]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/percpu-km.c
Merge remote-tracking branch 'regulator/topic/core' into regulator-next
[mirror_ubuntu-bionic-kernel.git] / mm / percpu-km.c
1 /*
2 * mm/percpu-km.c - kernel memory based chunk allocation
3 *
4 * Copyright (C) 2010 SUSE Linux Products GmbH
5 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * Chunks are allocated as a contiguous kernel memory using gfp
10 * allocation. This is to be used on nommu architectures.
11 *
12 * To use percpu-km,
13 *
14 * - define CONFIG_NEED_PER_CPU_KM from the arch Kconfig.
15 *
16 * - CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK must not be defined. It's
17 * not compatible with PER_CPU_KM. EMBED_FIRST_CHUNK should work
18 * fine.
19 *
20 * - NUMA is not supported. When setting up the first chunk,
21 * @cpu_distance_fn should be NULL or report all CPUs to be nearer
22 * than or at LOCAL_DISTANCE.
23 *
24 * - It's best if the chunk size is power of two multiple of
25 * PAGE_SIZE. Because each chunk is allocated as a contiguous
26 * kernel memory block using alloc_pages(), memory will be wasted if
27 * chunk size is not aligned. percpu-km code will whine about it.
28 */
29
30 #if defined(CONFIG_SMP) && defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
31 #error "contiguous percpu allocation is incompatible with paged first chunk"
32 #endif
33
34 #include <linux/log2.h>
35
36 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
37 int page_start, int page_end)
38 {
39 return 0;
40 }
41
42 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
43 int page_start, int page_end)
44 {
45 /* nada */
46 }
47
48 static struct pcpu_chunk *pcpu_create_chunk(void)
49 {
50 const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
51 struct pcpu_chunk *chunk;
52 struct page *pages;
53 int i;
54
55 chunk = pcpu_alloc_chunk();
56 if (!chunk)
57 return NULL;
58
59 pages = alloc_pages(GFP_KERNEL, order_base_2(nr_pages));
60 if (!pages) {
61 pcpu_free_chunk(chunk);
62 return NULL;
63 }
64
65 for (i = 0; i < nr_pages; i++)
66 pcpu_set_page_chunk(nth_page(pages, i), chunk);
67
68 chunk->data = pages;
69 chunk->base_addr = page_address(pages) - pcpu_group_offsets[0];
70
71 spin_lock_irq(&pcpu_lock);
72 pcpu_chunk_populated(chunk, 0, nr_pages);
73 spin_unlock_irq(&pcpu_lock);
74
75 return chunk;
76 }
77
78 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
79 {
80 const int nr_pages = pcpu_group_sizes[0] >> PAGE_SHIFT;
81
82 if (chunk && chunk->data)
83 __free_pages(chunk->data, order_base_2(nr_pages));
84 pcpu_free_chunk(chunk);
85 }
86
87 static struct page *pcpu_addr_to_page(void *addr)
88 {
89 return virt_to_page(addr);
90 }
91
92 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
93 {
94 size_t nr_pages, alloc_pages;
95
96 /* all units must be in a single group */
97 if (ai->nr_groups != 1) {
98 pr_crit("can't handle more than one group\n");
99 return -EINVAL;
100 }
101
102 nr_pages = (ai->groups[0].nr_units * ai->unit_size) >> PAGE_SHIFT;
103 alloc_pages = roundup_pow_of_two(nr_pages);
104
105 if (alloc_pages > nr_pages)
106 pr_warn("wasting %zu pages per chunk\n",
107 alloc_pages - nr_pages);
108
109 return 0;
110 }