]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_cgroup.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[mirror_ubuntu-zesty-kernel.git] / mm / page_cgroup.c
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
13
14 static unsigned long total_usage;
15
16 #if !defined(CONFIG_SPARSEMEM)
17
18
19 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
20 {
21 pgdat->node_page_cgroup = NULL;
22 }
23
24 struct page_cgroup *lookup_page_cgroup(struct page *page)
25 {
26 unsigned long pfn = page_to_pfn(page);
27 unsigned long offset;
28 struct page_cgroup *base;
29
30 base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
31 #ifdef CONFIG_DEBUG_VM
32 /*
33 * The sanity checks the page allocator does upon freeing a
34 * page can reach here before the page_cgroup arrays are
35 * allocated when feeding a range of pages to the allocator
36 * for the first time during bootup or memory hotplug.
37 */
38 if (unlikely(!base))
39 return NULL;
40 #endif
41 offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42 return base + offset;
43 }
44
45 static int __init alloc_node_page_cgroup(int nid)
46 {
47 struct page_cgroup *base;
48 unsigned long table_size;
49 unsigned long nr_pages;
50
51 nr_pages = NODE_DATA(nid)->node_spanned_pages;
52 if (!nr_pages)
53 return 0;
54
55 table_size = sizeof(struct page_cgroup) * nr_pages;
56
57 base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
58 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
59 if (!base)
60 return -ENOMEM;
61 NODE_DATA(nid)->node_page_cgroup = base;
62 total_usage += table_size;
63 return 0;
64 }
65
66 void __init page_cgroup_init_flatmem(void)
67 {
68
69 int nid, fail;
70
71 if (mem_cgroup_disabled())
72 return;
73
74 for_each_online_node(nid) {
75 fail = alloc_node_page_cgroup(nid);
76 if (fail)
77 goto fail;
78 }
79 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
80 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
81 " don't want memory cgroups\n");
82 return;
83 fail:
84 printk(KERN_CRIT "allocation of page_cgroup failed.\n");
85 printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
86 panic("Out of memory");
87 }
88
89 #else /* CONFIG_FLAT_NODE_MEM_MAP */
90
91 struct page_cgroup *lookup_page_cgroup(struct page *page)
92 {
93 unsigned long pfn = page_to_pfn(page);
94 struct mem_section *section = __pfn_to_section(pfn);
95 #ifdef CONFIG_DEBUG_VM
96 /*
97 * The sanity checks the page allocator does upon freeing a
98 * page can reach here before the page_cgroup arrays are
99 * allocated when feeding a range of pages to the allocator
100 * for the first time during bootup or memory hotplug.
101 */
102 if (!section->page_cgroup)
103 return NULL;
104 #endif
105 return section->page_cgroup + pfn;
106 }
107
108 static void *__meminit alloc_page_cgroup(size_t size, int nid)
109 {
110 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
111 void *addr = NULL;
112
113 addr = alloc_pages_exact_nid(nid, size, flags);
114 if (addr) {
115 kmemleak_alloc(addr, size, 1, flags);
116 return addr;
117 }
118
119 if (node_state(nid, N_HIGH_MEMORY))
120 addr = vzalloc_node(size, nid);
121 else
122 addr = vzalloc(size);
123
124 return addr;
125 }
126
127 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
128 {
129 struct mem_section *section;
130 struct page_cgroup *base;
131 unsigned long table_size;
132
133 section = __pfn_to_section(pfn);
134
135 if (section->page_cgroup)
136 return 0;
137
138 table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
139 base = alloc_page_cgroup(table_size, nid);
140
141 /*
142 * The value stored in section->page_cgroup is (base - pfn)
143 * and it does not point to the memory block allocated above,
144 * causing kmemleak false positives.
145 */
146 kmemleak_not_leak(base);
147
148 if (!base) {
149 printk(KERN_ERR "page cgroup allocation failure\n");
150 return -ENOMEM;
151 }
152
153 /*
154 * The passed "pfn" may not be aligned to SECTION. For the calculation
155 * we need to apply a mask.
156 */
157 pfn &= PAGE_SECTION_MASK;
158 section->page_cgroup = base - pfn;
159 total_usage += table_size;
160 return 0;
161 }
162 #ifdef CONFIG_MEMORY_HOTPLUG
163 static void free_page_cgroup(void *addr)
164 {
165 if (is_vmalloc_addr(addr)) {
166 vfree(addr);
167 } else {
168 struct page *page = virt_to_page(addr);
169 size_t table_size =
170 sizeof(struct page_cgroup) * PAGES_PER_SECTION;
171
172 BUG_ON(PageReserved(page));
173 free_pages_exact(addr, table_size);
174 }
175 }
176
177 void __free_page_cgroup(unsigned long pfn)
178 {
179 struct mem_section *ms;
180 struct page_cgroup *base;
181
182 ms = __pfn_to_section(pfn);
183 if (!ms || !ms->page_cgroup)
184 return;
185 base = ms->page_cgroup + pfn;
186 free_page_cgroup(base);
187 ms->page_cgroup = NULL;
188 }
189
190 int __meminit online_page_cgroup(unsigned long start_pfn,
191 unsigned long nr_pages,
192 int nid)
193 {
194 unsigned long start, end, pfn;
195 int fail = 0;
196
197 start = SECTION_ALIGN_DOWN(start_pfn);
198 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
199
200 if (nid == -1) {
201 /*
202 * In this case, "nid" already exists and contains valid memory.
203 * "start_pfn" passed to us is a pfn which is an arg for
204 * online__pages(), and start_pfn should exist.
205 */
206 nid = pfn_to_nid(start_pfn);
207 VM_BUG_ON(!node_state(nid, N_ONLINE));
208 }
209
210 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
211 if (!pfn_present(pfn))
212 continue;
213 fail = init_section_page_cgroup(pfn, nid);
214 }
215 if (!fail)
216 return 0;
217
218 /* rollback */
219 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
220 __free_page_cgroup(pfn);
221
222 return -ENOMEM;
223 }
224
225 int __meminit offline_page_cgroup(unsigned long start_pfn,
226 unsigned long nr_pages, int nid)
227 {
228 unsigned long start, end, pfn;
229
230 start = SECTION_ALIGN_DOWN(start_pfn);
231 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
232
233 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
234 __free_page_cgroup(pfn);
235 return 0;
236
237 }
238
239 static int __meminit page_cgroup_callback(struct notifier_block *self,
240 unsigned long action, void *arg)
241 {
242 struct memory_notify *mn = arg;
243 int ret = 0;
244 switch (action) {
245 case MEM_GOING_ONLINE:
246 ret = online_page_cgroup(mn->start_pfn,
247 mn->nr_pages, mn->status_change_nid);
248 break;
249 case MEM_OFFLINE:
250 offline_page_cgroup(mn->start_pfn,
251 mn->nr_pages, mn->status_change_nid);
252 break;
253 case MEM_CANCEL_ONLINE:
254 case MEM_GOING_OFFLINE:
255 break;
256 case MEM_ONLINE:
257 case MEM_CANCEL_OFFLINE:
258 break;
259 }
260
261 return notifier_from_errno(ret);
262 }
263
264 #endif
265
266 void __init page_cgroup_init(void)
267 {
268 unsigned long pfn;
269 int nid;
270
271 if (mem_cgroup_disabled())
272 return;
273
274 for_each_node_state(nid, N_HIGH_MEMORY) {
275 unsigned long start_pfn, end_pfn;
276
277 start_pfn = node_start_pfn(nid);
278 end_pfn = node_end_pfn(nid);
279 /*
280 * start_pfn and end_pfn may not be aligned to SECTION and the
281 * page->flags of out of node pages are not initialized. So we
282 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
283 */
284 for (pfn = start_pfn;
285 pfn < end_pfn;
286 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
287
288 if (!pfn_valid(pfn))
289 continue;
290 /*
291 * Nodes's pfns can be overlapping.
292 * We know some arch can have a nodes layout such as
293 * -------------pfn-------------->
294 * N0 | N1 | N2 | N0 | N1 | N2|....
295 */
296 if (pfn_to_nid(pfn) != nid)
297 continue;
298 if (init_section_page_cgroup(pfn, nid))
299 goto oom;
300 }
301 }
302 hotplug_memory_notifier(page_cgroup_callback, 0);
303 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
304 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
305 "don't want memory cgroups\n");
306 return;
307 oom:
308 printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
309 panic("Out of memory");
310 }
311
312 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
313 {
314 return;
315 }
316
317 #endif
318
319
320 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
321
322 static DEFINE_MUTEX(swap_cgroup_mutex);
323 struct swap_cgroup_ctrl {
324 struct page **map;
325 unsigned long length;
326 spinlock_t lock;
327 };
328
329 static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
330
331 struct swap_cgroup {
332 unsigned short id;
333 };
334 #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup))
335
336 /*
337 * SwapCgroup implements "lookup" and "exchange" operations.
338 * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
339 * against SwapCache. At swap_free(), this is accessed directly from swap.
340 *
341 * This means,
342 * - we have no race in "exchange" when we're accessed via SwapCache because
343 * SwapCache(and its swp_entry) is under lock.
344 * - When called via swap_free(), there is no user of this entry and no race.
345 * Then, we don't need lock around "exchange".
346 *
347 * TODO: we can push these buffers out to HIGHMEM.
348 */
349
350 /*
351 * allocate buffer for swap_cgroup.
352 */
353 static int swap_cgroup_prepare(int type)
354 {
355 struct page *page;
356 struct swap_cgroup_ctrl *ctrl;
357 unsigned long idx, max;
358
359 ctrl = &swap_cgroup_ctrl[type];
360
361 for (idx = 0; idx < ctrl->length; idx++) {
362 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
363 if (!page)
364 goto not_enough_page;
365 ctrl->map[idx] = page;
366 }
367 return 0;
368 not_enough_page:
369 max = idx;
370 for (idx = 0; idx < max; idx++)
371 __free_page(ctrl->map[idx]);
372
373 return -ENOMEM;
374 }
375
376 static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
377 struct swap_cgroup_ctrl **ctrlp)
378 {
379 pgoff_t offset = swp_offset(ent);
380 struct swap_cgroup_ctrl *ctrl;
381 struct page *mappage;
382 struct swap_cgroup *sc;
383
384 ctrl = &swap_cgroup_ctrl[swp_type(ent)];
385 if (ctrlp)
386 *ctrlp = ctrl;
387
388 mappage = ctrl->map[offset / SC_PER_PAGE];
389 sc = page_address(mappage);
390 return sc + offset % SC_PER_PAGE;
391 }
392
393 /**
394 * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
395 * @end: swap entry to be cmpxchged
396 * @old: old id
397 * @new: new id
398 *
399 * Returns old id at success, 0 at failure.
400 * (There is no mem_cgroup using 0 as its id)
401 */
402 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
403 unsigned short old, unsigned short new)
404 {
405 struct swap_cgroup_ctrl *ctrl;
406 struct swap_cgroup *sc;
407 unsigned long flags;
408 unsigned short retval;
409
410 sc = lookup_swap_cgroup(ent, &ctrl);
411
412 spin_lock_irqsave(&ctrl->lock, flags);
413 retval = sc->id;
414 if (retval == old)
415 sc->id = new;
416 else
417 retval = 0;
418 spin_unlock_irqrestore(&ctrl->lock, flags);
419 return retval;
420 }
421
422 /**
423 * swap_cgroup_record - record mem_cgroup for this swp_entry.
424 * @ent: swap entry to be recorded into
425 * @mem: mem_cgroup to be recorded
426 *
427 * Returns old value at success, 0 at failure.
428 * (Of course, old value can be 0.)
429 */
430 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
431 {
432 struct swap_cgroup_ctrl *ctrl;
433 struct swap_cgroup *sc;
434 unsigned short old;
435 unsigned long flags;
436
437 sc = lookup_swap_cgroup(ent, &ctrl);
438
439 spin_lock_irqsave(&ctrl->lock, flags);
440 old = sc->id;
441 sc->id = id;
442 spin_unlock_irqrestore(&ctrl->lock, flags);
443
444 return old;
445 }
446
447 /**
448 * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
449 * @ent: swap entry to be looked up.
450 *
451 * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
452 */
453 unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
454 {
455 return lookup_swap_cgroup(ent, NULL)->id;
456 }
457
458 int swap_cgroup_swapon(int type, unsigned long max_pages)
459 {
460 void *array;
461 unsigned long array_size;
462 unsigned long length;
463 struct swap_cgroup_ctrl *ctrl;
464
465 if (!do_swap_account)
466 return 0;
467
468 length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
469 array_size = length * sizeof(void *);
470
471 array = vzalloc(array_size);
472 if (!array)
473 goto nomem;
474
475 ctrl = &swap_cgroup_ctrl[type];
476 mutex_lock(&swap_cgroup_mutex);
477 ctrl->length = length;
478 ctrl->map = array;
479 spin_lock_init(&ctrl->lock);
480 if (swap_cgroup_prepare(type)) {
481 /* memory shortage */
482 ctrl->map = NULL;
483 ctrl->length = 0;
484 mutex_unlock(&swap_cgroup_mutex);
485 vfree(array);
486 goto nomem;
487 }
488 mutex_unlock(&swap_cgroup_mutex);
489
490 return 0;
491 nomem:
492 printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
493 printk(KERN_INFO
494 "swap_cgroup can be disabled by swapaccount=0 boot option\n");
495 return -ENOMEM;
496 }
497
498 void swap_cgroup_swapoff(int type)
499 {
500 struct page **map;
501 unsigned long i, length;
502 struct swap_cgroup_ctrl *ctrl;
503
504 if (!do_swap_account)
505 return;
506
507 mutex_lock(&swap_cgroup_mutex);
508 ctrl = &swap_cgroup_ctrl[type];
509 map = ctrl->map;
510 length = ctrl->length;
511 ctrl->map = NULL;
512 ctrl->length = 0;
513 mutex_unlock(&swap_cgroup_mutex);
514
515 if (map) {
516 for (i = 0; i < length; i++) {
517 struct page *page = map[i];
518 if (page)
519 __free_page(page);
520 }
521 vfree(map);
522 }
523 }
524
525 #endif