]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/percpu.c
Merge branch 'for-5.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-hirsute-kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
10 * This file is released under the GPLv2 license.
11 *
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
39 *
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
54 *
55 * To use this allocator, arch code should do the following:
56 *
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
60 *
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include <linux/bitmap.h>
68 #include <linux/memblock.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92
93 #include "percpu-internal.h"
94
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
97 /* chunks in slots below this are subject to being sidelined on failed alloc */
98 #define PCPU_SLOT_FAIL_THRESHOLD 3
99
100 #define PCPU_EMPTY_POP_PAGES_LOW 2
101 #define PCPU_EMPTY_POP_PAGES_HIGH 4
102
103 #ifdef CONFIG_SMP
104 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105 #ifndef __addr_to_pcpu_ptr
106 #define __addr_to_pcpu_ptr(addr) \
107 (void __percpu *)((unsigned long)(addr) - \
108 (unsigned long)pcpu_base_addr + \
109 (unsigned long)__per_cpu_start)
110 #endif
111 #ifndef __pcpu_ptr_to_addr
112 #define __pcpu_ptr_to_addr(ptr) \
113 (void __force *)((unsigned long)(ptr) + \
114 (unsigned long)pcpu_base_addr - \
115 (unsigned long)__per_cpu_start)
116 #endif
117 #else /* CONFIG_SMP */
118 /* on UP, it's always identity mapped */
119 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
120 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
121 #endif /* CONFIG_SMP */
122
123 static int pcpu_unit_pages __ro_after_init;
124 static int pcpu_unit_size __ro_after_init;
125 static int pcpu_nr_units __ro_after_init;
126 static int pcpu_atom_size __ro_after_init;
127 int pcpu_nr_slots __ro_after_init;
128 static size_t pcpu_chunk_struct_size __ro_after_init;
129
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __ro_after_init;
132 static unsigned int pcpu_high_unit_cpu __ro_after_init;
133
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __ro_after_init;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr);
137
138 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
140
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __ro_after_init;
143 static const unsigned long *pcpu_group_offsets __ro_after_init;
144 static const size_t *pcpu_group_sizes __ro_after_init;
145
146 /*
147 * The first chunk which always exists. Note that unlike other
148 * chunks, this one can be allocated and mapped in several different
149 * ways and thus often doesn't live in the vmalloc area.
150 */
151 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
152
153 /*
154 * Optional reserved chunk. This chunk reserves part of the first
155 * chunk and serves it for reserved allocations. When the reserved
156 * region doesn't exist, the following variable is NULL.
157 */
158 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
159
160 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
161 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
162
163 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
164
165 /* chunks which need their map areas extended, protected by pcpu_lock */
166 static LIST_HEAD(pcpu_map_extend_chunks);
167
168 /*
169 * The number of empty populated pages, protected by pcpu_lock. The
170 * reserved chunk doesn't contribute to the count.
171 */
172 int pcpu_nr_empty_pop_pages;
173
174 /*
175 * The number of populated pages in use by the allocator, protected by
176 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
177 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178 * and increments/decrements this count by 1).
179 */
180 static unsigned long pcpu_nr_populated;
181
182 /*
183 * Balance work is used to populate or destroy chunks asynchronously. We
184 * try to keep the number of populated free pages between
185 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
186 * empty chunk.
187 */
188 static void pcpu_balance_workfn(struct work_struct *work);
189 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
190 static bool pcpu_async_enabled __read_mostly;
191 static bool pcpu_atomic_alloc_failed;
192
193 static void pcpu_schedule_balance_work(void)
194 {
195 if (pcpu_async_enabled)
196 schedule_work(&pcpu_balance_work);
197 }
198
199 /**
200 * pcpu_addr_in_chunk - check if the address is served from this chunk
201 * @chunk: chunk of interest
202 * @addr: percpu address
203 *
204 * RETURNS:
205 * True if the address is served from this chunk.
206 */
207 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
208 {
209 void *start_addr, *end_addr;
210
211 if (!chunk)
212 return false;
213
214 start_addr = chunk->base_addr + chunk->start_offset;
215 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
216 chunk->end_offset;
217
218 return addr >= start_addr && addr < end_addr;
219 }
220
221 static int __pcpu_size_to_slot(int size)
222 {
223 int highbit = fls(size); /* size is in bytes */
224 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
225 }
226
227 static int pcpu_size_to_slot(int size)
228 {
229 if (size == pcpu_unit_size)
230 return pcpu_nr_slots - 1;
231 return __pcpu_size_to_slot(size);
232 }
233
234 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
235 {
236 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
237
238 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
239 chunk_md->contig_hint == 0)
240 return 0;
241
242 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
243 }
244
245 /* set the pointer to a chunk in a page struct */
246 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
247 {
248 page->index = (unsigned long)pcpu;
249 }
250
251 /* obtain pointer to a chunk from a page struct */
252 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
253 {
254 return (struct pcpu_chunk *)page->index;
255 }
256
257 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
258 {
259 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
260 }
261
262 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
263 {
264 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
265 }
266
267 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
268 unsigned int cpu, int page_idx)
269 {
270 return (unsigned long)chunk->base_addr +
271 pcpu_unit_page_offset(cpu, page_idx);
272 }
273
274 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
275 {
276 *rs = find_next_zero_bit(bitmap, end, *rs);
277 *re = find_next_bit(bitmap, end, *rs + 1);
278 }
279
280 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
281 {
282 *rs = find_next_bit(bitmap, end, *rs);
283 *re = find_next_zero_bit(bitmap, end, *rs + 1);
284 }
285
286 /*
287 * Bitmap region iterators. Iterates over the bitmap between
288 * [@start, @end) in @chunk. @rs and @re should be integer variables
289 * and will be set to start and end index of the current free region.
290 */
291 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
292 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
293 (rs) < (re); \
294 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
295
296 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
297 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
298 (rs) < (re); \
299 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
300
301 /*
302 * The following are helper functions to help access bitmaps and convert
303 * between bitmap offsets to address offsets.
304 */
305 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
306 {
307 return chunk->alloc_map +
308 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
309 }
310
311 static unsigned long pcpu_off_to_block_index(int off)
312 {
313 return off / PCPU_BITMAP_BLOCK_BITS;
314 }
315
316 static unsigned long pcpu_off_to_block_off(int off)
317 {
318 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
319 }
320
321 static unsigned long pcpu_block_off_to_off(int index, int off)
322 {
323 return index * PCPU_BITMAP_BLOCK_BITS + off;
324 }
325
326 /*
327 * pcpu_next_hint - determine which hint to use
328 * @block: block of interest
329 * @alloc_bits: size of allocation
330 *
331 * This determines if we should scan based on the scan_hint or first_free.
332 * In general, we want to scan from first_free to fulfill allocations by
333 * first fit. However, if we know a scan_hint at position scan_hint_start
334 * cannot fulfill an allocation, we can begin scanning from there knowing
335 * the contig_hint will be our fallback.
336 */
337 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
338 {
339 /*
340 * The three conditions below determine if we can skip past the
341 * scan_hint. First, does the scan hint exist. Second, is the
342 * contig_hint after the scan_hint (possibly not true iff
343 * contig_hint == scan_hint). Third, is the allocation request
344 * larger than the scan_hint.
345 */
346 if (block->scan_hint &&
347 block->contig_hint_start > block->scan_hint_start &&
348 alloc_bits > block->scan_hint)
349 return block->scan_hint_start + block->scan_hint;
350
351 return block->first_free;
352 }
353
354 /**
355 * pcpu_next_md_free_region - finds the next hint free area
356 * @chunk: chunk of interest
357 * @bit_off: chunk offset
358 * @bits: size of free area
359 *
360 * Helper function for pcpu_for_each_md_free_region. It checks
361 * block->contig_hint and performs aggregation across blocks to find the
362 * next hint. It modifies bit_off and bits in-place to be consumed in the
363 * loop.
364 */
365 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
366 int *bits)
367 {
368 int i = pcpu_off_to_block_index(*bit_off);
369 int block_off = pcpu_off_to_block_off(*bit_off);
370 struct pcpu_block_md *block;
371
372 *bits = 0;
373 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
374 block++, i++) {
375 /* handles contig area across blocks */
376 if (*bits) {
377 *bits += block->left_free;
378 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
379 continue;
380 return;
381 }
382
383 /*
384 * This checks three things. First is there a contig_hint to
385 * check. Second, have we checked this hint before by
386 * comparing the block_off. Third, is this the same as the
387 * right contig hint. In the last case, it spills over into
388 * the next block and should be handled by the contig area
389 * across blocks code.
390 */
391 *bits = block->contig_hint;
392 if (*bits && block->contig_hint_start >= block_off &&
393 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
394 *bit_off = pcpu_block_off_to_off(i,
395 block->contig_hint_start);
396 return;
397 }
398 /* reset to satisfy the second predicate above */
399 block_off = 0;
400
401 *bits = block->right_free;
402 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
403 }
404 }
405
406 /**
407 * pcpu_next_fit_region - finds fit areas for a given allocation request
408 * @chunk: chunk of interest
409 * @alloc_bits: size of allocation
410 * @align: alignment of area (max PAGE_SIZE)
411 * @bit_off: chunk offset
412 * @bits: size of free area
413 *
414 * Finds the next free region that is viable for use with a given size and
415 * alignment. This only returns if there is a valid area to be used for this
416 * allocation. block->first_free is returned if the allocation request fits
417 * within the block to see if the request can be fulfilled prior to the contig
418 * hint.
419 */
420 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
421 int align, int *bit_off, int *bits)
422 {
423 int i = pcpu_off_to_block_index(*bit_off);
424 int block_off = pcpu_off_to_block_off(*bit_off);
425 struct pcpu_block_md *block;
426
427 *bits = 0;
428 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
429 block++, i++) {
430 /* handles contig area across blocks */
431 if (*bits) {
432 *bits += block->left_free;
433 if (*bits >= alloc_bits)
434 return;
435 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
436 continue;
437 }
438
439 /* check block->contig_hint */
440 *bits = ALIGN(block->contig_hint_start, align) -
441 block->contig_hint_start;
442 /*
443 * This uses the block offset to determine if this has been
444 * checked in the prior iteration.
445 */
446 if (block->contig_hint &&
447 block->contig_hint_start >= block_off &&
448 block->contig_hint >= *bits + alloc_bits) {
449 int start = pcpu_next_hint(block, alloc_bits);
450
451 *bits += alloc_bits + block->contig_hint_start -
452 start;
453 *bit_off = pcpu_block_off_to_off(i, start);
454 return;
455 }
456 /* reset to satisfy the second predicate above */
457 block_off = 0;
458
459 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
460 align);
461 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
462 *bit_off = pcpu_block_off_to_off(i, *bit_off);
463 if (*bits >= alloc_bits)
464 return;
465 }
466
467 /* no valid offsets were found - fail condition */
468 *bit_off = pcpu_chunk_map_bits(chunk);
469 }
470
471 /*
472 * Metadata free area iterators. These perform aggregation of free areas
473 * based on the metadata blocks and return the offset @bit_off and size in
474 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
475 * a fit is found for the allocation request.
476 */
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
478 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
479 (bit_off) < pcpu_chunk_map_bits((chunk)); \
480 (bit_off) += (bits) + 1, \
481 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
482
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
484 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
485 &(bits)); \
486 (bit_off) < pcpu_chunk_map_bits((chunk)); \
487 (bit_off) += (bits), \
488 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
489 &(bits)))
490
491 /**
492 * pcpu_mem_zalloc - allocate memory
493 * @size: bytes to allocate
494 * @gfp: allocation flags
495 *
496 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
497 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498 * This is to facilitate passing through whitelisted flags. The
499 * returned memory is always zeroed.
500 *
501 * RETURNS:
502 * Pointer to the allocated area on success, NULL on failure.
503 */
504 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
505 {
506 if (WARN_ON_ONCE(!slab_is_available()))
507 return NULL;
508
509 if (size <= PAGE_SIZE)
510 return kzalloc(size, gfp);
511 else
512 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
513 }
514
515 /**
516 * pcpu_mem_free - free memory
517 * @ptr: memory to free
518 *
519 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
520 */
521 static void pcpu_mem_free(void *ptr)
522 {
523 kvfree(ptr);
524 }
525
526 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
527 bool move_front)
528 {
529 if (chunk != pcpu_reserved_chunk) {
530 if (move_front)
531 list_move(&chunk->list, &pcpu_slot[slot]);
532 else
533 list_move_tail(&chunk->list, &pcpu_slot[slot]);
534 }
535 }
536
537 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
538 {
539 __pcpu_chunk_move(chunk, slot, true);
540 }
541
542 /**
543 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544 * @chunk: chunk of interest
545 * @oslot: the previous slot it was on
546 *
547 * This function is called after an allocation or free changed @chunk.
548 * New slot according to the changed state is determined and @chunk is
549 * moved to the slot. Note that the reserved chunk is never put on
550 * chunk slots.
551 *
552 * CONTEXT:
553 * pcpu_lock.
554 */
555 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
556 {
557 int nslot = pcpu_chunk_slot(chunk);
558
559 if (oslot != nslot)
560 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
561 }
562
563 /*
564 * pcpu_update_empty_pages - update empty page counters
565 * @chunk: chunk of interest
566 * @nr: nr of empty pages
567 *
568 * This is used to keep track of the empty pages now based on the premise
569 * a md_block covers a page. The hint update functions recognize if a block
570 * is made full or broken to calculate deltas for keeping track of free pages.
571 */
572 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
573 {
574 chunk->nr_empty_pop_pages += nr;
575 if (chunk != pcpu_reserved_chunk)
576 pcpu_nr_empty_pop_pages += nr;
577 }
578
579 /*
580 * pcpu_region_overlap - determines if two regions overlap
581 * @a: start of first region, inclusive
582 * @b: end of first region, exclusive
583 * @x: start of second region, inclusive
584 * @y: end of second region, exclusive
585 *
586 * This is used to determine if the hint region [a, b) overlaps with the
587 * allocated region [x, y).
588 */
589 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
590 {
591 return (a < y) && (x < b);
592 }
593
594 /**
595 * pcpu_block_update - updates a block given a free area
596 * @block: block of interest
597 * @start: start offset in block
598 * @end: end offset in block
599 *
600 * Updates a block given a known free area. The region [start, end) is
601 * expected to be the entirety of the free area within a block. Chooses
602 * the best starting offset if the contig hints are equal.
603 */
604 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
605 {
606 int contig = end - start;
607
608 block->first_free = min(block->first_free, start);
609 if (start == 0)
610 block->left_free = contig;
611
612 if (end == block->nr_bits)
613 block->right_free = contig;
614
615 if (contig > block->contig_hint) {
616 /* promote the old contig_hint to be the new scan_hint */
617 if (start > block->contig_hint_start) {
618 if (block->contig_hint > block->scan_hint) {
619 block->scan_hint_start =
620 block->contig_hint_start;
621 block->scan_hint = block->contig_hint;
622 } else if (start < block->scan_hint_start) {
623 /*
624 * The old contig_hint == scan_hint. But, the
625 * new contig is larger so hold the invariant
626 * scan_hint_start < contig_hint_start.
627 */
628 block->scan_hint = 0;
629 }
630 } else {
631 block->scan_hint = 0;
632 }
633 block->contig_hint_start = start;
634 block->contig_hint = contig;
635 } else if (contig == block->contig_hint) {
636 if (block->contig_hint_start &&
637 (!start ||
638 __ffs(start) > __ffs(block->contig_hint_start))) {
639 /* start has a better alignment so use it */
640 block->contig_hint_start = start;
641 if (start < block->scan_hint_start &&
642 block->contig_hint > block->scan_hint)
643 block->scan_hint = 0;
644 } else if (start > block->scan_hint_start ||
645 block->contig_hint > block->scan_hint) {
646 /*
647 * Knowing contig == contig_hint, update the scan_hint
648 * if it is farther than or larger than the current
649 * scan_hint.
650 */
651 block->scan_hint_start = start;
652 block->scan_hint = contig;
653 }
654 } else {
655 /*
656 * The region is smaller than the contig_hint. So only update
657 * the scan_hint if it is larger than or equal and farther than
658 * the current scan_hint.
659 */
660 if ((start < block->contig_hint_start &&
661 (contig > block->scan_hint ||
662 (contig == block->scan_hint &&
663 start > block->scan_hint_start)))) {
664 block->scan_hint_start = start;
665 block->scan_hint = contig;
666 }
667 }
668 }
669
670 /*
671 * pcpu_block_update_scan - update a block given a free area from a scan
672 * @chunk: chunk of interest
673 * @bit_off: chunk offset
674 * @bits: size of free area
675 *
676 * Finding the final allocation spot first goes through pcpu_find_block_fit()
677 * to find a block that can hold the allocation and then pcpu_alloc_area()
678 * where a scan is used. When allocations require specific alignments,
679 * we can inadvertently create holes which will not be seen in the alloc
680 * or free paths.
681 *
682 * This takes a given free area hole and updates a block as it may change the
683 * scan_hint. We need to scan backwards to ensure we don't miss free bits
684 * from alignment.
685 */
686 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
687 int bits)
688 {
689 int s_off = pcpu_off_to_block_off(bit_off);
690 int e_off = s_off + bits;
691 int s_index, l_bit;
692 struct pcpu_block_md *block;
693
694 if (e_off > PCPU_BITMAP_BLOCK_BITS)
695 return;
696
697 s_index = pcpu_off_to_block_index(bit_off);
698 block = chunk->md_blocks + s_index;
699
700 /* scan backwards in case of alignment skipping free bits */
701 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
702 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
703
704 pcpu_block_update(block, s_off, e_off);
705 }
706
707 /**
708 * pcpu_chunk_refresh_hint - updates metadata about a chunk
709 * @chunk: chunk of interest
710 * @full_scan: if we should scan from the beginning
711 *
712 * Iterates over the metadata blocks to find the largest contig area.
713 * A full scan can be avoided on the allocation path as this is triggered
714 * if we broke the contig_hint. In doing so, the scan_hint will be before
715 * the contig_hint or after if the scan_hint == contig_hint. This cannot
716 * be prevented on freeing as we want to find the largest area possibly
717 * spanning blocks.
718 */
719 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
720 {
721 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
722 int bit_off, bits;
723
724 /* promote scan_hint to contig_hint */
725 if (!full_scan && chunk_md->scan_hint) {
726 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
727 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
728 chunk_md->contig_hint = chunk_md->scan_hint;
729 chunk_md->scan_hint = 0;
730 } else {
731 bit_off = chunk_md->first_free;
732 chunk_md->contig_hint = 0;
733 }
734
735 bits = 0;
736 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
737 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
738 }
739 }
740
741 /**
742 * pcpu_block_refresh_hint
743 * @chunk: chunk of interest
744 * @index: index of the metadata block
745 *
746 * Scans over the block beginning at first_free and updates the block
747 * metadata accordingly.
748 */
749 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
750 {
751 struct pcpu_block_md *block = chunk->md_blocks + index;
752 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
753 int rs, re, start; /* region start, region end */
754
755 /* promote scan_hint to contig_hint */
756 if (block->scan_hint) {
757 start = block->scan_hint_start + block->scan_hint;
758 block->contig_hint_start = block->scan_hint_start;
759 block->contig_hint = block->scan_hint;
760 block->scan_hint = 0;
761 } else {
762 start = block->first_free;
763 block->contig_hint = 0;
764 }
765
766 block->right_free = 0;
767
768 /* iterate over free areas and update the contig hints */
769 pcpu_for_each_unpop_region(alloc_map, rs, re, start,
770 PCPU_BITMAP_BLOCK_BITS) {
771 pcpu_block_update(block, rs, re);
772 }
773 }
774
775 /**
776 * pcpu_block_update_hint_alloc - update hint on allocation path
777 * @chunk: chunk of interest
778 * @bit_off: chunk offset
779 * @bits: size of request
780 *
781 * Updates metadata for the allocation path. The metadata only has to be
782 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
783 * scans are required if the block's contig hint is broken.
784 */
785 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
786 int bits)
787 {
788 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
789 int nr_empty_pages = 0;
790 struct pcpu_block_md *s_block, *e_block, *block;
791 int s_index, e_index; /* block indexes of the freed allocation */
792 int s_off, e_off; /* block offsets of the freed allocation */
793
794 /*
795 * Calculate per block offsets.
796 * The calculation uses an inclusive range, but the resulting offsets
797 * are [start, end). e_index always points to the last block in the
798 * range.
799 */
800 s_index = pcpu_off_to_block_index(bit_off);
801 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
802 s_off = pcpu_off_to_block_off(bit_off);
803 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
804
805 s_block = chunk->md_blocks + s_index;
806 e_block = chunk->md_blocks + e_index;
807
808 /*
809 * Update s_block.
810 * block->first_free must be updated if the allocation takes its place.
811 * If the allocation breaks the contig_hint, a scan is required to
812 * restore this hint.
813 */
814 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
815 nr_empty_pages++;
816
817 if (s_off == s_block->first_free)
818 s_block->first_free = find_next_zero_bit(
819 pcpu_index_alloc_map(chunk, s_index),
820 PCPU_BITMAP_BLOCK_BITS,
821 s_off + bits);
822
823 if (pcpu_region_overlap(s_block->scan_hint_start,
824 s_block->scan_hint_start + s_block->scan_hint,
825 s_off,
826 s_off + bits))
827 s_block->scan_hint = 0;
828
829 if (pcpu_region_overlap(s_block->contig_hint_start,
830 s_block->contig_hint_start +
831 s_block->contig_hint,
832 s_off,
833 s_off + bits)) {
834 /* block contig hint is broken - scan to fix it */
835 if (!s_off)
836 s_block->left_free = 0;
837 pcpu_block_refresh_hint(chunk, s_index);
838 } else {
839 /* update left and right contig manually */
840 s_block->left_free = min(s_block->left_free, s_off);
841 if (s_index == e_index)
842 s_block->right_free = min_t(int, s_block->right_free,
843 PCPU_BITMAP_BLOCK_BITS - e_off);
844 else
845 s_block->right_free = 0;
846 }
847
848 /*
849 * Update e_block.
850 */
851 if (s_index != e_index) {
852 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
853 nr_empty_pages++;
854
855 /*
856 * When the allocation is across blocks, the end is along
857 * the left part of the e_block.
858 */
859 e_block->first_free = find_next_zero_bit(
860 pcpu_index_alloc_map(chunk, e_index),
861 PCPU_BITMAP_BLOCK_BITS, e_off);
862
863 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
864 /* reset the block */
865 e_block++;
866 } else {
867 if (e_off > e_block->scan_hint_start)
868 e_block->scan_hint = 0;
869
870 e_block->left_free = 0;
871 if (e_off > e_block->contig_hint_start) {
872 /* contig hint is broken - scan to fix it */
873 pcpu_block_refresh_hint(chunk, e_index);
874 } else {
875 e_block->right_free =
876 min_t(int, e_block->right_free,
877 PCPU_BITMAP_BLOCK_BITS - e_off);
878 }
879 }
880
881 /* update in-between md_blocks */
882 nr_empty_pages += (e_index - s_index - 1);
883 for (block = s_block + 1; block < e_block; block++) {
884 block->scan_hint = 0;
885 block->contig_hint = 0;
886 block->left_free = 0;
887 block->right_free = 0;
888 }
889 }
890
891 if (nr_empty_pages)
892 pcpu_update_empty_pages(chunk, -nr_empty_pages);
893
894 if (pcpu_region_overlap(chunk_md->scan_hint_start,
895 chunk_md->scan_hint_start +
896 chunk_md->scan_hint,
897 bit_off,
898 bit_off + bits))
899 chunk_md->scan_hint = 0;
900
901 /*
902 * The only time a full chunk scan is required is if the chunk
903 * contig hint is broken. Otherwise, it means a smaller space
904 * was used and therefore the chunk contig hint is still correct.
905 */
906 if (pcpu_region_overlap(chunk_md->contig_hint_start,
907 chunk_md->contig_hint_start +
908 chunk_md->contig_hint,
909 bit_off,
910 bit_off + bits))
911 pcpu_chunk_refresh_hint(chunk, false);
912 }
913
914 /**
915 * pcpu_block_update_hint_free - updates the block hints on the free path
916 * @chunk: chunk of interest
917 * @bit_off: chunk offset
918 * @bits: size of request
919 *
920 * Updates metadata for the allocation path. This avoids a blind block
921 * refresh by making use of the block contig hints. If this fails, it scans
922 * forward and backward to determine the extent of the free area. This is
923 * capped at the boundary of blocks.
924 *
925 * A chunk update is triggered if a page becomes free, a block becomes free,
926 * or the free spans across blocks. This tradeoff is to minimize iterating
927 * over the block metadata to update chunk_md->contig_hint.
928 * chunk_md->contig_hint may be off by up to a page, but it will never be more
929 * than the available space. If the contig hint is contained in one block, it
930 * will be accurate.
931 */
932 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
933 int bits)
934 {
935 int nr_empty_pages = 0;
936 struct pcpu_block_md *s_block, *e_block, *block;
937 int s_index, e_index; /* block indexes of the freed allocation */
938 int s_off, e_off; /* block offsets of the freed allocation */
939 int start, end; /* start and end of the whole free area */
940
941 /*
942 * Calculate per block offsets.
943 * The calculation uses an inclusive range, but the resulting offsets
944 * are [start, end). e_index always points to the last block in the
945 * range.
946 */
947 s_index = pcpu_off_to_block_index(bit_off);
948 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
949 s_off = pcpu_off_to_block_off(bit_off);
950 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
951
952 s_block = chunk->md_blocks + s_index;
953 e_block = chunk->md_blocks + e_index;
954
955 /*
956 * Check if the freed area aligns with the block->contig_hint.
957 * If it does, then the scan to find the beginning/end of the
958 * larger free area can be avoided.
959 *
960 * start and end refer to beginning and end of the free area
961 * within each their respective blocks. This is not necessarily
962 * the entire free area as it may span blocks past the beginning
963 * or end of the block.
964 */
965 start = s_off;
966 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
967 start = s_block->contig_hint_start;
968 } else {
969 /*
970 * Scan backwards to find the extent of the free area.
971 * find_last_bit returns the starting bit, so if the start bit
972 * is returned, that means there was no last bit and the
973 * remainder of the chunk is free.
974 */
975 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
976 start);
977 start = (start == l_bit) ? 0 : l_bit + 1;
978 }
979
980 end = e_off;
981 if (e_off == e_block->contig_hint_start)
982 end = e_block->contig_hint_start + e_block->contig_hint;
983 else
984 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
985 PCPU_BITMAP_BLOCK_BITS, end);
986
987 /* update s_block */
988 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
989 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
990 nr_empty_pages++;
991 pcpu_block_update(s_block, start, e_off);
992
993 /* freeing in the same block */
994 if (s_index != e_index) {
995 /* update e_block */
996 if (end == PCPU_BITMAP_BLOCK_BITS)
997 nr_empty_pages++;
998 pcpu_block_update(e_block, 0, end);
999
1000 /* reset md_blocks in the middle */
1001 nr_empty_pages += (e_index - s_index - 1);
1002 for (block = s_block + 1; block < e_block; block++) {
1003 block->first_free = 0;
1004 block->scan_hint = 0;
1005 block->contig_hint_start = 0;
1006 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1007 block->left_free = PCPU_BITMAP_BLOCK_BITS;
1008 block->right_free = PCPU_BITMAP_BLOCK_BITS;
1009 }
1010 }
1011
1012 if (nr_empty_pages)
1013 pcpu_update_empty_pages(chunk, nr_empty_pages);
1014
1015 /*
1016 * Refresh chunk metadata when the free makes a block free or spans
1017 * across blocks. The contig_hint may be off by up to a page, but if
1018 * the contig_hint is contained in a block, it will be accurate with
1019 * the else condition below.
1020 */
1021 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1022 pcpu_chunk_refresh_hint(chunk, true);
1023 else
1024 pcpu_block_update(&chunk->chunk_md,
1025 pcpu_block_off_to_off(s_index, start),
1026 end);
1027 }
1028
1029 /**
1030 * pcpu_is_populated - determines if the region is populated
1031 * @chunk: chunk of interest
1032 * @bit_off: chunk offset
1033 * @bits: size of area
1034 * @next_off: return value for the next offset to start searching
1035 *
1036 * For atomic allocations, check if the backing pages are populated.
1037 *
1038 * RETURNS:
1039 * Bool if the backing pages are populated.
1040 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1041 */
1042 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1043 int *next_off)
1044 {
1045 int page_start, page_end, rs, re;
1046
1047 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1048 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1049
1050 rs = page_start;
1051 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
1052 if (rs >= page_end)
1053 return true;
1054
1055 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1056 return false;
1057 }
1058
1059 /**
1060 * pcpu_find_block_fit - finds the block index to start searching
1061 * @chunk: chunk of interest
1062 * @alloc_bits: size of request in allocation units
1063 * @align: alignment of area (max PAGE_SIZE bytes)
1064 * @pop_only: use populated regions only
1065 *
1066 * Given a chunk and an allocation spec, find the offset to begin searching
1067 * for a free region. This iterates over the bitmap metadata blocks to
1068 * find an offset that will be guaranteed to fit the requirements. It is
1069 * not quite first fit as if the allocation does not fit in the contig hint
1070 * of a block or chunk, it is skipped. This errs on the side of caution
1071 * to prevent excess iteration. Poor alignment can cause the allocator to
1072 * skip over blocks and chunks that have valid free areas.
1073 *
1074 * RETURNS:
1075 * The offset in the bitmap to begin searching.
1076 * -1 if no offset is found.
1077 */
1078 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1079 size_t align, bool pop_only)
1080 {
1081 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1082 int bit_off, bits, next_off;
1083
1084 /*
1085 * Check to see if the allocation can fit in the chunk's contig hint.
1086 * This is an optimization to prevent scanning by assuming if it
1087 * cannot fit in the global hint, there is memory pressure and creating
1088 * a new chunk would happen soon.
1089 */
1090 bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1091 chunk_md->contig_hint_start;
1092 if (bit_off + alloc_bits > chunk_md->contig_hint)
1093 return -1;
1094
1095 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1096 bits = 0;
1097 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1098 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1099 &next_off))
1100 break;
1101
1102 bit_off = next_off;
1103 bits = 0;
1104 }
1105
1106 if (bit_off == pcpu_chunk_map_bits(chunk))
1107 return -1;
1108
1109 return bit_off;
1110 }
1111
1112 /*
1113 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1114 * @map: the address to base the search on
1115 * @size: the bitmap size in bits
1116 * @start: the bitnumber to start searching at
1117 * @nr: the number of zeroed bits we're looking for
1118 * @align_mask: alignment mask for zero area
1119 * @largest_off: offset of the largest area skipped
1120 * @largest_bits: size of the largest area skipped
1121 *
1122 * The @align_mask should be one less than a power of 2.
1123 *
1124 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1125 * the largest area that was skipped. This is imperfect, but in general is
1126 * good enough. The largest remembered region is the largest failed region
1127 * seen. This does not include anything we possibly skipped due to alignment.
1128 * pcpu_block_update_scan() does scan backwards to try and recover what was
1129 * lost to alignment. While this can cause scanning to miss earlier possible
1130 * free areas, smaller allocations will eventually fill those holes.
1131 */
1132 static unsigned long pcpu_find_zero_area(unsigned long *map,
1133 unsigned long size,
1134 unsigned long start,
1135 unsigned long nr,
1136 unsigned long align_mask,
1137 unsigned long *largest_off,
1138 unsigned long *largest_bits)
1139 {
1140 unsigned long index, end, i, area_off, area_bits;
1141 again:
1142 index = find_next_zero_bit(map, size, start);
1143
1144 /* Align allocation */
1145 index = __ALIGN_MASK(index, align_mask);
1146 area_off = index;
1147
1148 end = index + nr;
1149 if (end > size)
1150 return end;
1151 i = find_next_bit(map, end, index);
1152 if (i < end) {
1153 area_bits = i - area_off;
1154 /* remember largest unused area with best alignment */
1155 if (area_bits > *largest_bits ||
1156 (area_bits == *largest_bits && *largest_off &&
1157 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1158 *largest_off = area_off;
1159 *largest_bits = area_bits;
1160 }
1161
1162 start = i + 1;
1163 goto again;
1164 }
1165 return index;
1166 }
1167
1168 /**
1169 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1170 * @chunk: chunk of interest
1171 * @alloc_bits: size of request in allocation units
1172 * @align: alignment of area (max PAGE_SIZE)
1173 * @start: bit_off to start searching
1174 *
1175 * This function takes in a @start offset to begin searching to fit an
1176 * allocation of @alloc_bits with alignment @align. It needs to scan
1177 * the allocation map because if it fits within the block's contig hint,
1178 * @start will be block->first_free. This is an attempt to fill the
1179 * allocation prior to breaking the contig hint. The allocation and
1180 * boundary maps are updated accordingly if it confirms a valid
1181 * free area.
1182 *
1183 * RETURNS:
1184 * Allocated addr offset in @chunk on success.
1185 * -1 if no matching area is found.
1186 */
1187 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1188 size_t align, int start)
1189 {
1190 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1191 size_t align_mask = (align) ? (align - 1) : 0;
1192 unsigned long area_off = 0, area_bits = 0;
1193 int bit_off, end, oslot;
1194
1195 lockdep_assert_held(&pcpu_lock);
1196
1197 oslot = pcpu_chunk_slot(chunk);
1198
1199 /*
1200 * Search to find a fit.
1201 */
1202 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1203 pcpu_chunk_map_bits(chunk));
1204 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1205 align_mask, &area_off, &area_bits);
1206 if (bit_off >= end)
1207 return -1;
1208
1209 if (area_bits)
1210 pcpu_block_update_scan(chunk, area_off, area_bits);
1211
1212 /* update alloc map */
1213 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1214
1215 /* update boundary map */
1216 set_bit(bit_off, chunk->bound_map);
1217 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1218 set_bit(bit_off + alloc_bits, chunk->bound_map);
1219
1220 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1221
1222 /* update first free bit */
1223 if (bit_off == chunk_md->first_free)
1224 chunk_md->first_free = find_next_zero_bit(
1225 chunk->alloc_map,
1226 pcpu_chunk_map_bits(chunk),
1227 bit_off + alloc_bits);
1228
1229 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1230
1231 pcpu_chunk_relocate(chunk, oslot);
1232
1233 return bit_off * PCPU_MIN_ALLOC_SIZE;
1234 }
1235
1236 /**
1237 * pcpu_free_area - frees the corresponding offset
1238 * @chunk: chunk of interest
1239 * @off: addr offset into chunk
1240 *
1241 * This function determines the size of an allocation to free using
1242 * the boundary bitmap and clears the allocation map.
1243 */
1244 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1245 {
1246 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1247 int bit_off, bits, end, oslot;
1248
1249 lockdep_assert_held(&pcpu_lock);
1250 pcpu_stats_area_dealloc(chunk);
1251
1252 oslot = pcpu_chunk_slot(chunk);
1253
1254 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1255
1256 /* find end index */
1257 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1258 bit_off + 1);
1259 bits = end - bit_off;
1260 bitmap_clear(chunk->alloc_map, bit_off, bits);
1261
1262 /* update metadata */
1263 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1264
1265 /* update first free bit */
1266 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1267
1268 pcpu_block_update_hint_free(chunk, bit_off, bits);
1269
1270 pcpu_chunk_relocate(chunk, oslot);
1271 }
1272
1273 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1274 {
1275 block->scan_hint = 0;
1276 block->contig_hint = nr_bits;
1277 block->left_free = nr_bits;
1278 block->right_free = nr_bits;
1279 block->first_free = 0;
1280 block->nr_bits = nr_bits;
1281 }
1282
1283 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1284 {
1285 struct pcpu_block_md *md_block;
1286
1287 /* init the chunk's block */
1288 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1289
1290 for (md_block = chunk->md_blocks;
1291 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1292 md_block++)
1293 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1294 }
1295
1296 /**
1297 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1298 * @tmp_addr: the start of the region served
1299 * @map_size: size of the region served
1300 *
1301 * This is responsible for creating the chunks that serve the first chunk. The
1302 * base_addr is page aligned down of @tmp_addr while the region end is page
1303 * aligned up. Offsets are kept track of to determine the region served. All
1304 * this is done to appease the bitmap allocator in avoiding partial blocks.
1305 *
1306 * RETURNS:
1307 * Chunk serving the region at @tmp_addr of @map_size.
1308 */
1309 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1310 int map_size)
1311 {
1312 struct pcpu_chunk *chunk;
1313 unsigned long aligned_addr, lcm_align;
1314 int start_offset, offset_bits, region_size, region_bits;
1315 size_t alloc_size;
1316
1317 /* region calculations */
1318 aligned_addr = tmp_addr & PAGE_MASK;
1319
1320 start_offset = tmp_addr - aligned_addr;
1321
1322 /*
1323 * Align the end of the region with the LCM of PAGE_SIZE and
1324 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1325 * the other.
1326 */
1327 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1328 region_size = ALIGN(start_offset + map_size, lcm_align);
1329
1330 /* allocate chunk */
1331 alloc_size = sizeof(struct pcpu_chunk) +
1332 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1333 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1334 if (!chunk)
1335 panic("%s: Failed to allocate %zu bytes\n", __func__,
1336 alloc_size);
1337
1338 INIT_LIST_HEAD(&chunk->list);
1339
1340 chunk->base_addr = (void *)aligned_addr;
1341 chunk->start_offset = start_offset;
1342 chunk->end_offset = region_size - chunk->start_offset - map_size;
1343
1344 chunk->nr_pages = region_size >> PAGE_SHIFT;
1345 region_bits = pcpu_chunk_map_bits(chunk);
1346
1347 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1348 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1349 if (!chunk->alloc_map)
1350 panic("%s: Failed to allocate %zu bytes\n", __func__,
1351 alloc_size);
1352
1353 alloc_size =
1354 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1355 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1356 if (!chunk->bound_map)
1357 panic("%s: Failed to allocate %zu bytes\n", __func__,
1358 alloc_size);
1359
1360 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1361 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1362 if (!chunk->md_blocks)
1363 panic("%s: Failed to allocate %zu bytes\n", __func__,
1364 alloc_size);
1365
1366 pcpu_init_md_blocks(chunk);
1367
1368 /* manage populated page bitmap */
1369 chunk->immutable = true;
1370 bitmap_fill(chunk->populated, chunk->nr_pages);
1371 chunk->nr_populated = chunk->nr_pages;
1372 chunk->nr_empty_pop_pages = chunk->nr_pages;
1373
1374 chunk->free_bytes = map_size;
1375
1376 if (chunk->start_offset) {
1377 /* hide the beginning of the bitmap */
1378 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1379 bitmap_set(chunk->alloc_map, 0, offset_bits);
1380 set_bit(0, chunk->bound_map);
1381 set_bit(offset_bits, chunk->bound_map);
1382
1383 chunk->chunk_md.first_free = offset_bits;
1384
1385 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1386 }
1387
1388 if (chunk->end_offset) {
1389 /* hide the end of the bitmap */
1390 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1391 bitmap_set(chunk->alloc_map,
1392 pcpu_chunk_map_bits(chunk) - offset_bits,
1393 offset_bits);
1394 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1395 chunk->bound_map);
1396 set_bit(region_bits, chunk->bound_map);
1397
1398 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1399 - offset_bits, offset_bits);
1400 }
1401
1402 return chunk;
1403 }
1404
1405 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1406 {
1407 struct pcpu_chunk *chunk;
1408 int region_bits;
1409
1410 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1411 if (!chunk)
1412 return NULL;
1413
1414 INIT_LIST_HEAD(&chunk->list);
1415 chunk->nr_pages = pcpu_unit_pages;
1416 region_bits = pcpu_chunk_map_bits(chunk);
1417
1418 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1419 sizeof(chunk->alloc_map[0]), gfp);
1420 if (!chunk->alloc_map)
1421 goto alloc_map_fail;
1422
1423 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1424 sizeof(chunk->bound_map[0]), gfp);
1425 if (!chunk->bound_map)
1426 goto bound_map_fail;
1427
1428 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1429 sizeof(chunk->md_blocks[0]), gfp);
1430 if (!chunk->md_blocks)
1431 goto md_blocks_fail;
1432
1433 pcpu_init_md_blocks(chunk);
1434
1435 /* init metadata */
1436 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1437
1438 return chunk;
1439
1440 md_blocks_fail:
1441 pcpu_mem_free(chunk->bound_map);
1442 bound_map_fail:
1443 pcpu_mem_free(chunk->alloc_map);
1444 alloc_map_fail:
1445 pcpu_mem_free(chunk);
1446
1447 return NULL;
1448 }
1449
1450 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1451 {
1452 if (!chunk)
1453 return;
1454 pcpu_mem_free(chunk->md_blocks);
1455 pcpu_mem_free(chunk->bound_map);
1456 pcpu_mem_free(chunk->alloc_map);
1457 pcpu_mem_free(chunk);
1458 }
1459
1460 /**
1461 * pcpu_chunk_populated - post-population bookkeeping
1462 * @chunk: pcpu_chunk which got populated
1463 * @page_start: the start page
1464 * @page_end: the end page
1465 *
1466 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1467 * the bookkeeping information accordingly. Must be called after each
1468 * successful population.
1469 *
1470 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1471 * is to serve an allocation in that area.
1472 */
1473 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1474 int page_end)
1475 {
1476 int nr = page_end - page_start;
1477
1478 lockdep_assert_held(&pcpu_lock);
1479
1480 bitmap_set(chunk->populated, page_start, nr);
1481 chunk->nr_populated += nr;
1482 pcpu_nr_populated += nr;
1483
1484 pcpu_update_empty_pages(chunk, nr);
1485 }
1486
1487 /**
1488 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1489 * @chunk: pcpu_chunk which got depopulated
1490 * @page_start: the start page
1491 * @page_end: the end page
1492 *
1493 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1494 * Update the bookkeeping information accordingly. Must be called after
1495 * each successful depopulation.
1496 */
1497 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1498 int page_start, int page_end)
1499 {
1500 int nr = page_end - page_start;
1501
1502 lockdep_assert_held(&pcpu_lock);
1503
1504 bitmap_clear(chunk->populated, page_start, nr);
1505 chunk->nr_populated -= nr;
1506 pcpu_nr_populated -= nr;
1507
1508 pcpu_update_empty_pages(chunk, -nr);
1509 }
1510
1511 /*
1512 * Chunk management implementation.
1513 *
1514 * To allow different implementations, chunk alloc/free and
1515 * [de]population are implemented in a separate file which is pulled
1516 * into this file and compiled together. The following functions
1517 * should be implemented.
1518 *
1519 * pcpu_populate_chunk - populate the specified range of a chunk
1520 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1521 * pcpu_create_chunk - create a new chunk
1522 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1523 * pcpu_addr_to_page - translate address to physical address
1524 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1525 */
1526 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1527 int page_start, int page_end, gfp_t gfp);
1528 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1529 int page_start, int page_end);
1530 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1531 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1532 static struct page *pcpu_addr_to_page(void *addr);
1533 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1534
1535 #ifdef CONFIG_NEED_PER_CPU_KM
1536 #include "percpu-km.c"
1537 #else
1538 #include "percpu-vm.c"
1539 #endif
1540
1541 /**
1542 * pcpu_chunk_addr_search - determine chunk containing specified address
1543 * @addr: address for which the chunk needs to be determined.
1544 *
1545 * This is an internal function that handles all but static allocations.
1546 * Static percpu address values should never be passed into the allocator.
1547 *
1548 * RETURNS:
1549 * The address of the found chunk.
1550 */
1551 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1552 {
1553 /* is it in the dynamic region (first chunk)? */
1554 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1555 return pcpu_first_chunk;
1556
1557 /* is it in the reserved region? */
1558 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1559 return pcpu_reserved_chunk;
1560
1561 /*
1562 * The address is relative to unit0 which might be unused and
1563 * thus unmapped. Offset the address to the unit space of the
1564 * current processor before looking it up in the vmalloc
1565 * space. Note that any possible cpu id can be used here, so
1566 * there's no need to worry about preemption or cpu hotplug.
1567 */
1568 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1569 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1570 }
1571
1572 /**
1573 * pcpu_alloc - the percpu allocator
1574 * @size: size of area to allocate in bytes
1575 * @align: alignment of area (max PAGE_SIZE)
1576 * @reserved: allocate from the reserved chunk if available
1577 * @gfp: allocation flags
1578 *
1579 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1580 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1581 * then no warning will be triggered on invalid or failed allocation
1582 * requests.
1583 *
1584 * RETURNS:
1585 * Percpu pointer to the allocated area on success, NULL on failure.
1586 */
1587 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1588 gfp_t gfp)
1589 {
1590 /* whitelisted flags that can be passed to the backing allocators */
1591 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1592 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1593 bool do_warn = !(gfp & __GFP_NOWARN);
1594 static int warn_limit = 10;
1595 struct pcpu_chunk *chunk, *next;
1596 const char *err;
1597 int slot, off, cpu, ret;
1598 unsigned long flags;
1599 void __percpu *ptr;
1600 size_t bits, bit_align;
1601
1602 /*
1603 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1604 * therefore alignment must be a minimum of that many bytes.
1605 * An allocation may have internal fragmentation from rounding up
1606 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1607 */
1608 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1609 align = PCPU_MIN_ALLOC_SIZE;
1610
1611 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1612 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1613 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1614
1615 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1616 !is_power_of_2(align))) {
1617 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1618 size, align);
1619 return NULL;
1620 }
1621
1622 if (!is_atomic) {
1623 /*
1624 * pcpu_balance_workfn() allocates memory under this mutex,
1625 * and it may wait for memory reclaim. Allow current task
1626 * to become OOM victim, in case of memory pressure.
1627 */
1628 if (gfp & __GFP_NOFAIL)
1629 mutex_lock(&pcpu_alloc_mutex);
1630 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1631 return NULL;
1632 }
1633
1634 spin_lock_irqsave(&pcpu_lock, flags);
1635
1636 /* serve reserved allocations from the reserved chunk if available */
1637 if (reserved && pcpu_reserved_chunk) {
1638 chunk = pcpu_reserved_chunk;
1639
1640 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1641 if (off < 0) {
1642 err = "alloc from reserved chunk failed";
1643 goto fail_unlock;
1644 }
1645
1646 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1647 if (off >= 0)
1648 goto area_found;
1649
1650 err = "alloc from reserved chunk failed";
1651 goto fail_unlock;
1652 }
1653
1654 restart:
1655 /* search through normal chunks */
1656 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1657 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1658 off = pcpu_find_block_fit(chunk, bits, bit_align,
1659 is_atomic);
1660 if (off < 0) {
1661 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1662 pcpu_chunk_move(chunk, 0);
1663 continue;
1664 }
1665
1666 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1667 if (off >= 0)
1668 goto area_found;
1669
1670 }
1671 }
1672
1673 spin_unlock_irqrestore(&pcpu_lock, flags);
1674
1675 /*
1676 * No space left. Create a new chunk. We don't want multiple
1677 * tasks to create chunks simultaneously. Serialize and create iff
1678 * there's still no empty chunk after grabbing the mutex.
1679 */
1680 if (is_atomic) {
1681 err = "atomic alloc failed, no space left";
1682 goto fail;
1683 }
1684
1685 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1686 chunk = pcpu_create_chunk(pcpu_gfp);
1687 if (!chunk) {
1688 err = "failed to allocate new chunk";
1689 goto fail;
1690 }
1691
1692 spin_lock_irqsave(&pcpu_lock, flags);
1693 pcpu_chunk_relocate(chunk, -1);
1694 } else {
1695 spin_lock_irqsave(&pcpu_lock, flags);
1696 }
1697
1698 goto restart;
1699
1700 area_found:
1701 pcpu_stats_area_alloc(chunk, size);
1702 spin_unlock_irqrestore(&pcpu_lock, flags);
1703
1704 /* populate if not all pages are already there */
1705 if (!is_atomic) {
1706 int page_start, page_end, rs, re;
1707
1708 page_start = PFN_DOWN(off);
1709 page_end = PFN_UP(off + size);
1710
1711 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1712 page_start, page_end) {
1713 WARN_ON(chunk->immutable);
1714
1715 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1716
1717 spin_lock_irqsave(&pcpu_lock, flags);
1718 if (ret) {
1719 pcpu_free_area(chunk, off);
1720 err = "failed to populate";
1721 goto fail_unlock;
1722 }
1723 pcpu_chunk_populated(chunk, rs, re);
1724 spin_unlock_irqrestore(&pcpu_lock, flags);
1725 }
1726
1727 mutex_unlock(&pcpu_alloc_mutex);
1728 }
1729
1730 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1731 pcpu_schedule_balance_work();
1732
1733 /* clear the areas and return address relative to base address */
1734 for_each_possible_cpu(cpu)
1735 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1736
1737 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1738 kmemleak_alloc_percpu(ptr, size, gfp);
1739
1740 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1741 chunk->base_addr, off, ptr);
1742
1743 return ptr;
1744
1745 fail_unlock:
1746 spin_unlock_irqrestore(&pcpu_lock, flags);
1747 fail:
1748 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1749
1750 if (!is_atomic && do_warn && warn_limit) {
1751 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1752 size, align, is_atomic, err);
1753 dump_stack();
1754 if (!--warn_limit)
1755 pr_info("limit reached, disable warning\n");
1756 }
1757 if (is_atomic) {
1758 /* see the flag handling in pcpu_blance_workfn() */
1759 pcpu_atomic_alloc_failed = true;
1760 pcpu_schedule_balance_work();
1761 } else {
1762 mutex_unlock(&pcpu_alloc_mutex);
1763 }
1764 return NULL;
1765 }
1766
1767 /**
1768 * __alloc_percpu_gfp - allocate dynamic percpu area
1769 * @size: size of area to allocate in bytes
1770 * @align: alignment of area (max PAGE_SIZE)
1771 * @gfp: allocation flags
1772 *
1773 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1774 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1775 * be called from any context but is a lot more likely to fail. If @gfp
1776 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1777 * allocation requests.
1778 *
1779 * RETURNS:
1780 * Percpu pointer to the allocated area on success, NULL on failure.
1781 */
1782 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1783 {
1784 return pcpu_alloc(size, align, false, gfp);
1785 }
1786 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1787
1788 /**
1789 * __alloc_percpu - allocate dynamic percpu area
1790 * @size: size of area to allocate in bytes
1791 * @align: alignment of area (max PAGE_SIZE)
1792 *
1793 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1794 */
1795 void __percpu *__alloc_percpu(size_t size, size_t align)
1796 {
1797 return pcpu_alloc(size, align, false, GFP_KERNEL);
1798 }
1799 EXPORT_SYMBOL_GPL(__alloc_percpu);
1800
1801 /**
1802 * __alloc_reserved_percpu - allocate reserved percpu area
1803 * @size: size of area to allocate in bytes
1804 * @align: alignment of area (max PAGE_SIZE)
1805 *
1806 * Allocate zero-filled percpu area of @size bytes aligned at @align
1807 * from reserved percpu area if arch has set it up; otherwise,
1808 * allocation is served from the same dynamic area. Might sleep.
1809 * Might trigger writeouts.
1810 *
1811 * CONTEXT:
1812 * Does GFP_KERNEL allocation.
1813 *
1814 * RETURNS:
1815 * Percpu pointer to the allocated area on success, NULL on failure.
1816 */
1817 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1818 {
1819 return pcpu_alloc(size, align, true, GFP_KERNEL);
1820 }
1821
1822 /**
1823 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1824 * @work: unused
1825 *
1826 * Reclaim all fully free chunks except for the first one. This is also
1827 * responsible for maintaining the pool of empty populated pages. However,
1828 * it is possible that this is called when physical memory is scarce causing
1829 * OOM killer to be triggered. We should avoid doing so until an actual
1830 * allocation causes the failure as it is possible that requests can be
1831 * serviced from already backed regions.
1832 */
1833 static void pcpu_balance_workfn(struct work_struct *work)
1834 {
1835 /* gfp flags passed to underlying allocators */
1836 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1837 LIST_HEAD(to_free);
1838 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1839 struct pcpu_chunk *chunk, *next;
1840 int slot, nr_to_pop, ret;
1841
1842 /*
1843 * There's no reason to keep around multiple unused chunks and VM
1844 * areas can be scarce. Destroy all free chunks except for one.
1845 */
1846 mutex_lock(&pcpu_alloc_mutex);
1847 spin_lock_irq(&pcpu_lock);
1848
1849 list_for_each_entry_safe(chunk, next, free_head, list) {
1850 WARN_ON(chunk->immutable);
1851
1852 /* spare the first one */
1853 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1854 continue;
1855
1856 list_move(&chunk->list, &to_free);
1857 }
1858
1859 spin_unlock_irq(&pcpu_lock);
1860
1861 list_for_each_entry_safe(chunk, next, &to_free, list) {
1862 int rs, re;
1863
1864 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1865 chunk->nr_pages) {
1866 pcpu_depopulate_chunk(chunk, rs, re);
1867 spin_lock_irq(&pcpu_lock);
1868 pcpu_chunk_depopulated(chunk, rs, re);
1869 spin_unlock_irq(&pcpu_lock);
1870 }
1871 pcpu_destroy_chunk(chunk);
1872 cond_resched();
1873 }
1874
1875 /*
1876 * Ensure there are certain number of free populated pages for
1877 * atomic allocs. Fill up from the most packed so that atomic
1878 * allocs don't increase fragmentation. If atomic allocation
1879 * failed previously, always populate the maximum amount. This
1880 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1881 * failing indefinitely; however, large atomic allocs are not
1882 * something we support properly and can be highly unreliable and
1883 * inefficient.
1884 */
1885 retry_pop:
1886 if (pcpu_atomic_alloc_failed) {
1887 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1888 /* best effort anyway, don't worry about synchronization */
1889 pcpu_atomic_alloc_failed = false;
1890 } else {
1891 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1892 pcpu_nr_empty_pop_pages,
1893 0, PCPU_EMPTY_POP_PAGES_HIGH);
1894 }
1895
1896 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1897 int nr_unpop = 0, rs, re;
1898
1899 if (!nr_to_pop)
1900 break;
1901
1902 spin_lock_irq(&pcpu_lock);
1903 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1904 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1905 if (nr_unpop)
1906 break;
1907 }
1908 spin_unlock_irq(&pcpu_lock);
1909
1910 if (!nr_unpop)
1911 continue;
1912
1913 /* @chunk can't go away while pcpu_alloc_mutex is held */
1914 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1915 chunk->nr_pages) {
1916 int nr = min(re - rs, nr_to_pop);
1917
1918 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1919 if (!ret) {
1920 nr_to_pop -= nr;
1921 spin_lock_irq(&pcpu_lock);
1922 pcpu_chunk_populated(chunk, rs, rs + nr);
1923 spin_unlock_irq(&pcpu_lock);
1924 } else {
1925 nr_to_pop = 0;
1926 }
1927
1928 if (!nr_to_pop)
1929 break;
1930 }
1931 }
1932
1933 if (nr_to_pop) {
1934 /* ran out of chunks to populate, create a new one and retry */
1935 chunk = pcpu_create_chunk(gfp);
1936 if (chunk) {
1937 spin_lock_irq(&pcpu_lock);
1938 pcpu_chunk_relocate(chunk, -1);
1939 spin_unlock_irq(&pcpu_lock);
1940 goto retry_pop;
1941 }
1942 }
1943
1944 mutex_unlock(&pcpu_alloc_mutex);
1945 }
1946
1947 /**
1948 * free_percpu - free percpu area
1949 * @ptr: pointer to area to free
1950 *
1951 * Free percpu area @ptr.
1952 *
1953 * CONTEXT:
1954 * Can be called from atomic context.
1955 */
1956 void free_percpu(void __percpu *ptr)
1957 {
1958 void *addr;
1959 struct pcpu_chunk *chunk;
1960 unsigned long flags;
1961 int off;
1962 bool need_balance = false;
1963
1964 if (!ptr)
1965 return;
1966
1967 kmemleak_free_percpu(ptr);
1968
1969 addr = __pcpu_ptr_to_addr(ptr);
1970
1971 spin_lock_irqsave(&pcpu_lock, flags);
1972
1973 chunk = pcpu_chunk_addr_search(addr);
1974 off = addr - chunk->base_addr;
1975
1976 pcpu_free_area(chunk, off);
1977
1978 /* if there are more than one fully free chunks, wake up grim reaper */
1979 if (chunk->free_bytes == pcpu_unit_size) {
1980 struct pcpu_chunk *pos;
1981
1982 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1983 if (pos != chunk) {
1984 need_balance = true;
1985 break;
1986 }
1987 }
1988
1989 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1990
1991 spin_unlock_irqrestore(&pcpu_lock, flags);
1992
1993 if (need_balance)
1994 pcpu_schedule_balance_work();
1995 }
1996 EXPORT_SYMBOL_GPL(free_percpu);
1997
1998 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1999 {
2000 #ifdef CONFIG_SMP
2001 const size_t static_size = __per_cpu_end - __per_cpu_start;
2002 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2003 unsigned int cpu;
2004
2005 for_each_possible_cpu(cpu) {
2006 void *start = per_cpu_ptr(base, cpu);
2007 void *va = (void *)addr;
2008
2009 if (va >= start && va < start + static_size) {
2010 if (can_addr) {
2011 *can_addr = (unsigned long) (va - start);
2012 *can_addr += (unsigned long)
2013 per_cpu_ptr(base, get_boot_cpu_id());
2014 }
2015 return true;
2016 }
2017 }
2018 #endif
2019 /* on UP, can't distinguish from other static vars, always false */
2020 return false;
2021 }
2022
2023 /**
2024 * is_kernel_percpu_address - test whether address is from static percpu area
2025 * @addr: address to test
2026 *
2027 * Test whether @addr belongs to in-kernel static percpu area. Module
2028 * static percpu areas are not considered. For those, use
2029 * is_module_percpu_address().
2030 *
2031 * RETURNS:
2032 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2033 */
2034 bool is_kernel_percpu_address(unsigned long addr)
2035 {
2036 return __is_kernel_percpu_address(addr, NULL);
2037 }
2038
2039 /**
2040 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2041 * @addr: the address to be converted to physical address
2042 *
2043 * Given @addr which is dereferenceable address obtained via one of
2044 * percpu access macros, this function translates it into its physical
2045 * address. The caller is responsible for ensuring @addr stays valid
2046 * until this function finishes.
2047 *
2048 * percpu allocator has special setup for the first chunk, which currently
2049 * supports either embedding in linear address space or vmalloc mapping,
2050 * and, from the second one, the backing allocator (currently either vm or
2051 * km) provides translation.
2052 *
2053 * The addr can be translated simply without checking if it falls into the
2054 * first chunk. But the current code reflects better how percpu allocator
2055 * actually works, and the verification can discover both bugs in percpu
2056 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2057 * code.
2058 *
2059 * RETURNS:
2060 * The physical address for @addr.
2061 */
2062 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2063 {
2064 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2065 bool in_first_chunk = false;
2066 unsigned long first_low, first_high;
2067 unsigned int cpu;
2068
2069 /*
2070 * The following test on unit_low/high isn't strictly
2071 * necessary but will speed up lookups of addresses which
2072 * aren't in the first chunk.
2073 *
2074 * The address check is against full chunk sizes. pcpu_base_addr
2075 * points to the beginning of the first chunk including the
2076 * static region. Assumes good intent as the first chunk may
2077 * not be full (ie. < pcpu_unit_pages in size).
2078 */
2079 first_low = (unsigned long)pcpu_base_addr +
2080 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2081 first_high = (unsigned long)pcpu_base_addr +
2082 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2083 if ((unsigned long)addr >= first_low &&
2084 (unsigned long)addr < first_high) {
2085 for_each_possible_cpu(cpu) {
2086 void *start = per_cpu_ptr(base, cpu);
2087
2088 if (addr >= start && addr < start + pcpu_unit_size) {
2089 in_first_chunk = true;
2090 break;
2091 }
2092 }
2093 }
2094
2095 if (in_first_chunk) {
2096 if (!is_vmalloc_addr(addr))
2097 return __pa(addr);
2098 else
2099 return page_to_phys(vmalloc_to_page(addr)) +
2100 offset_in_page(addr);
2101 } else
2102 return page_to_phys(pcpu_addr_to_page(addr)) +
2103 offset_in_page(addr);
2104 }
2105
2106 /**
2107 * pcpu_alloc_alloc_info - allocate percpu allocation info
2108 * @nr_groups: the number of groups
2109 * @nr_units: the number of units
2110 *
2111 * Allocate ai which is large enough for @nr_groups groups containing
2112 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2113 * cpu_map array which is long enough for @nr_units and filled with
2114 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2115 * pointer of other groups.
2116 *
2117 * RETURNS:
2118 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2119 * failure.
2120 */
2121 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2122 int nr_units)
2123 {
2124 struct pcpu_alloc_info *ai;
2125 size_t base_size, ai_size;
2126 void *ptr;
2127 int unit;
2128
2129 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
2130 __alignof__(ai->groups[0].cpu_map[0]));
2131 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2132
2133 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2134 if (!ptr)
2135 return NULL;
2136 ai = ptr;
2137 ptr += base_size;
2138
2139 ai->groups[0].cpu_map = ptr;
2140
2141 for (unit = 0; unit < nr_units; unit++)
2142 ai->groups[0].cpu_map[unit] = NR_CPUS;
2143
2144 ai->nr_groups = nr_groups;
2145 ai->__ai_size = PFN_ALIGN(ai_size);
2146
2147 return ai;
2148 }
2149
2150 /**
2151 * pcpu_free_alloc_info - free percpu allocation info
2152 * @ai: pcpu_alloc_info to free
2153 *
2154 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2155 */
2156 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2157 {
2158 memblock_free_early(__pa(ai), ai->__ai_size);
2159 }
2160
2161 /**
2162 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2163 * @lvl: loglevel
2164 * @ai: allocation info to dump
2165 *
2166 * Print out information about @ai using loglevel @lvl.
2167 */
2168 static void pcpu_dump_alloc_info(const char *lvl,
2169 const struct pcpu_alloc_info *ai)
2170 {
2171 int group_width = 1, cpu_width = 1, width;
2172 char empty_str[] = "--------";
2173 int alloc = 0, alloc_end = 0;
2174 int group, v;
2175 int upa, apl; /* units per alloc, allocs per line */
2176
2177 v = ai->nr_groups;
2178 while (v /= 10)
2179 group_width++;
2180
2181 v = num_possible_cpus();
2182 while (v /= 10)
2183 cpu_width++;
2184 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2185
2186 upa = ai->alloc_size / ai->unit_size;
2187 width = upa * (cpu_width + 1) + group_width + 3;
2188 apl = rounddown_pow_of_two(max(60 / width, 1));
2189
2190 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2191 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2192 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2193
2194 for (group = 0; group < ai->nr_groups; group++) {
2195 const struct pcpu_group_info *gi = &ai->groups[group];
2196 int unit = 0, unit_end = 0;
2197
2198 BUG_ON(gi->nr_units % upa);
2199 for (alloc_end += gi->nr_units / upa;
2200 alloc < alloc_end; alloc++) {
2201 if (!(alloc % apl)) {
2202 pr_cont("\n");
2203 printk("%spcpu-alloc: ", lvl);
2204 }
2205 pr_cont("[%0*d] ", group_width, group);
2206
2207 for (unit_end += upa; unit < unit_end; unit++)
2208 if (gi->cpu_map[unit] != NR_CPUS)
2209 pr_cont("%0*d ",
2210 cpu_width, gi->cpu_map[unit]);
2211 else
2212 pr_cont("%s ", empty_str);
2213 }
2214 }
2215 pr_cont("\n");
2216 }
2217
2218 /**
2219 * pcpu_setup_first_chunk - initialize the first percpu chunk
2220 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2221 * @base_addr: mapped address
2222 *
2223 * Initialize the first percpu chunk which contains the kernel static
2224 * perpcu area. This function is to be called from arch percpu area
2225 * setup path.
2226 *
2227 * @ai contains all information necessary to initialize the first
2228 * chunk and prime the dynamic percpu allocator.
2229 *
2230 * @ai->static_size is the size of static percpu area.
2231 *
2232 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2233 * reserve after the static area in the first chunk. This reserves
2234 * the first chunk such that it's available only through reserved
2235 * percpu allocation. This is primarily used to serve module percpu
2236 * static areas on architectures where the addressing model has
2237 * limited offset range for symbol relocations to guarantee module
2238 * percpu symbols fall inside the relocatable range.
2239 *
2240 * @ai->dyn_size determines the number of bytes available for dynamic
2241 * allocation in the first chunk. The area between @ai->static_size +
2242 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2243 *
2244 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2245 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2246 * @ai->dyn_size.
2247 *
2248 * @ai->atom_size is the allocation atom size and used as alignment
2249 * for vm areas.
2250 *
2251 * @ai->alloc_size is the allocation size and always multiple of
2252 * @ai->atom_size. This is larger than @ai->atom_size if
2253 * @ai->unit_size is larger than @ai->atom_size.
2254 *
2255 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2256 * percpu areas. Units which should be colocated are put into the
2257 * same group. Dynamic VM areas will be allocated according to these
2258 * groupings. If @ai->nr_groups is zero, a single group containing
2259 * all units is assumed.
2260 *
2261 * The caller should have mapped the first chunk at @base_addr and
2262 * copied static data to each unit.
2263 *
2264 * The first chunk will always contain a static and a dynamic region.
2265 * However, the static region is not managed by any chunk. If the first
2266 * chunk also contains a reserved region, it is served by two chunks -
2267 * one for the reserved region and one for the dynamic region. They
2268 * share the same vm, but use offset regions in the area allocation map.
2269 * The chunk serving the dynamic region is circulated in the chunk slots
2270 * and available for dynamic allocation like any other chunk.
2271 *
2272 * RETURNS:
2273 * 0 on success, -errno on failure.
2274 */
2275 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2276 void *base_addr)
2277 {
2278 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2279 size_t static_size, dyn_size;
2280 struct pcpu_chunk *chunk;
2281 unsigned long *group_offsets;
2282 size_t *group_sizes;
2283 unsigned long *unit_off;
2284 unsigned int cpu;
2285 int *unit_map;
2286 int group, unit, i;
2287 int map_size;
2288 unsigned long tmp_addr;
2289 size_t alloc_size;
2290
2291 #define PCPU_SETUP_BUG_ON(cond) do { \
2292 if (unlikely(cond)) { \
2293 pr_emerg("failed to initialize, %s\n", #cond); \
2294 pr_emerg("cpu_possible_mask=%*pb\n", \
2295 cpumask_pr_args(cpu_possible_mask)); \
2296 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2297 BUG(); \
2298 } \
2299 } while (0)
2300
2301 /* sanity checks */
2302 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2303 #ifdef CONFIG_SMP
2304 PCPU_SETUP_BUG_ON(!ai->static_size);
2305 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2306 #endif
2307 PCPU_SETUP_BUG_ON(!base_addr);
2308 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2309 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2310 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2311 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2312 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2313 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2314 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2315 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2316 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2317 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2318 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2319
2320 /* process group information and build config tables accordingly */
2321 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2322 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2323 if (!group_offsets)
2324 panic("%s: Failed to allocate %zu bytes\n", __func__,
2325 alloc_size);
2326
2327 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2328 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2329 if (!group_sizes)
2330 panic("%s: Failed to allocate %zu bytes\n", __func__,
2331 alloc_size);
2332
2333 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2334 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2335 if (!unit_map)
2336 panic("%s: Failed to allocate %zu bytes\n", __func__,
2337 alloc_size);
2338
2339 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2340 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2341 if (!unit_off)
2342 panic("%s: Failed to allocate %zu bytes\n", __func__,
2343 alloc_size);
2344
2345 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2346 unit_map[cpu] = UINT_MAX;
2347
2348 pcpu_low_unit_cpu = NR_CPUS;
2349 pcpu_high_unit_cpu = NR_CPUS;
2350
2351 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2352 const struct pcpu_group_info *gi = &ai->groups[group];
2353
2354 group_offsets[group] = gi->base_offset;
2355 group_sizes[group] = gi->nr_units * ai->unit_size;
2356
2357 for (i = 0; i < gi->nr_units; i++) {
2358 cpu = gi->cpu_map[i];
2359 if (cpu == NR_CPUS)
2360 continue;
2361
2362 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2363 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2364 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2365
2366 unit_map[cpu] = unit + i;
2367 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2368
2369 /* determine low/high unit_cpu */
2370 if (pcpu_low_unit_cpu == NR_CPUS ||
2371 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2372 pcpu_low_unit_cpu = cpu;
2373 if (pcpu_high_unit_cpu == NR_CPUS ||
2374 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2375 pcpu_high_unit_cpu = cpu;
2376 }
2377 }
2378 pcpu_nr_units = unit;
2379
2380 for_each_possible_cpu(cpu)
2381 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2382
2383 /* we're done parsing the input, undefine BUG macro and dump config */
2384 #undef PCPU_SETUP_BUG_ON
2385 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2386
2387 pcpu_nr_groups = ai->nr_groups;
2388 pcpu_group_offsets = group_offsets;
2389 pcpu_group_sizes = group_sizes;
2390 pcpu_unit_map = unit_map;
2391 pcpu_unit_offsets = unit_off;
2392
2393 /* determine basic parameters */
2394 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2395 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2396 pcpu_atom_size = ai->atom_size;
2397 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2398 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2399
2400 pcpu_stats_save_ai(ai);
2401
2402 /*
2403 * Allocate chunk slots. The additional last slot is for
2404 * empty chunks.
2405 */
2406 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2407 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2408 SMP_CACHE_BYTES);
2409 if (!pcpu_slot)
2410 panic("%s: Failed to allocate %zu bytes\n", __func__,
2411 pcpu_nr_slots * sizeof(pcpu_slot[0]));
2412 for (i = 0; i < pcpu_nr_slots; i++)
2413 INIT_LIST_HEAD(&pcpu_slot[i]);
2414
2415 /*
2416 * The end of the static region needs to be aligned with the
2417 * minimum allocation size as this offsets the reserved and
2418 * dynamic region. The first chunk ends page aligned by
2419 * expanding the dynamic region, therefore the dynamic region
2420 * can be shrunk to compensate while still staying above the
2421 * configured sizes.
2422 */
2423 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2424 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2425
2426 /*
2427 * Initialize first chunk.
2428 * If the reserved_size is non-zero, this initializes the reserved
2429 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2430 * and the dynamic region is initialized here. The first chunk,
2431 * pcpu_first_chunk, will always point to the chunk that serves
2432 * the dynamic region.
2433 */
2434 tmp_addr = (unsigned long)base_addr + static_size;
2435 map_size = ai->reserved_size ?: dyn_size;
2436 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2437
2438 /* init dynamic chunk if necessary */
2439 if (ai->reserved_size) {
2440 pcpu_reserved_chunk = chunk;
2441
2442 tmp_addr = (unsigned long)base_addr + static_size +
2443 ai->reserved_size;
2444 map_size = dyn_size;
2445 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2446 }
2447
2448 /* link the first chunk in */
2449 pcpu_first_chunk = chunk;
2450 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2451 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2452
2453 /* include all regions of the first chunk */
2454 pcpu_nr_populated += PFN_DOWN(size_sum);
2455
2456 pcpu_stats_chunk_alloc();
2457 trace_percpu_create_chunk(base_addr);
2458
2459 /* we're done */
2460 pcpu_base_addr = base_addr;
2461 return 0;
2462 }
2463
2464 #ifdef CONFIG_SMP
2465
2466 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2467 [PCPU_FC_AUTO] = "auto",
2468 [PCPU_FC_EMBED] = "embed",
2469 [PCPU_FC_PAGE] = "page",
2470 };
2471
2472 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2473
2474 static int __init percpu_alloc_setup(char *str)
2475 {
2476 if (!str)
2477 return -EINVAL;
2478
2479 if (0)
2480 /* nada */;
2481 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2482 else if (!strcmp(str, "embed"))
2483 pcpu_chosen_fc = PCPU_FC_EMBED;
2484 #endif
2485 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486 else if (!strcmp(str, "page"))
2487 pcpu_chosen_fc = PCPU_FC_PAGE;
2488 #endif
2489 else
2490 pr_warn("unknown allocator %s specified\n", str);
2491
2492 return 0;
2493 }
2494 early_param("percpu_alloc", percpu_alloc_setup);
2495
2496 /*
2497 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2498 * Build it if needed by the arch config or the generic setup is going
2499 * to be used.
2500 */
2501 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2502 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2503 #define BUILD_EMBED_FIRST_CHUNK
2504 #endif
2505
2506 /* build pcpu_page_first_chunk() iff needed by the arch config */
2507 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2508 #define BUILD_PAGE_FIRST_CHUNK
2509 #endif
2510
2511 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2512 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2513 /**
2514 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2515 * @reserved_size: the size of reserved percpu area in bytes
2516 * @dyn_size: minimum free size for dynamic allocation in bytes
2517 * @atom_size: allocation atom size
2518 * @cpu_distance_fn: callback to determine distance between cpus, optional
2519 *
2520 * This function determines grouping of units, their mappings to cpus
2521 * and other parameters considering needed percpu size, allocation
2522 * atom size and distances between CPUs.
2523 *
2524 * Groups are always multiples of atom size and CPUs which are of
2525 * LOCAL_DISTANCE both ways are grouped together and share space for
2526 * units in the same group. The returned configuration is guaranteed
2527 * to have CPUs on different nodes on different groups and >=75% usage
2528 * of allocated virtual address space.
2529 *
2530 * RETURNS:
2531 * On success, pointer to the new allocation_info is returned. On
2532 * failure, ERR_PTR value is returned.
2533 */
2534 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2535 size_t reserved_size, size_t dyn_size,
2536 size_t atom_size,
2537 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2538 {
2539 static int group_map[NR_CPUS] __initdata;
2540 static int group_cnt[NR_CPUS] __initdata;
2541 const size_t static_size = __per_cpu_end - __per_cpu_start;
2542 int nr_groups = 1, nr_units = 0;
2543 size_t size_sum, min_unit_size, alloc_size;
2544 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2545 int last_allocs, group, unit;
2546 unsigned int cpu, tcpu;
2547 struct pcpu_alloc_info *ai;
2548 unsigned int *cpu_map;
2549
2550 /* this function may be called multiple times */
2551 memset(group_map, 0, sizeof(group_map));
2552 memset(group_cnt, 0, sizeof(group_cnt));
2553
2554 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2555 size_sum = PFN_ALIGN(static_size + reserved_size +
2556 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2557 dyn_size = size_sum - static_size - reserved_size;
2558
2559 /*
2560 * Determine min_unit_size, alloc_size and max_upa such that
2561 * alloc_size is multiple of atom_size and is the smallest
2562 * which can accommodate 4k aligned segments which are equal to
2563 * or larger than min_unit_size.
2564 */
2565 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2566
2567 /* determine the maximum # of units that can fit in an allocation */
2568 alloc_size = roundup(min_unit_size, atom_size);
2569 upa = alloc_size / min_unit_size;
2570 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2571 upa--;
2572 max_upa = upa;
2573
2574 /* group cpus according to their proximity */
2575 for_each_possible_cpu(cpu) {
2576 group = 0;
2577 next_group:
2578 for_each_possible_cpu(tcpu) {
2579 if (cpu == tcpu)
2580 break;
2581 if (group_map[tcpu] == group && cpu_distance_fn &&
2582 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2583 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2584 group++;
2585 nr_groups = max(nr_groups, group + 1);
2586 goto next_group;
2587 }
2588 }
2589 group_map[cpu] = group;
2590 group_cnt[group]++;
2591 }
2592
2593 /*
2594 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2595 * Expand the unit_size until we use >= 75% of the units allocated.
2596 * Related to atom_size, which could be much larger than the unit_size.
2597 */
2598 last_allocs = INT_MAX;
2599 for (upa = max_upa; upa; upa--) {
2600 int allocs = 0, wasted = 0;
2601
2602 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2603 continue;
2604
2605 for (group = 0; group < nr_groups; group++) {
2606 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2607 allocs += this_allocs;
2608 wasted += this_allocs * upa - group_cnt[group];
2609 }
2610
2611 /*
2612 * Don't accept if wastage is over 1/3. The
2613 * greater-than comparison ensures upa==1 always
2614 * passes the following check.
2615 */
2616 if (wasted > num_possible_cpus() / 3)
2617 continue;
2618
2619 /* and then don't consume more memory */
2620 if (allocs > last_allocs)
2621 break;
2622 last_allocs = allocs;
2623 best_upa = upa;
2624 }
2625 upa = best_upa;
2626
2627 /* allocate and fill alloc_info */
2628 for (group = 0; group < nr_groups; group++)
2629 nr_units += roundup(group_cnt[group], upa);
2630
2631 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2632 if (!ai)
2633 return ERR_PTR(-ENOMEM);
2634 cpu_map = ai->groups[0].cpu_map;
2635
2636 for (group = 0; group < nr_groups; group++) {
2637 ai->groups[group].cpu_map = cpu_map;
2638 cpu_map += roundup(group_cnt[group], upa);
2639 }
2640
2641 ai->static_size = static_size;
2642 ai->reserved_size = reserved_size;
2643 ai->dyn_size = dyn_size;
2644 ai->unit_size = alloc_size / upa;
2645 ai->atom_size = atom_size;
2646 ai->alloc_size = alloc_size;
2647
2648 for (group = 0, unit = 0; group < nr_groups; group++) {
2649 struct pcpu_group_info *gi = &ai->groups[group];
2650
2651 /*
2652 * Initialize base_offset as if all groups are located
2653 * back-to-back. The caller should update this to
2654 * reflect actual allocation.
2655 */
2656 gi->base_offset = unit * ai->unit_size;
2657
2658 for_each_possible_cpu(cpu)
2659 if (group_map[cpu] == group)
2660 gi->cpu_map[gi->nr_units++] = cpu;
2661 gi->nr_units = roundup(gi->nr_units, upa);
2662 unit += gi->nr_units;
2663 }
2664 BUG_ON(unit != nr_units);
2665
2666 return ai;
2667 }
2668 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2669
2670 #if defined(BUILD_EMBED_FIRST_CHUNK)
2671 /**
2672 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2673 * @reserved_size: the size of reserved percpu area in bytes
2674 * @dyn_size: minimum free size for dynamic allocation in bytes
2675 * @atom_size: allocation atom size
2676 * @cpu_distance_fn: callback to determine distance between cpus, optional
2677 * @alloc_fn: function to allocate percpu page
2678 * @free_fn: function to free percpu page
2679 *
2680 * This is a helper to ease setting up embedded first percpu chunk and
2681 * can be called where pcpu_setup_first_chunk() is expected.
2682 *
2683 * If this function is used to setup the first chunk, it is allocated
2684 * by calling @alloc_fn and used as-is without being mapped into
2685 * vmalloc area. Allocations are always whole multiples of @atom_size
2686 * aligned to @atom_size.
2687 *
2688 * This enables the first chunk to piggy back on the linear physical
2689 * mapping which often uses larger page size. Please note that this
2690 * can result in very sparse cpu->unit mapping on NUMA machines thus
2691 * requiring large vmalloc address space. Don't use this allocator if
2692 * vmalloc space is not orders of magnitude larger than distances
2693 * between node memory addresses (ie. 32bit NUMA machines).
2694 *
2695 * @dyn_size specifies the minimum dynamic area size.
2696 *
2697 * If the needed size is smaller than the minimum or specified unit
2698 * size, the leftover is returned using @free_fn.
2699 *
2700 * RETURNS:
2701 * 0 on success, -errno on failure.
2702 */
2703 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2704 size_t atom_size,
2705 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2706 pcpu_fc_alloc_fn_t alloc_fn,
2707 pcpu_fc_free_fn_t free_fn)
2708 {
2709 void *base = (void *)ULONG_MAX;
2710 void **areas = NULL;
2711 struct pcpu_alloc_info *ai;
2712 size_t size_sum, areas_size;
2713 unsigned long max_distance;
2714 int group, i, highest_group, rc;
2715
2716 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2717 cpu_distance_fn);
2718 if (IS_ERR(ai))
2719 return PTR_ERR(ai);
2720
2721 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2722 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2723
2724 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2725 if (!areas) {
2726 rc = -ENOMEM;
2727 goto out_free;
2728 }
2729
2730 /* allocate, copy and determine base address & max_distance */
2731 highest_group = 0;
2732 for (group = 0; group < ai->nr_groups; group++) {
2733 struct pcpu_group_info *gi = &ai->groups[group];
2734 unsigned int cpu = NR_CPUS;
2735 void *ptr;
2736
2737 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2738 cpu = gi->cpu_map[i];
2739 BUG_ON(cpu == NR_CPUS);
2740
2741 /* allocate space for the whole group */
2742 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2743 if (!ptr) {
2744 rc = -ENOMEM;
2745 goto out_free_areas;
2746 }
2747 /* kmemleak tracks the percpu allocations separately */
2748 kmemleak_free(ptr);
2749 areas[group] = ptr;
2750
2751 base = min(ptr, base);
2752 if (ptr > areas[highest_group])
2753 highest_group = group;
2754 }
2755 max_distance = areas[highest_group] - base;
2756 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2757
2758 /* warn if maximum distance is further than 75% of vmalloc space */
2759 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2760 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2761 max_distance, VMALLOC_TOTAL);
2762 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2763 /* and fail if we have fallback */
2764 rc = -EINVAL;
2765 goto out_free_areas;
2766 #endif
2767 }
2768
2769 /*
2770 * Copy data and free unused parts. This should happen after all
2771 * allocations are complete; otherwise, we may end up with
2772 * overlapping groups.
2773 */
2774 for (group = 0; group < ai->nr_groups; group++) {
2775 struct pcpu_group_info *gi = &ai->groups[group];
2776 void *ptr = areas[group];
2777
2778 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2779 if (gi->cpu_map[i] == NR_CPUS) {
2780 /* unused unit, free whole */
2781 free_fn(ptr, ai->unit_size);
2782 continue;
2783 }
2784 /* copy and return the unused part */
2785 memcpy(ptr, __per_cpu_load, ai->static_size);
2786 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2787 }
2788 }
2789
2790 /* base address is now known, determine group base offsets */
2791 for (group = 0; group < ai->nr_groups; group++) {
2792 ai->groups[group].base_offset = areas[group] - base;
2793 }
2794
2795 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2796 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2797 ai->dyn_size, ai->unit_size);
2798
2799 rc = pcpu_setup_first_chunk(ai, base);
2800 goto out_free;
2801
2802 out_free_areas:
2803 for (group = 0; group < ai->nr_groups; group++)
2804 if (areas[group])
2805 free_fn(areas[group],
2806 ai->groups[group].nr_units * ai->unit_size);
2807 out_free:
2808 pcpu_free_alloc_info(ai);
2809 if (areas)
2810 memblock_free_early(__pa(areas), areas_size);
2811 return rc;
2812 }
2813 #endif /* BUILD_EMBED_FIRST_CHUNK */
2814
2815 #ifdef BUILD_PAGE_FIRST_CHUNK
2816 /**
2817 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2818 * @reserved_size: the size of reserved percpu area in bytes
2819 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2820 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2821 * @populate_pte_fn: function to populate pte
2822 *
2823 * This is a helper to ease setting up page-remapped first percpu
2824 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2825 *
2826 * This is the basic allocator. Static percpu area is allocated
2827 * page-by-page into vmalloc area.
2828 *
2829 * RETURNS:
2830 * 0 on success, -errno on failure.
2831 */
2832 int __init pcpu_page_first_chunk(size_t reserved_size,
2833 pcpu_fc_alloc_fn_t alloc_fn,
2834 pcpu_fc_free_fn_t free_fn,
2835 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2836 {
2837 static struct vm_struct vm;
2838 struct pcpu_alloc_info *ai;
2839 char psize_str[16];
2840 int unit_pages;
2841 size_t pages_size;
2842 struct page **pages;
2843 int unit, i, j, rc;
2844 int upa;
2845 int nr_g0_units;
2846
2847 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2848
2849 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2850 if (IS_ERR(ai))
2851 return PTR_ERR(ai);
2852 BUG_ON(ai->nr_groups != 1);
2853 upa = ai->alloc_size/ai->unit_size;
2854 nr_g0_units = roundup(num_possible_cpus(), upa);
2855 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2856 pcpu_free_alloc_info(ai);
2857 return -EINVAL;
2858 }
2859
2860 unit_pages = ai->unit_size >> PAGE_SHIFT;
2861
2862 /* unaligned allocations can't be freed, round up to page size */
2863 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2864 sizeof(pages[0]));
2865 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2866 if (!pages)
2867 panic("%s: Failed to allocate %zu bytes\n", __func__,
2868 pages_size);
2869
2870 /* allocate pages */
2871 j = 0;
2872 for (unit = 0; unit < num_possible_cpus(); unit++) {
2873 unsigned int cpu = ai->groups[0].cpu_map[unit];
2874 for (i = 0; i < unit_pages; i++) {
2875 void *ptr;
2876
2877 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2878 if (!ptr) {
2879 pr_warn("failed to allocate %s page for cpu%u\n",
2880 psize_str, cpu);
2881 goto enomem;
2882 }
2883 /* kmemleak tracks the percpu allocations separately */
2884 kmemleak_free(ptr);
2885 pages[j++] = virt_to_page(ptr);
2886 }
2887 }
2888
2889 /* allocate vm area, map the pages and copy static data */
2890 vm.flags = VM_ALLOC;
2891 vm.size = num_possible_cpus() * ai->unit_size;
2892 vm_area_register_early(&vm, PAGE_SIZE);
2893
2894 for (unit = 0; unit < num_possible_cpus(); unit++) {
2895 unsigned long unit_addr =
2896 (unsigned long)vm.addr + unit * ai->unit_size;
2897
2898 for (i = 0; i < unit_pages; i++)
2899 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2900
2901 /* pte already populated, the following shouldn't fail */
2902 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2903 unit_pages);
2904 if (rc < 0)
2905 panic("failed to map percpu area, err=%d\n", rc);
2906
2907 /*
2908 * FIXME: Archs with virtual cache should flush local
2909 * cache for the linear mapping here - something
2910 * equivalent to flush_cache_vmap() on the local cpu.
2911 * flush_cache_vmap() can't be used as most supporting
2912 * data structures are not set up yet.
2913 */
2914
2915 /* copy static data */
2916 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2917 }
2918
2919 /* we're ready, commit */
2920 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2921 unit_pages, psize_str, ai->static_size,
2922 ai->reserved_size, ai->dyn_size);
2923
2924 rc = pcpu_setup_first_chunk(ai, vm.addr);
2925 goto out_free_ar;
2926
2927 enomem:
2928 while (--j >= 0)
2929 free_fn(page_address(pages[j]), PAGE_SIZE);
2930 rc = -ENOMEM;
2931 out_free_ar:
2932 memblock_free_early(__pa(pages), pages_size);
2933 pcpu_free_alloc_info(ai);
2934 return rc;
2935 }
2936 #endif /* BUILD_PAGE_FIRST_CHUNK */
2937
2938 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2939 /*
2940 * Generic SMP percpu area setup.
2941 *
2942 * The embedding helper is used because its behavior closely resembles
2943 * the original non-dynamic generic percpu area setup. This is
2944 * important because many archs have addressing restrictions and might
2945 * fail if the percpu area is located far away from the previous
2946 * location. As an added bonus, in non-NUMA cases, embedding is
2947 * generally a good idea TLB-wise because percpu area can piggy back
2948 * on the physical linear memory mapping which uses large page
2949 * mappings on applicable archs.
2950 */
2951 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2952 EXPORT_SYMBOL(__per_cpu_offset);
2953
2954 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2955 size_t align)
2956 {
2957 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2958 }
2959
2960 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2961 {
2962 memblock_free_early(__pa(ptr), size);
2963 }
2964
2965 void __init setup_per_cpu_areas(void)
2966 {
2967 unsigned long delta;
2968 unsigned int cpu;
2969 int rc;
2970
2971 /*
2972 * Always reserve area for module percpu variables. That's
2973 * what the legacy allocator did.
2974 */
2975 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2976 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2977 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2978 if (rc < 0)
2979 panic("Failed to initialize percpu areas.");
2980
2981 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2982 for_each_possible_cpu(cpu)
2983 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2984 }
2985 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2986
2987 #else /* CONFIG_SMP */
2988
2989 /*
2990 * UP percpu area setup.
2991 *
2992 * UP always uses km-based percpu allocator with identity mapping.
2993 * Static percpu variables are indistinguishable from the usual static
2994 * variables and don't require any special preparation.
2995 */
2996 void __init setup_per_cpu_areas(void)
2997 {
2998 const size_t unit_size =
2999 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3000 PERCPU_DYNAMIC_RESERVE));
3001 struct pcpu_alloc_info *ai;
3002 void *fc;
3003
3004 ai = pcpu_alloc_alloc_info(1, 1);
3005 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3006 if (!ai || !fc)
3007 panic("Failed to allocate memory for percpu areas.");
3008 /* kmemleak tracks the percpu allocations separately */
3009 kmemleak_free(fc);
3010
3011 ai->dyn_size = unit_size;
3012 ai->unit_size = unit_size;
3013 ai->atom_size = unit_size;
3014 ai->alloc_size = unit_size;
3015 ai->groups[0].nr_units = 1;
3016 ai->groups[0].cpu_map[0] = 0;
3017
3018 if (pcpu_setup_first_chunk(ai, fc) < 0)
3019 panic("Failed to initialize percpu areas.");
3020 pcpu_free_alloc_info(ai);
3021 }
3022
3023 #endif /* CONFIG_SMP */
3024
3025 /*
3026 * pcpu_nr_pages - calculate total number of populated backing pages
3027 *
3028 * This reflects the number of pages populated to back chunks. Metadata is
3029 * excluded in the number exposed in meminfo as the number of backing pages
3030 * scales with the number of cpus and can quickly outweigh the memory used for
3031 * metadata. It also keeps this calculation nice and simple.
3032 *
3033 * RETURNS:
3034 * Total number of populated backing pages in use by the allocator.
3035 */
3036 unsigned long pcpu_nr_pages(void)
3037 {
3038 return pcpu_nr_populated * pcpu_nr_units;
3039 }
3040
3041 /*
3042 * Percpu allocator is initialized early during boot when neither slab or
3043 * workqueue is available. Plug async management until everything is up
3044 * and running.
3045 */
3046 static int __init percpu_enable_async(void)
3047 {
3048 pcpu_async_enabled = true;
3049 return 0;
3050 }
3051 subsys_initcall(percpu_enable_async);