]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 int i;
386 int nr_pages = 1 << order;
387 int bad = 0;
388
389 if (unlikely(compound_order(page) != order)) {
390 bad_page(page, "wrong compound order", 0);
391 bad++;
392 }
393
394 __ClearPageHead(page);
395
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
398
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
404 bad++;
405 }
406 __ClearPageTail(p);
407 }
408
409 return bad;
410 }
411
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
414 {
415 int i;
416
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424 }
425
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 set_page_private(page, order);
460 __SetPageBuddy(page);
461 }
462
463 static inline void rmv_page_order(struct page *page)
464 {
465 __ClearPageBuddy(page);
466 set_page_private(page, 0);
467 }
468
469 /*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
485 */
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx, unsigned int order)
488 {
489 return page_idx ^ (1 << order);
490 }
491
492 /*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
495 * (a) the buddy is not in a hole &&
496 * (b) the buddy is in the buddy system &&
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
499 *
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
504 *
505 * For recording page's order, we use page_private(page).
506 */
507 static inline int page_is_buddy(struct page *page, struct page *buddy,
508 unsigned int order)
509 {
510 if (!pfn_valid_within(page_to_pfn(buddy)))
511 return 0;
512
513 if (page_is_guard(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
519 return 1;
520 }
521
522 if (PageBuddy(buddy) && page_order(buddy) == order) {
523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
533 return 1;
534 }
535 return 0;
536 }
537
538 /*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
554 * So when we are allocating or freeing one, we can derive the state of the
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
557 * If a block is freed, and its buddy is also free, then this
558 * triggers coalescing into a block of larger size.
559 *
560 * -- nyc
561 */
562
563 static inline void __free_one_page(struct page *page,
564 unsigned long pfn,
565 struct zone *zone, unsigned int order,
566 int migratetype)
567 {
568 unsigned long page_idx;
569 unsigned long combined_idx;
570 unsigned long uninitialized_var(buddy_idx);
571 struct page *buddy;
572
573 VM_BUG_ON(!zone_is_initialized(zone));
574
575 if (unlikely(PageCompound(page)))
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
578
579 VM_BUG_ON(migratetype == -1);
580
581 page_idx = pfn & ((1 << MAX_ORDER) - 1);
582
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
585
586 while (order < MAX_ORDER-1) {
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
589 if (!page_is_buddy(page, buddy, order))
590 break;
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
596 clear_page_guard_flag(buddy);
597 set_page_private(page, 0);
598 __mod_zone_freepage_state(zone, 1 << order,
599 migratetype);
600 } else {
601 list_del(&buddy->lru);
602 zone->free_area[order].nr_free--;
603 rmv_page_order(buddy);
604 }
605 combined_idx = buddy_idx & page_idx;
606 page = page + (combined_idx - page_idx);
607 page_idx = combined_idx;
608 order++;
609 }
610 set_page_order(page, order);
611
612 /*
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
619 */
620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
621 struct page *higher_page, *higher_buddy;
622 combined_idx = buddy_idx & page_idx;
623 higher_page = page + (combined_idx - page_idx);
624 buddy_idx = __find_buddy_index(combined_idx, order + 1);
625 higher_buddy = higher_page + (buddy_idx - combined_idx);
626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 list_add_tail(&page->lru,
628 &zone->free_area[order].free_list[migratetype]);
629 goto out;
630 }
631 }
632
633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634 out:
635 zone->free_area[order].nr_free++;
636 }
637
638 static inline int free_pages_check(struct page *page)
639 {
640 const char *bad_reason = NULL;
641 unsigned long bad_flags = 0;
642
643 if (unlikely(page_mapcount(page)))
644 bad_reason = "nonzero mapcount";
645 if (unlikely(page->mapping != NULL))
646 bad_reason = "non-NULL mapping";
647 if (unlikely(atomic_read(&page->_count) != 0))
648 bad_reason = "nonzero _count";
649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 }
653 if (unlikely(mem_cgroup_bad_page_check(page)))
654 bad_reason = "cgroup check failed";
655 if (unlikely(bad_reason)) {
656 bad_page(page, bad_reason, bad_flags);
657 return 1;
658 }
659 page_cpupid_reset_last(page);
660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 return 0;
663 }
664
665 /*
666 * Frees a number of pages from the PCP lists
667 * Assumes all pages on list are in same zone, and of same order.
668 * count is the number of pages to free.
669 *
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
672 *
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
675 */
676 static void free_pcppages_bulk(struct zone *zone, int count,
677 struct per_cpu_pages *pcp)
678 {
679 int migratetype = 0;
680 int batch_free = 0;
681 int to_free = count;
682 unsigned long nr_scanned;
683
684 spin_lock(&zone->lock);
685 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
686 if (nr_scanned)
687 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
688
689 while (to_free) {
690 struct page *page;
691 struct list_head *list;
692
693 /*
694 * Remove pages from lists in a round-robin fashion. A
695 * batch_free count is maintained that is incremented when an
696 * empty list is encountered. This is so more pages are freed
697 * off fuller lists instead of spinning excessively around empty
698 * lists
699 */
700 do {
701 batch_free++;
702 if (++migratetype == MIGRATE_PCPTYPES)
703 migratetype = 0;
704 list = &pcp->lists[migratetype];
705 } while (list_empty(list));
706
707 /* This is the only non-empty list. Free them all. */
708 if (batch_free == MIGRATE_PCPTYPES)
709 batch_free = to_free;
710
711 do {
712 int mt; /* migratetype of the to-be-freed page */
713
714 page = list_entry(list->prev, struct page, lru);
715 /* must delete as __free_one_page list manipulates */
716 list_del(&page->lru);
717 mt = get_freepage_migratetype(page);
718 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
719 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
720 trace_mm_page_pcpu_drain(page, 0, mt);
721 if (likely(!is_migrate_isolate_page(page))) {
722 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
723 if (is_migrate_cma(mt))
724 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
725 }
726 } while (--to_free && --batch_free && !list_empty(list));
727 }
728 spin_unlock(&zone->lock);
729 }
730
731 static void free_one_page(struct zone *zone,
732 struct page *page, unsigned long pfn,
733 unsigned int order,
734 int migratetype)
735 {
736 unsigned long nr_scanned;
737 spin_lock(&zone->lock);
738 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
739 if (nr_scanned)
740 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
741
742 __free_one_page(page, pfn, zone, order, migratetype);
743 if (unlikely(!is_migrate_isolate(migratetype)))
744 __mod_zone_freepage_state(zone, 1 << order, migratetype);
745 spin_unlock(&zone->lock);
746 }
747
748 static bool free_pages_prepare(struct page *page, unsigned int order)
749 {
750 int i;
751 int bad = 0;
752
753 trace_mm_page_free(page, order);
754 kmemcheck_free_shadow(page, order);
755
756 if (PageAnon(page))
757 page->mapping = NULL;
758 for (i = 0; i < (1 << order); i++)
759 bad += free_pages_check(page + i);
760 if (bad)
761 return false;
762
763 if (!PageHighMem(page)) {
764 debug_check_no_locks_freed(page_address(page),
765 PAGE_SIZE << order);
766 debug_check_no_obj_freed(page_address(page),
767 PAGE_SIZE << order);
768 }
769 arch_free_page(page, order);
770 kernel_map_pages(page, 1 << order, 0);
771
772 return true;
773 }
774
775 static void __free_pages_ok(struct page *page, unsigned int order)
776 {
777 unsigned long flags;
778 int migratetype;
779 unsigned long pfn = page_to_pfn(page);
780
781 if (!free_pages_prepare(page, order))
782 return;
783
784 migratetype = get_pfnblock_migratetype(page, pfn);
785 local_irq_save(flags);
786 __count_vm_events(PGFREE, 1 << order);
787 set_freepage_migratetype(page, migratetype);
788 free_one_page(page_zone(page), page, pfn, order, migratetype);
789 local_irq_restore(flags);
790 }
791
792 void __init __free_pages_bootmem(struct page *page, unsigned int order)
793 {
794 unsigned int nr_pages = 1 << order;
795 struct page *p = page;
796 unsigned int loop;
797
798 prefetchw(p);
799 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
800 prefetchw(p + 1);
801 __ClearPageReserved(p);
802 set_page_count(p, 0);
803 }
804 __ClearPageReserved(p);
805 set_page_count(p, 0);
806
807 page_zone(page)->managed_pages += nr_pages;
808 set_page_refcounted(page);
809 __free_pages(page, order);
810 }
811
812 #ifdef CONFIG_CMA
813 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
814 void __init init_cma_reserved_pageblock(struct page *page)
815 {
816 unsigned i = pageblock_nr_pages;
817 struct page *p = page;
818
819 do {
820 __ClearPageReserved(p);
821 set_page_count(p, 0);
822 } while (++p, --i);
823
824 set_pageblock_migratetype(page, MIGRATE_CMA);
825
826 if (pageblock_order >= MAX_ORDER) {
827 i = pageblock_nr_pages;
828 p = page;
829 do {
830 set_page_refcounted(p);
831 __free_pages(p, MAX_ORDER - 1);
832 p += MAX_ORDER_NR_PAGES;
833 } while (i -= MAX_ORDER_NR_PAGES);
834 } else {
835 set_page_refcounted(page);
836 __free_pages(page, pageblock_order);
837 }
838
839 adjust_managed_page_count(page, pageblock_nr_pages);
840 }
841 #endif
842
843 /*
844 * The order of subdivision here is critical for the IO subsystem.
845 * Please do not alter this order without good reasons and regression
846 * testing. Specifically, as large blocks of memory are subdivided,
847 * the order in which smaller blocks are delivered depends on the order
848 * they're subdivided in this function. This is the primary factor
849 * influencing the order in which pages are delivered to the IO
850 * subsystem according to empirical testing, and this is also justified
851 * by considering the behavior of a buddy system containing a single
852 * large block of memory acted on by a series of small allocations.
853 * This behavior is a critical factor in sglist merging's success.
854 *
855 * -- nyc
856 */
857 static inline void expand(struct zone *zone, struct page *page,
858 int low, int high, struct free_area *area,
859 int migratetype)
860 {
861 unsigned long size = 1 << high;
862
863 while (high > low) {
864 area--;
865 high--;
866 size >>= 1;
867 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
868
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 if (high < debug_guardpage_minorder()) {
871 /*
872 * Mark as guard pages (or page), that will allow to
873 * merge back to allocator when buddy will be freed.
874 * Corresponding page table entries will not be touched,
875 * pages will stay not present in virtual address space
876 */
877 INIT_LIST_HEAD(&page[size].lru);
878 set_page_guard_flag(&page[size]);
879 set_page_private(&page[size], high);
880 /* Guard pages are not available for any usage */
881 __mod_zone_freepage_state(zone, -(1 << high),
882 migratetype);
883 continue;
884 }
885 #endif
886 list_add(&page[size].lru, &area->free_list[migratetype]);
887 area->nr_free++;
888 set_page_order(&page[size], high);
889 }
890 }
891
892 /*
893 * This page is about to be returned from the page allocator
894 */
895 static inline int check_new_page(struct page *page)
896 {
897 const char *bad_reason = NULL;
898 unsigned long bad_flags = 0;
899
900 if (unlikely(page_mapcount(page)))
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
904 if (unlikely(atomic_read(&page->_count) != 0))
905 bad_reason = "nonzero _count";
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
909 }
910 if (unlikely(mem_cgroup_bad_page_check(page)))
911 bad_reason = "cgroup check failed";
912 if (unlikely(bad_reason)) {
913 bad_page(page, bad_reason, bad_flags);
914 return 1;
915 }
916 return 0;
917 }
918
919 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
920 {
921 int i;
922
923 for (i = 0; i < (1 << order); i++) {
924 struct page *p = page + i;
925 if (unlikely(check_new_page(p)))
926 return 1;
927 }
928
929 set_page_private(page, 0);
930 set_page_refcounted(page);
931
932 arch_alloc_page(page, order);
933 kernel_map_pages(page, 1 << order, 1);
934
935 if (gfp_flags & __GFP_ZERO)
936 prep_zero_page(page, order, gfp_flags);
937
938 if (order && (gfp_flags & __GFP_COMP))
939 prep_compound_page(page, order);
940
941 return 0;
942 }
943
944 /*
945 * Go through the free lists for the given migratetype and remove
946 * the smallest available page from the freelists
947 */
948 static inline
949 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
950 int migratetype)
951 {
952 unsigned int current_order;
953 struct free_area *area;
954 struct page *page;
955
956 /* Find a page of the appropriate size in the preferred list */
957 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
958 area = &(zone->free_area[current_order]);
959 if (list_empty(&area->free_list[migratetype]))
960 continue;
961
962 page = list_entry(area->free_list[migratetype].next,
963 struct page, lru);
964 list_del(&page->lru);
965 rmv_page_order(page);
966 area->nr_free--;
967 expand(zone, page, order, current_order, area, migratetype);
968 set_freepage_migratetype(page, migratetype);
969 return page;
970 }
971
972 return NULL;
973 }
974
975
976 /*
977 * This array describes the order lists are fallen back to when
978 * the free lists for the desirable migrate type are depleted
979 */
980 static int fallbacks[MIGRATE_TYPES][4] = {
981 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
982 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
983 #ifdef CONFIG_CMA
984 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
985 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
986 #else
987 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
988 #endif
989 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
990 #ifdef CONFIG_MEMORY_ISOLATION
991 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
992 #endif
993 };
994
995 /*
996 * Move the free pages in a range to the free lists of the requested type.
997 * Note that start_page and end_pages are not aligned on a pageblock
998 * boundary. If alignment is required, use move_freepages_block()
999 */
1000 int move_freepages(struct zone *zone,
1001 struct page *start_page, struct page *end_page,
1002 int migratetype)
1003 {
1004 struct page *page;
1005 unsigned long order;
1006 int pages_moved = 0;
1007
1008 #ifndef CONFIG_HOLES_IN_ZONE
1009 /*
1010 * page_zone is not safe to call in this context when
1011 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1012 * anyway as we check zone boundaries in move_freepages_block().
1013 * Remove at a later date when no bug reports exist related to
1014 * grouping pages by mobility
1015 */
1016 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1017 #endif
1018
1019 for (page = start_page; page <= end_page;) {
1020 /* Make sure we are not inadvertently changing nodes */
1021 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1022
1023 if (!pfn_valid_within(page_to_pfn(page))) {
1024 page++;
1025 continue;
1026 }
1027
1028 if (!PageBuddy(page)) {
1029 page++;
1030 continue;
1031 }
1032
1033 order = page_order(page);
1034 list_move(&page->lru,
1035 &zone->free_area[order].free_list[migratetype]);
1036 set_freepage_migratetype(page, migratetype);
1037 page += 1 << order;
1038 pages_moved += 1 << order;
1039 }
1040
1041 return pages_moved;
1042 }
1043
1044 int move_freepages_block(struct zone *zone, struct page *page,
1045 int migratetype)
1046 {
1047 unsigned long start_pfn, end_pfn;
1048 struct page *start_page, *end_page;
1049
1050 start_pfn = page_to_pfn(page);
1051 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1052 start_page = pfn_to_page(start_pfn);
1053 end_page = start_page + pageblock_nr_pages - 1;
1054 end_pfn = start_pfn + pageblock_nr_pages - 1;
1055
1056 /* Do not cross zone boundaries */
1057 if (!zone_spans_pfn(zone, start_pfn))
1058 start_page = page;
1059 if (!zone_spans_pfn(zone, end_pfn))
1060 return 0;
1061
1062 return move_freepages(zone, start_page, end_page, migratetype);
1063 }
1064
1065 static void change_pageblock_range(struct page *pageblock_page,
1066 int start_order, int migratetype)
1067 {
1068 int nr_pageblocks = 1 << (start_order - pageblock_order);
1069
1070 while (nr_pageblocks--) {
1071 set_pageblock_migratetype(pageblock_page, migratetype);
1072 pageblock_page += pageblock_nr_pages;
1073 }
1074 }
1075
1076 /*
1077 * If breaking a large block of pages, move all free pages to the preferred
1078 * allocation list. If falling back for a reclaimable kernel allocation, be
1079 * more aggressive about taking ownership of free pages.
1080 *
1081 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1082 * nor move CMA pages to different free lists. We don't want unmovable pages
1083 * to be allocated from MIGRATE_CMA areas.
1084 *
1085 * Returns the new migratetype of the pageblock (or the same old migratetype
1086 * if it was unchanged).
1087 */
1088 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1089 int start_type, int fallback_type)
1090 {
1091 int current_order = page_order(page);
1092
1093 /*
1094 * When borrowing from MIGRATE_CMA, we need to release the excess
1095 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1096 * is set to CMA so it is returned to the correct freelist in case
1097 * the page ends up being not actually allocated from the pcp lists.
1098 */
1099 if (is_migrate_cma(fallback_type))
1100 return fallback_type;
1101
1102 /* Take ownership for orders >= pageblock_order */
1103 if (current_order >= pageblock_order) {
1104 change_pageblock_range(page, current_order, start_type);
1105 return start_type;
1106 }
1107
1108 if (current_order >= pageblock_order / 2 ||
1109 start_type == MIGRATE_RECLAIMABLE ||
1110 page_group_by_mobility_disabled) {
1111 int pages;
1112
1113 pages = move_freepages_block(zone, page, start_type);
1114
1115 /* Claim the whole block if over half of it is free */
1116 if (pages >= (1 << (pageblock_order-1)) ||
1117 page_group_by_mobility_disabled) {
1118
1119 set_pageblock_migratetype(page, start_type);
1120 return start_type;
1121 }
1122
1123 }
1124
1125 return fallback_type;
1126 }
1127
1128 /* Remove an element from the buddy allocator from the fallback list */
1129 static inline struct page *
1130 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1131 {
1132 struct free_area *area;
1133 unsigned int current_order;
1134 struct page *page;
1135 int migratetype, new_type, i;
1136
1137 /* Find the largest possible block of pages in the other list */
1138 for (current_order = MAX_ORDER-1;
1139 current_order >= order && current_order <= MAX_ORDER-1;
1140 --current_order) {
1141 for (i = 0;; i++) {
1142 migratetype = fallbacks[start_migratetype][i];
1143
1144 /* MIGRATE_RESERVE handled later if necessary */
1145 if (migratetype == MIGRATE_RESERVE)
1146 break;
1147
1148 area = &(zone->free_area[current_order]);
1149 if (list_empty(&area->free_list[migratetype]))
1150 continue;
1151
1152 page = list_entry(area->free_list[migratetype].next,
1153 struct page, lru);
1154 area->nr_free--;
1155
1156 new_type = try_to_steal_freepages(zone, page,
1157 start_migratetype,
1158 migratetype);
1159
1160 /* Remove the page from the freelists */
1161 list_del(&page->lru);
1162 rmv_page_order(page);
1163
1164 expand(zone, page, order, current_order, area,
1165 new_type);
1166 /* The freepage_migratetype may differ from pageblock's
1167 * migratetype depending on the decisions in
1168 * try_to_steal_freepages. This is OK as long as it does
1169 * not differ for MIGRATE_CMA type.
1170 */
1171 set_freepage_migratetype(page, new_type);
1172
1173 trace_mm_page_alloc_extfrag(page, order, current_order,
1174 start_migratetype, migratetype, new_type);
1175
1176 return page;
1177 }
1178 }
1179
1180 return NULL;
1181 }
1182
1183 /*
1184 * Do the hard work of removing an element from the buddy allocator.
1185 * Call me with the zone->lock already held.
1186 */
1187 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1188 int migratetype)
1189 {
1190 struct page *page;
1191
1192 retry_reserve:
1193 page = __rmqueue_smallest(zone, order, migratetype);
1194
1195 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1196 page = __rmqueue_fallback(zone, order, migratetype);
1197
1198 /*
1199 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1200 * is used because __rmqueue_smallest is an inline function
1201 * and we want just one call site
1202 */
1203 if (!page) {
1204 migratetype = MIGRATE_RESERVE;
1205 goto retry_reserve;
1206 }
1207 }
1208
1209 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1210 return page;
1211 }
1212
1213 /*
1214 * Obtain a specified number of elements from the buddy allocator, all under
1215 * a single hold of the lock, for efficiency. Add them to the supplied list.
1216 * Returns the number of new pages which were placed at *list.
1217 */
1218 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1219 unsigned long count, struct list_head *list,
1220 int migratetype, bool cold)
1221 {
1222 int i;
1223
1224 spin_lock(&zone->lock);
1225 for (i = 0; i < count; ++i) {
1226 struct page *page = __rmqueue(zone, order, migratetype);
1227 if (unlikely(page == NULL))
1228 break;
1229
1230 /*
1231 * Split buddy pages returned by expand() are received here
1232 * in physical page order. The page is added to the callers and
1233 * list and the list head then moves forward. From the callers
1234 * perspective, the linked list is ordered by page number in
1235 * some conditions. This is useful for IO devices that can
1236 * merge IO requests if the physical pages are ordered
1237 * properly.
1238 */
1239 if (likely(!cold))
1240 list_add(&page->lru, list);
1241 else
1242 list_add_tail(&page->lru, list);
1243 list = &page->lru;
1244 if (is_migrate_cma(get_freepage_migratetype(page)))
1245 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1246 -(1 << order));
1247 }
1248 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1249 spin_unlock(&zone->lock);
1250 return i;
1251 }
1252
1253 #ifdef CONFIG_NUMA
1254 /*
1255 * Called from the vmstat counter updater to drain pagesets of this
1256 * currently executing processor on remote nodes after they have
1257 * expired.
1258 *
1259 * Note that this function must be called with the thread pinned to
1260 * a single processor.
1261 */
1262 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1263 {
1264 unsigned long flags;
1265 int to_drain, batch;
1266
1267 local_irq_save(flags);
1268 batch = ACCESS_ONCE(pcp->batch);
1269 to_drain = min(pcp->count, batch);
1270 if (to_drain > 0) {
1271 free_pcppages_bulk(zone, to_drain, pcp);
1272 pcp->count -= to_drain;
1273 }
1274 local_irq_restore(flags);
1275 }
1276 #endif
1277
1278 /*
1279 * Drain pages of the indicated processor.
1280 *
1281 * The processor must either be the current processor and the
1282 * thread pinned to the current processor or a processor that
1283 * is not online.
1284 */
1285 static void drain_pages(unsigned int cpu)
1286 {
1287 unsigned long flags;
1288 struct zone *zone;
1289
1290 for_each_populated_zone(zone) {
1291 struct per_cpu_pageset *pset;
1292 struct per_cpu_pages *pcp;
1293
1294 local_irq_save(flags);
1295 pset = per_cpu_ptr(zone->pageset, cpu);
1296
1297 pcp = &pset->pcp;
1298 if (pcp->count) {
1299 free_pcppages_bulk(zone, pcp->count, pcp);
1300 pcp->count = 0;
1301 }
1302 local_irq_restore(flags);
1303 }
1304 }
1305
1306 /*
1307 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1308 */
1309 void drain_local_pages(void *arg)
1310 {
1311 drain_pages(smp_processor_id());
1312 }
1313
1314 /*
1315 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1316 *
1317 * Note that this code is protected against sending an IPI to an offline
1318 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1319 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1320 * nothing keeps CPUs from showing up after we populated the cpumask and
1321 * before the call to on_each_cpu_mask().
1322 */
1323 void drain_all_pages(void)
1324 {
1325 int cpu;
1326 struct per_cpu_pageset *pcp;
1327 struct zone *zone;
1328
1329 /*
1330 * Allocate in the BSS so we wont require allocation in
1331 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1332 */
1333 static cpumask_t cpus_with_pcps;
1334
1335 /*
1336 * We don't care about racing with CPU hotplug event
1337 * as offline notification will cause the notified
1338 * cpu to drain that CPU pcps and on_each_cpu_mask
1339 * disables preemption as part of its processing
1340 */
1341 for_each_online_cpu(cpu) {
1342 bool has_pcps = false;
1343 for_each_populated_zone(zone) {
1344 pcp = per_cpu_ptr(zone->pageset, cpu);
1345 if (pcp->pcp.count) {
1346 has_pcps = true;
1347 break;
1348 }
1349 }
1350 if (has_pcps)
1351 cpumask_set_cpu(cpu, &cpus_with_pcps);
1352 else
1353 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1354 }
1355 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1356 }
1357
1358 #ifdef CONFIG_HIBERNATION
1359
1360 void mark_free_pages(struct zone *zone)
1361 {
1362 unsigned long pfn, max_zone_pfn;
1363 unsigned long flags;
1364 unsigned int order, t;
1365 struct list_head *curr;
1366
1367 if (zone_is_empty(zone))
1368 return;
1369
1370 spin_lock_irqsave(&zone->lock, flags);
1371
1372 max_zone_pfn = zone_end_pfn(zone);
1373 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1374 if (pfn_valid(pfn)) {
1375 struct page *page = pfn_to_page(pfn);
1376
1377 if (!swsusp_page_is_forbidden(page))
1378 swsusp_unset_page_free(page);
1379 }
1380
1381 for_each_migratetype_order(order, t) {
1382 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1383 unsigned long i;
1384
1385 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1386 for (i = 0; i < (1UL << order); i++)
1387 swsusp_set_page_free(pfn_to_page(pfn + i));
1388 }
1389 }
1390 spin_unlock_irqrestore(&zone->lock, flags);
1391 }
1392 #endif /* CONFIG_PM */
1393
1394 /*
1395 * Free a 0-order page
1396 * cold == true ? free a cold page : free a hot page
1397 */
1398 void free_hot_cold_page(struct page *page, bool cold)
1399 {
1400 struct zone *zone = page_zone(page);
1401 struct per_cpu_pages *pcp;
1402 unsigned long flags;
1403 unsigned long pfn = page_to_pfn(page);
1404 int migratetype;
1405
1406 if (!free_pages_prepare(page, 0))
1407 return;
1408
1409 migratetype = get_pfnblock_migratetype(page, pfn);
1410 set_freepage_migratetype(page, migratetype);
1411 local_irq_save(flags);
1412 __count_vm_event(PGFREE);
1413
1414 /*
1415 * We only track unmovable, reclaimable and movable on pcp lists.
1416 * Free ISOLATE pages back to the allocator because they are being
1417 * offlined but treat RESERVE as movable pages so we can get those
1418 * areas back if necessary. Otherwise, we may have to free
1419 * excessively into the page allocator
1420 */
1421 if (migratetype >= MIGRATE_PCPTYPES) {
1422 if (unlikely(is_migrate_isolate(migratetype))) {
1423 free_one_page(zone, page, pfn, 0, migratetype);
1424 goto out;
1425 }
1426 migratetype = MIGRATE_MOVABLE;
1427 }
1428
1429 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1430 if (!cold)
1431 list_add(&page->lru, &pcp->lists[migratetype]);
1432 else
1433 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1434 pcp->count++;
1435 if (pcp->count >= pcp->high) {
1436 unsigned long batch = ACCESS_ONCE(pcp->batch);
1437 free_pcppages_bulk(zone, batch, pcp);
1438 pcp->count -= batch;
1439 }
1440
1441 out:
1442 local_irq_restore(flags);
1443 }
1444
1445 /*
1446 * Free a list of 0-order pages
1447 */
1448 void free_hot_cold_page_list(struct list_head *list, bool cold)
1449 {
1450 struct page *page, *next;
1451
1452 list_for_each_entry_safe(page, next, list, lru) {
1453 trace_mm_page_free_batched(page, cold);
1454 free_hot_cold_page(page, cold);
1455 }
1456 }
1457
1458 /*
1459 * split_page takes a non-compound higher-order page, and splits it into
1460 * n (1<<order) sub-pages: page[0..n]
1461 * Each sub-page must be freed individually.
1462 *
1463 * Note: this is probably too low level an operation for use in drivers.
1464 * Please consult with lkml before using this in your driver.
1465 */
1466 void split_page(struct page *page, unsigned int order)
1467 {
1468 int i;
1469
1470 VM_BUG_ON_PAGE(PageCompound(page), page);
1471 VM_BUG_ON_PAGE(!page_count(page), page);
1472
1473 #ifdef CONFIG_KMEMCHECK
1474 /*
1475 * Split shadow pages too, because free(page[0]) would
1476 * otherwise free the whole shadow.
1477 */
1478 if (kmemcheck_page_is_tracked(page))
1479 split_page(virt_to_page(page[0].shadow), order);
1480 #endif
1481
1482 for (i = 1; i < (1 << order); i++)
1483 set_page_refcounted(page + i);
1484 }
1485 EXPORT_SYMBOL_GPL(split_page);
1486
1487 static int __isolate_free_page(struct page *page, unsigned int order)
1488 {
1489 unsigned long watermark;
1490 struct zone *zone;
1491 int mt;
1492
1493 BUG_ON(!PageBuddy(page));
1494
1495 zone = page_zone(page);
1496 mt = get_pageblock_migratetype(page);
1497
1498 if (!is_migrate_isolate(mt)) {
1499 /* Obey watermarks as if the page was being allocated */
1500 watermark = low_wmark_pages(zone) + (1 << order);
1501 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1502 return 0;
1503
1504 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1505 }
1506
1507 /* Remove page from free list */
1508 list_del(&page->lru);
1509 zone->free_area[order].nr_free--;
1510 rmv_page_order(page);
1511
1512 /* Set the pageblock if the isolated page is at least a pageblock */
1513 if (order >= pageblock_order - 1) {
1514 struct page *endpage = page + (1 << order) - 1;
1515 for (; page < endpage; page += pageblock_nr_pages) {
1516 int mt = get_pageblock_migratetype(page);
1517 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1518 set_pageblock_migratetype(page,
1519 MIGRATE_MOVABLE);
1520 }
1521 }
1522
1523 return 1UL << order;
1524 }
1525
1526 /*
1527 * Similar to split_page except the page is already free. As this is only
1528 * being used for migration, the migratetype of the block also changes.
1529 * As this is called with interrupts disabled, the caller is responsible
1530 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1531 * are enabled.
1532 *
1533 * Note: this is probably too low level an operation for use in drivers.
1534 * Please consult with lkml before using this in your driver.
1535 */
1536 int split_free_page(struct page *page)
1537 {
1538 unsigned int order;
1539 int nr_pages;
1540
1541 order = page_order(page);
1542
1543 nr_pages = __isolate_free_page(page, order);
1544 if (!nr_pages)
1545 return 0;
1546
1547 /* Split into individual pages */
1548 set_page_refcounted(page);
1549 split_page(page, order);
1550 return nr_pages;
1551 }
1552
1553 /*
1554 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1555 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1556 * or two.
1557 */
1558 static inline
1559 struct page *buffered_rmqueue(struct zone *preferred_zone,
1560 struct zone *zone, unsigned int order,
1561 gfp_t gfp_flags, int migratetype)
1562 {
1563 unsigned long flags;
1564 struct page *page;
1565 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1566
1567 again:
1568 if (likely(order == 0)) {
1569 struct per_cpu_pages *pcp;
1570 struct list_head *list;
1571
1572 local_irq_save(flags);
1573 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1574 list = &pcp->lists[migratetype];
1575 if (list_empty(list)) {
1576 pcp->count += rmqueue_bulk(zone, 0,
1577 pcp->batch, list,
1578 migratetype, cold);
1579 if (unlikely(list_empty(list)))
1580 goto failed;
1581 }
1582
1583 if (cold)
1584 page = list_entry(list->prev, struct page, lru);
1585 else
1586 page = list_entry(list->next, struct page, lru);
1587
1588 list_del(&page->lru);
1589 pcp->count--;
1590 } else {
1591 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1592 /*
1593 * __GFP_NOFAIL is not to be used in new code.
1594 *
1595 * All __GFP_NOFAIL callers should be fixed so that they
1596 * properly detect and handle allocation failures.
1597 *
1598 * We most definitely don't want callers attempting to
1599 * allocate greater than order-1 page units with
1600 * __GFP_NOFAIL.
1601 */
1602 WARN_ON_ONCE(order > 1);
1603 }
1604 spin_lock_irqsave(&zone->lock, flags);
1605 page = __rmqueue(zone, order, migratetype);
1606 spin_unlock(&zone->lock);
1607 if (!page)
1608 goto failed;
1609 __mod_zone_freepage_state(zone, -(1 << order),
1610 get_freepage_migratetype(page));
1611 }
1612
1613 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1614 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1615 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1616 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1617
1618 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1619 zone_statistics(preferred_zone, zone, gfp_flags);
1620 local_irq_restore(flags);
1621
1622 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1623 if (prep_new_page(page, order, gfp_flags))
1624 goto again;
1625 return page;
1626
1627 failed:
1628 local_irq_restore(flags);
1629 return NULL;
1630 }
1631
1632 #ifdef CONFIG_FAIL_PAGE_ALLOC
1633
1634 static struct {
1635 struct fault_attr attr;
1636
1637 u32 ignore_gfp_highmem;
1638 u32 ignore_gfp_wait;
1639 u32 min_order;
1640 } fail_page_alloc = {
1641 .attr = FAULT_ATTR_INITIALIZER,
1642 .ignore_gfp_wait = 1,
1643 .ignore_gfp_highmem = 1,
1644 .min_order = 1,
1645 };
1646
1647 static int __init setup_fail_page_alloc(char *str)
1648 {
1649 return setup_fault_attr(&fail_page_alloc.attr, str);
1650 }
1651 __setup("fail_page_alloc=", setup_fail_page_alloc);
1652
1653 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1654 {
1655 if (order < fail_page_alloc.min_order)
1656 return false;
1657 if (gfp_mask & __GFP_NOFAIL)
1658 return false;
1659 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1660 return false;
1661 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1662 return false;
1663
1664 return should_fail(&fail_page_alloc.attr, 1 << order);
1665 }
1666
1667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1668
1669 static int __init fail_page_alloc_debugfs(void)
1670 {
1671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1672 struct dentry *dir;
1673
1674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1675 &fail_page_alloc.attr);
1676 if (IS_ERR(dir))
1677 return PTR_ERR(dir);
1678
1679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1680 &fail_page_alloc.ignore_gfp_wait))
1681 goto fail;
1682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1683 &fail_page_alloc.ignore_gfp_highmem))
1684 goto fail;
1685 if (!debugfs_create_u32("min-order", mode, dir,
1686 &fail_page_alloc.min_order))
1687 goto fail;
1688
1689 return 0;
1690 fail:
1691 debugfs_remove_recursive(dir);
1692
1693 return -ENOMEM;
1694 }
1695
1696 late_initcall(fail_page_alloc_debugfs);
1697
1698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1699
1700 #else /* CONFIG_FAIL_PAGE_ALLOC */
1701
1702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1703 {
1704 return false;
1705 }
1706
1707 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1708
1709 /*
1710 * Return true if free pages are above 'mark'. This takes into account the order
1711 * of the allocation.
1712 */
1713 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1714 unsigned long mark, int classzone_idx, int alloc_flags,
1715 long free_pages)
1716 {
1717 /* free_pages my go negative - that's OK */
1718 long min = mark;
1719 int o;
1720 long free_cma = 0;
1721
1722 free_pages -= (1 << order) - 1;
1723 if (alloc_flags & ALLOC_HIGH)
1724 min -= min / 2;
1725 if (alloc_flags & ALLOC_HARDER)
1726 min -= min / 4;
1727 #ifdef CONFIG_CMA
1728 /* If allocation can't use CMA areas don't use free CMA pages */
1729 if (!(alloc_flags & ALLOC_CMA))
1730 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1731 #endif
1732
1733 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1734 return false;
1735 for (o = 0; o < order; o++) {
1736 /* At the next order, this order's pages become unavailable */
1737 free_pages -= z->free_area[o].nr_free << o;
1738
1739 /* Require fewer higher order pages to be free */
1740 min >>= 1;
1741
1742 if (free_pages <= min)
1743 return false;
1744 }
1745 return true;
1746 }
1747
1748 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1749 int classzone_idx, int alloc_flags)
1750 {
1751 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1752 zone_page_state(z, NR_FREE_PAGES));
1753 }
1754
1755 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1756 unsigned long mark, int classzone_idx, int alloc_flags)
1757 {
1758 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1759
1760 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1761 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1762
1763 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1764 free_pages);
1765 }
1766
1767 #ifdef CONFIG_NUMA
1768 /*
1769 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1770 * skip over zones that are not allowed by the cpuset, or that have
1771 * been recently (in last second) found to be nearly full. See further
1772 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1773 * that have to skip over a lot of full or unallowed zones.
1774 *
1775 * If the zonelist cache is present in the passed zonelist, then
1776 * returns a pointer to the allowed node mask (either the current
1777 * tasks mems_allowed, or node_states[N_MEMORY].)
1778 *
1779 * If the zonelist cache is not available for this zonelist, does
1780 * nothing and returns NULL.
1781 *
1782 * If the fullzones BITMAP in the zonelist cache is stale (more than
1783 * a second since last zap'd) then we zap it out (clear its bits.)
1784 *
1785 * We hold off even calling zlc_setup, until after we've checked the
1786 * first zone in the zonelist, on the theory that most allocations will
1787 * be satisfied from that first zone, so best to examine that zone as
1788 * quickly as we can.
1789 */
1790 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1791 {
1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1793 nodemask_t *allowednodes; /* zonelist_cache approximation */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return NULL;
1798
1799 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1800 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1801 zlc->last_full_zap = jiffies;
1802 }
1803
1804 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1805 &cpuset_current_mems_allowed :
1806 &node_states[N_MEMORY];
1807 return allowednodes;
1808 }
1809
1810 /*
1811 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1812 * if it is worth looking at further for free memory:
1813 * 1) Check that the zone isn't thought to be full (doesn't have its
1814 * bit set in the zonelist_cache fullzones BITMAP).
1815 * 2) Check that the zones node (obtained from the zonelist_cache
1816 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1817 * Return true (non-zero) if zone is worth looking at further, or
1818 * else return false (zero) if it is not.
1819 *
1820 * This check -ignores- the distinction between various watermarks,
1821 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1822 * found to be full for any variation of these watermarks, it will
1823 * be considered full for up to one second by all requests, unless
1824 * we are so low on memory on all allowed nodes that we are forced
1825 * into the second scan of the zonelist.
1826 *
1827 * In the second scan we ignore this zonelist cache and exactly
1828 * apply the watermarks to all zones, even it is slower to do so.
1829 * We are low on memory in the second scan, and should leave no stone
1830 * unturned looking for a free page.
1831 */
1832 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1833 nodemask_t *allowednodes)
1834 {
1835 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1836 int i; /* index of *z in zonelist zones */
1837 int n; /* node that zone *z is on */
1838
1839 zlc = zonelist->zlcache_ptr;
1840 if (!zlc)
1841 return 1;
1842
1843 i = z - zonelist->_zonerefs;
1844 n = zlc->z_to_n[i];
1845
1846 /* This zone is worth trying if it is allowed but not full */
1847 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1848 }
1849
1850 /*
1851 * Given 'z' scanning a zonelist, set the corresponding bit in
1852 * zlc->fullzones, so that subsequent attempts to allocate a page
1853 * from that zone don't waste time re-examining it.
1854 */
1855 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1856 {
1857 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1858 int i; /* index of *z in zonelist zones */
1859
1860 zlc = zonelist->zlcache_ptr;
1861 if (!zlc)
1862 return;
1863
1864 i = z - zonelist->_zonerefs;
1865
1866 set_bit(i, zlc->fullzones);
1867 }
1868
1869 /*
1870 * clear all zones full, called after direct reclaim makes progress so that
1871 * a zone that was recently full is not skipped over for up to a second
1872 */
1873 static void zlc_clear_zones_full(struct zonelist *zonelist)
1874 {
1875 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1876
1877 zlc = zonelist->zlcache_ptr;
1878 if (!zlc)
1879 return;
1880
1881 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1882 }
1883
1884 static bool zone_local(struct zone *local_zone, struct zone *zone)
1885 {
1886 return local_zone->node == zone->node;
1887 }
1888
1889 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1890 {
1891 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1892 RECLAIM_DISTANCE;
1893 }
1894
1895 #else /* CONFIG_NUMA */
1896
1897 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1898 {
1899 return NULL;
1900 }
1901
1902 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1903 nodemask_t *allowednodes)
1904 {
1905 return 1;
1906 }
1907
1908 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1909 {
1910 }
1911
1912 static void zlc_clear_zones_full(struct zonelist *zonelist)
1913 {
1914 }
1915
1916 static bool zone_local(struct zone *local_zone, struct zone *zone)
1917 {
1918 return true;
1919 }
1920
1921 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1922 {
1923 return true;
1924 }
1925
1926 #endif /* CONFIG_NUMA */
1927
1928 static void reset_alloc_batches(struct zone *preferred_zone)
1929 {
1930 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1931
1932 do {
1933 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1934 high_wmark_pages(zone) - low_wmark_pages(zone) -
1935 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1936 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1937 } while (zone++ != preferred_zone);
1938 }
1939
1940 /*
1941 * get_page_from_freelist goes through the zonelist trying to allocate
1942 * a page.
1943 */
1944 static struct page *
1945 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1946 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1947 struct zone *preferred_zone, int classzone_idx, int migratetype)
1948 {
1949 struct zoneref *z;
1950 struct page *page = NULL;
1951 struct zone *zone;
1952 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1953 int zlc_active = 0; /* set if using zonelist_cache */
1954 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1955 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE);
1957 int nr_fair_skipped = 0;
1958 bool zonelist_rescan;
1959
1960 zonelist_scan:
1961 zonelist_rescan = false;
1962
1963 /*
1964 * Scan zonelist, looking for a zone with enough free.
1965 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1966 */
1967 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1968 high_zoneidx, nodemask) {
1969 unsigned long mark;
1970
1971 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1972 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1973 continue;
1974 if (cpusets_enabled() &&
1975 (alloc_flags & ALLOC_CPUSET) &&
1976 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1977 continue;
1978 /*
1979 * Distribute pages in proportion to the individual
1980 * zone size to ensure fair page aging. The zone a
1981 * page was allocated in should have no effect on the
1982 * time the page has in memory before being reclaimed.
1983 */
1984 if (alloc_flags & ALLOC_FAIR) {
1985 if (!zone_local(preferred_zone, zone))
1986 break;
1987 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1988 nr_fair_skipped++;
1989 continue;
1990 }
1991 }
1992 /*
1993 * When allocating a page cache page for writing, we
1994 * want to get it from a zone that is within its dirty
1995 * limit, such that no single zone holds more than its
1996 * proportional share of globally allowed dirty pages.
1997 * The dirty limits take into account the zone's
1998 * lowmem reserves and high watermark so that kswapd
1999 * should be able to balance it without having to
2000 * write pages from its LRU list.
2001 *
2002 * This may look like it could increase pressure on
2003 * lower zones by failing allocations in higher zones
2004 * before they are full. But the pages that do spill
2005 * over are limited as the lower zones are protected
2006 * by this very same mechanism. It should not become
2007 * a practical burden to them.
2008 *
2009 * XXX: For now, allow allocations to potentially
2010 * exceed the per-zone dirty limit in the slowpath
2011 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2012 * which is important when on a NUMA setup the allowed
2013 * zones are together not big enough to reach the
2014 * global limit. The proper fix for these situations
2015 * will require awareness of zones in the
2016 * dirty-throttling and the flusher threads.
2017 */
2018 if (consider_zone_dirty && !zone_dirty_ok(zone))
2019 continue;
2020
2021 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2022 if (!zone_watermark_ok(zone, order, mark,
2023 classzone_idx, alloc_flags)) {
2024 int ret;
2025
2026 /* Checked here to keep the fast path fast */
2027 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2028 if (alloc_flags & ALLOC_NO_WATERMARKS)
2029 goto try_this_zone;
2030
2031 if (IS_ENABLED(CONFIG_NUMA) &&
2032 !did_zlc_setup && nr_online_nodes > 1) {
2033 /*
2034 * we do zlc_setup if there are multiple nodes
2035 * and before considering the first zone allowed
2036 * by the cpuset.
2037 */
2038 allowednodes = zlc_setup(zonelist, alloc_flags);
2039 zlc_active = 1;
2040 did_zlc_setup = 1;
2041 }
2042
2043 if (zone_reclaim_mode == 0 ||
2044 !zone_allows_reclaim(preferred_zone, zone))
2045 goto this_zone_full;
2046
2047 /*
2048 * As we may have just activated ZLC, check if the first
2049 * eligible zone has failed zone_reclaim recently.
2050 */
2051 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2052 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2053 continue;
2054
2055 ret = zone_reclaim(zone, gfp_mask, order);
2056 switch (ret) {
2057 case ZONE_RECLAIM_NOSCAN:
2058 /* did not scan */
2059 continue;
2060 case ZONE_RECLAIM_FULL:
2061 /* scanned but unreclaimable */
2062 continue;
2063 default:
2064 /* did we reclaim enough */
2065 if (zone_watermark_ok(zone, order, mark,
2066 classzone_idx, alloc_flags))
2067 goto try_this_zone;
2068
2069 /*
2070 * Failed to reclaim enough to meet watermark.
2071 * Only mark the zone full if checking the min
2072 * watermark or if we failed to reclaim just
2073 * 1<<order pages or else the page allocator
2074 * fastpath will prematurely mark zones full
2075 * when the watermark is between the low and
2076 * min watermarks.
2077 */
2078 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2079 ret == ZONE_RECLAIM_SOME)
2080 goto this_zone_full;
2081
2082 continue;
2083 }
2084 }
2085
2086 try_this_zone:
2087 page = buffered_rmqueue(preferred_zone, zone, order,
2088 gfp_mask, migratetype);
2089 if (page)
2090 break;
2091 this_zone_full:
2092 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2093 zlc_mark_zone_full(zonelist, z);
2094 }
2095
2096 if (page) {
2097 /*
2098 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2099 * necessary to allocate the page. The expectation is
2100 * that the caller is taking steps that will free more
2101 * memory. The caller should avoid the page being used
2102 * for !PFMEMALLOC purposes.
2103 */
2104 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2105 return page;
2106 }
2107
2108 /*
2109 * The first pass makes sure allocations are spread fairly within the
2110 * local node. However, the local node might have free pages left
2111 * after the fairness batches are exhausted, and remote zones haven't
2112 * even been considered yet. Try once more without fairness, and
2113 * include remote zones now, before entering the slowpath and waking
2114 * kswapd: prefer spilling to a remote zone over swapping locally.
2115 */
2116 if (alloc_flags & ALLOC_FAIR) {
2117 alloc_flags &= ~ALLOC_FAIR;
2118 if (nr_fair_skipped) {
2119 zonelist_rescan = true;
2120 reset_alloc_batches(preferred_zone);
2121 }
2122 if (nr_online_nodes > 1)
2123 zonelist_rescan = true;
2124 }
2125
2126 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2127 /* Disable zlc cache for second zonelist scan */
2128 zlc_active = 0;
2129 zonelist_rescan = true;
2130 }
2131
2132 if (zonelist_rescan)
2133 goto zonelist_scan;
2134
2135 return NULL;
2136 }
2137
2138 /*
2139 * Large machines with many possible nodes should not always dump per-node
2140 * meminfo in irq context.
2141 */
2142 static inline bool should_suppress_show_mem(void)
2143 {
2144 bool ret = false;
2145
2146 #if NODES_SHIFT > 8
2147 ret = in_interrupt();
2148 #endif
2149 return ret;
2150 }
2151
2152 static DEFINE_RATELIMIT_STATE(nopage_rs,
2153 DEFAULT_RATELIMIT_INTERVAL,
2154 DEFAULT_RATELIMIT_BURST);
2155
2156 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2157 {
2158 unsigned int filter = SHOW_MEM_FILTER_NODES;
2159
2160 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2161 debug_guardpage_minorder() > 0)
2162 return;
2163
2164 /*
2165 * This documents exceptions given to allocations in certain
2166 * contexts that are allowed to allocate outside current's set
2167 * of allowed nodes.
2168 */
2169 if (!(gfp_mask & __GFP_NOMEMALLOC))
2170 if (test_thread_flag(TIF_MEMDIE) ||
2171 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2172 filter &= ~SHOW_MEM_FILTER_NODES;
2173 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2174 filter &= ~SHOW_MEM_FILTER_NODES;
2175
2176 if (fmt) {
2177 struct va_format vaf;
2178 va_list args;
2179
2180 va_start(args, fmt);
2181
2182 vaf.fmt = fmt;
2183 vaf.va = &args;
2184
2185 pr_warn("%pV", &vaf);
2186
2187 va_end(args);
2188 }
2189
2190 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2191 current->comm, order, gfp_mask);
2192
2193 dump_stack();
2194 if (!should_suppress_show_mem())
2195 show_mem(filter);
2196 }
2197
2198 static inline int
2199 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2200 unsigned long did_some_progress,
2201 unsigned long pages_reclaimed)
2202 {
2203 /* Do not loop if specifically requested */
2204 if (gfp_mask & __GFP_NORETRY)
2205 return 0;
2206
2207 /* Always retry if specifically requested */
2208 if (gfp_mask & __GFP_NOFAIL)
2209 return 1;
2210
2211 /*
2212 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2213 * making forward progress without invoking OOM. Suspend also disables
2214 * storage devices so kswapd will not help. Bail if we are suspending.
2215 */
2216 if (!did_some_progress && pm_suspended_storage())
2217 return 0;
2218
2219 /*
2220 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2221 * means __GFP_NOFAIL, but that may not be true in other
2222 * implementations.
2223 */
2224 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2225 return 1;
2226
2227 /*
2228 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2229 * specified, then we retry until we no longer reclaim any pages
2230 * (above), or we've reclaimed an order of pages at least as
2231 * large as the allocation's order. In both cases, if the
2232 * allocation still fails, we stop retrying.
2233 */
2234 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2235 return 1;
2236
2237 return 0;
2238 }
2239
2240 static inline struct page *
2241 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2242 struct zonelist *zonelist, enum zone_type high_zoneidx,
2243 nodemask_t *nodemask, struct zone *preferred_zone,
2244 int classzone_idx, int migratetype)
2245 {
2246 struct page *page;
2247
2248 /* Acquire the per-zone oom lock for each zone */
2249 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2250 schedule_timeout_uninterruptible(1);
2251 return NULL;
2252 }
2253
2254 /*
2255 * Go through the zonelist yet one more time, keep very high watermark
2256 * here, this is only to catch a parallel oom killing, we must fail if
2257 * we're still under heavy pressure.
2258 */
2259 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2260 order, zonelist, high_zoneidx,
2261 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2262 preferred_zone, classzone_idx, migratetype);
2263 if (page)
2264 goto out;
2265
2266 if (!(gfp_mask & __GFP_NOFAIL)) {
2267 /* The OOM killer will not help higher order allocs */
2268 if (order > PAGE_ALLOC_COSTLY_ORDER)
2269 goto out;
2270 /* The OOM killer does not needlessly kill tasks for lowmem */
2271 if (high_zoneidx < ZONE_NORMAL)
2272 goto out;
2273 /*
2274 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2275 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2276 * The caller should handle page allocation failure by itself if
2277 * it specifies __GFP_THISNODE.
2278 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2279 */
2280 if (gfp_mask & __GFP_THISNODE)
2281 goto out;
2282 }
2283 /* Exhausted what can be done so it's blamo time */
2284 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2285
2286 out:
2287 oom_zonelist_unlock(zonelist, gfp_mask);
2288 return page;
2289 }
2290
2291 #ifdef CONFIG_COMPACTION
2292 /* Try memory compaction for high-order allocations before reclaim */
2293 static struct page *
2294 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2295 struct zonelist *zonelist, enum zone_type high_zoneidx,
2296 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2297 int classzone_idx, int migratetype, enum migrate_mode mode,
2298 int *contended_compaction, bool *deferred_compaction)
2299 {
2300 struct zone *last_compact_zone = NULL;
2301 unsigned long compact_result;
2302 struct page *page;
2303
2304 if (!order)
2305 return NULL;
2306
2307 current->flags |= PF_MEMALLOC;
2308 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2309 nodemask, mode,
2310 contended_compaction,
2311 &last_compact_zone);
2312 current->flags &= ~PF_MEMALLOC;
2313
2314 switch (compact_result) {
2315 case COMPACT_DEFERRED:
2316 *deferred_compaction = true;
2317 /* fall-through */
2318 case COMPACT_SKIPPED:
2319 return NULL;
2320 default:
2321 break;
2322 }
2323
2324 /*
2325 * At least in one zone compaction wasn't deferred or skipped, so let's
2326 * count a compaction stall
2327 */
2328 count_vm_event(COMPACTSTALL);
2329
2330 /* Page migration frees to the PCP lists but we want merging */
2331 drain_pages(get_cpu());
2332 put_cpu();
2333
2334 page = get_page_from_freelist(gfp_mask, nodemask,
2335 order, zonelist, high_zoneidx,
2336 alloc_flags & ~ALLOC_NO_WATERMARKS,
2337 preferred_zone, classzone_idx, migratetype);
2338
2339 if (page) {
2340 struct zone *zone = page_zone(page);
2341
2342 zone->compact_blockskip_flush = false;
2343 compaction_defer_reset(zone, order, true);
2344 count_vm_event(COMPACTSUCCESS);
2345 return page;
2346 }
2347
2348 /*
2349 * last_compact_zone is where try_to_compact_pages thought allocation
2350 * should succeed, so it did not defer compaction. But here we know
2351 * that it didn't succeed, so we do the defer.
2352 */
2353 if (last_compact_zone && mode != MIGRATE_ASYNC)
2354 defer_compaction(last_compact_zone, order);
2355
2356 /*
2357 * It's bad if compaction run occurs and fails. The most likely reason
2358 * is that pages exist, but not enough to satisfy watermarks.
2359 */
2360 count_vm_event(COMPACTFAIL);
2361
2362 cond_resched();
2363
2364 return NULL;
2365 }
2366 #else
2367 static inline struct page *
2368 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2369 struct zonelist *zonelist, enum zone_type high_zoneidx,
2370 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2371 int classzone_idx, int migratetype, enum migrate_mode mode,
2372 int *contended_compaction, bool *deferred_compaction)
2373 {
2374 return NULL;
2375 }
2376 #endif /* CONFIG_COMPACTION */
2377
2378 /* Perform direct synchronous page reclaim */
2379 static int
2380 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2381 nodemask_t *nodemask)
2382 {
2383 struct reclaim_state reclaim_state;
2384 int progress;
2385
2386 cond_resched();
2387
2388 /* We now go into synchronous reclaim */
2389 cpuset_memory_pressure_bump();
2390 current->flags |= PF_MEMALLOC;
2391 lockdep_set_current_reclaim_state(gfp_mask);
2392 reclaim_state.reclaimed_slab = 0;
2393 current->reclaim_state = &reclaim_state;
2394
2395 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2396
2397 current->reclaim_state = NULL;
2398 lockdep_clear_current_reclaim_state();
2399 current->flags &= ~PF_MEMALLOC;
2400
2401 cond_resched();
2402
2403 return progress;
2404 }
2405
2406 /* The really slow allocator path where we enter direct reclaim */
2407 static inline struct page *
2408 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2409 struct zonelist *zonelist, enum zone_type high_zoneidx,
2410 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2411 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2412 {
2413 struct page *page = NULL;
2414 bool drained = false;
2415
2416 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2417 nodemask);
2418 if (unlikely(!(*did_some_progress)))
2419 return NULL;
2420
2421 /* After successful reclaim, reconsider all zones for allocation */
2422 if (IS_ENABLED(CONFIG_NUMA))
2423 zlc_clear_zones_full(zonelist);
2424
2425 retry:
2426 page = get_page_from_freelist(gfp_mask, nodemask, order,
2427 zonelist, high_zoneidx,
2428 alloc_flags & ~ALLOC_NO_WATERMARKS,
2429 preferred_zone, classzone_idx,
2430 migratetype);
2431
2432 /*
2433 * If an allocation failed after direct reclaim, it could be because
2434 * pages are pinned on the per-cpu lists. Drain them and try again
2435 */
2436 if (!page && !drained) {
2437 drain_all_pages();
2438 drained = true;
2439 goto retry;
2440 }
2441
2442 return page;
2443 }
2444
2445 /*
2446 * This is called in the allocator slow-path if the allocation request is of
2447 * sufficient urgency to ignore watermarks and take other desperate measures
2448 */
2449 static inline struct page *
2450 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2451 struct zonelist *zonelist, enum zone_type high_zoneidx,
2452 nodemask_t *nodemask, struct zone *preferred_zone,
2453 int classzone_idx, int migratetype)
2454 {
2455 struct page *page;
2456
2457 do {
2458 page = get_page_from_freelist(gfp_mask, nodemask, order,
2459 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2460 preferred_zone, classzone_idx, migratetype);
2461
2462 if (!page && gfp_mask & __GFP_NOFAIL)
2463 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2464 } while (!page && (gfp_mask & __GFP_NOFAIL));
2465
2466 return page;
2467 }
2468
2469 static void wake_all_kswapds(unsigned int order,
2470 struct zonelist *zonelist,
2471 enum zone_type high_zoneidx,
2472 struct zone *preferred_zone,
2473 nodemask_t *nodemask)
2474 {
2475 struct zoneref *z;
2476 struct zone *zone;
2477
2478 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2479 high_zoneidx, nodemask)
2480 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2481 }
2482
2483 static inline int
2484 gfp_to_alloc_flags(gfp_t gfp_mask)
2485 {
2486 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2487 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2488
2489 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2490 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2491
2492 /*
2493 * The caller may dip into page reserves a bit more if the caller
2494 * cannot run direct reclaim, or if the caller has realtime scheduling
2495 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2496 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2497 */
2498 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2499
2500 if (atomic) {
2501 /*
2502 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2503 * if it can't schedule.
2504 */
2505 if (!(gfp_mask & __GFP_NOMEMALLOC))
2506 alloc_flags |= ALLOC_HARDER;
2507 /*
2508 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2509 * comment for __cpuset_node_allowed_softwall().
2510 */
2511 alloc_flags &= ~ALLOC_CPUSET;
2512 } else if (unlikely(rt_task(current)) && !in_interrupt())
2513 alloc_flags |= ALLOC_HARDER;
2514
2515 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2516 if (gfp_mask & __GFP_MEMALLOC)
2517 alloc_flags |= ALLOC_NO_WATERMARKS;
2518 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2519 alloc_flags |= ALLOC_NO_WATERMARKS;
2520 else if (!in_interrupt() &&
2521 ((current->flags & PF_MEMALLOC) ||
2522 unlikely(test_thread_flag(TIF_MEMDIE))))
2523 alloc_flags |= ALLOC_NO_WATERMARKS;
2524 }
2525 #ifdef CONFIG_CMA
2526 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2527 alloc_flags |= ALLOC_CMA;
2528 #endif
2529 return alloc_flags;
2530 }
2531
2532 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2533 {
2534 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2535 }
2536
2537 static inline struct page *
2538 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2539 struct zonelist *zonelist, enum zone_type high_zoneidx,
2540 nodemask_t *nodemask, struct zone *preferred_zone,
2541 int classzone_idx, int migratetype)
2542 {
2543 const gfp_t wait = gfp_mask & __GFP_WAIT;
2544 struct page *page = NULL;
2545 int alloc_flags;
2546 unsigned long pages_reclaimed = 0;
2547 unsigned long did_some_progress;
2548 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2549 bool deferred_compaction = false;
2550 int contended_compaction = COMPACT_CONTENDED_NONE;
2551
2552 /*
2553 * In the slowpath, we sanity check order to avoid ever trying to
2554 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2555 * be using allocators in order of preference for an area that is
2556 * too large.
2557 */
2558 if (order >= MAX_ORDER) {
2559 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2560 return NULL;
2561 }
2562
2563 /*
2564 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2565 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2566 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2567 * using a larger set of nodes after it has established that the
2568 * allowed per node queues are empty and that nodes are
2569 * over allocated.
2570 */
2571 if (IS_ENABLED(CONFIG_NUMA) &&
2572 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2573 goto nopage;
2574
2575 restart:
2576 if (!(gfp_mask & __GFP_NO_KSWAPD))
2577 wake_all_kswapds(order, zonelist, high_zoneidx,
2578 preferred_zone, nodemask);
2579
2580 /*
2581 * OK, we're below the kswapd watermark and have kicked background
2582 * reclaim. Now things get more complex, so set up alloc_flags according
2583 * to how we want to proceed.
2584 */
2585 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2586
2587 /*
2588 * Find the true preferred zone if the allocation is unconstrained by
2589 * cpusets.
2590 */
2591 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2592 struct zoneref *preferred_zoneref;
2593 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2594 NULL, &preferred_zone);
2595 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2596 }
2597
2598 rebalance:
2599 /* This is the last chance, in general, before the goto nopage. */
2600 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2601 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2602 preferred_zone, classzone_idx, migratetype);
2603 if (page)
2604 goto got_pg;
2605
2606 /* Allocate without watermarks if the context allows */
2607 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2608 /*
2609 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2610 * the allocation is high priority and these type of
2611 * allocations are system rather than user orientated
2612 */
2613 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2614
2615 page = __alloc_pages_high_priority(gfp_mask, order,
2616 zonelist, high_zoneidx, nodemask,
2617 preferred_zone, classzone_idx, migratetype);
2618 if (page) {
2619 goto got_pg;
2620 }
2621 }
2622
2623 /* Atomic allocations - we can't balance anything */
2624 if (!wait) {
2625 /*
2626 * All existing users of the deprecated __GFP_NOFAIL are
2627 * blockable, so warn of any new users that actually allow this
2628 * type of allocation to fail.
2629 */
2630 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2631 goto nopage;
2632 }
2633
2634 /* Avoid recursion of direct reclaim */
2635 if (current->flags & PF_MEMALLOC)
2636 goto nopage;
2637
2638 /* Avoid allocations with no watermarks from looping endlessly */
2639 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2640 goto nopage;
2641
2642 /*
2643 * Try direct compaction. The first pass is asynchronous. Subsequent
2644 * attempts after direct reclaim are synchronous
2645 */
2646 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2647 high_zoneidx, nodemask, alloc_flags,
2648 preferred_zone,
2649 classzone_idx, migratetype,
2650 migration_mode, &contended_compaction,
2651 &deferred_compaction);
2652 if (page)
2653 goto got_pg;
2654
2655 /* Checks for THP-specific high-order allocations */
2656 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2657 /*
2658 * If compaction is deferred for high-order allocations, it is
2659 * because sync compaction recently failed. If this is the case
2660 * and the caller requested a THP allocation, we do not want
2661 * to heavily disrupt the system, so we fail the allocation
2662 * instead of entering direct reclaim.
2663 */
2664 if (deferred_compaction)
2665 goto nopage;
2666
2667 /*
2668 * In all zones where compaction was attempted (and not
2669 * deferred or skipped), lock contention has been detected.
2670 * For THP allocation we do not want to disrupt the others
2671 * so we fallback to base pages instead.
2672 */
2673 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2674 goto nopage;
2675
2676 /*
2677 * If compaction was aborted due to need_resched(), we do not
2678 * want to further increase allocation latency, unless it is
2679 * khugepaged trying to collapse.
2680 */
2681 if (contended_compaction == COMPACT_CONTENDED_SCHED
2682 && !(current->flags & PF_KTHREAD))
2683 goto nopage;
2684 }
2685
2686 /*
2687 * It can become very expensive to allocate transparent hugepages at
2688 * fault, so use asynchronous memory compaction for THP unless it is
2689 * khugepaged trying to collapse.
2690 */
2691 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2692 (current->flags & PF_KTHREAD))
2693 migration_mode = MIGRATE_SYNC_LIGHT;
2694
2695 /* Try direct reclaim and then allocating */
2696 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2697 zonelist, high_zoneidx,
2698 nodemask,
2699 alloc_flags, preferred_zone,
2700 classzone_idx, migratetype,
2701 &did_some_progress);
2702 if (page)
2703 goto got_pg;
2704
2705 /*
2706 * If we failed to make any progress reclaiming, then we are
2707 * running out of options and have to consider going OOM
2708 */
2709 if (!did_some_progress) {
2710 if (oom_gfp_allowed(gfp_mask)) {
2711 if (oom_killer_disabled)
2712 goto nopage;
2713 /* Coredumps can quickly deplete all memory reserves */
2714 if ((current->flags & PF_DUMPCORE) &&
2715 !(gfp_mask & __GFP_NOFAIL))
2716 goto nopage;
2717 page = __alloc_pages_may_oom(gfp_mask, order,
2718 zonelist, high_zoneidx,
2719 nodemask, preferred_zone,
2720 classzone_idx, migratetype);
2721 if (page)
2722 goto got_pg;
2723
2724 if (!(gfp_mask & __GFP_NOFAIL)) {
2725 /*
2726 * The oom killer is not called for high-order
2727 * allocations that may fail, so if no progress
2728 * is being made, there are no other options and
2729 * retrying is unlikely to help.
2730 */
2731 if (order > PAGE_ALLOC_COSTLY_ORDER)
2732 goto nopage;
2733 /*
2734 * The oom killer is not called for lowmem
2735 * allocations to prevent needlessly killing
2736 * innocent tasks.
2737 */
2738 if (high_zoneidx < ZONE_NORMAL)
2739 goto nopage;
2740 }
2741
2742 goto restart;
2743 }
2744 }
2745
2746 /* Check if we should retry the allocation */
2747 pages_reclaimed += did_some_progress;
2748 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2749 pages_reclaimed)) {
2750 /* Wait for some write requests to complete then retry */
2751 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2752 goto rebalance;
2753 } else {
2754 /*
2755 * High-order allocations do not necessarily loop after
2756 * direct reclaim and reclaim/compaction depends on compaction
2757 * being called after reclaim so call directly if necessary
2758 */
2759 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2760 high_zoneidx, nodemask, alloc_flags,
2761 preferred_zone,
2762 classzone_idx, migratetype,
2763 migration_mode, &contended_compaction,
2764 &deferred_compaction);
2765 if (page)
2766 goto got_pg;
2767 }
2768
2769 nopage:
2770 warn_alloc_failed(gfp_mask, order, NULL);
2771 return page;
2772 got_pg:
2773 if (kmemcheck_enabled)
2774 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2775
2776 return page;
2777 }
2778
2779 /*
2780 * This is the 'heart' of the zoned buddy allocator.
2781 */
2782 struct page *
2783 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2784 struct zonelist *zonelist, nodemask_t *nodemask)
2785 {
2786 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2787 struct zone *preferred_zone;
2788 struct zoneref *preferred_zoneref;
2789 struct page *page = NULL;
2790 int migratetype = gfpflags_to_migratetype(gfp_mask);
2791 unsigned int cpuset_mems_cookie;
2792 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2793 int classzone_idx;
2794
2795 gfp_mask &= gfp_allowed_mask;
2796
2797 lockdep_trace_alloc(gfp_mask);
2798
2799 might_sleep_if(gfp_mask & __GFP_WAIT);
2800
2801 if (should_fail_alloc_page(gfp_mask, order))
2802 return NULL;
2803
2804 /*
2805 * Check the zones suitable for the gfp_mask contain at least one
2806 * valid zone. It's possible to have an empty zonelist as a result
2807 * of GFP_THISNODE and a memoryless node
2808 */
2809 if (unlikely(!zonelist->_zonerefs->zone))
2810 return NULL;
2811
2812 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2813 alloc_flags |= ALLOC_CMA;
2814
2815 retry_cpuset:
2816 cpuset_mems_cookie = read_mems_allowed_begin();
2817
2818 /* The preferred zone is used for statistics later */
2819 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2820 nodemask ? : &cpuset_current_mems_allowed,
2821 &preferred_zone);
2822 if (!preferred_zone)
2823 goto out;
2824 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2825
2826 /* First allocation attempt */
2827 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2828 zonelist, high_zoneidx, alloc_flags,
2829 preferred_zone, classzone_idx, migratetype);
2830 if (unlikely(!page)) {
2831 /*
2832 * Runtime PM, block IO and its error handling path
2833 * can deadlock because I/O on the device might not
2834 * complete.
2835 */
2836 gfp_mask = memalloc_noio_flags(gfp_mask);
2837 page = __alloc_pages_slowpath(gfp_mask, order,
2838 zonelist, high_zoneidx, nodemask,
2839 preferred_zone, classzone_idx, migratetype);
2840 }
2841
2842 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2843
2844 out:
2845 /*
2846 * When updating a task's mems_allowed, it is possible to race with
2847 * parallel threads in such a way that an allocation can fail while
2848 * the mask is being updated. If a page allocation is about to fail,
2849 * check if the cpuset changed during allocation and if so, retry.
2850 */
2851 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2852 goto retry_cpuset;
2853
2854 return page;
2855 }
2856 EXPORT_SYMBOL(__alloc_pages_nodemask);
2857
2858 /*
2859 * Common helper functions.
2860 */
2861 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2862 {
2863 struct page *page;
2864
2865 /*
2866 * __get_free_pages() returns a 32-bit address, which cannot represent
2867 * a highmem page
2868 */
2869 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2870
2871 page = alloc_pages(gfp_mask, order);
2872 if (!page)
2873 return 0;
2874 return (unsigned long) page_address(page);
2875 }
2876 EXPORT_SYMBOL(__get_free_pages);
2877
2878 unsigned long get_zeroed_page(gfp_t gfp_mask)
2879 {
2880 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2881 }
2882 EXPORT_SYMBOL(get_zeroed_page);
2883
2884 void __free_pages(struct page *page, unsigned int order)
2885 {
2886 if (put_page_testzero(page)) {
2887 if (order == 0)
2888 free_hot_cold_page(page, false);
2889 else
2890 __free_pages_ok(page, order);
2891 }
2892 }
2893
2894 EXPORT_SYMBOL(__free_pages);
2895
2896 void free_pages(unsigned long addr, unsigned int order)
2897 {
2898 if (addr != 0) {
2899 VM_BUG_ON(!virt_addr_valid((void *)addr));
2900 __free_pages(virt_to_page((void *)addr), order);
2901 }
2902 }
2903
2904 EXPORT_SYMBOL(free_pages);
2905
2906 /*
2907 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2908 * of the current memory cgroup.
2909 *
2910 * It should be used when the caller would like to use kmalloc, but since the
2911 * allocation is large, it has to fall back to the page allocator.
2912 */
2913 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2914 {
2915 struct page *page;
2916 struct mem_cgroup *memcg = NULL;
2917
2918 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2919 return NULL;
2920 page = alloc_pages(gfp_mask, order);
2921 memcg_kmem_commit_charge(page, memcg, order);
2922 return page;
2923 }
2924
2925 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2926 {
2927 struct page *page;
2928 struct mem_cgroup *memcg = NULL;
2929
2930 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2931 return NULL;
2932 page = alloc_pages_node(nid, gfp_mask, order);
2933 memcg_kmem_commit_charge(page, memcg, order);
2934 return page;
2935 }
2936
2937 /*
2938 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2939 * alloc_kmem_pages.
2940 */
2941 void __free_kmem_pages(struct page *page, unsigned int order)
2942 {
2943 memcg_kmem_uncharge_pages(page, order);
2944 __free_pages(page, order);
2945 }
2946
2947 void free_kmem_pages(unsigned long addr, unsigned int order)
2948 {
2949 if (addr != 0) {
2950 VM_BUG_ON(!virt_addr_valid((void *)addr));
2951 __free_kmem_pages(virt_to_page((void *)addr), order);
2952 }
2953 }
2954
2955 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2956 {
2957 if (addr) {
2958 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2959 unsigned long used = addr + PAGE_ALIGN(size);
2960
2961 split_page(virt_to_page((void *)addr), order);
2962 while (used < alloc_end) {
2963 free_page(used);
2964 used += PAGE_SIZE;
2965 }
2966 }
2967 return (void *)addr;
2968 }
2969
2970 /**
2971 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2972 * @size: the number of bytes to allocate
2973 * @gfp_mask: GFP flags for the allocation
2974 *
2975 * This function is similar to alloc_pages(), except that it allocates the
2976 * minimum number of pages to satisfy the request. alloc_pages() can only
2977 * allocate memory in power-of-two pages.
2978 *
2979 * This function is also limited by MAX_ORDER.
2980 *
2981 * Memory allocated by this function must be released by free_pages_exact().
2982 */
2983 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2984 {
2985 unsigned int order = get_order(size);
2986 unsigned long addr;
2987
2988 addr = __get_free_pages(gfp_mask, order);
2989 return make_alloc_exact(addr, order, size);
2990 }
2991 EXPORT_SYMBOL(alloc_pages_exact);
2992
2993 /**
2994 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2995 * pages on a node.
2996 * @nid: the preferred node ID where memory should be allocated
2997 * @size: the number of bytes to allocate
2998 * @gfp_mask: GFP flags for the allocation
2999 *
3000 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3001 * back.
3002 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3003 * but is not exact.
3004 */
3005 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3006 {
3007 unsigned order = get_order(size);
3008 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3009 if (!p)
3010 return NULL;
3011 return make_alloc_exact((unsigned long)page_address(p), order, size);
3012 }
3013
3014 /**
3015 * free_pages_exact - release memory allocated via alloc_pages_exact()
3016 * @virt: the value returned by alloc_pages_exact.
3017 * @size: size of allocation, same value as passed to alloc_pages_exact().
3018 *
3019 * Release the memory allocated by a previous call to alloc_pages_exact.
3020 */
3021 void free_pages_exact(void *virt, size_t size)
3022 {
3023 unsigned long addr = (unsigned long)virt;
3024 unsigned long end = addr + PAGE_ALIGN(size);
3025
3026 while (addr < end) {
3027 free_page(addr);
3028 addr += PAGE_SIZE;
3029 }
3030 }
3031 EXPORT_SYMBOL(free_pages_exact);
3032
3033 /**
3034 * nr_free_zone_pages - count number of pages beyond high watermark
3035 * @offset: The zone index of the highest zone
3036 *
3037 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3038 * high watermark within all zones at or below a given zone index. For each
3039 * zone, the number of pages is calculated as:
3040 * managed_pages - high_pages
3041 */
3042 static unsigned long nr_free_zone_pages(int offset)
3043 {
3044 struct zoneref *z;
3045 struct zone *zone;
3046
3047 /* Just pick one node, since fallback list is circular */
3048 unsigned long sum = 0;
3049
3050 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3051
3052 for_each_zone_zonelist(zone, z, zonelist, offset) {
3053 unsigned long size = zone->managed_pages;
3054 unsigned long high = high_wmark_pages(zone);
3055 if (size > high)
3056 sum += size - high;
3057 }
3058
3059 return sum;
3060 }
3061
3062 /**
3063 * nr_free_buffer_pages - count number of pages beyond high watermark
3064 *
3065 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3066 * watermark within ZONE_DMA and ZONE_NORMAL.
3067 */
3068 unsigned long nr_free_buffer_pages(void)
3069 {
3070 return nr_free_zone_pages(gfp_zone(GFP_USER));
3071 }
3072 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3073
3074 /**
3075 * nr_free_pagecache_pages - count number of pages beyond high watermark
3076 *
3077 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3078 * high watermark within all zones.
3079 */
3080 unsigned long nr_free_pagecache_pages(void)
3081 {
3082 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3083 }
3084
3085 static inline void show_node(struct zone *zone)
3086 {
3087 if (IS_ENABLED(CONFIG_NUMA))
3088 printk("Node %d ", zone_to_nid(zone));
3089 }
3090
3091 void si_meminfo(struct sysinfo *val)
3092 {
3093 val->totalram = totalram_pages;
3094 val->sharedram = global_page_state(NR_SHMEM);
3095 val->freeram = global_page_state(NR_FREE_PAGES);
3096 val->bufferram = nr_blockdev_pages();
3097 val->totalhigh = totalhigh_pages;
3098 val->freehigh = nr_free_highpages();
3099 val->mem_unit = PAGE_SIZE;
3100 }
3101
3102 EXPORT_SYMBOL(si_meminfo);
3103
3104 #ifdef CONFIG_NUMA
3105 void si_meminfo_node(struct sysinfo *val, int nid)
3106 {
3107 int zone_type; /* needs to be signed */
3108 unsigned long managed_pages = 0;
3109 pg_data_t *pgdat = NODE_DATA(nid);
3110
3111 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3112 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3113 val->totalram = managed_pages;
3114 val->sharedram = node_page_state(nid, NR_SHMEM);
3115 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3116 #ifdef CONFIG_HIGHMEM
3117 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3118 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3119 NR_FREE_PAGES);
3120 #else
3121 val->totalhigh = 0;
3122 val->freehigh = 0;
3123 #endif
3124 val->mem_unit = PAGE_SIZE;
3125 }
3126 #endif
3127
3128 /*
3129 * Determine whether the node should be displayed or not, depending on whether
3130 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3131 */
3132 bool skip_free_areas_node(unsigned int flags, int nid)
3133 {
3134 bool ret = false;
3135 unsigned int cpuset_mems_cookie;
3136
3137 if (!(flags & SHOW_MEM_FILTER_NODES))
3138 goto out;
3139
3140 do {
3141 cpuset_mems_cookie = read_mems_allowed_begin();
3142 ret = !node_isset(nid, cpuset_current_mems_allowed);
3143 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3144 out:
3145 return ret;
3146 }
3147
3148 #define K(x) ((x) << (PAGE_SHIFT-10))
3149
3150 static void show_migration_types(unsigned char type)
3151 {
3152 static const char types[MIGRATE_TYPES] = {
3153 [MIGRATE_UNMOVABLE] = 'U',
3154 [MIGRATE_RECLAIMABLE] = 'E',
3155 [MIGRATE_MOVABLE] = 'M',
3156 [MIGRATE_RESERVE] = 'R',
3157 #ifdef CONFIG_CMA
3158 [MIGRATE_CMA] = 'C',
3159 #endif
3160 #ifdef CONFIG_MEMORY_ISOLATION
3161 [MIGRATE_ISOLATE] = 'I',
3162 #endif
3163 };
3164 char tmp[MIGRATE_TYPES + 1];
3165 char *p = tmp;
3166 int i;
3167
3168 for (i = 0; i < MIGRATE_TYPES; i++) {
3169 if (type & (1 << i))
3170 *p++ = types[i];
3171 }
3172
3173 *p = '\0';
3174 printk("(%s) ", tmp);
3175 }
3176
3177 /*
3178 * Show free area list (used inside shift_scroll-lock stuff)
3179 * We also calculate the percentage fragmentation. We do this by counting the
3180 * memory on each free list with the exception of the first item on the list.
3181 * Suppresses nodes that are not allowed by current's cpuset if
3182 * SHOW_MEM_FILTER_NODES is passed.
3183 */
3184 void show_free_areas(unsigned int filter)
3185 {
3186 int cpu;
3187 struct zone *zone;
3188
3189 for_each_populated_zone(zone) {
3190 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3191 continue;
3192 show_node(zone);
3193 printk("%s per-cpu:\n", zone->name);
3194
3195 for_each_online_cpu(cpu) {
3196 struct per_cpu_pageset *pageset;
3197
3198 pageset = per_cpu_ptr(zone->pageset, cpu);
3199
3200 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3201 cpu, pageset->pcp.high,
3202 pageset->pcp.batch, pageset->pcp.count);
3203 }
3204 }
3205
3206 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3207 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3208 " unevictable:%lu"
3209 " dirty:%lu writeback:%lu unstable:%lu\n"
3210 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3211 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3212 " free_cma:%lu\n",
3213 global_page_state(NR_ACTIVE_ANON),
3214 global_page_state(NR_INACTIVE_ANON),
3215 global_page_state(NR_ISOLATED_ANON),
3216 global_page_state(NR_ACTIVE_FILE),
3217 global_page_state(NR_INACTIVE_FILE),
3218 global_page_state(NR_ISOLATED_FILE),
3219 global_page_state(NR_UNEVICTABLE),
3220 global_page_state(NR_FILE_DIRTY),
3221 global_page_state(NR_WRITEBACK),
3222 global_page_state(NR_UNSTABLE_NFS),
3223 global_page_state(NR_FREE_PAGES),
3224 global_page_state(NR_SLAB_RECLAIMABLE),
3225 global_page_state(NR_SLAB_UNRECLAIMABLE),
3226 global_page_state(NR_FILE_MAPPED),
3227 global_page_state(NR_SHMEM),
3228 global_page_state(NR_PAGETABLE),
3229 global_page_state(NR_BOUNCE),
3230 global_page_state(NR_FREE_CMA_PAGES));
3231
3232 for_each_populated_zone(zone) {
3233 int i;
3234
3235 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3236 continue;
3237 show_node(zone);
3238 printk("%s"
3239 " free:%lukB"
3240 " min:%lukB"
3241 " low:%lukB"
3242 " high:%lukB"
3243 " active_anon:%lukB"
3244 " inactive_anon:%lukB"
3245 " active_file:%lukB"
3246 " inactive_file:%lukB"
3247 " unevictable:%lukB"
3248 " isolated(anon):%lukB"
3249 " isolated(file):%lukB"
3250 " present:%lukB"
3251 " managed:%lukB"
3252 " mlocked:%lukB"
3253 " dirty:%lukB"
3254 " writeback:%lukB"
3255 " mapped:%lukB"
3256 " shmem:%lukB"
3257 " slab_reclaimable:%lukB"
3258 " slab_unreclaimable:%lukB"
3259 " kernel_stack:%lukB"
3260 " pagetables:%lukB"
3261 " unstable:%lukB"
3262 " bounce:%lukB"
3263 " free_cma:%lukB"
3264 " writeback_tmp:%lukB"
3265 " pages_scanned:%lu"
3266 " all_unreclaimable? %s"
3267 "\n",
3268 zone->name,
3269 K(zone_page_state(zone, NR_FREE_PAGES)),
3270 K(min_wmark_pages(zone)),
3271 K(low_wmark_pages(zone)),
3272 K(high_wmark_pages(zone)),
3273 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3274 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3275 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3276 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3277 K(zone_page_state(zone, NR_UNEVICTABLE)),
3278 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3279 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3280 K(zone->present_pages),
3281 K(zone->managed_pages),
3282 K(zone_page_state(zone, NR_MLOCK)),
3283 K(zone_page_state(zone, NR_FILE_DIRTY)),
3284 K(zone_page_state(zone, NR_WRITEBACK)),
3285 K(zone_page_state(zone, NR_FILE_MAPPED)),
3286 K(zone_page_state(zone, NR_SHMEM)),
3287 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3288 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3289 zone_page_state(zone, NR_KERNEL_STACK) *
3290 THREAD_SIZE / 1024,
3291 K(zone_page_state(zone, NR_PAGETABLE)),
3292 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3293 K(zone_page_state(zone, NR_BOUNCE)),
3294 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3295 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3296 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3297 (!zone_reclaimable(zone) ? "yes" : "no")
3298 );
3299 printk("lowmem_reserve[]:");
3300 for (i = 0; i < MAX_NR_ZONES; i++)
3301 printk(" %ld", zone->lowmem_reserve[i]);
3302 printk("\n");
3303 }
3304
3305 for_each_populated_zone(zone) {
3306 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3307 unsigned char types[MAX_ORDER];
3308
3309 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3310 continue;
3311 show_node(zone);
3312 printk("%s: ", zone->name);
3313
3314 spin_lock_irqsave(&zone->lock, flags);
3315 for (order = 0; order < MAX_ORDER; order++) {
3316 struct free_area *area = &zone->free_area[order];
3317 int type;
3318
3319 nr[order] = area->nr_free;
3320 total += nr[order] << order;
3321
3322 types[order] = 0;
3323 for (type = 0; type < MIGRATE_TYPES; type++) {
3324 if (!list_empty(&area->free_list[type]))
3325 types[order] |= 1 << type;
3326 }
3327 }
3328 spin_unlock_irqrestore(&zone->lock, flags);
3329 for (order = 0; order < MAX_ORDER; order++) {
3330 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3331 if (nr[order])
3332 show_migration_types(types[order]);
3333 }
3334 printk("= %lukB\n", K(total));
3335 }
3336
3337 hugetlb_show_meminfo();
3338
3339 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3340
3341 show_swap_cache_info();
3342 }
3343
3344 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3345 {
3346 zoneref->zone = zone;
3347 zoneref->zone_idx = zone_idx(zone);
3348 }
3349
3350 /*
3351 * Builds allocation fallback zone lists.
3352 *
3353 * Add all populated zones of a node to the zonelist.
3354 */
3355 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3356 int nr_zones)
3357 {
3358 struct zone *zone;
3359 enum zone_type zone_type = MAX_NR_ZONES;
3360
3361 do {
3362 zone_type--;
3363 zone = pgdat->node_zones + zone_type;
3364 if (populated_zone(zone)) {
3365 zoneref_set_zone(zone,
3366 &zonelist->_zonerefs[nr_zones++]);
3367 check_highest_zone(zone_type);
3368 }
3369 } while (zone_type);
3370
3371 return nr_zones;
3372 }
3373
3374
3375 /*
3376 * zonelist_order:
3377 * 0 = automatic detection of better ordering.
3378 * 1 = order by ([node] distance, -zonetype)
3379 * 2 = order by (-zonetype, [node] distance)
3380 *
3381 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3382 * the same zonelist. So only NUMA can configure this param.
3383 */
3384 #define ZONELIST_ORDER_DEFAULT 0
3385 #define ZONELIST_ORDER_NODE 1
3386 #define ZONELIST_ORDER_ZONE 2
3387
3388 /* zonelist order in the kernel.
3389 * set_zonelist_order() will set this to NODE or ZONE.
3390 */
3391 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3392 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3393
3394
3395 #ifdef CONFIG_NUMA
3396 /* The value user specified ....changed by config */
3397 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3398 /* string for sysctl */
3399 #define NUMA_ZONELIST_ORDER_LEN 16
3400 char numa_zonelist_order[16] = "default";
3401
3402 /*
3403 * interface for configure zonelist ordering.
3404 * command line option "numa_zonelist_order"
3405 * = "[dD]efault - default, automatic configuration.
3406 * = "[nN]ode - order by node locality, then by zone within node
3407 * = "[zZ]one - order by zone, then by locality within zone
3408 */
3409
3410 static int __parse_numa_zonelist_order(char *s)
3411 {
3412 if (*s == 'd' || *s == 'D') {
3413 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3414 } else if (*s == 'n' || *s == 'N') {
3415 user_zonelist_order = ZONELIST_ORDER_NODE;
3416 } else if (*s == 'z' || *s == 'Z') {
3417 user_zonelist_order = ZONELIST_ORDER_ZONE;
3418 } else {
3419 printk(KERN_WARNING
3420 "Ignoring invalid numa_zonelist_order value: "
3421 "%s\n", s);
3422 return -EINVAL;
3423 }
3424 return 0;
3425 }
3426
3427 static __init int setup_numa_zonelist_order(char *s)
3428 {
3429 int ret;
3430
3431 if (!s)
3432 return 0;
3433
3434 ret = __parse_numa_zonelist_order(s);
3435 if (ret == 0)
3436 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3437
3438 return ret;
3439 }
3440 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3441
3442 /*
3443 * sysctl handler for numa_zonelist_order
3444 */
3445 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3446 void __user *buffer, size_t *length,
3447 loff_t *ppos)
3448 {
3449 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3450 int ret;
3451 static DEFINE_MUTEX(zl_order_mutex);
3452
3453 mutex_lock(&zl_order_mutex);
3454 if (write) {
3455 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3456 ret = -EINVAL;
3457 goto out;
3458 }
3459 strcpy(saved_string, (char *)table->data);
3460 }
3461 ret = proc_dostring(table, write, buffer, length, ppos);
3462 if (ret)
3463 goto out;
3464 if (write) {
3465 int oldval = user_zonelist_order;
3466
3467 ret = __parse_numa_zonelist_order((char *)table->data);
3468 if (ret) {
3469 /*
3470 * bogus value. restore saved string
3471 */
3472 strncpy((char *)table->data, saved_string,
3473 NUMA_ZONELIST_ORDER_LEN);
3474 user_zonelist_order = oldval;
3475 } else if (oldval != user_zonelist_order) {
3476 mutex_lock(&zonelists_mutex);
3477 build_all_zonelists(NULL, NULL);
3478 mutex_unlock(&zonelists_mutex);
3479 }
3480 }
3481 out:
3482 mutex_unlock(&zl_order_mutex);
3483 return ret;
3484 }
3485
3486
3487 #define MAX_NODE_LOAD (nr_online_nodes)
3488 static int node_load[MAX_NUMNODES];
3489
3490 /**
3491 * find_next_best_node - find the next node that should appear in a given node's fallback list
3492 * @node: node whose fallback list we're appending
3493 * @used_node_mask: nodemask_t of already used nodes
3494 *
3495 * We use a number of factors to determine which is the next node that should
3496 * appear on a given node's fallback list. The node should not have appeared
3497 * already in @node's fallback list, and it should be the next closest node
3498 * according to the distance array (which contains arbitrary distance values
3499 * from each node to each node in the system), and should also prefer nodes
3500 * with no CPUs, since presumably they'll have very little allocation pressure
3501 * on them otherwise.
3502 * It returns -1 if no node is found.
3503 */
3504 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3505 {
3506 int n, val;
3507 int min_val = INT_MAX;
3508 int best_node = NUMA_NO_NODE;
3509 const struct cpumask *tmp = cpumask_of_node(0);
3510
3511 /* Use the local node if we haven't already */
3512 if (!node_isset(node, *used_node_mask)) {
3513 node_set(node, *used_node_mask);
3514 return node;
3515 }
3516
3517 for_each_node_state(n, N_MEMORY) {
3518
3519 /* Don't want a node to appear more than once */
3520 if (node_isset(n, *used_node_mask))
3521 continue;
3522
3523 /* Use the distance array to find the distance */
3524 val = node_distance(node, n);
3525
3526 /* Penalize nodes under us ("prefer the next node") */
3527 val += (n < node);
3528
3529 /* Give preference to headless and unused nodes */
3530 tmp = cpumask_of_node(n);
3531 if (!cpumask_empty(tmp))
3532 val += PENALTY_FOR_NODE_WITH_CPUS;
3533
3534 /* Slight preference for less loaded node */
3535 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3536 val += node_load[n];
3537
3538 if (val < min_val) {
3539 min_val = val;
3540 best_node = n;
3541 }
3542 }
3543
3544 if (best_node >= 0)
3545 node_set(best_node, *used_node_mask);
3546
3547 return best_node;
3548 }
3549
3550
3551 /*
3552 * Build zonelists ordered by node and zones within node.
3553 * This results in maximum locality--normal zone overflows into local
3554 * DMA zone, if any--but risks exhausting DMA zone.
3555 */
3556 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3557 {
3558 int j;
3559 struct zonelist *zonelist;
3560
3561 zonelist = &pgdat->node_zonelists[0];
3562 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3563 ;
3564 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3565 zonelist->_zonerefs[j].zone = NULL;
3566 zonelist->_zonerefs[j].zone_idx = 0;
3567 }
3568
3569 /*
3570 * Build gfp_thisnode zonelists
3571 */
3572 static void build_thisnode_zonelists(pg_data_t *pgdat)
3573 {
3574 int j;
3575 struct zonelist *zonelist;
3576
3577 zonelist = &pgdat->node_zonelists[1];
3578 j = build_zonelists_node(pgdat, zonelist, 0);
3579 zonelist->_zonerefs[j].zone = NULL;
3580 zonelist->_zonerefs[j].zone_idx = 0;
3581 }
3582
3583 /*
3584 * Build zonelists ordered by zone and nodes within zones.
3585 * This results in conserving DMA zone[s] until all Normal memory is
3586 * exhausted, but results in overflowing to remote node while memory
3587 * may still exist in local DMA zone.
3588 */
3589 static int node_order[MAX_NUMNODES];
3590
3591 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3592 {
3593 int pos, j, node;
3594 int zone_type; /* needs to be signed */
3595 struct zone *z;
3596 struct zonelist *zonelist;
3597
3598 zonelist = &pgdat->node_zonelists[0];
3599 pos = 0;
3600 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3601 for (j = 0; j < nr_nodes; j++) {
3602 node = node_order[j];
3603 z = &NODE_DATA(node)->node_zones[zone_type];
3604 if (populated_zone(z)) {
3605 zoneref_set_zone(z,
3606 &zonelist->_zonerefs[pos++]);
3607 check_highest_zone(zone_type);
3608 }
3609 }
3610 }
3611 zonelist->_zonerefs[pos].zone = NULL;
3612 zonelist->_zonerefs[pos].zone_idx = 0;
3613 }
3614
3615 #if defined(CONFIG_64BIT)
3616 /*
3617 * Devices that require DMA32/DMA are relatively rare and do not justify a
3618 * penalty to every machine in case the specialised case applies. Default
3619 * to Node-ordering on 64-bit NUMA machines
3620 */
3621 static int default_zonelist_order(void)
3622 {
3623 return ZONELIST_ORDER_NODE;
3624 }
3625 #else
3626 /*
3627 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3628 * by the kernel. If processes running on node 0 deplete the low memory zone
3629 * then reclaim will occur more frequency increasing stalls and potentially
3630 * be easier to OOM if a large percentage of the zone is under writeback or
3631 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3632 * Hence, default to zone ordering on 32-bit.
3633 */
3634 static int default_zonelist_order(void)
3635 {
3636 return ZONELIST_ORDER_ZONE;
3637 }
3638 #endif /* CONFIG_64BIT */
3639
3640 static void set_zonelist_order(void)
3641 {
3642 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3643 current_zonelist_order = default_zonelist_order();
3644 else
3645 current_zonelist_order = user_zonelist_order;
3646 }
3647
3648 static void build_zonelists(pg_data_t *pgdat)
3649 {
3650 int j, node, load;
3651 enum zone_type i;
3652 nodemask_t used_mask;
3653 int local_node, prev_node;
3654 struct zonelist *zonelist;
3655 int order = current_zonelist_order;
3656
3657 /* initialize zonelists */
3658 for (i = 0; i < MAX_ZONELISTS; i++) {
3659 zonelist = pgdat->node_zonelists + i;
3660 zonelist->_zonerefs[0].zone = NULL;
3661 zonelist->_zonerefs[0].zone_idx = 0;
3662 }
3663
3664 /* NUMA-aware ordering of nodes */
3665 local_node = pgdat->node_id;
3666 load = nr_online_nodes;
3667 prev_node = local_node;
3668 nodes_clear(used_mask);
3669
3670 memset(node_order, 0, sizeof(node_order));
3671 j = 0;
3672
3673 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3674 /*
3675 * We don't want to pressure a particular node.
3676 * So adding penalty to the first node in same
3677 * distance group to make it round-robin.
3678 */
3679 if (node_distance(local_node, node) !=
3680 node_distance(local_node, prev_node))
3681 node_load[node] = load;
3682
3683 prev_node = node;
3684 load--;
3685 if (order == ZONELIST_ORDER_NODE)
3686 build_zonelists_in_node_order(pgdat, node);
3687 else
3688 node_order[j++] = node; /* remember order */
3689 }
3690
3691 if (order == ZONELIST_ORDER_ZONE) {
3692 /* calculate node order -- i.e., DMA last! */
3693 build_zonelists_in_zone_order(pgdat, j);
3694 }
3695
3696 build_thisnode_zonelists(pgdat);
3697 }
3698
3699 /* Construct the zonelist performance cache - see further mmzone.h */
3700 static void build_zonelist_cache(pg_data_t *pgdat)
3701 {
3702 struct zonelist *zonelist;
3703 struct zonelist_cache *zlc;
3704 struct zoneref *z;
3705
3706 zonelist = &pgdat->node_zonelists[0];
3707 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3708 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3709 for (z = zonelist->_zonerefs; z->zone; z++)
3710 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3711 }
3712
3713 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3714 /*
3715 * Return node id of node used for "local" allocations.
3716 * I.e., first node id of first zone in arg node's generic zonelist.
3717 * Used for initializing percpu 'numa_mem', which is used primarily
3718 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3719 */
3720 int local_memory_node(int node)
3721 {
3722 struct zone *zone;
3723
3724 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3725 gfp_zone(GFP_KERNEL),
3726 NULL,
3727 &zone);
3728 return zone->node;
3729 }
3730 #endif
3731
3732 #else /* CONFIG_NUMA */
3733
3734 static void set_zonelist_order(void)
3735 {
3736 current_zonelist_order = ZONELIST_ORDER_ZONE;
3737 }
3738
3739 static void build_zonelists(pg_data_t *pgdat)
3740 {
3741 int node, local_node;
3742 enum zone_type j;
3743 struct zonelist *zonelist;
3744
3745 local_node = pgdat->node_id;
3746
3747 zonelist = &pgdat->node_zonelists[0];
3748 j = build_zonelists_node(pgdat, zonelist, 0);
3749
3750 /*
3751 * Now we build the zonelist so that it contains the zones
3752 * of all the other nodes.
3753 * We don't want to pressure a particular node, so when
3754 * building the zones for node N, we make sure that the
3755 * zones coming right after the local ones are those from
3756 * node N+1 (modulo N)
3757 */
3758 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3759 if (!node_online(node))
3760 continue;
3761 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3762 }
3763 for (node = 0; node < local_node; node++) {
3764 if (!node_online(node))
3765 continue;
3766 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3767 }
3768
3769 zonelist->_zonerefs[j].zone = NULL;
3770 zonelist->_zonerefs[j].zone_idx = 0;
3771 }
3772
3773 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3774 static void build_zonelist_cache(pg_data_t *pgdat)
3775 {
3776 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3777 }
3778
3779 #endif /* CONFIG_NUMA */
3780
3781 /*
3782 * Boot pageset table. One per cpu which is going to be used for all
3783 * zones and all nodes. The parameters will be set in such a way
3784 * that an item put on a list will immediately be handed over to
3785 * the buddy list. This is safe since pageset manipulation is done
3786 * with interrupts disabled.
3787 *
3788 * The boot_pagesets must be kept even after bootup is complete for
3789 * unused processors and/or zones. They do play a role for bootstrapping
3790 * hotplugged processors.
3791 *
3792 * zoneinfo_show() and maybe other functions do
3793 * not check if the processor is online before following the pageset pointer.
3794 * Other parts of the kernel may not check if the zone is available.
3795 */
3796 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3797 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3798 static void setup_zone_pageset(struct zone *zone);
3799
3800 /*
3801 * Global mutex to protect against size modification of zonelists
3802 * as well as to serialize pageset setup for the new populated zone.
3803 */
3804 DEFINE_MUTEX(zonelists_mutex);
3805
3806 /* return values int ....just for stop_machine() */
3807 static int __build_all_zonelists(void *data)
3808 {
3809 int nid;
3810 int cpu;
3811 pg_data_t *self = data;
3812
3813 #ifdef CONFIG_NUMA
3814 memset(node_load, 0, sizeof(node_load));
3815 #endif
3816
3817 if (self && !node_online(self->node_id)) {
3818 build_zonelists(self);
3819 build_zonelist_cache(self);
3820 }
3821
3822 for_each_online_node(nid) {
3823 pg_data_t *pgdat = NODE_DATA(nid);
3824
3825 build_zonelists(pgdat);
3826 build_zonelist_cache(pgdat);
3827 }
3828
3829 /*
3830 * Initialize the boot_pagesets that are going to be used
3831 * for bootstrapping processors. The real pagesets for
3832 * each zone will be allocated later when the per cpu
3833 * allocator is available.
3834 *
3835 * boot_pagesets are used also for bootstrapping offline
3836 * cpus if the system is already booted because the pagesets
3837 * are needed to initialize allocators on a specific cpu too.
3838 * F.e. the percpu allocator needs the page allocator which
3839 * needs the percpu allocator in order to allocate its pagesets
3840 * (a chicken-egg dilemma).
3841 */
3842 for_each_possible_cpu(cpu) {
3843 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3844
3845 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3846 /*
3847 * We now know the "local memory node" for each node--
3848 * i.e., the node of the first zone in the generic zonelist.
3849 * Set up numa_mem percpu variable for on-line cpus. During
3850 * boot, only the boot cpu should be on-line; we'll init the
3851 * secondary cpus' numa_mem as they come on-line. During
3852 * node/memory hotplug, we'll fixup all on-line cpus.
3853 */
3854 if (cpu_online(cpu))
3855 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3856 #endif
3857 }
3858
3859 return 0;
3860 }
3861
3862 /*
3863 * Called with zonelists_mutex held always
3864 * unless system_state == SYSTEM_BOOTING.
3865 */
3866 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3867 {
3868 set_zonelist_order();
3869
3870 if (system_state == SYSTEM_BOOTING) {
3871 __build_all_zonelists(NULL);
3872 mminit_verify_zonelist();
3873 cpuset_init_current_mems_allowed();
3874 } else {
3875 #ifdef CONFIG_MEMORY_HOTPLUG
3876 if (zone)
3877 setup_zone_pageset(zone);
3878 #endif
3879 /* we have to stop all cpus to guarantee there is no user
3880 of zonelist */
3881 stop_machine(__build_all_zonelists, pgdat, NULL);
3882 /* cpuset refresh routine should be here */
3883 }
3884 vm_total_pages = nr_free_pagecache_pages();
3885 /*
3886 * Disable grouping by mobility if the number of pages in the
3887 * system is too low to allow the mechanism to work. It would be
3888 * more accurate, but expensive to check per-zone. This check is
3889 * made on memory-hotadd so a system can start with mobility
3890 * disabled and enable it later
3891 */
3892 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3893 page_group_by_mobility_disabled = 1;
3894 else
3895 page_group_by_mobility_disabled = 0;
3896
3897 printk("Built %i zonelists in %s order, mobility grouping %s. "
3898 "Total pages: %ld\n",
3899 nr_online_nodes,
3900 zonelist_order_name[current_zonelist_order],
3901 page_group_by_mobility_disabled ? "off" : "on",
3902 vm_total_pages);
3903 #ifdef CONFIG_NUMA
3904 printk("Policy zone: %s\n", zone_names[policy_zone]);
3905 #endif
3906 }
3907
3908 /*
3909 * Helper functions to size the waitqueue hash table.
3910 * Essentially these want to choose hash table sizes sufficiently
3911 * large so that collisions trying to wait on pages are rare.
3912 * But in fact, the number of active page waitqueues on typical
3913 * systems is ridiculously low, less than 200. So this is even
3914 * conservative, even though it seems large.
3915 *
3916 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3917 * waitqueues, i.e. the size of the waitq table given the number of pages.
3918 */
3919 #define PAGES_PER_WAITQUEUE 256
3920
3921 #ifndef CONFIG_MEMORY_HOTPLUG
3922 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3923 {
3924 unsigned long size = 1;
3925
3926 pages /= PAGES_PER_WAITQUEUE;
3927
3928 while (size < pages)
3929 size <<= 1;
3930
3931 /*
3932 * Once we have dozens or even hundreds of threads sleeping
3933 * on IO we've got bigger problems than wait queue collision.
3934 * Limit the size of the wait table to a reasonable size.
3935 */
3936 size = min(size, 4096UL);
3937
3938 return max(size, 4UL);
3939 }
3940 #else
3941 /*
3942 * A zone's size might be changed by hot-add, so it is not possible to determine
3943 * a suitable size for its wait_table. So we use the maximum size now.
3944 *
3945 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3946 *
3947 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3948 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3949 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3950 *
3951 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3952 * or more by the traditional way. (See above). It equals:
3953 *
3954 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3955 * ia64(16K page size) : = ( 8G + 4M)byte.
3956 * powerpc (64K page size) : = (32G +16M)byte.
3957 */
3958 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3959 {
3960 return 4096UL;
3961 }
3962 #endif
3963
3964 /*
3965 * This is an integer logarithm so that shifts can be used later
3966 * to extract the more random high bits from the multiplicative
3967 * hash function before the remainder is taken.
3968 */
3969 static inline unsigned long wait_table_bits(unsigned long size)
3970 {
3971 return ffz(~size);
3972 }
3973
3974 /*
3975 * Check if a pageblock contains reserved pages
3976 */
3977 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3978 {
3979 unsigned long pfn;
3980
3981 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3982 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3983 return 1;
3984 }
3985 return 0;
3986 }
3987
3988 /*
3989 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3990 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3991 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3992 * higher will lead to a bigger reserve which will get freed as contiguous
3993 * blocks as reclaim kicks in
3994 */
3995 static void setup_zone_migrate_reserve(struct zone *zone)
3996 {
3997 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3998 struct page *page;
3999 unsigned long block_migratetype;
4000 int reserve;
4001 int old_reserve;
4002
4003 /*
4004 * Get the start pfn, end pfn and the number of blocks to reserve
4005 * We have to be careful to be aligned to pageblock_nr_pages to
4006 * make sure that we always check pfn_valid for the first page in
4007 * the block.
4008 */
4009 start_pfn = zone->zone_start_pfn;
4010 end_pfn = zone_end_pfn(zone);
4011 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4012 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4013 pageblock_order;
4014
4015 /*
4016 * Reserve blocks are generally in place to help high-order atomic
4017 * allocations that are short-lived. A min_free_kbytes value that
4018 * would result in more than 2 reserve blocks for atomic allocations
4019 * is assumed to be in place to help anti-fragmentation for the
4020 * future allocation of hugepages at runtime.
4021 */
4022 reserve = min(2, reserve);
4023 old_reserve = zone->nr_migrate_reserve_block;
4024
4025 /* When memory hot-add, we almost always need to do nothing */
4026 if (reserve == old_reserve)
4027 return;
4028 zone->nr_migrate_reserve_block = reserve;
4029
4030 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4031 if (!pfn_valid(pfn))
4032 continue;
4033 page = pfn_to_page(pfn);
4034
4035 /* Watch out for overlapping nodes */
4036 if (page_to_nid(page) != zone_to_nid(zone))
4037 continue;
4038
4039 block_migratetype = get_pageblock_migratetype(page);
4040
4041 /* Only test what is necessary when the reserves are not met */
4042 if (reserve > 0) {
4043 /*
4044 * Blocks with reserved pages will never free, skip
4045 * them.
4046 */
4047 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4048 if (pageblock_is_reserved(pfn, block_end_pfn))
4049 continue;
4050
4051 /* If this block is reserved, account for it */
4052 if (block_migratetype == MIGRATE_RESERVE) {
4053 reserve--;
4054 continue;
4055 }
4056
4057 /* Suitable for reserving if this block is movable */
4058 if (block_migratetype == MIGRATE_MOVABLE) {
4059 set_pageblock_migratetype(page,
4060 MIGRATE_RESERVE);
4061 move_freepages_block(zone, page,
4062 MIGRATE_RESERVE);
4063 reserve--;
4064 continue;
4065 }
4066 } else if (!old_reserve) {
4067 /*
4068 * At boot time we don't need to scan the whole zone
4069 * for turning off MIGRATE_RESERVE.
4070 */
4071 break;
4072 }
4073
4074 /*
4075 * If the reserve is met and this is a previous reserved block,
4076 * take it back
4077 */
4078 if (block_migratetype == MIGRATE_RESERVE) {
4079 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4080 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4081 }
4082 }
4083 }
4084
4085 /*
4086 * Initially all pages are reserved - free ones are freed
4087 * up by free_all_bootmem() once the early boot process is
4088 * done. Non-atomic initialization, single-pass.
4089 */
4090 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4091 unsigned long start_pfn, enum memmap_context context)
4092 {
4093 struct page *page;
4094 unsigned long end_pfn = start_pfn + size;
4095 unsigned long pfn;
4096 struct zone *z;
4097
4098 if (highest_memmap_pfn < end_pfn - 1)
4099 highest_memmap_pfn = end_pfn - 1;
4100
4101 z = &NODE_DATA(nid)->node_zones[zone];
4102 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4103 /*
4104 * There can be holes in boot-time mem_map[]s
4105 * handed to this function. They do not
4106 * exist on hotplugged memory.
4107 */
4108 if (context == MEMMAP_EARLY) {
4109 if (!early_pfn_valid(pfn))
4110 continue;
4111 if (!early_pfn_in_nid(pfn, nid))
4112 continue;
4113 }
4114 page = pfn_to_page(pfn);
4115 set_page_links(page, zone, nid, pfn);
4116 mminit_verify_page_links(page, zone, nid, pfn);
4117 init_page_count(page);
4118 page_mapcount_reset(page);
4119 page_cpupid_reset_last(page);
4120 SetPageReserved(page);
4121 /*
4122 * Mark the block movable so that blocks are reserved for
4123 * movable at startup. This will force kernel allocations
4124 * to reserve their blocks rather than leaking throughout
4125 * the address space during boot when many long-lived
4126 * kernel allocations are made. Later some blocks near
4127 * the start are marked MIGRATE_RESERVE by
4128 * setup_zone_migrate_reserve()
4129 *
4130 * bitmap is created for zone's valid pfn range. but memmap
4131 * can be created for invalid pages (for alignment)
4132 * check here not to call set_pageblock_migratetype() against
4133 * pfn out of zone.
4134 */
4135 if ((z->zone_start_pfn <= pfn)
4136 && (pfn < zone_end_pfn(z))
4137 && !(pfn & (pageblock_nr_pages - 1)))
4138 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4139
4140 INIT_LIST_HEAD(&page->lru);
4141 #ifdef WANT_PAGE_VIRTUAL
4142 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4143 if (!is_highmem_idx(zone))
4144 set_page_address(page, __va(pfn << PAGE_SHIFT));
4145 #endif
4146 }
4147 }
4148
4149 static void __meminit zone_init_free_lists(struct zone *zone)
4150 {
4151 unsigned int order, t;
4152 for_each_migratetype_order(order, t) {
4153 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4154 zone->free_area[order].nr_free = 0;
4155 }
4156 }
4157
4158 #ifndef __HAVE_ARCH_MEMMAP_INIT
4159 #define memmap_init(size, nid, zone, start_pfn) \
4160 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4161 #endif
4162
4163 static int zone_batchsize(struct zone *zone)
4164 {
4165 #ifdef CONFIG_MMU
4166 int batch;
4167
4168 /*
4169 * The per-cpu-pages pools are set to around 1000th of the
4170 * size of the zone. But no more than 1/2 of a meg.
4171 *
4172 * OK, so we don't know how big the cache is. So guess.
4173 */
4174 batch = zone->managed_pages / 1024;
4175 if (batch * PAGE_SIZE > 512 * 1024)
4176 batch = (512 * 1024) / PAGE_SIZE;
4177 batch /= 4; /* We effectively *= 4 below */
4178 if (batch < 1)
4179 batch = 1;
4180
4181 /*
4182 * Clamp the batch to a 2^n - 1 value. Having a power
4183 * of 2 value was found to be more likely to have
4184 * suboptimal cache aliasing properties in some cases.
4185 *
4186 * For example if 2 tasks are alternately allocating
4187 * batches of pages, one task can end up with a lot
4188 * of pages of one half of the possible page colors
4189 * and the other with pages of the other colors.
4190 */
4191 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4192
4193 return batch;
4194
4195 #else
4196 /* The deferral and batching of frees should be suppressed under NOMMU
4197 * conditions.
4198 *
4199 * The problem is that NOMMU needs to be able to allocate large chunks
4200 * of contiguous memory as there's no hardware page translation to
4201 * assemble apparent contiguous memory from discontiguous pages.
4202 *
4203 * Queueing large contiguous runs of pages for batching, however,
4204 * causes the pages to actually be freed in smaller chunks. As there
4205 * can be a significant delay between the individual batches being
4206 * recycled, this leads to the once large chunks of space being
4207 * fragmented and becoming unavailable for high-order allocations.
4208 */
4209 return 0;
4210 #endif
4211 }
4212
4213 /*
4214 * pcp->high and pcp->batch values are related and dependent on one another:
4215 * ->batch must never be higher then ->high.
4216 * The following function updates them in a safe manner without read side
4217 * locking.
4218 *
4219 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4220 * those fields changing asynchronously (acording the the above rule).
4221 *
4222 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4223 * outside of boot time (or some other assurance that no concurrent updaters
4224 * exist).
4225 */
4226 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4227 unsigned long batch)
4228 {
4229 /* start with a fail safe value for batch */
4230 pcp->batch = 1;
4231 smp_wmb();
4232
4233 /* Update high, then batch, in order */
4234 pcp->high = high;
4235 smp_wmb();
4236
4237 pcp->batch = batch;
4238 }
4239
4240 /* a companion to pageset_set_high() */
4241 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4242 {
4243 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4244 }
4245
4246 static void pageset_init(struct per_cpu_pageset *p)
4247 {
4248 struct per_cpu_pages *pcp;
4249 int migratetype;
4250
4251 memset(p, 0, sizeof(*p));
4252
4253 pcp = &p->pcp;
4254 pcp->count = 0;
4255 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4256 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4257 }
4258
4259 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4260 {
4261 pageset_init(p);
4262 pageset_set_batch(p, batch);
4263 }
4264
4265 /*
4266 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4267 * to the value high for the pageset p.
4268 */
4269 static void pageset_set_high(struct per_cpu_pageset *p,
4270 unsigned long high)
4271 {
4272 unsigned long batch = max(1UL, high / 4);
4273 if ((high / 4) > (PAGE_SHIFT * 8))
4274 batch = PAGE_SHIFT * 8;
4275
4276 pageset_update(&p->pcp, high, batch);
4277 }
4278
4279 static void pageset_set_high_and_batch(struct zone *zone,
4280 struct per_cpu_pageset *pcp)
4281 {
4282 if (percpu_pagelist_fraction)
4283 pageset_set_high(pcp,
4284 (zone->managed_pages /
4285 percpu_pagelist_fraction));
4286 else
4287 pageset_set_batch(pcp, zone_batchsize(zone));
4288 }
4289
4290 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4291 {
4292 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4293
4294 pageset_init(pcp);
4295 pageset_set_high_and_batch(zone, pcp);
4296 }
4297
4298 static void __meminit setup_zone_pageset(struct zone *zone)
4299 {
4300 int cpu;
4301 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4302 for_each_possible_cpu(cpu)
4303 zone_pageset_init(zone, cpu);
4304 }
4305
4306 /*
4307 * Allocate per cpu pagesets and initialize them.
4308 * Before this call only boot pagesets were available.
4309 */
4310 void __init setup_per_cpu_pageset(void)
4311 {
4312 struct zone *zone;
4313
4314 for_each_populated_zone(zone)
4315 setup_zone_pageset(zone);
4316 }
4317
4318 static noinline __init_refok
4319 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4320 {
4321 int i;
4322 size_t alloc_size;
4323
4324 /*
4325 * The per-page waitqueue mechanism uses hashed waitqueues
4326 * per zone.
4327 */
4328 zone->wait_table_hash_nr_entries =
4329 wait_table_hash_nr_entries(zone_size_pages);
4330 zone->wait_table_bits =
4331 wait_table_bits(zone->wait_table_hash_nr_entries);
4332 alloc_size = zone->wait_table_hash_nr_entries
4333 * sizeof(wait_queue_head_t);
4334
4335 if (!slab_is_available()) {
4336 zone->wait_table = (wait_queue_head_t *)
4337 memblock_virt_alloc_node_nopanic(
4338 alloc_size, zone->zone_pgdat->node_id);
4339 } else {
4340 /*
4341 * This case means that a zone whose size was 0 gets new memory
4342 * via memory hot-add.
4343 * But it may be the case that a new node was hot-added. In
4344 * this case vmalloc() will not be able to use this new node's
4345 * memory - this wait_table must be initialized to use this new
4346 * node itself as well.
4347 * To use this new node's memory, further consideration will be
4348 * necessary.
4349 */
4350 zone->wait_table = vmalloc(alloc_size);
4351 }
4352 if (!zone->wait_table)
4353 return -ENOMEM;
4354
4355 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4356 init_waitqueue_head(zone->wait_table + i);
4357
4358 return 0;
4359 }
4360
4361 static __meminit void zone_pcp_init(struct zone *zone)
4362 {
4363 /*
4364 * per cpu subsystem is not up at this point. The following code
4365 * relies on the ability of the linker to provide the
4366 * offset of a (static) per cpu variable into the per cpu area.
4367 */
4368 zone->pageset = &boot_pageset;
4369
4370 if (populated_zone(zone))
4371 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4372 zone->name, zone->present_pages,
4373 zone_batchsize(zone));
4374 }
4375
4376 int __meminit init_currently_empty_zone(struct zone *zone,
4377 unsigned long zone_start_pfn,
4378 unsigned long size,
4379 enum memmap_context context)
4380 {
4381 struct pglist_data *pgdat = zone->zone_pgdat;
4382 int ret;
4383 ret = zone_wait_table_init(zone, size);
4384 if (ret)
4385 return ret;
4386 pgdat->nr_zones = zone_idx(zone) + 1;
4387
4388 zone->zone_start_pfn = zone_start_pfn;
4389
4390 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4391 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4392 pgdat->node_id,
4393 (unsigned long)zone_idx(zone),
4394 zone_start_pfn, (zone_start_pfn + size));
4395
4396 zone_init_free_lists(zone);
4397
4398 return 0;
4399 }
4400
4401 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4402 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4403 /*
4404 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4405 */
4406 int __meminit __early_pfn_to_nid(unsigned long pfn)
4407 {
4408 unsigned long start_pfn, end_pfn;
4409 int nid;
4410 /*
4411 * NOTE: The following SMP-unsafe globals are only used early in boot
4412 * when the kernel is running single-threaded.
4413 */
4414 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4415 static int __meminitdata last_nid;
4416
4417 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4418 return last_nid;
4419
4420 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4421 if (nid != -1) {
4422 last_start_pfn = start_pfn;
4423 last_end_pfn = end_pfn;
4424 last_nid = nid;
4425 }
4426
4427 return nid;
4428 }
4429 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4430
4431 int __meminit early_pfn_to_nid(unsigned long pfn)
4432 {
4433 int nid;
4434
4435 nid = __early_pfn_to_nid(pfn);
4436 if (nid >= 0)
4437 return nid;
4438 /* just returns 0 */
4439 return 0;
4440 }
4441
4442 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4443 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4444 {
4445 int nid;
4446
4447 nid = __early_pfn_to_nid(pfn);
4448 if (nid >= 0 && nid != node)
4449 return false;
4450 return true;
4451 }
4452 #endif
4453
4454 /**
4455 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4456 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4457 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4458 *
4459 * If an architecture guarantees that all ranges registered contain no holes
4460 * and may be freed, this this function may be used instead of calling
4461 * memblock_free_early_nid() manually.
4462 */
4463 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4464 {
4465 unsigned long start_pfn, end_pfn;
4466 int i, this_nid;
4467
4468 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4469 start_pfn = min(start_pfn, max_low_pfn);
4470 end_pfn = min(end_pfn, max_low_pfn);
4471
4472 if (start_pfn < end_pfn)
4473 memblock_free_early_nid(PFN_PHYS(start_pfn),
4474 (end_pfn - start_pfn) << PAGE_SHIFT,
4475 this_nid);
4476 }
4477 }
4478
4479 /**
4480 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4481 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4482 *
4483 * If an architecture guarantees that all ranges registered contain no holes and may
4484 * be freed, this function may be used instead of calling memory_present() manually.
4485 */
4486 void __init sparse_memory_present_with_active_regions(int nid)
4487 {
4488 unsigned long start_pfn, end_pfn;
4489 int i, this_nid;
4490
4491 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4492 memory_present(this_nid, start_pfn, end_pfn);
4493 }
4494
4495 /**
4496 * get_pfn_range_for_nid - Return the start and end page frames for a node
4497 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4498 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4499 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4500 *
4501 * It returns the start and end page frame of a node based on information
4502 * provided by memblock_set_node(). If called for a node
4503 * with no available memory, a warning is printed and the start and end
4504 * PFNs will be 0.
4505 */
4506 void __meminit get_pfn_range_for_nid(unsigned int nid,
4507 unsigned long *start_pfn, unsigned long *end_pfn)
4508 {
4509 unsigned long this_start_pfn, this_end_pfn;
4510 int i;
4511
4512 *start_pfn = -1UL;
4513 *end_pfn = 0;
4514
4515 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4516 *start_pfn = min(*start_pfn, this_start_pfn);
4517 *end_pfn = max(*end_pfn, this_end_pfn);
4518 }
4519
4520 if (*start_pfn == -1UL)
4521 *start_pfn = 0;
4522 }
4523
4524 /*
4525 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4526 * assumption is made that zones within a node are ordered in monotonic
4527 * increasing memory addresses so that the "highest" populated zone is used
4528 */
4529 static void __init find_usable_zone_for_movable(void)
4530 {
4531 int zone_index;
4532 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4533 if (zone_index == ZONE_MOVABLE)
4534 continue;
4535
4536 if (arch_zone_highest_possible_pfn[zone_index] >
4537 arch_zone_lowest_possible_pfn[zone_index])
4538 break;
4539 }
4540
4541 VM_BUG_ON(zone_index == -1);
4542 movable_zone = zone_index;
4543 }
4544
4545 /*
4546 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4547 * because it is sized independent of architecture. Unlike the other zones,
4548 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4549 * in each node depending on the size of each node and how evenly kernelcore
4550 * is distributed. This helper function adjusts the zone ranges
4551 * provided by the architecture for a given node by using the end of the
4552 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4553 * zones within a node are in order of monotonic increases memory addresses
4554 */
4555 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4556 unsigned long zone_type,
4557 unsigned long node_start_pfn,
4558 unsigned long node_end_pfn,
4559 unsigned long *zone_start_pfn,
4560 unsigned long *zone_end_pfn)
4561 {
4562 /* Only adjust if ZONE_MOVABLE is on this node */
4563 if (zone_movable_pfn[nid]) {
4564 /* Size ZONE_MOVABLE */
4565 if (zone_type == ZONE_MOVABLE) {
4566 *zone_start_pfn = zone_movable_pfn[nid];
4567 *zone_end_pfn = min(node_end_pfn,
4568 arch_zone_highest_possible_pfn[movable_zone]);
4569
4570 /* Adjust for ZONE_MOVABLE starting within this range */
4571 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4572 *zone_end_pfn > zone_movable_pfn[nid]) {
4573 *zone_end_pfn = zone_movable_pfn[nid];
4574
4575 /* Check if this whole range is within ZONE_MOVABLE */
4576 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4577 *zone_start_pfn = *zone_end_pfn;
4578 }
4579 }
4580
4581 /*
4582 * Return the number of pages a zone spans in a node, including holes
4583 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4584 */
4585 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4586 unsigned long zone_type,
4587 unsigned long node_start_pfn,
4588 unsigned long node_end_pfn,
4589 unsigned long *ignored)
4590 {
4591 unsigned long zone_start_pfn, zone_end_pfn;
4592
4593 /* Get the start and end of the zone */
4594 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4595 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4596 adjust_zone_range_for_zone_movable(nid, zone_type,
4597 node_start_pfn, node_end_pfn,
4598 &zone_start_pfn, &zone_end_pfn);
4599
4600 /* Check that this node has pages within the zone's required range */
4601 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4602 return 0;
4603
4604 /* Move the zone boundaries inside the node if necessary */
4605 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4606 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4607
4608 /* Return the spanned pages */
4609 return zone_end_pfn - zone_start_pfn;
4610 }
4611
4612 /*
4613 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4614 * then all holes in the requested range will be accounted for.
4615 */
4616 unsigned long __meminit __absent_pages_in_range(int nid,
4617 unsigned long range_start_pfn,
4618 unsigned long range_end_pfn)
4619 {
4620 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4621 unsigned long start_pfn, end_pfn;
4622 int i;
4623
4624 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4625 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4626 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4627 nr_absent -= end_pfn - start_pfn;
4628 }
4629 return nr_absent;
4630 }
4631
4632 /**
4633 * absent_pages_in_range - Return number of page frames in holes within a range
4634 * @start_pfn: The start PFN to start searching for holes
4635 * @end_pfn: The end PFN to stop searching for holes
4636 *
4637 * It returns the number of pages frames in memory holes within a range.
4638 */
4639 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4640 unsigned long end_pfn)
4641 {
4642 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4643 }
4644
4645 /* Return the number of page frames in holes in a zone on a node */
4646 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4647 unsigned long zone_type,
4648 unsigned long node_start_pfn,
4649 unsigned long node_end_pfn,
4650 unsigned long *ignored)
4651 {
4652 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4653 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4654 unsigned long zone_start_pfn, zone_end_pfn;
4655
4656 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4657 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4658
4659 adjust_zone_range_for_zone_movable(nid, zone_type,
4660 node_start_pfn, node_end_pfn,
4661 &zone_start_pfn, &zone_end_pfn);
4662 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4663 }
4664
4665 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4666 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4667 unsigned long zone_type,
4668 unsigned long node_start_pfn,
4669 unsigned long node_end_pfn,
4670 unsigned long *zones_size)
4671 {
4672 return zones_size[zone_type];
4673 }
4674
4675 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4676 unsigned long zone_type,
4677 unsigned long node_start_pfn,
4678 unsigned long node_end_pfn,
4679 unsigned long *zholes_size)
4680 {
4681 if (!zholes_size)
4682 return 0;
4683
4684 return zholes_size[zone_type];
4685 }
4686
4687 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4688
4689 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4690 unsigned long node_start_pfn,
4691 unsigned long node_end_pfn,
4692 unsigned long *zones_size,
4693 unsigned long *zholes_size)
4694 {
4695 unsigned long realtotalpages, totalpages = 0;
4696 enum zone_type i;
4697
4698 for (i = 0; i < MAX_NR_ZONES; i++)
4699 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4700 node_start_pfn,
4701 node_end_pfn,
4702 zones_size);
4703 pgdat->node_spanned_pages = totalpages;
4704
4705 realtotalpages = totalpages;
4706 for (i = 0; i < MAX_NR_ZONES; i++)
4707 realtotalpages -=
4708 zone_absent_pages_in_node(pgdat->node_id, i,
4709 node_start_pfn, node_end_pfn,
4710 zholes_size);
4711 pgdat->node_present_pages = realtotalpages;
4712 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4713 realtotalpages);
4714 }
4715
4716 #ifndef CONFIG_SPARSEMEM
4717 /*
4718 * Calculate the size of the zone->blockflags rounded to an unsigned long
4719 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4720 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4721 * round what is now in bits to nearest long in bits, then return it in
4722 * bytes.
4723 */
4724 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4725 {
4726 unsigned long usemapsize;
4727
4728 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4729 usemapsize = roundup(zonesize, pageblock_nr_pages);
4730 usemapsize = usemapsize >> pageblock_order;
4731 usemapsize *= NR_PAGEBLOCK_BITS;
4732 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4733
4734 return usemapsize / 8;
4735 }
4736
4737 static void __init setup_usemap(struct pglist_data *pgdat,
4738 struct zone *zone,
4739 unsigned long zone_start_pfn,
4740 unsigned long zonesize)
4741 {
4742 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4743 zone->pageblock_flags = NULL;
4744 if (usemapsize)
4745 zone->pageblock_flags =
4746 memblock_virt_alloc_node_nopanic(usemapsize,
4747 pgdat->node_id);
4748 }
4749 #else
4750 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4751 unsigned long zone_start_pfn, unsigned long zonesize) {}
4752 #endif /* CONFIG_SPARSEMEM */
4753
4754 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4755
4756 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4757 void __paginginit set_pageblock_order(void)
4758 {
4759 unsigned int order;
4760
4761 /* Check that pageblock_nr_pages has not already been setup */
4762 if (pageblock_order)
4763 return;
4764
4765 if (HPAGE_SHIFT > PAGE_SHIFT)
4766 order = HUGETLB_PAGE_ORDER;
4767 else
4768 order = MAX_ORDER - 1;
4769
4770 /*
4771 * Assume the largest contiguous order of interest is a huge page.
4772 * This value may be variable depending on boot parameters on IA64 and
4773 * powerpc.
4774 */
4775 pageblock_order = order;
4776 }
4777 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4778
4779 /*
4780 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4781 * is unused as pageblock_order is set at compile-time. See
4782 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4783 * the kernel config
4784 */
4785 void __paginginit set_pageblock_order(void)
4786 {
4787 }
4788
4789 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4790
4791 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4792 unsigned long present_pages)
4793 {
4794 unsigned long pages = spanned_pages;
4795
4796 /*
4797 * Provide a more accurate estimation if there are holes within
4798 * the zone and SPARSEMEM is in use. If there are holes within the
4799 * zone, each populated memory region may cost us one or two extra
4800 * memmap pages due to alignment because memmap pages for each
4801 * populated regions may not naturally algined on page boundary.
4802 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4803 */
4804 if (spanned_pages > present_pages + (present_pages >> 4) &&
4805 IS_ENABLED(CONFIG_SPARSEMEM))
4806 pages = present_pages;
4807
4808 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4809 }
4810
4811 /*
4812 * Set up the zone data structures:
4813 * - mark all pages reserved
4814 * - mark all memory queues empty
4815 * - clear the memory bitmaps
4816 *
4817 * NOTE: pgdat should get zeroed by caller.
4818 */
4819 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4820 unsigned long node_start_pfn, unsigned long node_end_pfn,
4821 unsigned long *zones_size, unsigned long *zholes_size)
4822 {
4823 enum zone_type j;
4824 int nid = pgdat->node_id;
4825 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4826 int ret;
4827
4828 pgdat_resize_init(pgdat);
4829 #ifdef CONFIG_NUMA_BALANCING
4830 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4831 pgdat->numabalancing_migrate_nr_pages = 0;
4832 pgdat->numabalancing_migrate_next_window = jiffies;
4833 #endif
4834 init_waitqueue_head(&pgdat->kswapd_wait);
4835 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4836 pgdat_page_cgroup_init(pgdat);
4837
4838 for (j = 0; j < MAX_NR_ZONES; j++) {
4839 struct zone *zone = pgdat->node_zones + j;
4840 unsigned long size, realsize, freesize, memmap_pages;
4841
4842 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4843 node_end_pfn, zones_size);
4844 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4845 node_start_pfn,
4846 node_end_pfn,
4847 zholes_size);
4848
4849 /*
4850 * Adjust freesize so that it accounts for how much memory
4851 * is used by this zone for memmap. This affects the watermark
4852 * and per-cpu initialisations
4853 */
4854 memmap_pages = calc_memmap_size(size, realsize);
4855 if (freesize >= memmap_pages) {
4856 freesize -= memmap_pages;
4857 if (memmap_pages)
4858 printk(KERN_DEBUG
4859 " %s zone: %lu pages used for memmap\n",
4860 zone_names[j], memmap_pages);
4861 } else
4862 printk(KERN_WARNING
4863 " %s zone: %lu pages exceeds freesize %lu\n",
4864 zone_names[j], memmap_pages, freesize);
4865
4866 /* Account for reserved pages */
4867 if (j == 0 && freesize > dma_reserve) {
4868 freesize -= dma_reserve;
4869 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4870 zone_names[0], dma_reserve);
4871 }
4872
4873 if (!is_highmem_idx(j))
4874 nr_kernel_pages += freesize;
4875 /* Charge for highmem memmap if there are enough kernel pages */
4876 else if (nr_kernel_pages > memmap_pages * 2)
4877 nr_kernel_pages -= memmap_pages;
4878 nr_all_pages += freesize;
4879
4880 zone->spanned_pages = size;
4881 zone->present_pages = realsize;
4882 /*
4883 * Set an approximate value for lowmem here, it will be adjusted
4884 * when the bootmem allocator frees pages into the buddy system.
4885 * And all highmem pages will be managed by the buddy system.
4886 */
4887 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4888 #ifdef CONFIG_NUMA
4889 zone->node = nid;
4890 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4891 / 100;
4892 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4893 #endif
4894 zone->name = zone_names[j];
4895 spin_lock_init(&zone->lock);
4896 spin_lock_init(&zone->lru_lock);
4897 zone_seqlock_init(zone);
4898 zone->zone_pgdat = pgdat;
4899 zone_pcp_init(zone);
4900
4901 /* For bootup, initialized properly in watermark setup */
4902 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4903
4904 lruvec_init(&zone->lruvec);
4905 if (!size)
4906 continue;
4907
4908 set_pageblock_order();
4909 setup_usemap(pgdat, zone, zone_start_pfn, size);
4910 ret = init_currently_empty_zone(zone, zone_start_pfn,
4911 size, MEMMAP_EARLY);
4912 BUG_ON(ret);
4913 memmap_init(size, nid, j, zone_start_pfn);
4914 zone_start_pfn += size;
4915 }
4916 }
4917
4918 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4919 {
4920 /* Skip empty nodes */
4921 if (!pgdat->node_spanned_pages)
4922 return;
4923
4924 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4925 /* ia64 gets its own node_mem_map, before this, without bootmem */
4926 if (!pgdat->node_mem_map) {
4927 unsigned long size, start, end;
4928 struct page *map;
4929
4930 /*
4931 * The zone's endpoints aren't required to be MAX_ORDER
4932 * aligned but the node_mem_map endpoints must be in order
4933 * for the buddy allocator to function correctly.
4934 */
4935 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4936 end = pgdat_end_pfn(pgdat);
4937 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4938 size = (end - start) * sizeof(struct page);
4939 map = alloc_remap(pgdat->node_id, size);
4940 if (!map)
4941 map = memblock_virt_alloc_node_nopanic(size,
4942 pgdat->node_id);
4943 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4944 }
4945 #ifndef CONFIG_NEED_MULTIPLE_NODES
4946 /*
4947 * With no DISCONTIG, the global mem_map is just set as node 0's
4948 */
4949 if (pgdat == NODE_DATA(0)) {
4950 mem_map = NODE_DATA(0)->node_mem_map;
4951 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4952 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4953 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4954 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4955 }
4956 #endif
4957 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4958 }
4959
4960 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4961 unsigned long node_start_pfn, unsigned long *zholes_size)
4962 {
4963 pg_data_t *pgdat = NODE_DATA(nid);
4964 unsigned long start_pfn = 0;
4965 unsigned long end_pfn = 0;
4966
4967 /* pg_data_t should be reset to zero when it's allocated */
4968 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4969
4970 pgdat->node_id = nid;
4971 pgdat->node_start_pfn = node_start_pfn;
4972 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4973 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4974 #endif
4975 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4976 zones_size, zholes_size);
4977
4978 alloc_node_mem_map(pgdat);
4979 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4980 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4981 nid, (unsigned long)pgdat,
4982 (unsigned long)pgdat->node_mem_map);
4983 #endif
4984
4985 free_area_init_core(pgdat, start_pfn, end_pfn,
4986 zones_size, zholes_size);
4987 }
4988
4989 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4990
4991 #if MAX_NUMNODES > 1
4992 /*
4993 * Figure out the number of possible node ids.
4994 */
4995 void __init setup_nr_node_ids(void)
4996 {
4997 unsigned int node;
4998 unsigned int highest = 0;
4999
5000 for_each_node_mask(node, node_possible_map)
5001 highest = node;
5002 nr_node_ids = highest + 1;
5003 }
5004 #endif
5005
5006 /**
5007 * node_map_pfn_alignment - determine the maximum internode alignment
5008 *
5009 * This function should be called after node map is populated and sorted.
5010 * It calculates the maximum power of two alignment which can distinguish
5011 * all the nodes.
5012 *
5013 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5014 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5015 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5016 * shifted, 1GiB is enough and this function will indicate so.
5017 *
5018 * This is used to test whether pfn -> nid mapping of the chosen memory
5019 * model has fine enough granularity to avoid incorrect mapping for the
5020 * populated node map.
5021 *
5022 * Returns the determined alignment in pfn's. 0 if there is no alignment
5023 * requirement (single node).
5024 */
5025 unsigned long __init node_map_pfn_alignment(void)
5026 {
5027 unsigned long accl_mask = 0, last_end = 0;
5028 unsigned long start, end, mask;
5029 int last_nid = -1;
5030 int i, nid;
5031
5032 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5033 if (!start || last_nid < 0 || last_nid == nid) {
5034 last_nid = nid;
5035 last_end = end;
5036 continue;
5037 }
5038
5039 /*
5040 * Start with a mask granular enough to pin-point to the
5041 * start pfn and tick off bits one-by-one until it becomes
5042 * too coarse to separate the current node from the last.
5043 */
5044 mask = ~((1 << __ffs(start)) - 1);
5045 while (mask && last_end <= (start & (mask << 1)))
5046 mask <<= 1;
5047
5048 /* accumulate all internode masks */
5049 accl_mask |= mask;
5050 }
5051
5052 /* convert mask to number of pages */
5053 return ~accl_mask + 1;
5054 }
5055
5056 /* Find the lowest pfn for a node */
5057 static unsigned long __init find_min_pfn_for_node(int nid)
5058 {
5059 unsigned long min_pfn = ULONG_MAX;
5060 unsigned long start_pfn;
5061 int i;
5062
5063 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5064 min_pfn = min(min_pfn, start_pfn);
5065
5066 if (min_pfn == ULONG_MAX) {
5067 printk(KERN_WARNING
5068 "Could not find start_pfn for node %d\n", nid);
5069 return 0;
5070 }
5071
5072 return min_pfn;
5073 }
5074
5075 /**
5076 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5077 *
5078 * It returns the minimum PFN based on information provided via
5079 * memblock_set_node().
5080 */
5081 unsigned long __init find_min_pfn_with_active_regions(void)
5082 {
5083 return find_min_pfn_for_node(MAX_NUMNODES);
5084 }
5085
5086 /*
5087 * early_calculate_totalpages()
5088 * Sum pages in active regions for movable zone.
5089 * Populate N_MEMORY for calculating usable_nodes.
5090 */
5091 static unsigned long __init early_calculate_totalpages(void)
5092 {
5093 unsigned long totalpages = 0;
5094 unsigned long start_pfn, end_pfn;
5095 int i, nid;
5096
5097 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5098 unsigned long pages = end_pfn - start_pfn;
5099
5100 totalpages += pages;
5101 if (pages)
5102 node_set_state(nid, N_MEMORY);
5103 }
5104 return totalpages;
5105 }
5106
5107 /*
5108 * Find the PFN the Movable zone begins in each node. Kernel memory
5109 * is spread evenly between nodes as long as the nodes have enough
5110 * memory. When they don't, some nodes will have more kernelcore than
5111 * others
5112 */
5113 static void __init find_zone_movable_pfns_for_nodes(void)
5114 {
5115 int i, nid;
5116 unsigned long usable_startpfn;
5117 unsigned long kernelcore_node, kernelcore_remaining;
5118 /* save the state before borrow the nodemask */
5119 nodemask_t saved_node_state = node_states[N_MEMORY];
5120 unsigned long totalpages = early_calculate_totalpages();
5121 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5122 struct memblock_region *r;
5123
5124 /* Need to find movable_zone earlier when movable_node is specified. */
5125 find_usable_zone_for_movable();
5126
5127 /*
5128 * If movable_node is specified, ignore kernelcore and movablecore
5129 * options.
5130 */
5131 if (movable_node_is_enabled()) {
5132 for_each_memblock(memory, r) {
5133 if (!memblock_is_hotpluggable(r))
5134 continue;
5135
5136 nid = r->nid;
5137
5138 usable_startpfn = PFN_DOWN(r->base);
5139 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5140 min(usable_startpfn, zone_movable_pfn[nid]) :
5141 usable_startpfn;
5142 }
5143
5144 goto out2;
5145 }
5146
5147 /*
5148 * If movablecore=nn[KMG] was specified, calculate what size of
5149 * kernelcore that corresponds so that memory usable for
5150 * any allocation type is evenly spread. If both kernelcore
5151 * and movablecore are specified, then the value of kernelcore
5152 * will be used for required_kernelcore if it's greater than
5153 * what movablecore would have allowed.
5154 */
5155 if (required_movablecore) {
5156 unsigned long corepages;
5157
5158 /*
5159 * Round-up so that ZONE_MOVABLE is at least as large as what
5160 * was requested by the user
5161 */
5162 required_movablecore =
5163 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5164 corepages = totalpages - required_movablecore;
5165
5166 required_kernelcore = max(required_kernelcore, corepages);
5167 }
5168
5169 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5170 if (!required_kernelcore)
5171 goto out;
5172
5173 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5174 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5175
5176 restart:
5177 /* Spread kernelcore memory as evenly as possible throughout nodes */
5178 kernelcore_node = required_kernelcore / usable_nodes;
5179 for_each_node_state(nid, N_MEMORY) {
5180 unsigned long start_pfn, end_pfn;
5181
5182 /*
5183 * Recalculate kernelcore_node if the division per node
5184 * now exceeds what is necessary to satisfy the requested
5185 * amount of memory for the kernel
5186 */
5187 if (required_kernelcore < kernelcore_node)
5188 kernelcore_node = required_kernelcore / usable_nodes;
5189
5190 /*
5191 * As the map is walked, we track how much memory is usable
5192 * by the kernel using kernelcore_remaining. When it is
5193 * 0, the rest of the node is usable by ZONE_MOVABLE
5194 */
5195 kernelcore_remaining = kernelcore_node;
5196
5197 /* Go through each range of PFNs within this node */
5198 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5199 unsigned long size_pages;
5200
5201 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5202 if (start_pfn >= end_pfn)
5203 continue;
5204
5205 /* Account for what is only usable for kernelcore */
5206 if (start_pfn < usable_startpfn) {
5207 unsigned long kernel_pages;
5208 kernel_pages = min(end_pfn, usable_startpfn)
5209 - start_pfn;
5210
5211 kernelcore_remaining -= min(kernel_pages,
5212 kernelcore_remaining);
5213 required_kernelcore -= min(kernel_pages,
5214 required_kernelcore);
5215
5216 /* Continue if range is now fully accounted */
5217 if (end_pfn <= usable_startpfn) {
5218
5219 /*
5220 * Push zone_movable_pfn to the end so
5221 * that if we have to rebalance
5222 * kernelcore across nodes, we will
5223 * not double account here
5224 */
5225 zone_movable_pfn[nid] = end_pfn;
5226 continue;
5227 }
5228 start_pfn = usable_startpfn;
5229 }
5230
5231 /*
5232 * The usable PFN range for ZONE_MOVABLE is from
5233 * start_pfn->end_pfn. Calculate size_pages as the
5234 * number of pages used as kernelcore
5235 */
5236 size_pages = end_pfn - start_pfn;
5237 if (size_pages > kernelcore_remaining)
5238 size_pages = kernelcore_remaining;
5239 zone_movable_pfn[nid] = start_pfn + size_pages;
5240
5241 /*
5242 * Some kernelcore has been met, update counts and
5243 * break if the kernelcore for this node has been
5244 * satisfied
5245 */
5246 required_kernelcore -= min(required_kernelcore,
5247 size_pages);
5248 kernelcore_remaining -= size_pages;
5249 if (!kernelcore_remaining)
5250 break;
5251 }
5252 }
5253
5254 /*
5255 * If there is still required_kernelcore, we do another pass with one
5256 * less node in the count. This will push zone_movable_pfn[nid] further
5257 * along on the nodes that still have memory until kernelcore is
5258 * satisfied
5259 */
5260 usable_nodes--;
5261 if (usable_nodes && required_kernelcore > usable_nodes)
5262 goto restart;
5263
5264 out2:
5265 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5266 for (nid = 0; nid < MAX_NUMNODES; nid++)
5267 zone_movable_pfn[nid] =
5268 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5269
5270 out:
5271 /* restore the node_state */
5272 node_states[N_MEMORY] = saved_node_state;
5273 }
5274
5275 /* Any regular or high memory on that node ? */
5276 static void check_for_memory(pg_data_t *pgdat, int nid)
5277 {
5278 enum zone_type zone_type;
5279
5280 if (N_MEMORY == N_NORMAL_MEMORY)
5281 return;
5282
5283 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5284 struct zone *zone = &pgdat->node_zones[zone_type];
5285 if (populated_zone(zone)) {
5286 node_set_state(nid, N_HIGH_MEMORY);
5287 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5288 zone_type <= ZONE_NORMAL)
5289 node_set_state(nid, N_NORMAL_MEMORY);
5290 break;
5291 }
5292 }
5293 }
5294
5295 /**
5296 * free_area_init_nodes - Initialise all pg_data_t and zone data
5297 * @max_zone_pfn: an array of max PFNs for each zone
5298 *
5299 * This will call free_area_init_node() for each active node in the system.
5300 * Using the page ranges provided by memblock_set_node(), the size of each
5301 * zone in each node and their holes is calculated. If the maximum PFN
5302 * between two adjacent zones match, it is assumed that the zone is empty.
5303 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5304 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5305 * starts where the previous one ended. For example, ZONE_DMA32 starts
5306 * at arch_max_dma_pfn.
5307 */
5308 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5309 {
5310 unsigned long start_pfn, end_pfn;
5311 int i, nid;
5312
5313 /* Record where the zone boundaries are */
5314 memset(arch_zone_lowest_possible_pfn, 0,
5315 sizeof(arch_zone_lowest_possible_pfn));
5316 memset(arch_zone_highest_possible_pfn, 0,
5317 sizeof(arch_zone_highest_possible_pfn));
5318 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5319 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5320 for (i = 1; i < MAX_NR_ZONES; i++) {
5321 if (i == ZONE_MOVABLE)
5322 continue;
5323 arch_zone_lowest_possible_pfn[i] =
5324 arch_zone_highest_possible_pfn[i-1];
5325 arch_zone_highest_possible_pfn[i] =
5326 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5327 }
5328 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5329 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5330
5331 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5332 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5333 find_zone_movable_pfns_for_nodes();
5334
5335 /* Print out the zone ranges */
5336 printk("Zone ranges:\n");
5337 for (i = 0; i < MAX_NR_ZONES; i++) {
5338 if (i == ZONE_MOVABLE)
5339 continue;
5340 printk(KERN_CONT " %-8s ", zone_names[i]);
5341 if (arch_zone_lowest_possible_pfn[i] ==
5342 arch_zone_highest_possible_pfn[i])
5343 printk(KERN_CONT "empty\n");
5344 else
5345 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5346 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5347 (arch_zone_highest_possible_pfn[i]
5348 << PAGE_SHIFT) - 1);
5349 }
5350
5351 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5352 printk("Movable zone start for each node\n");
5353 for (i = 0; i < MAX_NUMNODES; i++) {
5354 if (zone_movable_pfn[i])
5355 printk(" Node %d: %#010lx\n", i,
5356 zone_movable_pfn[i] << PAGE_SHIFT);
5357 }
5358
5359 /* Print out the early node map */
5360 printk("Early memory node ranges\n");
5361 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5362 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5363 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5364
5365 /* Initialise every node */
5366 mminit_verify_pageflags_layout();
5367 setup_nr_node_ids();
5368 for_each_online_node(nid) {
5369 pg_data_t *pgdat = NODE_DATA(nid);
5370 free_area_init_node(nid, NULL,
5371 find_min_pfn_for_node(nid), NULL);
5372
5373 /* Any memory on that node */
5374 if (pgdat->node_present_pages)
5375 node_set_state(nid, N_MEMORY);
5376 check_for_memory(pgdat, nid);
5377 }
5378 }
5379
5380 static int __init cmdline_parse_core(char *p, unsigned long *core)
5381 {
5382 unsigned long long coremem;
5383 if (!p)
5384 return -EINVAL;
5385
5386 coremem = memparse(p, &p);
5387 *core = coremem >> PAGE_SHIFT;
5388
5389 /* Paranoid check that UL is enough for the coremem value */
5390 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5391
5392 return 0;
5393 }
5394
5395 /*
5396 * kernelcore=size sets the amount of memory for use for allocations that
5397 * cannot be reclaimed or migrated.
5398 */
5399 static int __init cmdline_parse_kernelcore(char *p)
5400 {
5401 return cmdline_parse_core(p, &required_kernelcore);
5402 }
5403
5404 /*
5405 * movablecore=size sets the amount of memory for use for allocations that
5406 * can be reclaimed or migrated.
5407 */
5408 static int __init cmdline_parse_movablecore(char *p)
5409 {
5410 return cmdline_parse_core(p, &required_movablecore);
5411 }
5412
5413 early_param("kernelcore", cmdline_parse_kernelcore);
5414 early_param("movablecore", cmdline_parse_movablecore);
5415
5416 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5417
5418 void adjust_managed_page_count(struct page *page, long count)
5419 {
5420 spin_lock(&managed_page_count_lock);
5421 page_zone(page)->managed_pages += count;
5422 totalram_pages += count;
5423 #ifdef CONFIG_HIGHMEM
5424 if (PageHighMem(page))
5425 totalhigh_pages += count;
5426 #endif
5427 spin_unlock(&managed_page_count_lock);
5428 }
5429 EXPORT_SYMBOL(adjust_managed_page_count);
5430
5431 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5432 {
5433 void *pos;
5434 unsigned long pages = 0;
5435
5436 start = (void *)PAGE_ALIGN((unsigned long)start);
5437 end = (void *)((unsigned long)end & PAGE_MASK);
5438 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5439 if ((unsigned int)poison <= 0xFF)
5440 memset(pos, poison, PAGE_SIZE);
5441 free_reserved_page(virt_to_page(pos));
5442 }
5443
5444 if (pages && s)
5445 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5446 s, pages << (PAGE_SHIFT - 10), start, end);
5447
5448 return pages;
5449 }
5450 EXPORT_SYMBOL(free_reserved_area);
5451
5452 #ifdef CONFIG_HIGHMEM
5453 void free_highmem_page(struct page *page)
5454 {
5455 __free_reserved_page(page);
5456 totalram_pages++;
5457 page_zone(page)->managed_pages++;
5458 totalhigh_pages++;
5459 }
5460 #endif
5461
5462
5463 void __init mem_init_print_info(const char *str)
5464 {
5465 unsigned long physpages, codesize, datasize, rosize, bss_size;
5466 unsigned long init_code_size, init_data_size;
5467
5468 physpages = get_num_physpages();
5469 codesize = _etext - _stext;
5470 datasize = _edata - _sdata;
5471 rosize = __end_rodata - __start_rodata;
5472 bss_size = __bss_stop - __bss_start;
5473 init_data_size = __init_end - __init_begin;
5474 init_code_size = _einittext - _sinittext;
5475
5476 /*
5477 * Detect special cases and adjust section sizes accordingly:
5478 * 1) .init.* may be embedded into .data sections
5479 * 2) .init.text.* may be out of [__init_begin, __init_end],
5480 * please refer to arch/tile/kernel/vmlinux.lds.S.
5481 * 3) .rodata.* may be embedded into .text or .data sections.
5482 */
5483 #define adj_init_size(start, end, size, pos, adj) \
5484 do { \
5485 if (start <= pos && pos < end && size > adj) \
5486 size -= adj; \
5487 } while (0)
5488
5489 adj_init_size(__init_begin, __init_end, init_data_size,
5490 _sinittext, init_code_size);
5491 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5492 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5493 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5494 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5495
5496 #undef adj_init_size
5497
5498 printk("Memory: %luK/%luK available "
5499 "(%luK kernel code, %luK rwdata, %luK rodata, "
5500 "%luK init, %luK bss, %luK reserved"
5501 #ifdef CONFIG_HIGHMEM
5502 ", %luK highmem"
5503 #endif
5504 "%s%s)\n",
5505 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5506 codesize >> 10, datasize >> 10, rosize >> 10,
5507 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5508 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5509 #ifdef CONFIG_HIGHMEM
5510 totalhigh_pages << (PAGE_SHIFT-10),
5511 #endif
5512 str ? ", " : "", str ? str : "");
5513 }
5514
5515 /**
5516 * set_dma_reserve - set the specified number of pages reserved in the first zone
5517 * @new_dma_reserve: The number of pages to mark reserved
5518 *
5519 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5520 * In the DMA zone, a significant percentage may be consumed by kernel image
5521 * and other unfreeable allocations which can skew the watermarks badly. This
5522 * function may optionally be used to account for unfreeable pages in the
5523 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5524 * smaller per-cpu batchsize.
5525 */
5526 void __init set_dma_reserve(unsigned long new_dma_reserve)
5527 {
5528 dma_reserve = new_dma_reserve;
5529 }
5530
5531 void __init free_area_init(unsigned long *zones_size)
5532 {
5533 free_area_init_node(0, zones_size,
5534 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5535 }
5536
5537 static int page_alloc_cpu_notify(struct notifier_block *self,
5538 unsigned long action, void *hcpu)
5539 {
5540 int cpu = (unsigned long)hcpu;
5541
5542 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5543 lru_add_drain_cpu(cpu);
5544 drain_pages(cpu);
5545
5546 /*
5547 * Spill the event counters of the dead processor
5548 * into the current processors event counters.
5549 * This artificially elevates the count of the current
5550 * processor.
5551 */
5552 vm_events_fold_cpu(cpu);
5553
5554 /*
5555 * Zero the differential counters of the dead processor
5556 * so that the vm statistics are consistent.
5557 *
5558 * This is only okay since the processor is dead and cannot
5559 * race with what we are doing.
5560 */
5561 cpu_vm_stats_fold(cpu);
5562 }
5563 return NOTIFY_OK;
5564 }
5565
5566 void __init page_alloc_init(void)
5567 {
5568 hotcpu_notifier(page_alloc_cpu_notify, 0);
5569 }
5570
5571 /*
5572 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5573 * or min_free_kbytes changes.
5574 */
5575 static void calculate_totalreserve_pages(void)
5576 {
5577 struct pglist_data *pgdat;
5578 unsigned long reserve_pages = 0;
5579 enum zone_type i, j;
5580
5581 for_each_online_pgdat(pgdat) {
5582 for (i = 0; i < MAX_NR_ZONES; i++) {
5583 struct zone *zone = pgdat->node_zones + i;
5584 long max = 0;
5585
5586 /* Find valid and maximum lowmem_reserve in the zone */
5587 for (j = i; j < MAX_NR_ZONES; j++) {
5588 if (zone->lowmem_reserve[j] > max)
5589 max = zone->lowmem_reserve[j];
5590 }
5591
5592 /* we treat the high watermark as reserved pages. */
5593 max += high_wmark_pages(zone);
5594
5595 if (max > zone->managed_pages)
5596 max = zone->managed_pages;
5597 reserve_pages += max;
5598 /*
5599 * Lowmem reserves are not available to
5600 * GFP_HIGHUSER page cache allocations and
5601 * kswapd tries to balance zones to their high
5602 * watermark. As a result, neither should be
5603 * regarded as dirtyable memory, to prevent a
5604 * situation where reclaim has to clean pages
5605 * in order to balance the zones.
5606 */
5607 zone->dirty_balance_reserve = max;
5608 }
5609 }
5610 dirty_balance_reserve = reserve_pages;
5611 totalreserve_pages = reserve_pages;
5612 }
5613
5614 /*
5615 * setup_per_zone_lowmem_reserve - called whenever
5616 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5617 * has a correct pages reserved value, so an adequate number of
5618 * pages are left in the zone after a successful __alloc_pages().
5619 */
5620 static void setup_per_zone_lowmem_reserve(void)
5621 {
5622 struct pglist_data *pgdat;
5623 enum zone_type j, idx;
5624
5625 for_each_online_pgdat(pgdat) {
5626 for (j = 0; j < MAX_NR_ZONES; j++) {
5627 struct zone *zone = pgdat->node_zones + j;
5628 unsigned long managed_pages = zone->managed_pages;
5629
5630 zone->lowmem_reserve[j] = 0;
5631
5632 idx = j;
5633 while (idx) {
5634 struct zone *lower_zone;
5635
5636 idx--;
5637
5638 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5639 sysctl_lowmem_reserve_ratio[idx] = 1;
5640
5641 lower_zone = pgdat->node_zones + idx;
5642 lower_zone->lowmem_reserve[j] = managed_pages /
5643 sysctl_lowmem_reserve_ratio[idx];
5644 managed_pages += lower_zone->managed_pages;
5645 }
5646 }
5647 }
5648
5649 /* update totalreserve_pages */
5650 calculate_totalreserve_pages();
5651 }
5652
5653 static void __setup_per_zone_wmarks(void)
5654 {
5655 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5656 unsigned long lowmem_pages = 0;
5657 struct zone *zone;
5658 unsigned long flags;
5659
5660 /* Calculate total number of !ZONE_HIGHMEM pages */
5661 for_each_zone(zone) {
5662 if (!is_highmem(zone))
5663 lowmem_pages += zone->managed_pages;
5664 }
5665
5666 for_each_zone(zone) {
5667 u64 tmp;
5668
5669 spin_lock_irqsave(&zone->lock, flags);
5670 tmp = (u64)pages_min * zone->managed_pages;
5671 do_div(tmp, lowmem_pages);
5672 if (is_highmem(zone)) {
5673 /*
5674 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5675 * need highmem pages, so cap pages_min to a small
5676 * value here.
5677 *
5678 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5679 * deltas controls asynch page reclaim, and so should
5680 * not be capped for highmem.
5681 */
5682 unsigned long min_pages;
5683
5684 min_pages = zone->managed_pages / 1024;
5685 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5686 zone->watermark[WMARK_MIN] = min_pages;
5687 } else {
5688 /*
5689 * If it's a lowmem zone, reserve a number of pages
5690 * proportionate to the zone's size.
5691 */
5692 zone->watermark[WMARK_MIN] = tmp;
5693 }
5694
5695 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5696 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5697
5698 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5699 high_wmark_pages(zone) - low_wmark_pages(zone) -
5700 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5701
5702 setup_zone_migrate_reserve(zone);
5703 spin_unlock_irqrestore(&zone->lock, flags);
5704 }
5705
5706 /* update totalreserve_pages */
5707 calculate_totalreserve_pages();
5708 }
5709
5710 /**
5711 * setup_per_zone_wmarks - called when min_free_kbytes changes
5712 * or when memory is hot-{added|removed}
5713 *
5714 * Ensures that the watermark[min,low,high] values for each zone are set
5715 * correctly with respect to min_free_kbytes.
5716 */
5717 void setup_per_zone_wmarks(void)
5718 {
5719 mutex_lock(&zonelists_mutex);
5720 __setup_per_zone_wmarks();
5721 mutex_unlock(&zonelists_mutex);
5722 }
5723
5724 /*
5725 * The inactive anon list should be small enough that the VM never has to
5726 * do too much work, but large enough that each inactive page has a chance
5727 * to be referenced again before it is swapped out.
5728 *
5729 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5730 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5731 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5732 * the anonymous pages are kept on the inactive list.
5733 *
5734 * total target max
5735 * memory ratio inactive anon
5736 * -------------------------------------
5737 * 10MB 1 5MB
5738 * 100MB 1 50MB
5739 * 1GB 3 250MB
5740 * 10GB 10 0.9GB
5741 * 100GB 31 3GB
5742 * 1TB 101 10GB
5743 * 10TB 320 32GB
5744 */
5745 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5746 {
5747 unsigned int gb, ratio;
5748
5749 /* Zone size in gigabytes */
5750 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5751 if (gb)
5752 ratio = int_sqrt(10 * gb);
5753 else
5754 ratio = 1;
5755
5756 zone->inactive_ratio = ratio;
5757 }
5758
5759 static void __meminit setup_per_zone_inactive_ratio(void)
5760 {
5761 struct zone *zone;
5762
5763 for_each_zone(zone)
5764 calculate_zone_inactive_ratio(zone);
5765 }
5766
5767 /*
5768 * Initialise min_free_kbytes.
5769 *
5770 * For small machines we want it small (128k min). For large machines
5771 * we want it large (64MB max). But it is not linear, because network
5772 * bandwidth does not increase linearly with machine size. We use
5773 *
5774 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5775 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5776 *
5777 * which yields
5778 *
5779 * 16MB: 512k
5780 * 32MB: 724k
5781 * 64MB: 1024k
5782 * 128MB: 1448k
5783 * 256MB: 2048k
5784 * 512MB: 2896k
5785 * 1024MB: 4096k
5786 * 2048MB: 5792k
5787 * 4096MB: 8192k
5788 * 8192MB: 11584k
5789 * 16384MB: 16384k
5790 */
5791 int __meminit init_per_zone_wmark_min(void)
5792 {
5793 unsigned long lowmem_kbytes;
5794 int new_min_free_kbytes;
5795
5796 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5797 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5798
5799 if (new_min_free_kbytes > user_min_free_kbytes) {
5800 min_free_kbytes = new_min_free_kbytes;
5801 if (min_free_kbytes < 128)
5802 min_free_kbytes = 128;
5803 if (min_free_kbytes > 65536)
5804 min_free_kbytes = 65536;
5805 } else {
5806 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5807 new_min_free_kbytes, user_min_free_kbytes);
5808 }
5809 setup_per_zone_wmarks();
5810 refresh_zone_stat_thresholds();
5811 setup_per_zone_lowmem_reserve();
5812 setup_per_zone_inactive_ratio();
5813 return 0;
5814 }
5815 module_init(init_per_zone_wmark_min)
5816
5817 /*
5818 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5819 * that we can call two helper functions whenever min_free_kbytes
5820 * changes.
5821 */
5822 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5823 void __user *buffer, size_t *length, loff_t *ppos)
5824 {
5825 int rc;
5826
5827 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5828 if (rc)
5829 return rc;
5830
5831 if (write) {
5832 user_min_free_kbytes = min_free_kbytes;
5833 setup_per_zone_wmarks();
5834 }
5835 return 0;
5836 }
5837
5838 #ifdef CONFIG_NUMA
5839 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5840 void __user *buffer, size_t *length, loff_t *ppos)
5841 {
5842 struct zone *zone;
5843 int rc;
5844
5845 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5846 if (rc)
5847 return rc;
5848
5849 for_each_zone(zone)
5850 zone->min_unmapped_pages = (zone->managed_pages *
5851 sysctl_min_unmapped_ratio) / 100;
5852 return 0;
5853 }
5854
5855 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5856 void __user *buffer, size_t *length, loff_t *ppos)
5857 {
5858 struct zone *zone;
5859 int rc;
5860
5861 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5862 if (rc)
5863 return rc;
5864
5865 for_each_zone(zone)
5866 zone->min_slab_pages = (zone->managed_pages *
5867 sysctl_min_slab_ratio) / 100;
5868 return 0;
5869 }
5870 #endif
5871
5872 /*
5873 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5874 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5875 * whenever sysctl_lowmem_reserve_ratio changes.
5876 *
5877 * The reserve ratio obviously has absolutely no relation with the
5878 * minimum watermarks. The lowmem reserve ratio can only make sense
5879 * if in function of the boot time zone sizes.
5880 */
5881 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5882 void __user *buffer, size_t *length, loff_t *ppos)
5883 {
5884 proc_dointvec_minmax(table, write, buffer, length, ppos);
5885 setup_per_zone_lowmem_reserve();
5886 return 0;
5887 }
5888
5889 /*
5890 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5891 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5892 * pagelist can have before it gets flushed back to buddy allocator.
5893 */
5894 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5895 void __user *buffer, size_t *length, loff_t *ppos)
5896 {
5897 struct zone *zone;
5898 int old_percpu_pagelist_fraction;
5899 int ret;
5900
5901 mutex_lock(&pcp_batch_high_lock);
5902 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5903
5904 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5905 if (!write || ret < 0)
5906 goto out;
5907
5908 /* Sanity checking to avoid pcp imbalance */
5909 if (percpu_pagelist_fraction &&
5910 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5911 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5912 ret = -EINVAL;
5913 goto out;
5914 }
5915
5916 /* No change? */
5917 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5918 goto out;
5919
5920 for_each_populated_zone(zone) {
5921 unsigned int cpu;
5922
5923 for_each_possible_cpu(cpu)
5924 pageset_set_high_and_batch(zone,
5925 per_cpu_ptr(zone->pageset, cpu));
5926 }
5927 out:
5928 mutex_unlock(&pcp_batch_high_lock);
5929 return ret;
5930 }
5931
5932 int hashdist = HASHDIST_DEFAULT;
5933
5934 #ifdef CONFIG_NUMA
5935 static int __init set_hashdist(char *str)
5936 {
5937 if (!str)
5938 return 0;
5939 hashdist = simple_strtoul(str, &str, 0);
5940 return 1;
5941 }
5942 __setup("hashdist=", set_hashdist);
5943 #endif
5944
5945 /*
5946 * allocate a large system hash table from bootmem
5947 * - it is assumed that the hash table must contain an exact power-of-2
5948 * quantity of entries
5949 * - limit is the number of hash buckets, not the total allocation size
5950 */
5951 void *__init alloc_large_system_hash(const char *tablename,
5952 unsigned long bucketsize,
5953 unsigned long numentries,
5954 int scale,
5955 int flags,
5956 unsigned int *_hash_shift,
5957 unsigned int *_hash_mask,
5958 unsigned long low_limit,
5959 unsigned long high_limit)
5960 {
5961 unsigned long long max = high_limit;
5962 unsigned long log2qty, size;
5963 void *table = NULL;
5964
5965 /* allow the kernel cmdline to have a say */
5966 if (!numentries) {
5967 /* round applicable memory size up to nearest megabyte */
5968 numentries = nr_kernel_pages;
5969
5970 /* It isn't necessary when PAGE_SIZE >= 1MB */
5971 if (PAGE_SHIFT < 20)
5972 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5973
5974 /* limit to 1 bucket per 2^scale bytes of low memory */
5975 if (scale > PAGE_SHIFT)
5976 numentries >>= (scale - PAGE_SHIFT);
5977 else
5978 numentries <<= (PAGE_SHIFT - scale);
5979
5980 /* Make sure we've got at least a 0-order allocation.. */
5981 if (unlikely(flags & HASH_SMALL)) {
5982 /* Makes no sense without HASH_EARLY */
5983 WARN_ON(!(flags & HASH_EARLY));
5984 if (!(numentries >> *_hash_shift)) {
5985 numentries = 1UL << *_hash_shift;
5986 BUG_ON(!numentries);
5987 }
5988 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5989 numentries = PAGE_SIZE / bucketsize;
5990 }
5991 numentries = roundup_pow_of_two(numentries);
5992
5993 /* limit allocation size to 1/16 total memory by default */
5994 if (max == 0) {
5995 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5996 do_div(max, bucketsize);
5997 }
5998 max = min(max, 0x80000000ULL);
5999
6000 if (numentries < low_limit)
6001 numentries = low_limit;
6002 if (numentries > max)
6003 numentries = max;
6004
6005 log2qty = ilog2(numentries);
6006
6007 do {
6008 size = bucketsize << log2qty;
6009 if (flags & HASH_EARLY)
6010 table = memblock_virt_alloc_nopanic(size, 0);
6011 else if (hashdist)
6012 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6013 else {
6014 /*
6015 * If bucketsize is not a power-of-two, we may free
6016 * some pages at the end of hash table which
6017 * alloc_pages_exact() automatically does
6018 */
6019 if (get_order(size) < MAX_ORDER) {
6020 table = alloc_pages_exact(size, GFP_ATOMIC);
6021 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6022 }
6023 }
6024 } while (!table && size > PAGE_SIZE && --log2qty);
6025
6026 if (!table)
6027 panic("Failed to allocate %s hash table\n", tablename);
6028
6029 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6030 tablename,
6031 (1UL << log2qty),
6032 ilog2(size) - PAGE_SHIFT,
6033 size);
6034
6035 if (_hash_shift)
6036 *_hash_shift = log2qty;
6037 if (_hash_mask)
6038 *_hash_mask = (1 << log2qty) - 1;
6039
6040 return table;
6041 }
6042
6043 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6044 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6045 unsigned long pfn)
6046 {
6047 #ifdef CONFIG_SPARSEMEM
6048 return __pfn_to_section(pfn)->pageblock_flags;
6049 #else
6050 return zone->pageblock_flags;
6051 #endif /* CONFIG_SPARSEMEM */
6052 }
6053
6054 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6055 {
6056 #ifdef CONFIG_SPARSEMEM
6057 pfn &= (PAGES_PER_SECTION-1);
6058 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6059 #else
6060 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6061 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6062 #endif /* CONFIG_SPARSEMEM */
6063 }
6064
6065 /**
6066 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6067 * @page: The page within the block of interest
6068 * @pfn: The target page frame number
6069 * @end_bitidx: The last bit of interest to retrieve
6070 * @mask: mask of bits that the caller is interested in
6071 *
6072 * Return: pageblock_bits flags
6073 */
6074 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6075 unsigned long end_bitidx,
6076 unsigned long mask)
6077 {
6078 struct zone *zone;
6079 unsigned long *bitmap;
6080 unsigned long bitidx, word_bitidx;
6081 unsigned long word;
6082
6083 zone = page_zone(page);
6084 bitmap = get_pageblock_bitmap(zone, pfn);
6085 bitidx = pfn_to_bitidx(zone, pfn);
6086 word_bitidx = bitidx / BITS_PER_LONG;
6087 bitidx &= (BITS_PER_LONG-1);
6088
6089 word = bitmap[word_bitidx];
6090 bitidx += end_bitidx;
6091 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6092 }
6093
6094 /**
6095 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6096 * @page: The page within the block of interest
6097 * @flags: The flags to set
6098 * @pfn: The target page frame number
6099 * @end_bitidx: The last bit of interest
6100 * @mask: mask of bits that the caller is interested in
6101 */
6102 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6103 unsigned long pfn,
6104 unsigned long end_bitidx,
6105 unsigned long mask)
6106 {
6107 struct zone *zone;
6108 unsigned long *bitmap;
6109 unsigned long bitidx, word_bitidx;
6110 unsigned long old_word, word;
6111
6112 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6113
6114 zone = page_zone(page);
6115 bitmap = get_pageblock_bitmap(zone, pfn);
6116 bitidx = pfn_to_bitidx(zone, pfn);
6117 word_bitidx = bitidx / BITS_PER_LONG;
6118 bitidx &= (BITS_PER_LONG-1);
6119
6120 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6121
6122 bitidx += end_bitidx;
6123 mask <<= (BITS_PER_LONG - bitidx - 1);
6124 flags <<= (BITS_PER_LONG - bitidx - 1);
6125
6126 word = ACCESS_ONCE(bitmap[word_bitidx]);
6127 for (;;) {
6128 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6129 if (word == old_word)
6130 break;
6131 word = old_word;
6132 }
6133 }
6134
6135 /*
6136 * This function checks whether pageblock includes unmovable pages or not.
6137 * If @count is not zero, it is okay to include less @count unmovable pages
6138 *
6139 * PageLRU check without isolation or lru_lock could race so that
6140 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6141 * expect this function should be exact.
6142 */
6143 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6144 bool skip_hwpoisoned_pages)
6145 {
6146 unsigned long pfn, iter, found;
6147 int mt;
6148
6149 /*
6150 * For avoiding noise data, lru_add_drain_all() should be called
6151 * If ZONE_MOVABLE, the zone never contains unmovable pages
6152 */
6153 if (zone_idx(zone) == ZONE_MOVABLE)
6154 return false;
6155 mt = get_pageblock_migratetype(page);
6156 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6157 return false;
6158
6159 pfn = page_to_pfn(page);
6160 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6161 unsigned long check = pfn + iter;
6162
6163 if (!pfn_valid_within(check))
6164 continue;
6165
6166 page = pfn_to_page(check);
6167
6168 /*
6169 * Hugepages are not in LRU lists, but they're movable.
6170 * We need not scan over tail pages bacause we don't
6171 * handle each tail page individually in migration.
6172 */
6173 if (PageHuge(page)) {
6174 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6175 continue;
6176 }
6177
6178 /*
6179 * We can't use page_count without pin a page
6180 * because another CPU can free compound page.
6181 * This check already skips compound tails of THP
6182 * because their page->_count is zero at all time.
6183 */
6184 if (!atomic_read(&page->_count)) {
6185 if (PageBuddy(page))
6186 iter += (1 << page_order(page)) - 1;
6187 continue;
6188 }
6189
6190 /*
6191 * The HWPoisoned page may be not in buddy system, and
6192 * page_count() is not 0.
6193 */
6194 if (skip_hwpoisoned_pages && PageHWPoison(page))
6195 continue;
6196
6197 if (!PageLRU(page))
6198 found++;
6199 /*
6200 * If there are RECLAIMABLE pages, we need to check it.
6201 * But now, memory offline itself doesn't call shrink_slab()
6202 * and it still to be fixed.
6203 */
6204 /*
6205 * If the page is not RAM, page_count()should be 0.
6206 * we don't need more check. This is an _used_ not-movable page.
6207 *
6208 * The problematic thing here is PG_reserved pages. PG_reserved
6209 * is set to both of a memory hole page and a _used_ kernel
6210 * page at boot.
6211 */
6212 if (found > count)
6213 return true;
6214 }
6215 return false;
6216 }
6217
6218 bool is_pageblock_removable_nolock(struct page *page)
6219 {
6220 struct zone *zone;
6221 unsigned long pfn;
6222
6223 /*
6224 * We have to be careful here because we are iterating over memory
6225 * sections which are not zone aware so we might end up outside of
6226 * the zone but still within the section.
6227 * We have to take care about the node as well. If the node is offline
6228 * its NODE_DATA will be NULL - see page_zone.
6229 */
6230 if (!node_online(page_to_nid(page)))
6231 return false;
6232
6233 zone = page_zone(page);
6234 pfn = page_to_pfn(page);
6235 if (!zone_spans_pfn(zone, pfn))
6236 return false;
6237
6238 return !has_unmovable_pages(zone, page, 0, true);
6239 }
6240
6241 #ifdef CONFIG_CMA
6242
6243 static unsigned long pfn_max_align_down(unsigned long pfn)
6244 {
6245 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6246 pageblock_nr_pages) - 1);
6247 }
6248
6249 static unsigned long pfn_max_align_up(unsigned long pfn)
6250 {
6251 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6252 pageblock_nr_pages));
6253 }
6254
6255 /* [start, end) must belong to a single zone. */
6256 static int __alloc_contig_migrate_range(struct compact_control *cc,
6257 unsigned long start, unsigned long end)
6258 {
6259 /* This function is based on compact_zone() from compaction.c. */
6260 unsigned long nr_reclaimed;
6261 unsigned long pfn = start;
6262 unsigned int tries = 0;
6263 int ret = 0;
6264
6265 migrate_prep();
6266
6267 while (pfn < end || !list_empty(&cc->migratepages)) {
6268 if (fatal_signal_pending(current)) {
6269 ret = -EINTR;
6270 break;
6271 }
6272
6273 if (list_empty(&cc->migratepages)) {
6274 cc->nr_migratepages = 0;
6275 pfn = isolate_migratepages_range(cc, pfn, end);
6276 if (!pfn) {
6277 ret = -EINTR;
6278 break;
6279 }
6280 tries = 0;
6281 } else if (++tries == 5) {
6282 ret = ret < 0 ? ret : -EBUSY;
6283 break;
6284 }
6285
6286 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6287 &cc->migratepages);
6288 cc->nr_migratepages -= nr_reclaimed;
6289
6290 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6291 NULL, 0, cc->mode, MR_CMA);
6292 }
6293 if (ret < 0) {
6294 putback_movable_pages(&cc->migratepages);
6295 return ret;
6296 }
6297 return 0;
6298 }
6299
6300 /**
6301 * alloc_contig_range() -- tries to allocate given range of pages
6302 * @start: start PFN to allocate
6303 * @end: one-past-the-last PFN to allocate
6304 * @migratetype: migratetype of the underlaying pageblocks (either
6305 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6306 * in range must have the same migratetype and it must
6307 * be either of the two.
6308 *
6309 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6310 * aligned, however it's the caller's responsibility to guarantee that
6311 * we are the only thread that changes migrate type of pageblocks the
6312 * pages fall in.
6313 *
6314 * The PFN range must belong to a single zone.
6315 *
6316 * Returns zero on success or negative error code. On success all
6317 * pages which PFN is in [start, end) are allocated for the caller and
6318 * need to be freed with free_contig_range().
6319 */
6320 int alloc_contig_range(unsigned long start, unsigned long end,
6321 unsigned migratetype)
6322 {
6323 unsigned long outer_start, outer_end;
6324 int ret = 0, order;
6325
6326 struct compact_control cc = {
6327 .nr_migratepages = 0,
6328 .order = -1,
6329 .zone = page_zone(pfn_to_page(start)),
6330 .mode = MIGRATE_SYNC,
6331 .ignore_skip_hint = true,
6332 };
6333 INIT_LIST_HEAD(&cc.migratepages);
6334
6335 /*
6336 * What we do here is we mark all pageblocks in range as
6337 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6338 * have different sizes, and due to the way page allocator
6339 * work, we align the range to biggest of the two pages so
6340 * that page allocator won't try to merge buddies from
6341 * different pageblocks and change MIGRATE_ISOLATE to some
6342 * other migration type.
6343 *
6344 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6345 * migrate the pages from an unaligned range (ie. pages that
6346 * we are interested in). This will put all the pages in
6347 * range back to page allocator as MIGRATE_ISOLATE.
6348 *
6349 * When this is done, we take the pages in range from page
6350 * allocator removing them from the buddy system. This way
6351 * page allocator will never consider using them.
6352 *
6353 * This lets us mark the pageblocks back as
6354 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6355 * aligned range but not in the unaligned, original range are
6356 * put back to page allocator so that buddy can use them.
6357 */
6358
6359 ret = start_isolate_page_range(pfn_max_align_down(start),
6360 pfn_max_align_up(end), migratetype,
6361 false);
6362 if (ret)
6363 return ret;
6364
6365 ret = __alloc_contig_migrate_range(&cc, start, end);
6366 if (ret)
6367 goto done;
6368
6369 /*
6370 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6371 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6372 * more, all pages in [start, end) are free in page allocator.
6373 * What we are going to do is to allocate all pages from
6374 * [start, end) (that is remove them from page allocator).
6375 *
6376 * The only problem is that pages at the beginning and at the
6377 * end of interesting range may be not aligned with pages that
6378 * page allocator holds, ie. they can be part of higher order
6379 * pages. Because of this, we reserve the bigger range and
6380 * once this is done free the pages we are not interested in.
6381 *
6382 * We don't have to hold zone->lock here because the pages are
6383 * isolated thus they won't get removed from buddy.
6384 */
6385
6386 lru_add_drain_all();
6387 drain_all_pages();
6388
6389 order = 0;
6390 outer_start = start;
6391 while (!PageBuddy(pfn_to_page(outer_start))) {
6392 if (++order >= MAX_ORDER) {
6393 ret = -EBUSY;
6394 goto done;
6395 }
6396 outer_start &= ~0UL << order;
6397 }
6398
6399 /* Make sure the range is really isolated. */
6400 if (test_pages_isolated(outer_start, end, false)) {
6401 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6402 outer_start, end);
6403 ret = -EBUSY;
6404 goto done;
6405 }
6406
6407
6408 /* Grab isolated pages from freelists. */
6409 outer_end = isolate_freepages_range(&cc, outer_start, end);
6410 if (!outer_end) {
6411 ret = -EBUSY;
6412 goto done;
6413 }
6414
6415 /* Free head and tail (if any) */
6416 if (start != outer_start)
6417 free_contig_range(outer_start, start - outer_start);
6418 if (end != outer_end)
6419 free_contig_range(end, outer_end - end);
6420
6421 done:
6422 undo_isolate_page_range(pfn_max_align_down(start),
6423 pfn_max_align_up(end), migratetype);
6424 return ret;
6425 }
6426
6427 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6428 {
6429 unsigned int count = 0;
6430
6431 for (; nr_pages--; pfn++) {
6432 struct page *page = pfn_to_page(pfn);
6433
6434 count += page_count(page) != 1;
6435 __free_page(page);
6436 }
6437 WARN(count != 0, "%d pages are still in use!\n", count);
6438 }
6439 #endif
6440
6441 #ifdef CONFIG_MEMORY_HOTPLUG
6442 /*
6443 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6444 * page high values need to be recalulated.
6445 */
6446 void __meminit zone_pcp_update(struct zone *zone)
6447 {
6448 unsigned cpu;
6449 mutex_lock(&pcp_batch_high_lock);
6450 for_each_possible_cpu(cpu)
6451 pageset_set_high_and_batch(zone,
6452 per_cpu_ptr(zone->pageset, cpu));
6453 mutex_unlock(&pcp_batch_high_lock);
6454 }
6455 #endif
6456
6457 void zone_pcp_reset(struct zone *zone)
6458 {
6459 unsigned long flags;
6460 int cpu;
6461 struct per_cpu_pageset *pset;
6462
6463 /* avoid races with drain_pages() */
6464 local_irq_save(flags);
6465 if (zone->pageset != &boot_pageset) {
6466 for_each_online_cpu(cpu) {
6467 pset = per_cpu_ptr(zone->pageset, cpu);
6468 drain_zonestat(zone, pset);
6469 }
6470 free_percpu(zone->pageset);
6471 zone->pageset = &boot_pageset;
6472 }
6473 local_irq_restore(flags);
6474 }
6475
6476 #ifdef CONFIG_MEMORY_HOTREMOVE
6477 /*
6478 * All pages in the range must be isolated before calling this.
6479 */
6480 void
6481 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6482 {
6483 struct page *page;
6484 struct zone *zone;
6485 unsigned int order, i;
6486 unsigned long pfn;
6487 unsigned long flags;
6488 /* find the first valid pfn */
6489 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6490 if (pfn_valid(pfn))
6491 break;
6492 if (pfn == end_pfn)
6493 return;
6494 zone = page_zone(pfn_to_page(pfn));
6495 spin_lock_irqsave(&zone->lock, flags);
6496 pfn = start_pfn;
6497 while (pfn < end_pfn) {
6498 if (!pfn_valid(pfn)) {
6499 pfn++;
6500 continue;
6501 }
6502 page = pfn_to_page(pfn);
6503 /*
6504 * The HWPoisoned page may be not in buddy system, and
6505 * page_count() is not 0.
6506 */
6507 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6508 pfn++;
6509 SetPageReserved(page);
6510 continue;
6511 }
6512
6513 BUG_ON(page_count(page));
6514 BUG_ON(!PageBuddy(page));
6515 order = page_order(page);
6516 #ifdef CONFIG_DEBUG_VM
6517 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6518 pfn, 1 << order, end_pfn);
6519 #endif
6520 list_del(&page->lru);
6521 rmv_page_order(page);
6522 zone->free_area[order].nr_free--;
6523 for (i = 0; i < (1 << order); i++)
6524 SetPageReserved((page+i));
6525 pfn += (1 << order);
6526 }
6527 spin_unlock_irqrestore(&zone->lock, flags);
6528 }
6529 #endif
6530
6531 #ifdef CONFIG_MEMORY_FAILURE
6532 bool is_free_buddy_page(struct page *page)
6533 {
6534 struct zone *zone = page_zone(page);
6535 unsigned long pfn = page_to_pfn(page);
6536 unsigned long flags;
6537 unsigned int order;
6538
6539 spin_lock_irqsave(&zone->lock, flags);
6540 for (order = 0; order < MAX_ORDER; order++) {
6541 struct page *page_head = page - (pfn & ((1 << order) - 1));
6542
6543 if (PageBuddy(page_head) && page_order(page_head) >= order)
6544 break;
6545 }
6546 spin_unlock_irqrestore(&zone->lock, flags);
6547
6548 return order < MAX_ORDER;
6549 }
6550 #endif