]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_io.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / mm / page_io.c
1 /*
2 * linux/mm/page_io.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95,
7 * Asynchronous swapping added 30.12.95. Stephen Tweedie
8 * Removed race in async swapping. 14.4.1996. Bruno Haible
9 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11 */
12
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 struct page *page, bio_end_io_t end_io)
29 {
30 struct bio *bio;
31
32 bio = bio_alloc(gfp_flags, 1);
33 if (bio) {
34 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 bio->bi_end_io = end_io;
37
38 bio_add_page(bio, page, PAGE_SIZE, 0);
39 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40 }
41 return bio;
42 }
43
44 void end_swap_bio_write(struct bio *bio)
45 {
46 struct page *page = bio->bi_io_vec[0].bv_page;
47
48 if (bio->bi_status) {
49 SetPageError(page);
50 /*
51 * We failed to write the page out to swap-space.
52 * Re-dirty the page in order to avoid it being reclaimed.
53 * Also print a dire warning that things will go BAD (tm)
54 * very quickly.
55 *
56 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57 */
58 set_page_dirty(page);
59 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
60 imajor(bio->bi_bdev->bd_inode),
61 iminor(bio->bi_bdev->bd_inode),
62 (unsigned long long)bio->bi_iter.bi_sector);
63 ClearPageReclaim(page);
64 }
65 end_page_writeback(page);
66 bio_put(bio);
67 }
68
69 static void swap_slot_free_notify(struct page *page)
70 {
71 struct swap_info_struct *sis;
72 struct gendisk *disk;
73
74 /*
75 * There is no guarantee that the page is in swap cache - the software
76 * suspend code (at least) uses end_swap_bio_read() against a non-
77 * swapcache page. So we must check PG_swapcache before proceeding with
78 * this optimization.
79 */
80 if (unlikely(!PageSwapCache(page)))
81 return;
82
83 sis = page_swap_info(page);
84 if (!(sis->flags & SWP_BLKDEV))
85 return;
86
87 /*
88 * The swap subsystem performs lazy swap slot freeing,
89 * expecting that the page will be swapped out again.
90 * So we can avoid an unnecessary write if the page
91 * isn't redirtied.
92 * This is good for real swap storage because we can
93 * reduce unnecessary I/O and enhance wear-leveling
94 * if an SSD is used as the as swap device.
95 * But if in-memory swap device (eg zram) is used,
96 * this causes a duplicated copy between uncompressed
97 * data in VM-owned memory and compressed data in
98 * zram-owned memory. So let's free zram-owned memory
99 * and make the VM-owned decompressed page *dirty*,
100 * so the page should be swapped out somewhere again if
101 * we again wish to reclaim it.
102 */
103 disk = sis->bdev->bd_disk;
104 if (disk->fops->swap_slot_free_notify) {
105 swp_entry_t entry;
106 unsigned long offset;
107
108 entry.val = page_private(page);
109 offset = swp_offset(entry);
110
111 SetPageDirty(page);
112 disk->fops->swap_slot_free_notify(sis->bdev,
113 offset);
114 }
115 }
116
117 static void end_swap_bio_read(struct bio *bio)
118 {
119 struct page *page = bio->bi_io_vec[0].bv_page;
120 struct task_struct *waiter = bio->bi_private;
121
122 if (bio->bi_status) {
123 SetPageError(page);
124 ClearPageUptodate(page);
125 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
126 imajor(bio->bi_bdev->bd_inode),
127 iminor(bio->bi_bdev->bd_inode),
128 (unsigned long long)bio->bi_iter.bi_sector);
129 goto out;
130 }
131
132 SetPageUptodate(page);
133 swap_slot_free_notify(page);
134 out:
135 unlock_page(page);
136 WRITE_ONCE(bio->bi_private, NULL);
137 bio_put(bio);
138 wake_up_process(waiter);
139 }
140
141 int generic_swapfile_activate(struct swap_info_struct *sis,
142 struct file *swap_file,
143 sector_t *span)
144 {
145 struct address_space *mapping = swap_file->f_mapping;
146 struct inode *inode = mapping->host;
147 unsigned blocks_per_page;
148 unsigned long page_no;
149 unsigned blkbits;
150 sector_t probe_block;
151 sector_t last_block;
152 sector_t lowest_block = -1;
153 sector_t highest_block = 0;
154 int nr_extents = 0;
155 int ret;
156
157 blkbits = inode->i_blkbits;
158 blocks_per_page = PAGE_SIZE >> blkbits;
159
160 /*
161 * Map all the blocks into the extent list. This code doesn't try
162 * to be very smart.
163 */
164 probe_block = 0;
165 page_no = 0;
166 last_block = i_size_read(inode) >> blkbits;
167 while ((probe_block + blocks_per_page) <= last_block &&
168 page_no < sis->max) {
169 unsigned block_in_page;
170 sector_t first_block;
171
172 cond_resched();
173
174 first_block = bmap(inode, probe_block);
175 if (first_block == 0)
176 goto bad_bmap;
177
178 /*
179 * It must be PAGE_SIZE aligned on-disk
180 */
181 if (first_block & (blocks_per_page - 1)) {
182 probe_block++;
183 goto reprobe;
184 }
185
186 for (block_in_page = 1; block_in_page < blocks_per_page;
187 block_in_page++) {
188 sector_t block;
189
190 block = bmap(inode, probe_block + block_in_page);
191 if (block == 0)
192 goto bad_bmap;
193 if (block != first_block + block_in_page) {
194 /* Discontiguity */
195 probe_block++;
196 goto reprobe;
197 }
198 }
199
200 first_block >>= (PAGE_SHIFT - blkbits);
201 if (page_no) { /* exclude the header page */
202 if (first_block < lowest_block)
203 lowest_block = first_block;
204 if (first_block > highest_block)
205 highest_block = first_block;
206 }
207
208 /*
209 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
210 */
211 ret = add_swap_extent(sis, page_no, 1, first_block);
212 if (ret < 0)
213 goto out;
214 nr_extents += ret;
215 page_no++;
216 probe_block += blocks_per_page;
217 reprobe:
218 continue;
219 }
220 ret = nr_extents;
221 *span = 1 + highest_block - lowest_block;
222 if (page_no == 0)
223 page_no = 1; /* force Empty message */
224 sis->max = page_no;
225 sis->pages = page_no - 1;
226 sis->highest_bit = page_no - 1;
227 out:
228 return ret;
229 bad_bmap:
230 pr_err("swapon: swapfile has holes\n");
231 ret = -EINVAL;
232 goto out;
233 }
234
235 /*
236 * We may have stale swap cache pages in memory: notice
237 * them here and get rid of the unnecessary final write.
238 */
239 int swap_writepage(struct page *page, struct writeback_control *wbc)
240 {
241 int ret = 0;
242
243 if (try_to_free_swap(page)) {
244 unlock_page(page);
245 goto out;
246 }
247 if (frontswap_store(page) == 0) {
248 set_page_writeback(page);
249 unlock_page(page);
250 end_page_writeback(page);
251 goto out;
252 }
253 ret = __swap_writepage(page, wbc, end_swap_bio_write);
254 out:
255 return ret;
256 }
257
258 static sector_t swap_page_sector(struct page *page)
259 {
260 return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
261 }
262
263 int __swap_writepage(struct page *page, struct writeback_control *wbc,
264 bio_end_io_t end_write_func)
265 {
266 struct bio *bio;
267 int ret;
268 struct swap_info_struct *sis = page_swap_info(page);
269
270 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
271 if (sis->flags & SWP_FILE) {
272 struct kiocb kiocb;
273 struct file *swap_file = sis->swap_file;
274 struct address_space *mapping = swap_file->f_mapping;
275 struct bio_vec bv = {
276 .bv_page = page,
277 .bv_len = PAGE_SIZE,
278 .bv_offset = 0
279 };
280 struct iov_iter from;
281
282 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
283 init_sync_kiocb(&kiocb, swap_file);
284 kiocb.ki_pos = page_file_offset(page);
285
286 set_page_writeback(page);
287 unlock_page(page);
288 ret = mapping->a_ops->direct_IO(&kiocb, &from);
289 if (ret == PAGE_SIZE) {
290 count_vm_event(PSWPOUT);
291 ret = 0;
292 } else {
293 /*
294 * In the case of swap-over-nfs, this can be a
295 * temporary failure if the system has limited
296 * memory for allocating transmit buffers.
297 * Mark the page dirty and avoid
298 * rotate_reclaimable_page but rate-limit the
299 * messages but do not flag PageError like
300 * the normal direct-to-bio case as it could
301 * be temporary.
302 */
303 set_page_dirty(page);
304 ClearPageReclaim(page);
305 pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
306 page_file_offset(page));
307 }
308 end_page_writeback(page);
309 return ret;
310 }
311
312 ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
313 if (!ret) {
314 count_vm_event(PSWPOUT);
315 return 0;
316 }
317
318 ret = 0;
319 bio = get_swap_bio(GFP_NOIO, page, end_write_func);
320 if (bio == NULL) {
321 set_page_dirty(page);
322 unlock_page(page);
323 ret = -ENOMEM;
324 goto out;
325 }
326 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
327 count_vm_event(PSWPOUT);
328 set_page_writeback(page);
329 unlock_page(page);
330 submit_bio(bio);
331 out:
332 return ret;
333 }
334
335 int swap_readpage(struct page *page, bool do_poll)
336 {
337 struct bio *bio;
338 int ret = 0;
339 struct swap_info_struct *sis = page_swap_info(page);
340 blk_qc_t qc;
341 struct block_device *bdev;
342
343 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
344 VM_BUG_ON_PAGE(!PageLocked(page), page);
345 VM_BUG_ON_PAGE(PageUptodate(page), page);
346 if (frontswap_load(page) == 0) {
347 SetPageUptodate(page);
348 unlock_page(page);
349 goto out;
350 }
351
352 if (sis->flags & SWP_FILE) {
353 struct file *swap_file = sis->swap_file;
354 struct address_space *mapping = swap_file->f_mapping;
355
356 ret = mapping->a_ops->readpage(swap_file, page);
357 if (!ret)
358 count_vm_event(PSWPIN);
359 return ret;
360 }
361
362 ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
363 if (!ret) {
364 if (trylock_page(page)) {
365 swap_slot_free_notify(page);
366 unlock_page(page);
367 }
368
369 count_vm_event(PSWPIN);
370 return 0;
371 }
372
373 ret = 0;
374 bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
375 if (bio == NULL) {
376 unlock_page(page);
377 ret = -ENOMEM;
378 goto out;
379 }
380 bdev = bio->bi_bdev;
381 bio->bi_private = current;
382 bio_set_op_attrs(bio, REQ_OP_READ, 0);
383 count_vm_event(PSWPIN);
384 bio_get(bio);
385 qc = submit_bio(bio);
386 while (do_poll) {
387 set_current_state(TASK_UNINTERRUPTIBLE);
388 if (!READ_ONCE(bio->bi_private))
389 break;
390
391 if (!blk_mq_poll(bdev_get_queue(bdev), qc))
392 break;
393 }
394 __set_current_state(TASK_RUNNING);
395 bio_put(bio);
396
397 out:
398 return ret;
399 }
400
401 int swap_set_page_dirty(struct page *page)
402 {
403 struct swap_info_struct *sis = page_swap_info(page);
404
405 if (sis->flags & SWP_FILE) {
406 struct address_space *mapping = sis->swap_file->f_mapping;
407
408 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
409 return mapping->a_ops->set_page_dirty(page);
410 } else {
411 return __set_page_dirty_no_writeback(page);
412 }
413 }