]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/percpu-stats.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / percpu-stats.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/percpu-debug.c
4 *
5 * Copyright (C) 2017 Facebook Inc.
6 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
7 *
8 * Prints statistics about the percpu allocator and backing chunks.
9 */
10 #include <linux/debugfs.h>
11 #include <linux/list.h>
12 #include <linux/percpu.h>
13 #include <linux/seq_file.h>
14 #include <linux/sort.h>
15 #include <linux/vmalloc.h>
16
17 #include "percpu-internal.h"
18
19 #define P(X, Y) \
20 seq_printf(m, " %-20s: %12lld\n", X, (long long int)Y)
21
22 struct percpu_stats pcpu_stats;
23 struct pcpu_alloc_info pcpu_stats_ai;
24
25 static int cmpint(const void *a, const void *b)
26 {
27 return *(int *)a - *(int *)b;
28 }
29
30 /*
31 * Iterates over all chunks to find the max nr_alloc entries.
32 */
33 static int find_max_nr_alloc(void)
34 {
35 struct pcpu_chunk *chunk;
36 int slot, max_nr_alloc;
37 enum pcpu_chunk_type type;
38
39 max_nr_alloc = 0;
40 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
41 for (slot = 0; slot < pcpu_nr_slots; slot++)
42 list_for_each_entry(chunk, &pcpu_chunk_list(type)[slot],
43 list)
44 max_nr_alloc = max(max_nr_alloc,
45 chunk->nr_alloc);
46
47 return max_nr_alloc;
48 }
49
50 /*
51 * Prints out chunk state. Fragmentation is considered between
52 * the beginning of the chunk to the last allocation.
53 *
54 * All statistics are in bytes unless stated otherwise.
55 */
56 static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
57 int *buffer)
58 {
59 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
60 int i, last_alloc, as_len, start, end;
61 int *alloc_sizes, *p;
62 /* statistics */
63 int sum_frag = 0, max_frag = 0;
64 int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
65
66 alloc_sizes = buffer;
67
68 /*
69 * find_last_bit returns the start value if nothing found.
70 * Therefore, we must determine if it is a failure of find_last_bit
71 * and set the appropriate value.
72 */
73 last_alloc = find_last_bit(chunk->alloc_map,
74 pcpu_chunk_map_bits(chunk) -
75 chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
76 last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
77 last_alloc + 1 : 0;
78
79 as_len = 0;
80 start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
81
82 /*
83 * If a bit is set in the allocation map, the bound_map identifies
84 * where the allocation ends. If the allocation is not set, the
85 * bound_map does not identify free areas as it is only kept accurate
86 * on allocation, not free.
87 *
88 * Positive values are allocations and negative values are free
89 * fragments.
90 */
91 while (start < last_alloc) {
92 if (test_bit(start, chunk->alloc_map)) {
93 end = find_next_bit(chunk->bound_map, last_alloc,
94 start + 1);
95 alloc_sizes[as_len] = 1;
96 } else {
97 end = find_next_bit(chunk->alloc_map, last_alloc,
98 start + 1);
99 alloc_sizes[as_len] = -1;
100 }
101
102 alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
103
104 start = end;
105 }
106
107 /*
108 * The negative values are free fragments and thus sorting gives the
109 * free fragments at the beginning in largest first order.
110 */
111 if (as_len > 0) {
112 sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
113
114 /* iterate through the unallocated fragments */
115 for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
116 sum_frag -= *p;
117 max_frag = max(max_frag, -1 * (*p));
118 }
119
120 cur_min_alloc = alloc_sizes[i];
121 cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
122 cur_max_alloc = alloc_sizes[as_len - 1];
123 }
124
125 P("nr_alloc", chunk->nr_alloc);
126 P("max_alloc_size", chunk->max_alloc_size);
127 P("empty_pop_pages", chunk->nr_empty_pop_pages);
128 P("first_bit", chunk_md->first_free);
129 P("free_bytes", chunk->free_bytes);
130 P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
131 P("sum_frag", sum_frag);
132 P("max_frag", max_frag);
133 P("cur_min_alloc", cur_min_alloc);
134 P("cur_med_alloc", cur_med_alloc);
135 P("cur_max_alloc", cur_max_alloc);
136 #ifdef CONFIG_MEMCG_KMEM
137 P("memcg_aware", pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)));
138 #endif
139 seq_putc(m, '\n');
140 }
141
142 static int percpu_stats_show(struct seq_file *m, void *v)
143 {
144 struct pcpu_chunk *chunk;
145 int slot, max_nr_alloc;
146 int *buffer;
147 enum pcpu_chunk_type type;
148 int nr_empty_pop_pages;
149
150 alloc_buffer:
151 spin_lock_irq(&pcpu_lock);
152 max_nr_alloc = find_max_nr_alloc();
153 spin_unlock_irq(&pcpu_lock);
154
155 /* there can be at most this many free and allocated fragments */
156 buffer = vmalloc(array_size(sizeof(int), (2 * max_nr_alloc + 1)));
157 if (!buffer)
158 return -ENOMEM;
159
160 spin_lock_irq(&pcpu_lock);
161
162 /* if the buffer allocated earlier is too small */
163 if (max_nr_alloc < find_max_nr_alloc()) {
164 spin_unlock_irq(&pcpu_lock);
165 vfree(buffer);
166 goto alloc_buffer;
167 }
168
169 nr_empty_pop_pages = 0;
170 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
171 nr_empty_pop_pages += pcpu_nr_empty_pop_pages[type];
172
173 #define PL(X) \
174 seq_printf(m, " %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
175
176 seq_printf(m,
177 "Percpu Memory Statistics\n"
178 "Allocation Info:\n"
179 "----------------------------------------\n");
180 PL(unit_size);
181 PL(static_size);
182 PL(reserved_size);
183 PL(dyn_size);
184 PL(atom_size);
185 PL(alloc_size);
186 seq_putc(m, '\n');
187
188 #undef PL
189
190 #define PU(X) \
191 seq_printf(m, " %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
192
193 seq_printf(m,
194 "Global Stats:\n"
195 "----------------------------------------\n");
196 PU(nr_alloc);
197 PU(nr_dealloc);
198 PU(nr_cur_alloc);
199 PU(nr_max_alloc);
200 PU(nr_chunks);
201 PU(nr_max_chunks);
202 PU(min_alloc_size);
203 PU(max_alloc_size);
204 P("empty_pop_pages", nr_empty_pop_pages);
205 seq_putc(m, '\n');
206
207 #undef PU
208
209 seq_printf(m,
210 "Per Chunk Stats:\n"
211 "----------------------------------------\n");
212
213 if (pcpu_reserved_chunk) {
214 seq_puts(m, "Chunk: <- Reserved Chunk\n");
215 chunk_map_stats(m, pcpu_reserved_chunk, buffer);
216 }
217
218 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) {
219 for (slot = 0; slot < pcpu_nr_slots; slot++) {
220 list_for_each_entry(chunk, &pcpu_chunk_list(type)[slot],
221 list) {
222 if (chunk == pcpu_first_chunk) {
223 seq_puts(m, "Chunk: <- First Chunk\n");
224 chunk_map_stats(m, chunk, buffer);
225 } else {
226 seq_puts(m, "Chunk:\n");
227 chunk_map_stats(m, chunk, buffer);
228 }
229 }
230 }
231 }
232
233 spin_unlock_irq(&pcpu_lock);
234
235 vfree(buffer);
236
237 return 0;
238 }
239 DEFINE_SHOW_ATTRIBUTE(percpu_stats);
240
241 static int __init init_percpu_stats_debugfs(void)
242 {
243 debugfs_create_file("percpu_stats", 0444, NULL, NULL,
244 &percpu_stats_fops);
245
246 return 0;
247 }
248
249 late_initcall(init_percpu_stats_debugfs);