]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/page_alloc.c
[PATCH] reduce MAX_NR_ZONES: make ZONE_DMA32 optional
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
44
45 /*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalreserve_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57
58 static void __free_pages_ok(struct page *page, unsigned int order);
59
60 /*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
73 #ifdef CONFIG_ZONE_DMA32
74 256,
75 #endif
76 32
77 };
78
79 EXPORT_SYMBOL(totalram_pages);
80
81 /*
82 * Used by page_zone() to look up the address of the struct zone whose
83 * id is encoded in the upper bits of page->flags
84 */
85 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
86 EXPORT_SYMBOL(zone_table);
87
88 static char *zone_names[MAX_NR_ZONES] = {
89 "DMA",
90 #ifdef CONFIG_ZONE_DMA32
91 "DMA32",
92 #endif
93 "Normal",
94 "HighMem"
95 };
96
97 int min_free_kbytes = 1024;
98
99 unsigned long __meminitdata nr_kernel_pages;
100 unsigned long __meminitdata nr_all_pages;
101
102 #ifdef CONFIG_DEBUG_VM
103 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
104 {
105 int ret = 0;
106 unsigned seq;
107 unsigned long pfn = page_to_pfn(page);
108
109 do {
110 seq = zone_span_seqbegin(zone);
111 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
112 ret = 1;
113 else if (pfn < zone->zone_start_pfn)
114 ret = 1;
115 } while (zone_span_seqretry(zone, seq));
116
117 return ret;
118 }
119
120 static int page_is_consistent(struct zone *zone, struct page *page)
121 {
122 #ifdef CONFIG_HOLES_IN_ZONE
123 if (!pfn_valid(page_to_pfn(page)))
124 return 0;
125 #endif
126 if (zone != page_zone(page))
127 return 0;
128
129 return 1;
130 }
131 /*
132 * Temporary debugging check for pages not lying within a given zone.
133 */
134 static int bad_range(struct zone *zone, struct page *page)
135 {
136 if (page_outside_zone_boundaries(zone, page))
137 return 1;
138 if (!page_is_consistent(zone, page))
139 return 1;
140
141 return 0;
142 }
143 #else
144 static inline int bad_range(struct zone *zone, struct page *page)
145 {
146 return 0;
147 }
148 #endif
149
150 static void bad_page(struct page *page)
151 {
152 printk(KERN_EMERG "Bad page state in process '%s'\n"
153 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
154 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
155 KERN_EMERG "Backtrace:\n",
156 current->comm, page, (int)(2*sizeof(unsigned long)),
157 (unsigned long)page->flags, page->mapping,
158 page_mapcount(page), page_count(page));
159 dump_stack();
160 page->flags &= ~(1 << PG_lru |
161 1 << PG_private |
162 1 << PG_locked |
163 1 << PG_active |
164 1 << PG_dirty |
165 1 << PG_reclaim |
166 1 << PG_slab |
167 1 << PG_swapcache |
168 1 << PG_writeback |
169 1 << PG_buddy );
170 set_page_count(page, 0);
171 reset_page_mapcount(page);
172 page->mapping = NULL;
173 add_taint(TAINT_BAD_PAGE);
174 }
175
176 /*
177 * Higher-order pages are called "compound pages". They are structured thusly:
178 *
179 * The first PAGE_SIZE page is called the "head page".
180 *
181 * The remaining PAGE_SIZE pages are called "tail pages".
182 *
183 * All pages have PG_compound set. All pages have their ->private pointing at
184 * the head page (even the head page has this).
185 *
186 * The first tail page's ->lru.next holds the address of the compound page's
187 * put_page() function. Its ->lru.prev holds the order of allocation.
188 * This usage means that zero-order pages may not be compound.
189 */
190
191 static void free_compound_page(struct page *page)
192 {
193 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
194 }
195
196 static void prep_compound_page(struct page *page, unsigned long order)
197 {
198 int i;
199 int nr_pages = 1 << order;
200
201 page[1].lru.next = (void *)free_compound_page; /* set dtor */
202 page[1].lru.prev = (void *)order;
203 for (i = 0; i < nr_pages; i++) {
204 struct page *p = page + i;
205
206 __SetPageCompound(p);
207 set_page_private(p, (unsigned long)page);
208 }
209 }
210
211 static void destroy_compound_page(struct page *page, unsigned long order)
212 {
213 int i;
214 int nr_pages = 1 << order;
215
216 if (unlikely((unsigned long)page[1].lru.prev != order))
217 bad_page(page);
218
219 for (i = 0; i < nr_pages; i++) {
220 struct page *p = page + i;
221
222 if (unlikely(!PageCompound(p) |
223 (page_private(p) != (unsigned long)page)))
224 bad_page(page);
225 __ClearPageCompound(p);
226 }
227 }
228
229 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
230 {
231 int i;
232
233 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
234 /*
235 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
236 * and __GFP_HIGHMEM from hard or soft interrupt context.
237 */
238 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
239 for (i = 0; i < (1 << order); i++)
240 clear_highpage(page + i);
241 }
242
243 /*
244 * function for dealing with page's order in buddy system.
245 * zone->lock is already acquired when we use these.
246 * So, we don't need atomic page->flags operations here.
247 */
248 static inline unsigned long page_order(struct page *page)
249 {
250 return page_private(page);
251 }
252
253 static inline void set_page_order(struct page *page, int order)
254 {
255 set_page_private(page, order);
256 __SetPageBuddy(page);
257 }
258
259 static inline void rmv_page_order(struct page *page)
260 {
261 __ClearPageBuddy(page);
262 set_page_private(page, 0);
263 }
264
265 /*
266 * Locate the struct page for both the matching buddy in our
267 * pair (buddy1) and the combined O(n+1) page they form (page).
268 *
269 * 1) Any buddy B1 will have an order O twin B2 which satisfies
270 * the following equation:
271 * B2 = B1 ^ (1 << O)
272 * For example, if the starting buddy (buddy2) is #8 its order
273 * 1 buddy is #10:
274 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
275 *
276 * 2) Any buddy B will have an order O+1 parent P which
277 * satisfies the following equation:
278 * P = B & ~(1 << O)
279 *
280 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
281 */
282 static inline struct page *
283 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
284 {
285 unsigned long buddy_idx = page_idx ^ (1 << order);
286
287 return page + (buddy_idx - page_idx);
288 }
289
290 static inline unsigned long
291 __find_combined_index(unsigned long page_idx, unsigned int order)
292 {
293 return (page_idx & ~(1 << order));
294 }
295
296 /*
297 * This function checks whether a page is free && is the buddy
298 * we can do coalesce a page and its buddy if
299 * (a) the buddy is not in a hole &&
300 * (b) the buddy is in the buddy system &&
301 * (c) a page and its buddy have the same order &&
302 * (d) a page and its buddy are in the same zone.
303 *
304 * For recording whether a page is in the buddy system, we use PG_buddy.
305 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
306 *
307 * For recording page's order, we use page_private(page).
308 */
309 static inline int page_is_buddy(struct page *page, struct page *buddy,
310 int order)
311 {
312 #ifdef CONFIG_HOLES_IN_ZONE
313 if (!pfn_valid(page_to_pfn(buddy)))
314 return 0;
315 #endif
316
317 if (page_zone_id(page) != page_zone_id(buddy))
318 return 0;
319
320 if (PageBuddy(buddy) && page_order(buddy) == order) {
321 BUG_ON(page_count(buddy) != 0);
322 return 1;
323 }
324 return 0;
325 }
326
327 /*
328 * Freeing function for a buddy system allocator.
329 *
330 * The concept of a buddy system is to maintain direct-mapped table
331 * (containing bit values) for memory blocks of various "orders".
332 * The bottom level table contains the map for the smallest allocatable
333 * units of memory (here, pages), and each level above it describes
334 * pairs of units from the levels below, hence, "buddies".
335 * At a high level, all that happens here is marking the table entry
336 * at the bottom level available, and propagating the changes upward
337 * as necessary, plus some accounting needed to play nicely with other
338 * parts of the VM system.
339 * At each level, we keep a list of pages, which are heads of continuous
340 * free pages of length of (1 << order) and marked with PG_buddy. Page's
341 * order is recorded in page_private(page) field.
342 * So when we are allocating or freeing one, we can derive the state of the
343 * other. That is, if we allocate a small block, and both were
344 * free, the remainder of the region must be split into blocks.
345 * If a block is freed, and its buddy is also free, then this
346 * triggers coalescing into a block of larger size.
347 *
348 * -- wli
349 */
350
351 static inline void __free_one_page(struct page *page,
352 struct zone *zone, unsigned int order)
353 {
354 unsigned long page_idx;
355 int order_size = 1 << order;
356
357 if (unlikely(PageCompound(page)))
358 destroy_compound_page(page, order);
359
360 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
361
362 VM_BUG_ON(page_idx & (order_size - 1));
363 VM_BUG_ON(bad_range(zone, page));
364
365 zone->free_pages += order_size;
366 while (order < MAX_ORDER-1) {
367 unsigned long combined_idx;
368 struct free_area *area;
369 struct page *buddy;
370
371 buddy = __page_find_buddy(page, page_idx, order);
372 if (!page_is_buddy(page, buddy, order))
373 break; /* Move the buddy up one level. */
374
375 list_del(&buddy->lru);
376 area = zone->free_area + order;
377 area->nr_free--;
378 rmv_page_order(buddy);
379 combined_idx = __find_combined_index(page_idx, order);
380 page = page + (combined_idx - page_idx);
381 page_idx = combined_idx;
382 order++;
383 }
384 set_page_order(page, order);
385 list_add(&page->lru, &zone->free_area[order].free_list);
386 zone->free_area[order].nr_free++;
387 }
388
389 static inline int free_pages_check(struct page *page)
390 {
391 if (unlikely(page_mapcount(page) |
392 (page->mapping != NULL) |
393 (page_count(page) != 0) |
394 (page->flags & (
395 1 << PG_lru |
396 1 << PG_private |
397 1 << PG_locked |
398 1 << PG_active |
399 1 << PG_reclaim |
400 1 << PG_slab |
401 1 << PG_swapcache |
402 1 << PG_writeback |
403 1 << PG_reserved |
404 1 << PG_buddy ))))
405 bad_page(page);
406 if (PageDirty(page))
407 __ClearPageDirty(page);
408 /*
409 * For now, we report if PG_reserved was found set, but do not
410 * clear it, and do not free the page. But we shall soon need
411 * to do more, for when the ZERO_PAGE count wraps negative.
412 */
413 return PageReserved(page);
414 }
415
416 /*
417 * Frees a list of pages.
418 * Assumes all pages on list are in same zone, and of same order.
419 * count is the number of pages to free.
420 *
421 * If the zone was previously in an "all pages pinned" state then look to
422 * see if this freeing clears that state.
423 *
424 * And clear the zone's pages_scanned counter, to hold off the "all pages are
425 * pinned" detection logic.
426 */
427 static void free_pages_bulk(struct zone *zone, int count,
428 struct list_head *list, int order)
429 {
430 spin_lock(&zone->lock);
431 zone->all_unreclaimable = 0;
432 zone->pages_scanned = 0;
433 while (count--) {
434 struct page *page;
435
436 VM_BUG_ON(list_empty(list));
437 page = list_entry(list->prev, struct page, lru);
438 /* have to delete it as __free_one_page list manipulates */
439 list_del(&page->lru);
440 __free_one_page(page, zone, order);
441 }
442 spin_unlock(&zone->lock);
443 }
444
445 static void free_one_page(struct zone *zone, struct page *page, int order)
446 {
447 LIST_HEAD(list);
448 list_add(&page->lru, &list);
449 free_pages_bulk(zone, 1, &list, order);
450 }
451
452 static void __free_pages_ok(struct page *page, unsigned int order)
453 {
454 unsigned long flags;
455 int i;
456 int reserved = 0;
457
458 arch_free_page(page, order);
459 if (!PageHighMem(page))
460 debug_check_no_locks_freed(page_address(page),
461 PAGE_SIZE<<order);
462
463 for (i = 0 ; i < (1 << order) ; ++i)
464 reserved += free_pages_check(page + i);
465 if (reserved)
466 return;
467
468 kernel_map_pages(page, 1 << order, 0);
469 local_irq_save(flags);
470 __count_vm_events(PGFREE, 1 << order);
471 free_one_page(page_zone(page), page, order);
472 local_irq_restore(flags);
473 }
474
475 /*
476 * permit the bootmem allocator to evade page validation on high-order frees
477 */
478 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
479 {
480 if (order == 0) {
481 __ClearPageReserved(page);
482 set_page_count(page, 0);
483 set_page_refcounted(page);
484 __free_page(page);
485 } else {
486 int loop;
487
488 prefetchw(page);
489 for (loop = 0; loop < BITS_PER_LONG; loop++) {
490 struct page *p = &page[loop];
491
492 if (loop + 1 < BITS_PER_LONG)
493 prefetchw(p + 1);
494 __ClearPageReserved(p);
495 set_page_count(p, 0);
496 }
497
498 set_page_refcounted(page);
499 __free_pages(page, order);
500 }
501 }
502
503
504 /*
505 * The order of subdivision here is critical for the IO subsystem.
506 * Please do not alter this order without good reasons and regression
507 * testing. Specifically, as large blocks of memory are subdivided,
508 * the order in which smaller blocks are delivered depends on the order
509 * they're subdivided in this function. This is the primary factor
510 * influencing the order in which pages are delivered to the IO
511 * subsystem according to empirical testing, and this is also justified
512 * by considering the behavior of a buddy system containing a single
513 * large block of memory acted on by a series of small allocations.
514 * This behavior is a critical factor in sglist merging's success.
515 *
516 * -- wli
517 */
518 static inline void expand(struct zone *zone, struct page *page,
519 int low, int high, struct free_area *area)
520 {
521 unsigned long size = 1 << high;
522
523 while (high > low) {
524 area--;
525 high--;
526 size >>= 1;
527 VM_BUG_ON(bad_range(zone, &page[size]));
528 list_add(&page[size].lru, &area->free_list);
529 area->nr_free++;
530 set_page_order(&page[size], high);
531 }
532 }
533
534 /*
535 * This page is about to be returned from the page allocator
536 */
537 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
538 {
539 if (unlikely(page_mapcount(page) |
540 (page->mapping != NULL) |
541 (page_count(page) != 0) |
542 (page->flags & (
543 1 << PG_lru |
544 1 << PG_private |
545 1 << PG_locked |
546 1 << PG_active |
547 1 << PG_dirty |
548 1 << PG_reclaim |
549 1 << PG_slab |
550 1 << PG_swapcache |
551 1 << PG_writeback |
552 1 << PG_reserved |
553 1 << PG_buddy ))))
554 bad_page(page);
555
556 /*
557 * For now, we report if PG_reserved was found set, but do not
558 * clear it, and do not allocate the page: as a safety net.
559 */
560 if (PageReserved(page))
561 return 1;
562
563 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
564 1 << PG_referenced | 1 << PG_arch_1 |
565 1 << PG_checked | 1 << PG_mappedtodisk);
566 set_page_private(page, 0);
567 set_page_refcounted(page);
568 kernel_map_pages(page, 1 << order, 1);
569
570 if (gfp_flags & __GFP_ZERO)
571 prep_zero_page(page, order, gfp_flags);
572
573 if (order && (gfp_flags & __GFP_COMP))
574 prep_compound_page(page, order);
575
576 return 0;
577 }
578
579 /*
580 * Do the hard work of removing an element from the buddy allocator.
581 * Call me with the zone->lock already held.
582 */
583 static struct page *__rmqueue(struct zone *zone, unsigned int order)
584 {
585 struct free_area * area;
586 unsigned int current_order;
587 struct page *page;
588
589 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
590 area = zone->free_area + current_order;
591 if (list_empty(&area->free_list))
592 continue;
593
594 page = list_entry(area->free_list.next, struct page, lru);
595 list_del(&page->lru);
596 rmv_page_order(page);
597 area->nr_free--;
598 zone->free_pages -= 1UL << order;
599 expand(zone, page, order, current_order, area);
600 return page;
601 }
602
603 return NULL;
604 }
605
606 /*
607 * Obtain a specified number of elements from the buddy allocator, all under
608 * a single hold of the lock, for efficiency. Add them to the supplied list.
609 * Returns the number of new pages which were placed at *list.
610 */
611 static int rmqueue_bulk(struct zone *zone, unsigned int order,
612 unsigned long count, struct list_head *list)
613 {
614 int i;
615
616 spin_lock(&zone->lock);
617 for (i = 0; i < count; ++i) {
618 struct page *page = __rmqueue(zone, order);
619 if (unlikely(page == NULL))
620 break;
621 list_add_tail(&page->lru, list);
622 }
623 spin_unlock(&zone->lock);
624 return i;
625 }
626
627 #ifdef CONFIG_NUMA
628 /*
629 * Called from the slab reaper to drain pagesets on a particular node that
630 * belong to the currently executing processor.
631 * Note that this function must be called with the thread pinned to
632 * a single processor.
633 */
634 void drain_node_pages(int nodeid)
635 {
636 int i, z;
637 unsigned long flags;
638
639 for (z = 0; z < MAX_NR_ZONES; z++) {
640 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
641 struct per_cpu_pageset *pset;
642
643 pset = zone_pcp(zone, smp_processor_id());
644 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
645 struct per_cpu_pages *pcp;
646
647 pcp = &pset->pcp[i];
648 if (pcp->count) {
649 local_irq_save(flags);
650 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
651 pcp->count = 0;
652 local_irq_restore(flags);
653 }
654 }
655 }
656 }
657 #endif
658
659 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
660 static void __drain_pages(unsigned int cpu)
661 {
662 unsigned long flags;
663 struct zone *zone;
664 int i;
665
666 for_each_zone(zone) {
667 struct per_cpu_pageset *pset;
668
669 pset = zone_pcp(zone, cpu);
670 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
671 struct per_cpu_pages *pcp;
672
673 pcp = &pset->pcp[i];
674 local_irq_save(flags);
675 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
676 pcp->count = 0;
677 local_irq_restore(flags);
678 }
679 }
680 }
681 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
682
683 #ifdef CONFIG_PM
684
685 void mark_free_pages(struct zone *zone)
686 {
687 unsigned long zone_pfn, flags;
688 int order;
689 struct list_head *curr;
690
691 if (!zone->spanned_pages)
692 return;
693
694 spin_lock_irqsave(&zone->lock, flags);
695 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
696 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
697
698 for (order = MAX_ORDER - 1; order >= 0; --order)
699 list_for_each(curr, &zone->free_area[order].free_list) {
700 unsigned long start_pfn, i;
701
702 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
703
704 for (i=0; i < (1<<order); i++)
705 SetPageNosaveFree(pfn_to_page(start_pfn+i));
706 }
707 spin_unlock_irqrestore(&zone->lock, flags);
708 }
709
710 /*
711 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
712 */
713 void drain_local_pages(void)
714 {
715 unsigned long flags;
716
717 local_irq_save(flags);
718 __drain_pages(smp_processor_id());
719 local_irq_restore(flags);
720 }
721 #endif /* CONFIG_PM */
722
723 /*
724 * Free a 0-order page
725 */
726 static void fastcall free_hot_cold_page(struct page *page, int cold)
727 {
728 struct zone *zone = page_zone(page);
729 struct per_cpu_pages *pcp;
730 unsigned long flags;
731
732 arch_free_page(page, 0);
733
734 if (PageAnon(page))
735 page->mapping = NULL;
736 if (free_pages_check(page))
737 return;
738
739 kernel_map_pages(page, 1, 0);
740
741 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
742 local_irq_save(flags);
743 __count_vm_event(PGFREE);
744 list_add(&page->lru, &pcp->list);
745 pcp->count++;
746 if (pcp->count >= pcp->high) {
747 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
748 pcp->count -= pcp->batch;
749 }
750 local_irq_restore(flags);
751 put_cpu();
752 }
753
754 void fastcall free_hot_page(struct page *page)
755 {
756 free_hot_cold_page(page, 0);
757 }
758
759 void fastcall free_cold_page(struct page *page)
760 {
761 free_hot_cold_page(page, 1);
762 }
763
764 /*
765 * split_page takes a non-compound higher-order page, and splits it into
766 * n (1<<order) sub-pages: page[0..n]
767 * Each sub-page must be freed individually.
768 *
769 * Note: this is probably too low level an operation for use in drivers.
770 * Please consult with lkml before using this in your driver.
771 */
772 void split_page(struct page *page, unsigned int order)
773 {
774 int i;
775
776 VM_BUG_ON(PageCompound(page));
777 VM_BUG_ON(!page_count(page));
778 for (i = 1; i < (1 << order); i++)
779 set_page_refcounted(page + i);
780 }
781
782 /*
783 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
784 * we cheat by calling it from here, in the order > 0 path. Saves a branch
785 * or two.
786 */
787 static struct page *buffered_rmqueue(struct zonelist *zonelist,
788 struct zone *zone, int order, gfp_t gfp_flags)
789 {
790 unsigned long flags;
791 struct page *page;
792 int cold = !!(gfp_flags & __GFP_COLD);
793 int cpu;
794
795 again:
796 cpu = get_cpu();
797 if (likely(order == 0)) {
798 struct per_cpu_pages *pcp;
799
800 pcp = &zone_pcp(zone, cpu)->pcp[cold];
801 local_irq_save(flags);
802 if (!pcp->count) {
803 pcp->count += rmqueue_bulk(zone, 0,
804 pcp->batch, &pcp->list);
805 if (unlikely(!pcp->count))
806 goto failed;
807 }
808 page = list_entry(pcp->list.next, struct page, lru);
809 list_del(&page->lru);
810 pcp->count--;
811 } else {
812 spin_lock_irqsave(&zone->lock, flags);
813 page = __rmqueue(zone, order);
814 spin_unlock(&zone->lock);
815 if (!page)
816 goto failed;
817 }
818
819 __count_zone_vm_events(PGALLOC, zone, 1 << order);
820 zone_statistics(zonelist, zone);
821 local_irq_restore(flags);
822 put_cpu();
823
824 VM_BUG_ON(bad_range(zone, page));
825 if (prep_new_page(page, order, gfp_flags))
826 goto again;
827 return page;
828
829 failed:
830 local_irq_restore(flags);
831 put_cpu();
832 return NULL;
833 }
834
835 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
836 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
837 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
838 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
839 #define ALLOC_HARDER 0x10 /* try to alloc harder */
840 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
841 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
842
843 /*
844 * Return 1 if free pages are above 'mark'. This takes into account the order
845 * of the allocation.
846 */
847 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
848 int classzone_idx, int alloc_flags)
849 {
850 /* free_pages my go negative - that's OK */
851 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
852 int o;
853
854 if (alloc_flags & ALLOC_HIGH)
855 min -= min / 2;
856 if (alloc_flags & ALLOC_HARDER)
857 min -= min / 4;
858
859 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
860 return 0;
861 for (o = 0; o < order; o++) {
862 /* At the next order, this order's pages become unavailable */
863 free_pages -= z->free_area[o].nr_free << o;
864
865 /* Require fewer higher order pages to be free */
866 min >>= 1;
867
868 if (free_pages <= min)
869 return 0;
870 }
871 return 1;
872 }
873
874 /*
875 * get_page_from_freeliest goes through the zonelist trying to allocate
876 * a page.
877 */
878 static struct page *
879 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
880 struct zonelist *zonelist, int alloc_flags)
881 {
882 struct zone **z = zonelist->zones;
883 struct page *page = NULL;
884 int classzone_idx = zone_idx(*z);
885
886 /*
887 * Go through the zonelist once, looking for a zone with enough free.
888 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
889 */
890 do {
891 if ((alloc_flags & ALLOC_CPUSET) &&
892 !cpuset_zone_allowed(*z, gfp_mask))
893 continue;
894
895 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
896 unsigned long mark;
897 if (alloc_flags & ALLOC_WMARK_MIN)
898 mark = (*z)->pages_min;
899 else if (alloc_flags & ALLOC_WMARK_LOW)
900 mark = (*z)->pages_low;
901 else
902 mark = (*z)->pages_high;
903 if (!zone_watermark_ok(*z, order, mark,
904 classzone_idx, alloc_flags))
905 if (!zone_reclaim_mode ||
906 !zone_reclaim(*z, gfp_mask, order))
907 continue;
908 }
909
910 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
911 if (page) {
912 break;
913 }
914 } while (*(++z) != NULL);
915 return page;
916 }
917
918 /*
919 * This is the 'heart' of the zoned buddy allocator.
920 */
921 struct page * fastcall
922 __alloc_pages(gfp_t gfp_mask, unsigned int order,
923 struct zonelist *zonelist)
924 {
925 const gfp_t wait = gfp_mask & __GFP_WAIT;
926 struct zone **z;
927 struct page *page;
928 struct reclaim_state reclaim_state;
929 struct task_struct *p = current;
930 int do_retry;
931 int alloc_flags;
932 int did_some_progress;
933
934 might_sleep_if(wait);
935
936 restart:
937 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
938
939 if (unlikely(*z == NULL)) {
940 /* Should this ever happen?? */
941 return NULL;
942 }
943
944 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
945 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
946 if (page)
947 goto got_pg;
948
949 do {
950 wakeup_kswapd(*z, order);
951 } while (*(++z));
952
953 /*
954 * OK, we're below the kswapd watermark and have kicked background
955 * reclaim. Now things get more complex, so set up alloc_flags according
956 * to how we want to proceed.
957 *
958 * The caller may dip into page reserves a bit more if the caller
959 * cannot run direct reclaim, or if the caller has realtime scheduling
960 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
961 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
962 */
963 alloc_flags = ALLOC_WMARK_MIN;
964 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
965 alloc_flags |= ALLOC_HARDER;
966 if (gfp_mask & __GFP_HIGH)
967 alloc_flags |= ALLOC_HIGH;
968 if (wait)
969 alloc_flags |= ALLOC_CPUSET;
970
971 /*
972 * Go through the zonelist again. Let __GFP_HIGH and allocations
973 * coming from realtime tasks go deeper into reserves.
974 *
975 * This is the last chance, in general, before the goto nopage.
976 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
977 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
978 */
979 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
980 if (page)
981 goto got_pg;
982
983 /* This allocation should allow future memory freeing. */
984
985 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
986 && !in_interrupt()) {
987 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
988 nofail_alloc:
989 /* go through the zonelist yet again, ignoring mins */
990 page = get_page_from_freelist(gfp_mask, order,
991 zonelist, ALLOC_NO_WATERMARKS);
992 if (page)
993 goto got_pg;
994 if (gfp_mask & __GFP_NOFAIL) {
995 blk_congestion_wait(WRITE, HZ/50);
996 goto nofail_alloc;
997 }
998 }
999 goto nopage;
1000 }
1001
1002 /* Atomic allocations - we can't balance anything */
1003 if (!wait)
1004 goto nopage;
1005
1006 rebalance:
1007 cond_resched();
1008
1009 /* We now go into synchronous reclaim */
1010 cpuset_memory_pressure_bump();
1011 p->flags |= PF_MEMALLOC;
1012 reclaim_state.reclaimed_slab = 0;
1013 p->reclaim_state = &reclaim_state;
1014
1015 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1016
1017 p->reclaim_state = NULL;
1018 p->flags &= ~PF_MEMALLOC;
1019
1020 cond_resched();
1021
1022 if (likely(did_some_progress)) {
1023 page = get_page_from_freelist(gfp_mask, order,
1024 zonelist, alloc_flags);
1025 if (page)
1026 goto got_pg;
1027 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1028 /*
1029 * Go through the zonelist yet one more time, keep
1030 * very high watermark here, this is only to catch
1031 * a parallel oom killing, we must fail if we're still
1032 * under heavy pressure.
1033 */
1034 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1035 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1036 if (page)
1037 goto got_pg;
1038
1039 out_of_memory(zonelist, gfp_mask, order);
1040 goto restart;
1041 }
1042
1043 /*
1044 * Don't let big-order allocations loop unless the caller explicitly
1045 * requests that. Wait for some write requests to complete then retry.
1046 *
1047 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1048 * <= 3, but that may not be true in other implementations.
1049 */
1050 do_retry = 0;
1051 if (!(gfp_mask & __GFP_NORETRY)) {
1052 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1053 do_retry = 1;
1054 if (gfp_mask & __GFP_NOFAIL)
1055 do_retry = 1;
1056 }
1057 if (do_retry) {
1058 blk_congestion_wait(WRITE, HZ/50);
1059 goto rebalance;
1060 }
1061
1062 nopage:
1063 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1064 printk(KERN_WARNING "%s: page allocation failure."
1065 " order:%d, mode:0x%x\n",
1066 p->comm, order, gfp_mask);
1067 dump_stack();
1068 show_mem();
1069 }
1070 got_pg:
1071 return page;
1072 }
1073
1074 EXPORT_SYMBOL(__alloc_pages);
1075
1076 /*
1077 * Common helper functions.
1078 */
1079 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1080 {
1081 struct page * page;
1082 page = alloc_pages(gfp_mask, order);
1083 if (!page)
1084 return 0;
1085 return (unsigned long) page_address(page);
1086 }
1087
1088 EXPORT_SYMBOL(__get_free_pages);
1089
1090 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1091 {
1092 struct page * page;
1093
1094 /*
1095 * get_zeroed_page() returns a 32-bit address, which cannot represent
1096 * a highmem page
1097 */
1098 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1099
1100 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1101 if (page)
1102 return (unsigned long) page_address(page);
1103 return 0;
1104 }
1105
1106 EXPORT_SYMBOL(get_zeroed_page);
1107
1108 void __pagevec_free(struct pagevec *pvec)
1109 {
1110 int i = pagevec_count(pvec);
1111
1112 while (--i >= 0)
1113 free_hot_cold_page(pvec->pages[i], pvec->cold);
1114 }
1115
1116 fastcall void __free_pages(struct page *page, unsigned int order)
1117 {
1118 if (put_page_testzero(page)) {
1119 if (order == 0)
1120 free_hot_page(page);
1121 else
1122 __free_pages_ok(page, order);
1123 }
1124 }
1125
1126 EXPORT_SYMBOL(__free_pages);
1127
1128 fastcall void free_pages(unsigned long addr, unsigned int order)
1129 {
1130 if (addr != 0) {
1131 VM_BUG_ON(!virt_addr_valid((void *)addr));
1132 __free_pages(virt_to_page((void *)addr), order);
1133 }
1134 }
1135
1136 EXPORT_SYMBOL(free_pages);
1137
1138 /*
1139 * Total amount of free (allocatable) RAM:
1140 */
1141 unsigned int nr_free_pages(void)
1142 {
1143 unsigned int sum = 0;
1144 struct zone *zone;
1145
1146 for_each_zone(zone)
1147 sum += zone->free_pages;
1148
1149 return sum;
1150 }
1151
1152 EXPORT_SYMBOL(nr_free_pages);
1153
1154 #ifdef CONFIG_NUMA
1155 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1156 {
1157 unsigned int i, sum = 0;
1158
1159 for (i = 0; i < MAX_NR_ZONES; i++)
1160 sum += pgdat->node_zones[i].free_pages;
1161
1162 return sum;
1163 }
1164 #endif
1165
1166 static unsigned int nr_free_zone_pages(int offset)
1167 {
1168 /* Just pick one node, since fallback list is circular */
1169 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1170 unsigned int sum = 0;
1171
1172 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1173 struct zone **zonep = zonelist->zones;
1174 struct zone *zone;
1175
1176 for (zone = *zonep++; zone; zone = *zonep++) {
1177 unsigned long size = zone->present_pages;
1178 unsigned long high = zone->pages_high;
1179 if (size > high)
1180 sum += size - high;
1181 }
1182
1183 return sum;
1184 }
1185
1186 /*
1187 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1188 */
1189 unsigned int nr_free_buffer_pages(void)
1190 {
1191 return nr_free_zone_pages(gfp_zone(GFP_USER));
1192 }
1193
1194 /*
1195 * Amount of free RAM allocatable within all zones
1196 */
1197 unsigned int nr_free_pagecache_pages(void)
1198 {
1199 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1200 }
1201 #ifdef CONFIG_NUMA
1202 static void show_node(struct zone *zone)
1203 {
1204 printk("Node %d ", zone->zone_pgdat->node_id);
1205 }
1206 #else
1207 #define show_node(zone) do { } while (0)
1208 #endif
1209
1210 void si_meminfo(struct sysinfo *val)
1211 {
1212 val->totalram = totalram_pages;
1213 val->sharedram = 0;
1214 val->freeram = nr_free_pages();
1215 val->bufferram = nr_blockdev_pages();
1216 val->totalhigh = totalhigh_pages;
1217 val->freehigh = nr_free_highpages();
1218 val->mem_unit = PAGE_SIZE;
1219 }
1220
1221 EXPORT_SYMBOL(si_meminfo);
1222
1223 #ifdef CONFIG_NUMA
1224 void si_meminfo_node(struct sysinfo *val, int nid)
1225 {
1226 pg_data_t *pgdat = NODE_DATA(nid);
1227
1228 val->totalram = pgdat->node_present_pages;
1229 val->freeram = nr_free_pages_pgdat(pgdat);
1230 #ifdef CONFIG_HIGHMEM
1231 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1232 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1233 #else
1234 val->totalhigh = 0;
1235 val->freehigh = 0;
1236 #endif
1237 val->mem_unit = PAGE_SIZE;
1238 }
1239 #endif
1240
1241 #define K(x) ((x) << (PAGE_SHIFT-10))
1242
1243 /*
1244 * Show free area list (used inside shift_scroll-lock stuff)
1245 * We also calculate the percentage fragmentation. We do this by counting the
1246 * memory on each free list with the exception of the first item on the list.
1247 */
1248 void show_free_areas(void)
1249 {
1250 int cpu, temperature;
1251 unsigned long active;
1252 unsigned long inactive;
1253 unsigned long free;
1254 struct zone *zone;
1255
1256 for_each_zone(zone) {
1257 show_node(zone);
1258 printk("%s per-cpu:", zone->name);
1259
1260 if (!populated_zone(zone)) {
1261 printk(" empty\n");
1262 continue;
1263 } else
1264 printk("\n");
1265
1266 for_each_online_cpu(cpu) {
1267 struct per_cpu_pageset *pageset;
1268
1269 pageset = zone_pcp(zone, cpu);
1270
1271 for (temperature = 0; temperature < 2; temperature++)
1272 printk("cpu %d %s: high %d, batch %d used:%d\n",
1273 cpu,
1274 temperature ? "cold" : "hot",
1275 pageset->pcp[temperature].high,
1276 pageset->pcp[temperature].batch,
1277 pageset->pcp[temperature].count);
1278 }
1279 }
1280
1281 get_zone_counts(&active, &inactive, &free);
1282
1283 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1284 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1285 active,
1286 inactive,
1287 global_page_state(NR_FILE_DIRTY),
1288 global_page_state(NR_WRITEBACK),
1289 global_page_state(NR_UNSTABLE_NFS),
1290 nr_free_pages(),
1291 global_page_state(NR_SLAB),
1292 global_page_state(NR_FILE_MAPPED),
1293 global_page_state(NR_PAGETABLE));
1294
1295 for_each_zone(zone) {
1296 int i;
1297
1298 show_node(zone);
1299 printk("%s"
1300 " free:%lukB"
1301 " min:%lukB"
1302 " low:%lukB"
1303 " high:%lukB"
1304 " active:%lukB"
1305 " inactive:%lukB"
1306 " present:%lukB"
1307 " pages_scanned:%lu"
1308 " all_unreclaimable? %s"
1309 "\n",
1310 zone->name,
1311 K(zone->free_pages),
1312 K(zone->pages_min),
1313 K(zone->pages_low),
1314 K(zone->pages_high),
1315 K(zone->nr_active),
1316 K(zone->nr_inactive),
1317 K(zone->present_pages),
1318 zone->pages_scanned,
1319 (zone->all_unreclaimable ? "yes" : "no")
1320 );
1321 printk("lowmem_reserve[]:");
1322 for (i = 0; i < MAX_NR_ZONES; i++)
1323 printk(" %lu", zone->lowmem_reserve[i]);
1324 printk("\n");
1325 }
1326
1327 for_each_zone(zone) {
1328 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1329
1330 show_node(zone);
1331 printk("%s: ", zone->name);
1332 if (!populated_zone(zone)) {
1333 printk("empty\n");
1334 continue;
1335 }
1336
1337 spin_lock_irqsave(&zone->lock, flags);
1338 for (order = 0; order < MAX_ORDER; order++) {
1339 nr[order] = zone->free_area[order].nr_free;
1340 total += nr[order] << order;
1341 }
1342 spin_unlock_irqrestore(&zone->lock, flags);
1343 for (order = 0; order < MAX_ORDER; order++)
1344 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1345 printk("= %lukB\n", K(total));
1346 }
1347
1348 show_swap_cache_info();
1349 }
1350
1351 /*
1352 * Builds allocation fallback zone lists.
1353 *
1354 * Add all populated zones of a node to the zonelist.
1355 */
1356 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1357 struct zonelist *zonelist, int nr_zones, int zone_type)
1358 {
1359 struct zone *zone;
1360
1361 BUG_ON(zone_type >= MAX_NR_ZONES);
1362
1363 do {
1364 zone = pgdat->node_zones + zone_type;
1365 if (populated_zone(zone)) {
1366 zonelist->zones[nr_zones++] = zone;
1367 check_highest_zone(zone_type);
1368 }
1369 zone_type--;
1370
1371 } while (zone_type >= 0);
1372 return nr_zones;
1373 }
1374
1375 static inline int highest_zone(int zone_bits)
1376 {
1377 int res = ZONE_NORMAL;
1378 if (zone_bits & (__force int)__GFP_HIGHMEM)
1379 res = ZONE_HIGHMEM;
1380 #ifdef CONFIG_ZONE_DMA32
1381 if (zone_bits & (__force int)__GFP_DMA32)
1382 res = ZONE_DMA32;
1383 #endif
1384 if (zone_bits & (__force int)__GFP_DMA)
1385 res = ZONE_DMA;
1386 return res;
1387 }
1388
1389 #ifdef CONFIG_NUMA
1390 #define MAX_NODE_LOAD (num_online_nodes())
1391 static int __meminitdata node_load[MAX_NUMNODES];
1392 /**
1393 * find_next_best_node - find the next node that should appear in a given node's fallback list
1394 * @node: node whose fallback list we're appending
1395 * @used_node_mask: nodemask_t of already used nodes
1396 *
1397 * We use a number of factors to determine which is the next node that should
1398 * appear on a given node's fallback list. The node should not have appeared
1399 * already in @node's fallback list, and it should be the next closest node
1400 * according to the distance array (which contains arbitrary distance values
1401 * from each node to each node in the system), and should also prefer nodes
1402 * with no CPUs, since presumably they'll have very little allocation pressure
1403 * on them otherwise.
1404 * It returns -1 if no node is found.
1405 */
1406 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1407 {
1408 int n, val;
1409 int min_val = INT_MAX;
1410 int best_node = -1;
1411
1412 /* Use the local node if we haven't already */
1413 if (!node_isset(node, *used_node_mask)) {
1414 node_set(node, *used_node_mask);
1415 return node;
1416 }
1417
1418 for_each_online_node(n) {
1419 cpumask_t tmp;
1420
1421 /* Don't want a node to appear more than once */
1422 if (node_isset(n, *used_node_mask))
1423 continue;
1424
1425 /* Use the distance array to find the distance */
1426 val = node_distance(node, n);
1427
1428 /* Penalize nodes under us ("prefer the next node") */
1429 val += (n < node);
1430
1431 /* Give preference to headless and unused nodes */
1432 tmp = node_to_cpumask(n);
1433 if (!cpus_empty(tmp))
1434 val += PENALTY_FOR_NODE_WITH_CPUS;
1435
1436 /* Slight preference for less loaded node */
1437 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1438 val += node_load[n];
1439
1440 if (val < min_val) {
1441 min_val = val;
1442 best_node = n;
1443 }
1444 }
1445
1446 if (best_node >= 0)
1447 node_set(best_node, *used_node_mask);
1448
1449 return best_node;
1450 }
1451
1452 static void __meminit build_zonelists(pg_data_t *pgdat)
1453 {
1454 int i, j, k, node, local_node;
1455 int prev_node, load;
1456 struct zonelist *zonelist;
1457 nodemask_t used_mask;
1458
1459 /* initialize zonelists */
1460 for (i = 0; i < GFP_ZONETYPES; i++) {
1461 zonelist = pgdat->node_zonelists + i;
1462 zonelist->zones[0] = NULL;
1463 }
1464
1465 /* NUMA-aware ordering of nodes */
1466 local_node = pgdat->node_id;
1467 load = num_online_nodes();
1468 prev_node = local_node;
1469 nodes_clear(used_mask);
1470 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1471 int distance = node_distance(local_node, node);
1472
1473 /*
1474 * If another node is sufficiently far away then it is better
1475 * to reclaim pages in a zone before going off node.
1476 */
1477 if (distance > RECLAIM_DISTANCE)
1478 zone_reclaim_mode = 1;
1479
1480 /*
1481 * We don't want to pressure a particular node.
1482 * So adding penalty to the first node in same
1483 * distance group to make it round-robin.
1484 */
1485
1486 if (distance != node_distance(local_node, prev_node))
1487 node_load[node] += load;
1488 prev_node = node;
1489 load--;
1490 for (i = 0; i < GFP_ZONETYPES; i++) {
1491 zonelist = pgdat->node_zonelists + i;
1492 for (j = 0; zonelist->zones[j] != NULL; j++);
1493
1494 k = highest_zone(i);
1495
1496 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1497 zonelist->zones[j] = NULL;
1498 }
1499 }
1500 }
1501
1502 #else /* CONFIG_NUMA */
1503
1504 static void __meminit build_zonelists(pg_data_t *pgdat)
1505 {
1506 int i, node, local_node;
1507 enum zone_type k;
1508 enum zone_type j;
1509
1510 local_node = pgdat->node_id;
1511 for (i = 0; i < GFP_ZONETYPES; i++) {
1512 struct zonelist *zonelist;
1513
1514 zonelist = pgdat->node_zonelists + i;
1515
1516 j = 0;
1517 k = highest_zone(i);
1518 j = build_zonelists_node(pgdat, zonelist, j, k);
1519 /*
1520 * Now we build the zonelist so that it contains the zones
1521 * of all the other nodes.
1522 * We don't want to pressure a particular node, so when
1523 * building the zones for node N, we make sure that the
1524 * zones coming right after the local ones are those from
1525 * node N+1 (modulo N)
1526 */
1527 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1528 if (!node_online(node))
1529 continue;
1530 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1531 }
1532 for (node = 0; node < local_node; node++) {
1533 if (!node_online(node))
1534 continue;
1535 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1536 }
1537
1538 zonelist->zones[j] = NULL;
1539 }
1540 }
1541
1542 #endif /* CONFIG_NUMA */
1543
1544 /* return values int ....just for stop_machine_run() */
1545 static int __meminit __build_all_zonelists(void *dummy)
1546 {
1547 int nid;
1548 for_each_online_node(nid)
1549 build_zonelists(NODE_DATA(nid));
1550 return 0;
1551 }
1552
1553 void __meminit build_all_zonelists(void)
1554 {
1555 if (system_state == SYSTEM_BOOTING) {
1556 __build_all_zonelists(0);
1557 cpuset_init_current_mems_allowed();
1558 } else {
1559 /* we have to stop all cpus to guaranntee there is no user
1560 of zonelist */
1561 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1562 /* cpuset refresh routine should be here */
1563 }
1564 vm_total_pages = nr_free_pagecache_pages();
1565 printk("Built %i zonelists. Total pages: %ld\n",
1566 num_online_nodes(), vm_total_pages);
1567 }
1568
1569 /*
1570 * Helper functions to size the waitqueue hash table.
1571 * Essentially these want to choose hash table sizes sufficiently
1572 * large so that collisions trying to wait on pages are rare.
1573 * But in fact, the number of active page waitqueues on typical
1574 * systems is ridiculously low, less than 200. So this is even
1575 * conservative, even though it seems large.
1576 *
1577 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1578 * waitqueues, i.e. the size of the waitq table given the number of pages.
1579 */
1580 #define PAGES_PER_WAITQUEUE 256
1581
1582 #ifndef CONFIG_MEMORY_HOTPLUG
1583 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1584 {
1585 unsigned long size = 1;
1586
1587 pages /= PAGES_PER_WAITQUEUE;
1588
1589 while (size < pages)
1590 size <<= 1;
1591
1592 /*
1593 * Once we have dozens or even hundreds of threads sleeping
1594 * on IO we've got bigger problems than wait queue collision.
1595 * Limit the size of the wait table to a reasonable size.
1596 */
1597 size = min(size, 4096UL);
1598
1599 return max(size, 4UL);
1600 }
1601 #else
1602 /*
1603 * A zone's size might be changed by hot-add, so it is not possible to determine
1604 * a suitable size for its wait_table. So we use the maximum size now.
1605 *
1606 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1607 *
1608 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1609 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1610 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1611 *
1612 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1613 * or more by the traditional way. (See above). It equals:
1614 *
1615 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1616 * ia64(16K page size) : = ( 8G + 4M)byte.
1617 * powerpc (64K page size) : = (32G +16M)byte.
1618 */
1619 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1620 {
1621 return 4096UL;
1622 }
1623 #endif
1624
1625 /*
1626 * This is an integer logarithm so that shifts can be used later
1627 * to extract the more random high bits from the multiplicative
1628 * hash function before the remainder is taken.
1629 */
1630 static inline unsigned long wait_table_bits(unsigned long size)
1631 {
1632 return ffz(~size);
1633 }
1634
1635 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1636
1637 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1638 unsigned long *zones_size, unsigned long *zholes_size)
1639 {
1640 unsigned long realtotalpages, totalpages = 0;
1641 int i;
1642
1643 for (i = 0; i < MAX_NR_ZONES; i++)
1644 totalpages += zones_size[i];
1645 pgdat->node_spanned_pages = totalpages;
1646
1647 realtotalpages = totalpages;
1648 if (zholes_size)
1649 for (i = 0; i < MAX_NR_ZONES; i++)
1650 realtotalpages -= zholes_size[i];
1651 pgdat->node_present_pages = realtotalpages;
1652 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1653 }
1654
1655
1656 /*
1657 * Initially all pages are reserved - free ones are freed
1658 * up by free_all_bootmem() once the early boot process is
1659 * done. Non-atomic initialization, single-pass.
1660 */
1661 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1662 unsigned long start_pfn)
1663 {
1664 struct page *page;
1665 unsigned long end_pfn = start_pfn + size;
1666 unsigned long pfn;
1667
1668 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1669 if (!early_pfn_valid(pfn))
1670 continue;
1671 page = pfn_to_page(pfn);
1672 set_page_links(page, zone, nid, pfn);
1673 init_page_count(page);
1674 reset_page_mapcount(page);
1675 SetPageReserved(page);
1676 INIT_LIST_HEAD(&page->lru);
1677 #ifdef WANT_PAGE_VIRTUAL
1678 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1679 if (!is_highmem_idx(zone))
1680 set_page_address(page, __va(pfn << PAGE_SHIFT));
1681 #endif
1682 }
1683 }
1684
1685 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1686 unsigned long size)
1687 {
1688 int order;
1689 for (order = 0; order < MAX_ORDER ; order++) {
1690 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1691 zone->free_area[order].nr_free = 0;
1692 }
1693 }
1694
1695 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1696 void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1697 unsigned long pfn, unsigned long size)
1698 {
1699 unsigned long snum = pfn_to_section_nr(pfn);
1700 unsigned long end = pfn_to_section_nr(pfn + size);
1701
1702 if (FLAGS_HAS_NODE)
1703 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1704 else
1705 for (; snum <= end; snum++)
1706 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1707 }
1708
1709 #ifndef __HAVE_ARCH_MEMMAP_INIT
1710 #define memmap_init(size, nid, zone, start_pfn) \
1711 memmap_init_zone((size), (nid), (zone), (start_pfn))
1712 #endif
1713
1714 static int __cpuinit zone_batchsize(struct zone *zone)
1715 {
1716 int batch;
1717
1718 /*
1719 * The per-cpu-pages pools are set to around 1000th of the
1720 * size of the zone. But no more than 1/2 of a meg.
1721 *
1722 * OK, so we don't know how big the cache is. So guess.
1723 */
1724 batch = zone->present_pages / 1024;
1725 if (batch * PAGE_SIZE > 512 * 1024)
1726 batch = (512 * 1024) / PAGE_SIZE;
1727 batch /= 4; /* We effectively *= 4 below */
1728 if (batch < 1)
1729 batch = 1;
1730
1731 /*
1732 * Clamp the batch to a 2^n - 1 value. Having a power
1733 * of 2 value was found to be more likely to have
1734 * suboptimal cache aliasing properties in some cases.
1735 *
1736 * For example if 2 tasks are alternately allocating
1737 * batches of pages, one task can end up with a lot
1738 * of pages of one half of the possible page colors
1739 * and the other with pages of the other colors.
1740 */
1741 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1742
1743 return batch;
1744 }
1745
1746 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1747 {
1748 struct per_cpu_pages *pcp;
1749
1750 memset(p, 0, sizeof(*p));
1751
1752 pcp = &p->pcp[0]; /* hot */
1753 pcp->count = 0;
1754 pcp->high = 6 * batch;
1755 pcp->batch = max(1UL, 1 * batch);
1756 INIT_LIST_HEAD(&pcp->list);
1757
1758 pcp = &p->pcp[1]; /* cold*/
1759 pcp->count = 0;
1760 pcp->high = 2 * batch;
1761 pcp->batch = max(1UL, batch/2);
1762 INIT_LIST_HEAD(&pcp->list);
1763 }
1764
1765 /*
1766 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1767 * to the value high for the pageset p.
1768 */
1769
1770 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1771 unsigned long high)
1772 {
1773 struct per_cpu_pages *pcp;
1774
1775 pcp = &p->pcp[0]; /* hot list */
1776 pcp->high = high;
1777 pcp->batch = max(1UL, high/4);
1778 if ((high/4) > (PAGE_SHIFT * 8))
1779 pcp->batch = PAGE_SHIFT * 8;
1780 }
1781
1782
1783 #ifdef CONFIG_NUMA
1784 /*
1785 * Boot pageset table. One per cpu which is going to be used for all
1786 * zones and all nodes. The parameters will be set in such a way
1787 * that an item put on a list will immediately be handed over to
1788 * the buddy list. This is safe since pageset manipulation is done
1789 * with interrupts disabled.
1790 *
1791 * Some NUMA counter updates may also be caught by the boot pagesets.
1792 *
1793 * The boot_pagesets must be kept even after bootup is complete for
1794 * unused processors and/or zones. They do play a role for bootstrapping
1795 * hotplugged processors.
1796 *
1797 * zoneinfo_show() and maybe other functions do
1798 * not check if the processor is online before following the pageset pointer.
1799 * Other parts of the kernel may not check if the zone is available.
1800 */
1801 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1802
1803 /*
1804 * Dynamically allocate memory for the
1805 * per cpu pageset array in struct zone.
1806 */
1807 static int __cpuinit process_zones(int cpu)
1808 {
1809 struct zone *zone, *dzone;
1810
1811 for_each_zone(zone) {
1812
1813 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1814 GFP_KERNEL, cpu_to_node(cpu));
1815 if (!zone_pcp(zone, cpu))
1816 goto bad;
1817
1818 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1819
1820 if (percpu_pagelist_fraction)
1821 setup_pagelist_highmark(zone_pcp(zone, cpu),
1822 (zone->present_pages / percpu_pagelist_fraction));
1823 }
1824
1825 return 0;
1826 bad:
1827 for_each_zone(dzone) {
1828 if (dzone == zone)
1829 break;
1830 kfree(zone_pcp(dzone, cpu));
1831 zone_pcp(dzone, cpu) = NULL;
1832 }
1833 return -ENOMEM;
1834 }
1835
1836 static inline void free_zone_pagesets(int cpu)
1837 {
1838 struct zone *zone;
1839
1840 for_each_zone(zone) {
1841 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1842
1843 /* Free per_cpu_pageset if it is slab allocated */
1844 if (pset != &boot_pageset[cpu])
1845 kfree(pset);
1846 zone_pcp(zone, cpu) = NULL;
1847 }
1848 }
1849
1850 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1851 unsigned long action,
1852 void *hcpu)
1853 {
1854 int cpu = (long)hcpu;
1855 int ret = NOTIFY_OK;
1856
1857 switch (action) {
1858 case CPU_UP_PREPARE:
1859 if (process_zones(cpu))
1860 ret = NOTIFY_BAD;
1861 break;
1862 case CPU_UP_CANCELED:
1863 case CPU_DEAD:
1864 free_zone_pagesets(cpu);
1865 break;
1866 default:
1867 break;
1868 }
1869 return ret;
1870 }
1871
1872 static struct notifier_block __cpuinitdata pageset_notifier =
1873 { &pageset_cpuup_callback, NULL, 0 };
1874
1875 void __init setup_per_cpu_pageset(void)
1876 {
1877 int err;
1878
1879 /* Initialize per_cpu_pageset for cpu 0.
1880 * A cpuup callback will do this for every cpu
1881 * as it comes online
1882 */
1883 err = process_zones(smp_processor_id());
1884 BUG_ON(err);
1885 register_cpu_notifier(&pageset_notifier);
1886 }
1887
1888 #endif
1889
1890 static __meminit
1891 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1892 {
1893 int i;
1894 struct pglist_data *pgdat = zone->zone_pgdat;
1895 size_t alloc_size;
1896
1897 /*
1898 * The per-page waitqueue mechanism uses hashed waitqueues
1899 * per zone.
1900 */
1901 zone->wait_table_hash_nr_entries =
1902 wait_table_hash_nr_entries(zone_size_pages);
1903 zone->wait_table_bits =
1904 wait_table_bits(zone->wait_table_hash_nr_entries);
1905 alloc_size = zone->wait_table_hash_nr_entries
1906 * sizeof(wait_queue_head_t);
1907
1908 if (system_state == SYSTEM_BOOTING) {
1909 zone->wait_table = (wait_queue_head_t *)
1910 alloc_bootmem_node(pgdat, alloc_size);
1911 } else {
1912 /*
1913 * This case means that a zone whose size was 0 gets new memory
1914 * via memory hot-add.
1915 * But it may be the case that a new node was hot-added. In
1916 * this case vmalloc() will not be able to use this new node's
1917 * memory - this wait_table must be initialized to use this new
1918 * node itself as well.
1919 * To use this new node's memory, further consideration will be
1920 * necessary.
1921 */
1922 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1923 }
1924 if (!zone->wait_table)
1925 return -ENOMEM;
1926
1927 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1928 init_waitqueue_head(zone->wait_table + i);
1929
1930 return 0;
1931 }
1932
1933 static __meminit void zone_pcp_init(struct zone *zone)
1934 {
1935 int cpu;
1936 unsigned long batch = zone_batchsize(zone);
1937
1938 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1939 #ifdef CONFIG_NUMA
1940 /* Early boot. Slab allocator not functional yet */
1941 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1942 setup_pageset(&boot_pageset[cpu],0);
1943 #else
1944 setup_pageset(zone_pcp(zone,cpu), batch);
1945 #endif
1946 }
1947 if (zone->present_pages)
1948 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1949 zone->name, zone->present_pages, batch);
1950 }
1951
1952 __meminit int init_currently_empty_zone(struct zone *zone,
1953 unsigned long zone_start_pfn,
1954 unsigned long size)
1955 {
1956 struct pglist_data *pgdat = zone->zone_pgdat;
1957 int ret;
1958 ret = zone_wait_table_init(zone, size);
1959 if (ret)
1960 return ret;
1961 pgdat->nr_zones = zone_idx(zone) + 1;
1962
1963 zone->zone_start_pfn = zone_start_pfn;
1964
1965 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1966
1967 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1968
1969 return 0;
1970 }
1971
1972 /*
1973 * Set up the zone data structures:
1974 * - mark all pages reserved
1975 * - mark all memory queues empty
1976 * - clear the memory bitmaps
1977 */
1978 static void __meminit free_area_init_core(struct pglist_data *pgdat,
1979 unsigned long *zones_size, unsigned long *zholes_size)
1980 {
1981 enum zone_type j;
1982 int nid = pgdat->node_id;
1983 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1984 int ret;
1985
1986 pgdat_resize_init(pgdat);
1987 pgdat->nr_zones = 0;
1988 init_waitqueue_head(&pgdat->kswapd_wait);
1989 pgdat->kswapd_max_order = 0;
1990
1991 for (j = 0; j < MAX_NR_ZONES; j++) {
1992 struct zone *zone = pgdat->node_zones + j;
1993 unsigned long size, realsize;
1994
1995 realsize = size = zones_size[j];
1996 if (zholes_size)
1997 realsize -= zholes_size[j];
1998
1999 if (!is_highmem_idx(j))
2000 nr_kernel_pages += realsize;
2001 nr_all_pages += realsize;
2002
2003 zone->spanned_pages = size;
2004 zone->present_pages = realsize;
2005 #ifdef CONFIG_NUMA
2006 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2007 / 100;
2008 #endif
2009 zone->name = zone_names[j];
2010 spin_lock_init(&zone->lock);
2011 spin_lock_init(&zone->lru_lock);
2012 zone_seqlock_init(zone);
2013 zone->zone_pgdat = pgdat;
2014 zone->free_pages = 0;
2015
2016 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2017
2018 zone_pcp_init(zone);
2019 INIT_LIST_HEAD(&zone->active_list);
2020 INIT_LIST_HEAD(&zone->inactive_list);
2021 zone->nr_scan_active = 0;
2022 zone->nr_scan_inactive = 0;
2023 zone->nr_active = 0;
2024 zone->nr_inactive = 0;
2025 zap_zone_vm_stats(zone);
2026 atomic_set(&zone->reclaim_in_progress, 0);
2027 if (!size)
2028 continue;
2029
2030 zonetable_add(zone, nid, j, zone_start_pfn, size);
2031 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2032 BUG_ON(ret);
2033 zone_start_pfn += size;
2034 }
2035 }
2036
2037 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2038 {
2039 /* Skip empty nodes */
2040 if (!pgdat->node_spanned_pages)
2041 return;
2042
2043 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2044 /* ia64 gets its own node_mem_map, before this, without bootmem */
2045 if (!pgdat->node_mem_map) {
2046 unsigned long size, start, end;
2047 struct page *map;
2048
2049 /*
2050 * The zone's endpoints aren't required to be MAX_ORDER
2051 * aligned but the node_mem_map endpoints must be in order
2052 * for the buddy allocator to function correctly.
2053 */
2054 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2055 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2056 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2057 size = (end - start) * sizeof(struct page);
2058 map = alloc_remap(pgdat->node_id, size);
2059 if (!map)
2060 map = alloc_bootmem_node(pgdat, size);
2061 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2062 }
2063 #ifdef CONFIG_FLATMEM
2064 /*
2065 * With no DISCONTIG, the global mem_map is just set as node 0's
2066 */
2067 if (pgdat == NODE_DATA(0))
2068 mem_map = NODE_DATA(0)->node_mem_map;
2069 #endif
2070 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2071 }
2072
2073 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2074 unsigned long *zones_size, unsigned long node_start_pfn,
2075 unsigned long *zholes_size)
2076 {
2077 pgdat->node_id = nid;
2078 pgdat->node_start_pfn = node_start_pfn;
2079 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2080
2081 alloc_node_mem_map(pgdat);
2082
2083 free_area_init_core(pgdat, zones_size, zholes_size);
2084 }
2085
2086 #ifndef CONFIG_NEED_MULTIPLE_NODES
2087 static bootmem_data_t contig_bootmem_data;
2088 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2089
2090 EXPORT_SYMBOL(contig_page_data);
2091 #endif
2092
2093 void __init free_area_init(unsigned long *zones_size)
2094 {
2095 free_area_init_node(0, NODE_DATA(0), zones_size,
2096 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2097 }
2098
2099 #ifdef CONFIG_HOTPLUG_CPU
2100 static int page_alloc_cpu_notify(struct notifier_block *self,
2101 unsigned long action, void *hcpu)
2102 {
2103 int cpu = (unsigned long)hcpu;
2104
2105 if (action == CPU_DEAD) {
2106 local_irq_disable();
2107 __drain_pages(cpu);
2108 vm_events_fold_cpu(cpu);
2109 local_irq_enable();
2110 refresh_cpu_vm_stats(cpu);
2111 }
2112 return NOTIFY_OK;
2113 }
2114 #endif /* CONFIG_HOTPLUG_CPU */
2115
2116 void __init page_alloc_init(void)
2117 {
2118 hotcpu_notifier(page_alloc_cpu_notify, 0);
2119 }
2120
2121 /*
2122 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2123 * or min_free_kbytes changes.
2124 */
2125 static void calculate_totalreserve_pages(void)
2126 {
2127 struct pglist_data *pgdat;
2128 unsigned long reserve_pages = 0;
2129 int i, j;
2130
2131 for_each_online_pgdat(pgdat) {
2132 for (i = 0; i < MAX_NR_ZONES; i++) {
2133 struct zone *zone = pgdat->node_zones + i;
2134 unsigned long max = 0;
2135
2136 /* Find valid and maximum lowmem_reserve in the zone */
2137 for (j = i; j < MAX_NR_ZONES; j++) {
2138 if (zone->lowmem_reserve[j] > max)
2139 max = zone->lowmem_reserve[j];
2140 }
2141
2142 /* we treat pages_high as reserved pages. */
2143 max += zone->pages_high;
2144
2145 if (max > zone->present_pages)
2146 max = zone->present_pages;
2147 reserve_pages += max;
2148 }
2149 }
2150 totalreserve_pages = reserve_pages;
2151 }
2152
2153 /*
2154 * setup_per_zone_lowmem_reserve - called whenever
2155 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2156 * has a correct pages reserved value, so an adequate number of
2157 * pages are left in the zone after a successful __alloc_pages().
2158 */
2159 static void setup_per_zone_lowmem_reserve(void)
2160 {
2161 struct pglist_data *pgdat;
2162 int j, idx;
2163
2164 for_each_online_pgdat(pgdat) {
2165 for (j = 0; j < MAX_NR_ZONES; j++) {
2166 struct zone *zone = pgdat->node_zones + j;
2167 unsigned long present_pages = zone->present_pages;
2168
2169 zone->lowmem_reserve[j] = 0;
2170
2171 for (idx = j-1; idx >= 0; idx--) {
2172 struct zone *lower_zone;
2173
2174 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2175 sysctl_lowmem_reserve_ratio[idx] = 1;
2176
2177 lower_zone = pgdat->node_zones + idx;
2178 lower_zone->lowmem_reserve[j] = present_pages /
2179 sysctl_lowmem_reserve_ratio[idx];
2180 present_pages += lower_zone->present_pages;
2181 }
2182 }
2183 }
2184
2185 /* update totalreserve_pages */
2186 calculate_totalreserve_pages();
2187 }
2188
2189 /*
2190 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2191 * that the pages_{min,low,high} values for each zone are set correctly
2192 * with respect to min_free_kbytes.
2193 */
2194 void setup_per_zone_pages_min(void)
2195 {
2196 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2197 unsigned long lowmem_pages = 0;
2198 struct zone *zone;
2199 unsigned long flags;
2200
2201 /* Calculate total number of !ZONE_HIGHMEM pages */
2202 for_each_zone(zone) {
2203 if (!is_highmem(zone))
2204 lowmem_pages += zone->present_pages;
2205 }
2206
2207 for_each_zone(zone) {
2208 u64 tmp;
2209
2210 spin_lock_irqsave(&zone->lru_lock, flags);
2211 tmp = (u64)pages_min * zone->present_pages;
2212 do_div(tmp, lowmem_pages);
2213 if (is_highmem(zone)) {
2214 /*
2215 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2216 * need highmem pages, so cap pages_min to a small
2217 * value here.
2218 *
2219 * The (pages_high-pages_low) and (pages_low-pages_min)
2220 * deltas controls asynch page reclaim, and so should
2221 * not be capped for highmem.
2222 */
2223 int min_pages;
2224
2225 min_pages = zone->present_pages / 1024;
2226 if (min_pages < SWAP_CLUSTER_MAX)
2227 min_pages = SWAP_CLUSTER_MAX;
2228 if (min_pages > 128)
2229 min_pages = 128;
2230 zone->pages_min = min_pages;
2231 } else {
2232 /*
2233 * If it's a lowmem zone, reserve a number of pages
2234 * proportionate to the zone's size.
2235 */
2236 zone->pages_min = tmp;
2237 }
2238
2239 zone->pages_low = zone->pages_min + (tmp >> 2);
2240 zone->pages_high = zone->pages_min + (tmp >> 1);
2241 spin_unlock_irqrestore(&zone->lru_lock, flags);
2242 }
2243
2244 /* update totalreserve_pages */
2245 calculate_totalreserve_pages();
2246 }
2247
2248 /*
2249 * Initialise min_free_kbytes.
2250 *
2251 * For small machines we want it small (128k min). For large machines
2252 * we want it large (64MB max). But it is not linear, because network
2253 * bandwidth does not increase linearly with machine size. We use
2254 *
2255 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2256 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2257 *
2258 * which yields
2259 *
2260 * 16MB: 512k
2261 * 32MB: 724k
2262 * 64MB: 1024k
2263 * 128MB: 1448k
2264 * 256MB: 2048k
2265 * 512MB: 2896k
2266 * 1024MB: 4096k
2267 * 2048MB: 5792k
2268 * 4096MB: 8192k
2269 * 8192MB: 11584k
2270 * 16384MB: 16384k
2271 */
2272 static int __init init_per_zone_pages_min(void)
2273 {
2274 unsigned long lowmem_kbytes;
2275
2276 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2277
2278 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2279 if (min_free_kbytes < 128)
2280 min_free_kbytes = 128;
2281 if (min_free_kbytes > 65536)
2282 min_free_kbytes = 65536;
2283 setup_per_zone_pages_min();
2284 setup_per_zone_lowmem_reserve();
2285 return 0;
2286 }
2287 module_init(init_per_zone_pages_min)
2288
2289 /*
2290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2291 * that we can call two helper functions whenever min_free_kbytes
2292 * changes.
2293 */
2294 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2295 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2296 {
2297 proc_dointvec(table, write, file, buffer, length, ppos);
2298 setup_per_zone_pages_min();
2299 return 0;
2300 }
2301
2302 #ifdef CONFIG_NUMA
2303 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2304 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2305 {
2306 struct zone *zone;
2307 int rc;
2308
2309 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2310 if (rc)
2311 return rc;
2312
2313 for_each_zone(zone)
2314 zone->min_unmapped_ratio = (zone->present_pages *
2315 sysctl_min_unmapped_ratio) / 100;
2316 return 0;
2317 }
2318 #endif
2319
2320 /*
2321 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2322 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2323 * whenever sysctl_lowmem_reserve_ratio changes.
2324 *
2325 * The reserve ratio obviously has absolutely no relation with the
2326 * pages_min watermarks. The lowmem reserve ratio can only make sense
2327 * if in function of the boot time zone sizes.
2328 */
2329 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2330 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2331 {
2332 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2333 setup_per_zone_lowmem_reserve();
2334 return 0;
2335 }
2336
2337 /*
2338 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2339 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2340 * can have before it gets flushed back to buddy allocator.
2341 */
2342
2343 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2344 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2345 {
2346 struct zone *zone;
2347 unsigned int cpu;
2348 int ret;
2349
2350 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2351 if (!write || (ret == -EINVAL))
2352 return ret;
2353 for_each_zone(zone) {
2354 for_each_online_cpu(cpu) {
2355 unsigned long high;
2356 high = zone->present_pages / percpu_pagelist_fraction;
2357 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2358 }
2359 }
2360 return 0;
2361 }
2362
2363 int hashdist = HASHDIST_DEFAULT;
2364
2365 #ifdef CONFIG_NUMA
2366 static int __init set_hashdist(char *str)
2367 {
2368 if (!str)
2369 return 0;
2370 hashdist = simple_strtoul(str, &str, 0);
2371 return 1;
2372 }
2373 __setup("hashdist=", set_hashdist);
2374 #endif
2375
2376 /*
2377 * allocate a large system hash table from bootmem
2378 * - it is assumed that the hash table must contain an exact power-of-2
2379 * quantity of entries
2380 * - limit is the number of hash buckets, not the total allocation size
2381 */
2382 void *__init alloc_large_system_hash(const char *tablename,
2383 unsigned long bucketsize,
2384 unsigned long numentries,
2385 int scale,
2386 int flags,
2387 unsigned int *_hash_shift,
2388 unsigned int *_hash_mask,
2389 unsigned long limit)
2390 {
2391 unsigned long long max = limit;
2392 unsigned long log2qty, size;
2393 void *table = NULL;
2394
2395 /* allow the kernel cmdline to have a say */
2396 if (!numentries) {
2397 /* round applicable memory size up to nearest megabyte */
2398 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2399 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2400 numentries >>= 20 - PAGE_SHIFT;
2401 numentries <<= 20 - PAGE_SHIFT;
2402
2403 /* limit to 1 bucket per 2^scale bytes of low memory */
2404 if (scale > PAGE_SHIFT)
2405 numentries >>= (scale - PAGE_SHIFT);
2406 else
2407 numentries <<= (PAGE_SHIFT - scale);
2408 }
2409 numentries = roundup_pow_of_two(numentries);
2410
2411 /* limit allocation size to 1/16 total memory by default */
2412 if (max == 0) {
2413 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2414 do_div(max, bucketsize);
2415 }
2416
2417 if (numentries > max)
2418 numentries = max;
2419
2420 log2qty = long_log2(numentries);
2421
2422 do {
2423 size = bucketsize << log2qty;
2424 if (flags & HASH_EARLY)
2425 table = alloc_bootmem(size);
2426 else if (hashdist)
2427 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2428 else {
2429 unsigned long order;
2430 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2431 ;
2432 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2433 }
2434 } while (!table && size > PAGE_SIZE && --log2qty);
2435
2436 if (!table)
2437 panic("Failed to allocate %s hash table\n", tablename);
2438
2439 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2440 tablename,
2441 (1U << log2qty),
2442 long_log2(size) - PAGE_SHIFT,
2443 size);
2444
2445 if (_hash_shift)
2446 *_hash_shift = log2qty;
2447 if (_hash_mask)
2448 *_hash_mask = (1 << log2qty) - 1;
2449
2450 return table;
2451 }
2452
2453 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2454 struct page *pfn_to_page(unsigned long pfn)
2455 {
2456 return __pfn_to_page(pfn);
2457 }
2458 unsigned long page_to_pfn(struct page *page)
2459 {
2460 return __page_to_pfn(page);
2461 }
2462 EXPORT_SYMBOL(pfn_to_page);
2463 EXPORT_SYMBOL(page_to_pfn);
2464 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */