]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_cgroup.c
Merge tag 'ftracetest-3.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / mm / page_cgroup.c
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
13
14 static unsigned long total_usage;
15
16 #if !defined(CONFIG_SPARSEMEM)
17
18
19 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
20 {
21 pgdat->node_page_cgroup = NULL;
22 }
23
24 struct page_cgroup *lookup_page_cgroup(struct page *page)
25 {
26 unsigned long pfn = page_to_pfn(page);
27 unsigned long offset;
28 struct page_cgroup *base;
29
30 base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
31 #ifdef CONFIG_DEBUG_VM
32 /*
33 * The sanity checks the page allocator does upon freeing a
34 * page can reach here before the page_cgroup arrays are
35 * allocated when feeding a range of pages to the allocator
36 * for the first time during bootup or memory hotplug.
37 */
38 if (unlikely(!base))
39 return NULL;
40 #endif
41 offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42 return base + offset;
43 }
44
45 static int __init alloc_node_page_cgroup(int nid)
46 {
47 struct page_cgroup *base;
48 unsigned long table_size;
49 unsigned long nr_pages;
50
51 nr_pages = NODE_DATA(nid)->node_spanned_pages;
52 if (!nr_pages)
53 return 0;
54
55 table_size = sizeof(struct page_cgroup) * nr_pages;
56
57 base = memblock_virt_alloc_try_nid_nopanic(
58 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
59 BOOTMEM_ALLOC_ACCESSIBLE, nid);
60 if (!base)
61 return -ENOMEM;
62 NODE_DATA(nid)->node_page_cgroup = base;
63 total_usage += table_size;
64 return 0;
65 }
66
67 void __init page_cgroup_init_flatmem(void)
68 {
69
70 int nid, fail;
71
72 if (mem_cgroup_disabled())
73 return;
74
75 for_each_online_node(nid) {
76 fail = alloc_node_page_cgroup(nid);
77 if (fail)
78 goto fail;
79 }
80 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
81 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
82 " don't want memory cgroups\n");
83 return;
84 fail:
85 printk(KERN_CRIT "allocation of page_cgroup failed.\n");
86 printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
87 panic("Out of memory");
88 }
89
90 #else /* CONFIG_FLAT_NODE_MEM_MAP */
91
92 struct page_cgroup *lookup_page_cgroup(struct page *page)
93 {
94 unsigned long pfn = page_to_pfn(page);
95 struct mem_section *section = __pfn_to_section(pfn);
96 #ifdef CONFIG_DEBUG_VM
97 /*
98 * The sanity checks the page allocator does upon freeing a
99 * page can reach here before the page_cgroup arrays are
100 * allocated when feeding a range of pages to the allocator
101 * for the first time during bootup or memory hotplug.
102 */
103 if (!section->page_cgroup)
104 return NULL;
105 #endif
106 return section->page_cgroup + pfn;
107 }
108
109 static void *__meminit alloc_page_cgroup(size_t size, int nid)
110 {
111 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
112 void *addr = NULL;
113
114 addr = alloc_pages_exact_nid(nid, size, flags);
115 if (addr) {
116 kmemleak_alloc(addr, size, 1, flags);
117 return addr;
118 }
119
120 if (node_state(nid, N_HIGH_MEMORY))
121 addr = vzalloc_node(size, nid);
122 else
123 addr = vzalloc(size);
124
125 return addr;
126 }
127
128 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
129 {
130 struct mem_section *section;
131 struct page_cgroup *base;
132 unsigned long table_size;
133
134 section = __pfn_to_section(pfn);
135
136 if (section->page_cgroup)
137 return 0;
138
139 table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
140 base = alloc_page_cgroup(table_size, nid);
141
142 /*
143 * The value stored in section->page_cgroup is (base - pfn)
144 * and it does not point to the memory block allocated above,
145 * causing kmemleak false positives.
146 */
147 kmemleak_not_leak(base);
148
149 if (!base) {
150 printk(KERN_ERR "page cgroup allocation failure\n");
151 return -ENOMEM;
152 }
153
154 /*
155 * The passed "pfn" may not be aligned to SECTION. For the calculation
156 * we need to apply a mask.
157 */
158 pfn &= PAGE_SECTION_MASK;
159 section->page_cgroup = base - pfn;
160 total_usage += table_size;
161 return 0;
162 }
163 #ifdef CONFIG_MEMORY_HOTPLUG
164 static void free_page_cgroup(void *addr)
165 {
166 if (is_vmalloc_addr(addr)) {
167 vfree(addr);
168 } else {
169 struct page *page = virt_to_page(addr);
170 size_t table_size =
171 sizeof(struct page_cgroup) * PAGES_PER_SECTION;
172
173 BUG_ON(PageReserved(page));
174 kmemleak_free(addr);
175 free_pages_exact(addr, table_size);
176 }
177 }
178
179 static void __free_page_cgroup(unsigned long pfn)
180 {
181 struct mem_section *ms;
182 struct page_cgroup *base;
183
184 ms = __pfn_to_section(pfn);
185 if (!ms || !ms->page_cgroup)
186 return;
187 base = ms->page_cgroup + pfn;
188 free_page_cgroup(base);
189 ms->page_cgroup = NULL;
190 }
191
192 static int __meminit online_page_cgroup(unsigned long start_pfn,
193 unsigned long nr_pages,
194 int nid)
195 {
196 unsigned long start, end, pfn;
197 int fail = 0;
198
199 start = SECTION_ALIGN_DOWN(start_pfn);
200 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
201
202 if (nid == -1) {
203 /*
204 * In this case, "nid" already exists and contains valid memory.
205 * "start_pfn" passed to us is a pfn which is an arg for
206 * online__pages(), and start_pfn should exist.
207 */
208 nid = pfn_to_nid(start_pfn);
209 VM_BUG_ON(!node_state(nid, N_ONLINE));
210 }
211
212 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
213 if (!pfn_present(pfn))
214 continue;
215 fail = init_section_page_cgroup(pfn, nid);
216 }
217 if (!fail)
218 return 0;
219
220 /* rollback */
221 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
222 __free_page_cgroup(pfn);
223
224 return -ENOMEM;
225 }
226
227 static int __meminit offline_page_cgroup(unsigned long start_pfn,
228 unsigned long nr_pages, int nid)
229 {
230 unsigned long start, end, pfn;
231
232 start = SECTION_ALIGN_DOWN(start_pfn);
233 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
234
235 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
236 __free_page_cgroup(pfn);
237 return 0;
238
239 }
240
241 static int __meminit page_cgroup_callback(struct notifier_block *self,
242 unsigned long action, void *arg)
243 {
244 struct memory_notify *mn = arg;
245 int ret = 0;
246 switch (action) {
247 case MEM_GOING_ONLINE:
248 ret = online_page_cgroup(mn->start_pfn,
249 mn->nr_pages, mn->status_change_nid);
250 break;
251 case MEM_OFFLINE:
252 offline_page_cgroup(mn->start_pfn,
253 mn->nr_pages, mn->status_change_nid);
254 break;
255 case MEM_CANCEL_ONLINE:
256 offline_page_cgroup(mn->start_pfn,
257 mn->nr_pages, mn->status_change_nid);
258 break;
259 case MEM_GOING_OFFLINE:
260 break;
261 case MEM_ONLINE:
262 case MEM_CANCEL_OFFLINE:
263 break;
264 }
265
266 return notifier_from_errno(ret);
267 }
268
269 #endif
270
271 void __init page_cgroup_init(void)
272 {
273 unsigned long pfn;
274 int nid;
275
276 if (mem_cgroup_disabled())
277 return;
278
279 for_each_node_state(nid, N_MEMORY) {
280 unsigned long start_pfn, end_pfn;
281
282 start_pfn = node_start_pfn(nid);
283 end_pfn = node_end_pfn(nid);
284 /*
285 * start_pfn and end_pfn may not be aligned to SECTION and the
286 * page->flags of out of node pages are not initialized. So we
287 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
288 */
289 for (pfn = start_pfn;
290 pfn < end_pfn;
291 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
292
293 if (!pfn_valid(pfn))
294 continue;
295 /*
296 * Nodes's pfns can be overlapping.
297 * We know some arch can have a nodes layout such as
298 * -------------pfn-------------->
299 * N0 | N1 | N2 | N0 | N1 | N2|....
300 */
301 if (pfn_to_nid(pfn) != nid)
302 continue;
303 if (init_section_page_cgroup(pfn, nid))
304 goto oom;
305 }
306 }
307 hotplug_memory_notifier(page_cgroup_callback, 0);
308 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
309 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
310 "don't want memory cgroups\n");
311 return;
312 oom:
313 printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
314 panic("Out of memory");
315 }
316
317 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
318 {
319 return;
320 }
321
322 #endif
323
324
325 #ifdef CONFIG_MEMCG_SWAP
326
327 static DEFINE_MUTEX(swap_cgroup_mutex);
328 struct swap_cgroup_ctrl {
329 struct page **map;
330 unsigned long length;
331 spinlock_t lock;
332 };
333
334 static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
335
336 struct swap_cgroup {
337 unsigned short id;
338 };
339 #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup))
340
341 /*
342 * SwapCgroup implements "lookup" and "exchange" operations.
343 * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
344 * against SwapCache. At swap_free(), this is accessed directly from swap.
345 *
346 * This means,
347 * - we have no race in "exchange" when we're accessed via SwapCache because
348 * SwapCache(and its swp_entry) is under lock.
349 * - When called via swap_free(), there is no user of this entry and no race.
350 * Then, we don't need lock around "exchange".
351 *
352 * TODO: we can push these buffers out to HIGHMEM.
353 */
354
355 /*
356 * allocate buffer for swap_cgroup.
357 */
358 static int swap_cgroup_prepare(int type)
359 {
360 struct page *page;
361 struct swap_cgroup_ctrl *ctrl;
362 unsigned long idx, max;
363
364 ctrl = &swap_cgroup_ctrl[type];
365
366 for (idx = 0; idx < ctrl->length; idx++) {
367 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
368 if (!page)
369 goto not_enough_page;
370 ctrl->map[idx] = page;
371 }
372 return 0;
373 not_enough_page:
374 max = idx;
375 for (idx = 0; idx < max; idx++)
376 __free_page(ctrl->map[idx]);
377
378 return -ENOMEM;
379 }
380
381 static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
382 struct swap_cgroup_ctrl **ctrlp)
383 {
384 pgoff_t offset = swp_offset(ent);
385 struct swap_cgroup_ctrl *ctrl;
386 struct page *mappage;
387 struct swap_cgroup *sc;
388
389 ctrl = &swap_cgroup_ctrl[swp_type(ent)];
390 if (ctrlp)
391 *ctrlp = ctrl;
392
393 mappage = ctrl->map[offset / SC_PER_PAGE];
394 sc = page_address(mappage);
395 return sc + offset % SC_PER_PAGE;
396 }
397
398 /**
399 * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
400 * @ent: swap entry to be cmpxchged
401 * @old: old id
402 * @new: new id
403 *
404 * Returns old id at success, 0 at failure.
405 * (There is no mem_cgroup using 0 as its id)
406 */
407 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
408 unsigned short old, unsigned short new)
409 {
410 struct swap_cgroup_ctrl *ctrl;
411 struct swap_cgroup *sc;
412 unsigned long flags;
413 unsigned short retval;
414
415 sc = lookup_swap_cgroup(ent, &ctrl);
416
417 spin_lock_irqsave(&ctrl->lock, flags);
418 retval = sc->id;
419 if (retval == old)
420 sc->id = new;
421 else
422 retval = 0;
423 spin_unlock_irqrestore(&ctrl->lock, flags);
424 return retval;
425 }
426
427 /**
428 * swap_cgroup_record - record mem_cgroup for this swp_entry.
429 * @ent: swap entry to be recorded into
430 * @id: mem_cgroup to be recorded
431 *
432 * Returns old value at success, 0 at failure.
433 * (Of course, old value can be 0.)
434 */
435 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
436 {
437 struct swap_cgroup_ctrl *ctrl;
438 struct swap_cgroup *sc;
439 unsigned short old;
440 unsigned long flags;
441
442 sc = lookup_swap_cgroup(ent, &ctrl);
443
444 spin_lock_irqsave(&ctrl->lock, flags);
445 old = sc->id;
446 sc->id = id;
447 spin_unlock_irqrestore(&ctrl->lock, flags);
448
449 return old;
450 }
451
452 /**
453 * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
454 * @ent: swap entry to be looked up.
455 *
456 * Returns ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
457 */
458 unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
459 {
460 return lookup_swap_cgroup(ent, NULL)->id;
461 }
462
463 int swap_cgroup_swapon(int type, unsigned long max_pages)
464 {
465 void *array;
466 unsigned long array_size;
467 unsigned long length;
468 struct swap_cgroup_ctrl *ctrl;
469
470 if (!do_swap_account)
471 return 0;
472
473 length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
474 array_size = length * sizeof(void *);
475
476 array = vzalloc(array_size);
477 if (!array)
478 goto nomem;
479
480 ctrl = &swap_cgroup_ctrl[type];
481 mutex_lock(&swap_cgroup_mutex);
482 ctrl->length = length;
483 ctrl->map = array;
484 spin_lock_init(&ctrl->lock);
485 if (swap_cgroup_prepare(type)) {
486 /* memory shortage */
487 ctrl->map = NULL;
488 ctrl->length = 0;
489 mutex_unlock(&swap_cgroup_mutex);
490 vfree(array);
491 goto nomem;
492 }
493 mutex_unlock(&swap_cgroup_mutex);
494
495 return 0;
496 nomem:
497 printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
498 printk(KERN_INFO
499 "swap_cgroup can be disabled by swapaccount=0 boot option\n");
500 return -ENOMEM;
501 }
502
503 void swap_cgroup_swapoff(int type)
504 {
505 struct page **map;
506 unsigned long i, length;
507 struct swap_cgroup_ctrl *ctrl;
508
509 if (!do_swap_account)
510 return;
511
512 mutex_lock(&swap_cgroup_mutex);
513 ctrl = &swap_cgroup_ctrl[type];
514 map = ctrl->map;
515 length = ctrl->length;
516 ctrl->map = NULL;
517 ctrl->length = 0;
518 mutex_unlock(&swap_cgroup_mutex);
519
520 if (map) {
521 for (i = 0; i < length; i++) {
522 struct page *page = map[i];
523 if (page)
524 __free_page(page);
525 }
526 vfree(map);
527 }
528 }
529
530 #endif