn = start_pfn;
8723 struct page *page;
8724 struct zone *zone;
8725 unsigned int order;
8726 unsigned long flags;
8727
8728 offline_mem_sections(pfn, end_pfn);
8729 zone = page_zone(pfn_to_page(pfn));
8730 spin_lock_irqsave(&zone->lock, flags);
8731 while (pfn < end_pfn) {
8732 page = pfn_to_page(pfn);
8733 /*
8734 * The HWPoisoned page may be not in buddy system, and
8735 * page_count() is not 0.
8736 */
8737 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8738 pfn++;
8739 continue;
8740 }
8741 /*
8742 * At this point all remaining PageOffline() pages have a
8743 * reference count of 0 and can simply be skipped.
8744 */
8745 if (PageOffline(page)) {
8746 BUG_ON(page_count(page));
8747 BUG_ON(PageBuddy(page));
8748 pfn++;
8749 continue;
8750 }
8751
8752 BUG_ON(page_count(page));
8753 BUG_ON(!PageBuddy(page));
8754 order = page_order(page);
8755 del_page_from_free_list(page, zone, order);
8756 pfn += (1 << order);
8757 }
8758 spin_unlock_irqrestore(&zone->lock, flags);
8759 }
8760 #endif
8761
8762 bool is_free_buddy_page(struct page *page)
8763 {
8764 struct zone *zone = page_zone(page);
8765 unsigned long pfn = page_to_pfn(page);
8766 unsigned long flags;
8767 unsigned int order;
8768
8769 spin_lock_irqsave(&zone->lock, flags);
8770 for (order = 0; order < MAX_ORDER; order++) {
8771 struct page *page_head = page - (pfn & ((1 << order) - 1));
8772
8773 if (PageBuddy(page_head) && page_order(page_head) >= order)
8774 break;
8775 }
8776 spin_unlock_irqrestore(&zone->lock, flags);
8777
8778 return order < MAX_ORDER;
8779 }
8780
8781 #ifdef CONFIG_MEMORY_FAILURE
8782 /*
8783 * Break down a higher-order page in sub-pages, and keep our target out of
8784 * buddy allocator.
8785 */
8786 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8787 struct page *target, int low, int high,
8788 int migratetype)
8789 {
8790 unsigned long size = 1 << high;
8791 struct page *current_buddy, *next_page;
8792
8793 while (high > low) {
8794 high--;
8795 size >>= 1;
8796
8797 if (target >= &page[size]) {
8798 next_page = page + size;
8799 current_buddy = page;
8800 } else {
8801 next_page = page;
8802 current_buddy = page + size;
8803 }
8804
8805 if (set_page_guard(zone, current_buddy, high, migratetype))
8806 continue;
8807
8808 if (current_buddy != target) {
8809 add_to_free_list(current_buddy, zone, high, migratetype);
8810 set_page_order(current_buddy, high);
8811 page = next_page;
8812 }
8813 }
8814 }
8815
8816 /*
8817 * Take a page that will be marked as poisoned off the buddy allocator.
8818 */
8819 bool take_page_off_buddy(struct page *page)
8820 {
8821 struct zone *zone = page_zone(page);
8822 unsigned long pfn = page_to_pfn(page);
8823 unsigned long flags;
8824 unsigned int order;
8825 bool ret = false;
8826
8827 spin_lock_irqsave(&zone->lock, flags);
8828 for (order = 0; order < MAX_ORDER; order++) {
8829 struct page *page_head = page - (pfn & ((1 << order) - 1));
8830 int buddy_order = page_order(page_head);
8831
8832 if (PageBuddy(page_head) && buddy_order >= order) {
8833 unsigned long pfn_head = page_to_pfn(page_head);
8834 int migratetype = get_pfnblock_migratetype(page_head,
8835 pfn_head);
8836
8837 del_page_from_free_list(page_head, zone, buddy_order);
8838 break_down_buddy_pages(zone, page_head, page, 0,
8839 buddy_order, migratetype);
8840 ret = true;
8841 break;
8842 }
8843 if (page_count(page_head) > 0)
8844 break;
8845 }
8846 spin_unlock_irqrestore(&zone->lock, flags);
8847 return ret;
8848 }
8849 #endif