]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/percpu.c
net: hns3: Fixes the state to indicate client-type initialization
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
10 * This file is released under the GPLv2 license.
11 *
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
39 *
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
54 *
55 * To use this allocator, arch code should do the following:
56 *
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
60 *
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
91
92 #include "percpu-internal.h"
93
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT 5
96
97 #define PCPU_EMPTY_POP_PAGES_LOW 2
98 #define PCPU_EMPTY_POP_PAGES_HIGH 4
99
100 #ifdef CONFIG_SMP
101 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
102 #ifndef __addr_to_pcpu_ptr
103 #define __addr_to_pcpu_ptr(addr) \
104 (void __percpu *)((unsigned long)(addr) - \
105 (unsigned long)pcpu_base_addr + \
106 (unsigned long)__per_cpu_start)
107 #endif
108 #ifndef __pcpu_ptr_to_addr
109 #define __pcpu_ptr_to_addr(ptr) \
110 (void __force *)((unsigned long)(ptr) + \
111 (unsigned long)pcpu_base_addr - \
112 (unsigned long)__per_cpu_start)
113 #endif
114 #else /* CONFIG_SMP */
115 /* on UP, it's always identity mapped */
116 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
117 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
118 #endif /* CONFIG_SMP */
119
120 static int pcpu_unit_pages __ro_after_init;
121 static int pcpu_unit_size __ro_after_init;
122 static int pcpu_nr_units __ro_after_init;
123 static int pcpu_atom_size __ro_after_init;
124 int pcpu_nr_slots __ro_after_init;
125 static size_t pcpu_chunk_struct_size __ro_after_init;
126
127 /* cpus with the lowest and highest unit addresses */
128 static unsigned int pcpu_low_unit_cpu __ro_after_init;
129 static unsigned int pcpu_high_unit_cpu __ro_after_init;
130
131 /* the address of the first chunk which starts with the kernel static area */
132 void *pcpu_base_addr __ro_after_init;
133 EXPORT_SYMBOL_GPL(pcpu_base_addr);
134
135 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
136 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
137
138 /* group information, used for vm allocation */
139 static int pcpu_nr_groups __ro_after_init;
140 static const unsigned long *pcpu_group_offsets __ro_after_init;
141 static const size_t *pcpu_group_sizes __ro_after_init;
142
143 /*
144 * The first chunk which always exists. Note that unlike other
145 * chunks, this one can be allocated and mapped in several different
146 * ways and thus often doesn't live in the vmalloc area.
147 */
148 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
149
150 /*
151 * Optional reserved chunk. This chunk reserves part of the first
152 * chunk and serves it for reserved allocations. When the reserved
153 * region doesn't exist, the following variable is NULL.
154 */
155 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
156
157 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
158 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
159
160 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
161
162 /* chunks which need their map areas extended, protected by pcpu_lock */
163 static LIST_HEAD(pcpu_map_extend_chunks);
164
165 /*
166 * The number of empty populated pages, protected by pcpu_lock. The
167 * reserved chunk doesn't contribute to the count.
168 */
169 int pcpu_nr_empty_pop_pages;
170
171 /*
172 * Balance work is used to populate or destroy chunks asynchronously. We
173 * try to keep the number of populated free pages between
174 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
175 * empty chunk.
176 */
177 static void pcpu_balance_workfn(struct work_struct *work);
178 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
179 static bool pcpu_async_enabled __read_mostly;
180 static bool pcpu_atomic_alloc_failed;
181
182 static void pcpu_schedule_balance_work(void)
183 {
184 if (pcpu_async_enabled)
185 schedule_work(&pcpu_balance_work);
186 }
187
188 /**
189 * pcpu_addr_in_chunk - check if the address is served from this chunk
190 * @chunk: chunk of interest
191 * @addr: percpu address
192 *
193 * RETURNS:
194 * True if the address is served from this chunk.
195 */
196 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
197 {
198 void *start_addr, *end_addr;
199
200 if (!chunk)
201 return false;
202
203 start_addr = chunk->base_addr + chunk->start_offset;
204 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
205 chunk->end_offset;
206
207 return addr >= start_addr && addr < end_addr;
208 }
209
210 static int __pcpu_size_to_slot(int size)
211 {
212 int highbit = fls(size); /* size is in bytes */
213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
214 }
215
216 static int pcpu_size_to_slot(int size)
217 {
218 if (size == pcpu_unit_size)
219 return pcpu_nr_slots - 1;
220 return __pcpu_size_to_slot(size);
221 }
222
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
224 {
225 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
226 return 0;
227
228 return pcpu_size_to_slot(chunk->free_bytes);
229 }
230
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
233 {
234 page->index = (unsigned long)pcpu;
235 }
236
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
239 {
240 return (struct pcpu_chunk *)page->index;
241 }
242
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244 {
245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 }
247
248 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
249 {
250 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
251 }
252
253 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
254 unsigned int cpu, int page_idx)
255 {
256 return (unsigned long)chunk->base_addr +
257 pcpu_unit_page_offset(cpu, page_idx);
258 }
259
260 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
261 {
262 *rs = find_next_zero_bit(bitmap, end, *rs);
263 *re = find_next_bit(bitmap, end, *rs + 1);
264 }
265
266 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
267 {
268 *rs = find_next_bit(bitmap, end, *rs);
269 *re = find_next_zero_bit(bitmap, end, *rs + 1);
270 }
271
272 /*
273 * Bitmap region iterators. Iterates over the bitmap between
274 * [@start, @end) in @chunk. @rs and @re should be integer variables
275 * and will be set to start and end index of the current free region.
276 */
277 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
278 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
279 (rs) < (re); \
280 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
281
282 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
283 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
284 (rs) < (re); \
285 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
286
287 /*
288 * The following are helper functions to help access bitmaps and convert
289 * between bitmap offsets to address offsets.
290 */
291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
292 {
293 return chunk->alloc_map +
294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
295 }
296
297 static unsigned long pcpu_off_to_block_index(int off)
298 {
299 return off / PCPU_BITMAP_BLOCK_BITS;
300 }
301
302 static unsigned long pcpu_off_to_block_off(int off)
303 {
304 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
305 }
306
307 static unsigned long pcpu_block_off_to_off(int index, int off)
308 {
309 return index * PCPU_BITMAP_BLOCK_BITS + off;
310 }
311
312 /**
313 * pcpu_next_md_free_region - finds the next hint free area
314 * @chunk: chunk of interest
315 * @bit_off: chunk offset
316 * @bits: size of free area
317 *
318 * Helper function for pcpu_for_each_md_free_region. It checks
319 * block->contig_hint and performs aggregation across blocks to find the
320 * next hint. It modifies bit_off and bits in-place to be consumed in the
321 * loop.
322 */
323 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
324 int *bits)
325 {
326 int i = pcpu_off_to_block_index(*bit_off);
327 int block_off = pcpu_off_to_block_off(*bit_off);
328 struct pcpu_block_md *block;
329
330 *bits = 0;
331 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
332 block++, i++) {
333 /* handles contig area across blocks */
334 if (*bits) {
335 *bits += block->left_free;
336 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
337 continue;
338 return;
339 }
340
341 /*
342 * This checks three things. First is there a contig_hint to
343 * check. Second, have we checked this hint before by
344 * comparing the block_off. Third, is this the same as the
345 * right contig hint. In the last case, it spills over into
346 * the next block and should be handled by the contig area
347 * across blocks code.
348 */
349 *bits = block->contig_hint;
350 if (*bits && block->contig_hint_start >= block_off &&
351 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
352 *bit_off = pcpu_block_off_to_off(i,
353 block->contig_hint_start);
354 return;
355 }
356 /* reset to satisfy the second predicate above */
357 block_off = 0;
358
359 *bits = block->right_free;
360 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
361 }
362 }
363
364 /**
365 * pcpu_next_fit_region - finds fit areas for a given allocation request
366 * @chunk: chunk of interest
367 * @alloc_bits: size of allocation
368 * @align: alignment of area (max PAGE_SIZE)
369 * @bit_off: chunk offset
370 * @bits: size of free area
371 *
372 * Finds the next free region that is viable for use with a given size and
373 * alignment. This only returns if there is a valid area to be used for this
374 * allocation. block->first_free is returned if the allocation request fits
375 * within the block to see if the request can be fulfilled prior to the contig
376 * hint.
377 */
378 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
379 int align, int *bit_off, int *bits)
380 {
381 int i = pcpu_off_to_block_index(*bit_off);
382 int block_off = pcpu_off_to_block_off(*bit_off);
383 struct pcpu_block_md *block;
384
385 *bits = 0;
386 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
387 block++, i++) {
388 /* handles contig area across blocks */
389 if (*bits) {
390 *bits += block->left_free;
391 if (*bits >= alloc_bits)
392 return;
393 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
394 continue;
395 }
396
397 /* check block->contig_hint */
398 *bits = ALIGN(block->contig_hint_start, align) -
399 block->contig_hint_start;
400 /*
401 * This uses the block offset to determine if this has been
402 * checked in the prior iteration.
403 */
404 if (block->contig_hint &&
405 block->contig_hint_start >= block_off &&
406 block->contig_hint >= *bits + alloc_bits) {
407 *bits += alloc_bits + block->contig_hint_start -
408 block->first_free;
409 *bit_off = pcpu_block_off_to_off(i, block->first_free);
410 return;
411 }
412 /* reset to satisfy the second predicate above */
413 block_off = 0;
414
415 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
416 align);
417 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
418 *bit_off = pcpu_block_off_to_off(i, *bit_off);
419 if (*bits >= alloc_bits)
420 return;
421 }
422
423 /* no valid offsets were found - fail condition */
424 *bit_off = pcpu_chunk_map_bits(chunk);
425 }
426
427 /*
428 * Metadata free area iterators. These perform aggregation of free areas
429 * based on the metadata blocks and return the offset @bit_off and size in
430 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
431 * a fit is found for the allocation request.
432 */
433 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
434 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
435 (bit_off) < pcpu_chunk_map_bits((chunk)); \
436 (bit_off) += (bits) + 1, \
437 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
438
439 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
440 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
441 &(bits)); \
442 (bit_off) < pcpu_chunk_map_bits((chunk)); \
443 (bit_off) += (bits), \
444 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
445 &(bits)))
446
447 /**
448 * pcpu_mem_zalloc - allocate memory
449 * @size: bytes to allocate
450 * @gfp: allocation flags
451 *
452 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
453 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
454 * This is to facilitate passing through whitelisted flags. The
455 * returned memory is always zeroed.
456 *
457 * CONTEXT:
458 * Does GFP_KERNEL allocation.
459 *
460 * RETURNS:
461 * Pointer to the allocated area on success, NULL on failure.
462 */
463 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
464 {
465 if (WARN_ON_ONCE(!slab_is_available()))
466 return NULL;
467
468 if (size <= PAGE_SIZE)
469 return kzalloc(size, gfp | GFP_KERNEL);
470 else
471 return __vmalloc(size, gfp | GFP_KERNEL | __GFP_ZERO,
472 PAGE_KERNEL);
473 }
474
475 /**
476 * pcpu_mem_free - free memory
477 * @ptr: memory to free
478 *
479 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
480 */
481 static void pcpu_mem_free(void *ptr)
482 {
483 kvfree(ptr);
484 }
485
486 /**
487 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
488 * @chunk: chunk of interest
489 * @oslot: the previous slot it was on
490 *
491 * This function is called after an allocation or free changed @chunk.
492 * New slot according to the changed state is determined and @chunk is
493 * moved to the slot. Note that the reserved chunk is never put on
494 * chunk slots.
495 *
496 * CONTEXT:
497 * pcpu_lock.
498 */
499 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
500 {
501 int nslot = pcpu_chunk_slot(chunk);
502
503 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
504 if (oslot < nslot)
505 list_move(&chunk->list, &pcpu_slot[nslot]);
506 else
507 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
508 }
509 }
510
511 /**
512 * pcpu_cnt_pop_pages- counts populated backing pages in range
513 * @chunk: chunk of interest
514 * @bit_off: start offset
515 * @bits: size of area to check
516 *
517 * Calculates the number of populated pages in the region
518 * [page_start, page_end). This keeps track of how many empty populated
519 * pages are available and decide if async work should be scheduled.
520 *
521 * RETURNS:
522 * The nr of populated pages.
523 */
524 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
525 int bits)
526 {
527 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
528 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
529
530 if (page_start >= page_end)
531 return 0;
532
533 /*
534 * bitmap_weight counts the number of bits set in a bitmap up to
535 * the specified number of bits. This is counting the populated
536 * pages up to page_end and then subtracting the populated pages
537 * up to page_start to count the populated pages in
538 * [page_start, page_end).
539 */
540 return bitmap_weight(chunk->populated, page_end) -
541 bitmap_weight(chunk->populated, page_start);
542 }
543
544 /**
545 * pcpu_chunk_update - updates the chunk metadata given a free area
546 * @chunk: chunk of interest
547 * @bit_off: chunk offset
548 * @bits: size of free area
549 *
550 * This updates the chunk's contig hint and starting offset given a free area.
551 * Choose the best starting offset if the contig hint is equal.
552 */
553 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
554 {
555 if (bits > chunk->contig_bits) {
556 chunk->contig_bits_start = bit_off;
557 chunk->contig_bits = bits;
558 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
559 (!bit_off ||
560 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
561 /* use the start with the best alignment */
562 chunk->contig_bits_start = bit_off;
563 }
564 }
565
566 /**
567 * pcpu_chunk_refresh_hint - updates metadata about a chunk
568 * @chunk: chunk of interest
569 *
570 * Iterates over the metadata blocks to find the largest contig area.
571 * It also counts the populated pages and uses the delta to update the
572 * global count.
573 *
574 * Updates:
575 * chunk->contig_bits
576 * chunk->contig_bits_start
577 * nr_empty_pop_pages (chunk and global)
578 */
579 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
580 {
581 int bit_off, bits, nr_empty_pop_pages;
582
583 /* clear metadata */
584 chunk->contig_bits = 0;
585
586 bit_off = chunk->first_bit;
587 bits = nr_empty_pop_pages = 0;
588 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
589 pcpu_chunk_update(chunk, bit_off, bits);
590
591 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
592 }
593
594 /*
595 * Keep track of nr_empty_pop_pages.
596 *
597 * The chunk maintains the previous number of free pages it held,
598 * so the delta is used to update the global counter. The reserved
599 * chunk is not part of the free page count as they are populated
600 * at init and are special to serving reserved allocations.
601 */
602 if (chunk != pcpu_reserved_chunk)
603 pcpu_nr_empty_pop_pages +=
604 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
605
606 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
607 }
608
609 /**
610 * pcpu_block_update - updates a block given a free area
611 * @block: block of interest
612 * @start: start offset in block
613 * @end: end offset in block
614 *
615 * Updates a block given a known free area. The region [start, end) is
616 * expected to be the entirety of the free area within a block. Chooses
617 * the best starting offset if the contig hints are equal.
618 */
619 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
620 {
621 int contig = end - start;
622
623 block->first_free = min(block->first_free, start);
624 if (start == 0)
625 block->left_free = contig;
626
627 if (end == PCPU_BITMAP_BLOCK_BITS)
628 block->right_free = contig;
629
630 if (contig > block->contig_hint) {
631 block->contig_hint_start = start;
632 block->contig_hint = contig;
633 } else if (block->contig_hint_start && contig == block->contig_hint &&
634 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
635 /* use the start with the best alignment */
636 block->contig_hint_start = start;
637 }
638 }
639
640 /**
641 * pcpu_block_refresh_hint
642 * @chunk: chunk of interest
643 * @index: index of the metadata block
644 *
645 * Scans over the block beginning at first_free and updates the block
646 * metadata accordingly.
647 */
648 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
649 {
650 struct pcpu_block_md *block = chunk->md_blocks + index;
651 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
652 int rs, re; /* region start, region end */
653
654 /* clear hints */
655 block->contig_hint = 0;
656 block->left_free = block->right_free = 0;
657
658 /* iterate over free areas and update the contig hints */
659 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
660 PCPU_BITMAP_BLOCK_BITS) {
661 pcpu_block_update(block, rs, re);
662 }
663 }
664
665 /**
666 * pcpu_block_update_hint_alloc - update hint on allocation path
667 * @chunk: chunk of interest
668 * @bit_off: chunk offset
669 * @bits: size of request
670 *
671 * Updates metadata for the allocation path. The metadata only has to be
672 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
673 * scans are required if the block's contig hint is broken.
674 */
675 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
676 int bits)
677 {
678 struct pcpu_block_md *s_block, *e_block, *block;
679 int s_index, e_index; /* block indexes of the freed allocation */
680 int s_off, e_off; /* block offsets of the freed allocation */
681
682 /*
683 * Calculate per block offsets.
684 * The calculation uses an inclusive range, but the resulting offsets
685 * are [start, end). e_index always points to the last block in the
686 * range.
687 */
688 s_index = pcpu_off_to_block_index(bit_off);
689 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
690 s_off = pcpu_off_to_block_off(bit_off);
691 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
692
693 s_block = chunk->md_blocks + s_index;
694 e_block = chunk->md_blocks + e_index;
695
696 /*
697 * Update s_block.
698 * block->first_free must be updated if the allocation takes its place.
699 * If the allocation breaks the contig_hint, a scan is required to
700 * restore this hint.
701 */
702 if (s_off == s_block->first_free)
703 s_block->first_free = find_next_zero_bit(
704 pcpu_index_alloc_map(chunk, s_index),
705 PCPU_BITMAP_BLOCK_BITS,
706 s_off + bits);
707
708 if (s_off >= s_block->contig_hint_start &&
709 s_off < s_block->contig_hint_start + s_block->contig_hint) {
710 /* block contig hint is broken - scan to fix it */
711 pcpu_block_refresh_hint(chunk, s_index);
712 } else {
713 /* update left and right contig manually */
714 s_block->left_free = min(s_block->left_free, s_off);
715 if (s_index == e_index)
716 s_block->right_free = min_t(int, s_block->right_free,
717 PCPU_BITMAP_BLOCK_BITS - e_off);
718 else
719 s_block->right_free = 0;
720 }
721
722 /*
723 * Update e_block.
724 */
725 if (s_index != e_index) {
726 /*
727 * When the allocation is across blocks, the end is along
728 * the left part of the e_block.
729 */
730 e_block->first_free = find_next_zero_bit(
731 pcpu_index_alloc_map(chunk, e_index),
732 PCPU_BITMAP_BLOCK_BITS, e_off);
733
734 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
735 /* reset the block */
736 e_block++;
737 } else {
738 if (e_off > e_block->contig_hint_start) {
739 /* contig hint is broken - scan to fix it */
740 pcpu_block_refresh_hint(chunk, e_index);
741 } else {
742 e_block->left_free = 0;
743 e_block->right_free =
744 min_t(int, e_block->right_free,
745 PCPU_BITMAP_BLOCK_BITS - e_off);
746 }
747 }
748
749 /* update in-between md_blocks */
750 for (block = s_block + 1; block < e_block; block++) {
751 block->contig_hint = 0;
752 block->left_free = 0;
753 block->right_free = 0;
754 }
755 }
756
757 /*
758 * The only time a full chunk scan is required is if the chunk
759 * contig hint is broken. Otherwise, it means a smaller space
760 * was used and therefore the chunk contig hint is still correct.
761 */
762 if (bit_off >= chunk->contig_bits_start &&
763 bit_off < chunk->contig_bits_start + chunk->contig_bits)
764 pcpu_chunk_refresh_hint(chunk);
765 }
766
767 /**
768 * pcpu_block_update_hint_free - updates the block hints on the free path
769 * @chunk: chunk of interest
770 * @bit_off: chunk offset
771 * @bits: size of request
772 *
773 * Updates metadata for the allocation path. This avoids a blind block
774 * refresh by making use of the block contig hints. If this fails, it scans
775 * forward and backward to determine the extent of the free area. This is
776 * capped at the boundary of blocks.
777 *
778 * A chunk update is triggered if a page becomes free, a block becomes free,
779 * or the free spans across blocks. This tradeoff is to minimize iterating
780 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
781 * may be off by up to a page, but it will never be more than the available
782 * space. If the contig hint is contained in one block, it will be accurate.
783 */
784 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
785 int bits)
786 {
787 struct pcpu_block_md *s_block, *e_block, *block;
788 int s_index, e_index; /* block indexes of the freed allocation */
789 int s_off, e_off; /* block offsets of the freed allocation */
790 int start, end; /* start and end of the whole free area */
791
792 /*
793 * Calculate per block offsets.
794 * The calculation uses an inclusive range, but the resulting offsets
795 * are [start, end). e_index always points to the last block in the
796 * range.
797 */
798 s_index = pcpu_off_to_block_index(bit_off);
799 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
800 s_off = pcpu_off_to_block_off(bit_off);
801 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
802
803 s_block = chunk->md_blocks + s_index;
804 e_block = chunk->md_blocks + e_index;
805
806 /*
807 * Check if the freed area aligns with the block->contig_hint.
808 * If it does, then the scan to find the beginning/end of the
809 * larger free area can be avoided.
810 *
811 * start and end refer to beginning and end of the free area
812 * within each their respective blocks. This is not necessarily
813 * the entire free area as it may span blocks past the beginning
814 * or end of the block.
815 */
816 start = s_off;
817 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
818 start = s_block->contig_hint_start;
819 } else {
820 /*
821 * Scan backwards to find the extent of the free area.
822 * find_last_bit returns the starting bit, so if the start bit
823 * is returned, that means there was no last bit and the
824 * remainder of the chunk is free.
825 */
826 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
827 start);
828 start = (start == l_bit) ? 0 : l_bit + 1;
829 }
830
831 end = e_off;
832 if (e_off == e_block->contig_hint_start)
833 end = e_block->contig_hint_start + e_block->contig_hint;
834 else
835 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
836 PCPU_BITMAP_BLOCK_BITS, end);
837
838 /* update s_block */
839 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
840 pcpu_block_update(s_block, start, e_off);
841
842 /* freeing in the same block */
843 if (s_index != e_index) {
844 /* update e_block */
845 pcpu_block_update(e_block, 0, end);
846
847 /* reset md_blocks in the middle */
848 for (block = s_block + 1; block < e_block; block++) {
849 block->first_free = 0;
850 block->contig_hint_start = 0;
851 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
852 block->left_free = PCPU_BITMAP_BLOCK_BITS;
853 block->right_free = PCPU_BITMAP_BLOCK_BITS;
854 }
855 }
856
857 /*
858 * Refresh chunk metadata when the free makes a page free, a block
859 * free, or spans across blocks. The contig hint may be off by up to
860 * a page, but if the hint is contained in a block, it will be accurate
861 * with the else condition below.
862 */
863 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
864 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
865 s_index != e_index)
866 pcpu_chunk_refresh_hint(chunk);
867 else
868 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
869 s_block->contig_hint);
870 }
871
872 /**
873 * pcpu_is_populated - determines if the region is populated
874 * @chunk: chunk of interest
875 * @bit_off: chunk offset
876 * @bits: size of area
877 * @next_off: return value for the next offset to start searching
878 *
879 * For atomic allocations, check if the backing pages are populated.
880 *
881 * RETURNS:
882 * Bool if the backing pages are populated.
883 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
884 */
885 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
886 int *next_off)
887 {
888 int page_start, page_end, rs, re;
889
890 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
891 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
892
893 rs = page_start;
894 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
895 if (rs >= page_end)
896 return true;
897
898 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
899 return false;
900 }
901
902 /**
903 * pcpu_find_block_fit - finds the block index to start searching
904 * @chunk: chunk of interest
905 * @alloc_bits: size of request in allocation units
906 * @align: alignment of area (max PAGE_SIZE bytes)
907 * @pop_only: use populated regions only
908 *
909 * Given a chunk and an allocation spec, find the offset to begin searching
910 * for a free region. This iterates over the bitmap metadata blocks to
911 * find an offset that will be guaranteed to fit the requirements. It is
912 * not quite first fit as if the allocation does not fit in the contig hint
913 * of a block or chunk, it is skipped. This errs on the side of caution
914 * to prevent excess iteration. Poor alignment can cause the allocator to
915 * skip over blocks and chunks that have valid free areas.
916 *
917 * RETURNS:
918 * The offset in the bitmap to begin searching.
919 * -1 if no offset is found.
920 */
921 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
922 size_t align, bool pop_only)
923 {
924 int bit_off, bits, next_off;
925
926 /*
927 * Check to see if the allocation can fit in the chunk's contig hint.
928 * This is an optimization to prevent scanning by assuming if it
929 * cannot fit in the global hint, there is memory pressure and creating
930 * a new chunk would happen soon.
931 */
932 bit_off = ALIGN(chunk->contig_bits_start, align) -
933 chunk->contig_bits_start;
934 if (bit_off + alloc_bits > chunk->contig_bits)
935 return -1;
936
937 bit_off = chunk->first_bit;
938 bits = 0;
939 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
940 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
941 &next_off))
942 break;
943
944 bit_off = next_off;
945 bits = 0;
946 }
947
948 if (bit_off == pcpu_chunk_map_bits(chunk))
949 return -1;
950
951 return bit_off;
952 }
953
954 /**
955 * pcpu_alloc_area - allocates an area from a pcpu_chunk
956 * @chunk: chunk of interest
957 * @alloc_bits: size of request in allocation units
958 * @align: alignment of area (max PAGE_SIZE)
959 * @start: bit_off to start searching
960 *
961 * This function takes in a @start offset to begin searching to fit an
962 * allocation of @alloc_bits with alignment @align. It needs to scan
963 * the allocation map because if it fits within the block's contig hint,
964 * @start will be block->first_free. This is an attempt to fill the
965 * allocation prior to breaking the contig hint. The allocation and
966 * boundary maps are updated accordingly if it confirms a valid
967 * free area.
968 *
969 * RETURNS:
970 * Allocated addr offset in @chunk on success.
971 * -1 if no matching area is found.
972 */
973 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
974 size_t align, int start)
975 {
976 size_t align_mask = (align) ? (align - 1) : 0;
977 int bit_off, end, oslot;
978
979 lockdep_assert_held(&pcpu_lock);
980
981 oslot = pcpu_chunk_slot(chunk);
982
983 /*
984 * Search to find a fit.
985 */
986 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
987 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
988 alloc_bits, align_mask);
989 if (bit_off >= end)
990 return -1;
991
992 /* update alloc map */
993 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
994
995 /* update boundary map */
996 set_bit(bit_off, chunk->bound_map);
997 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
998 set_bit(bit_off + alloc_bits, chunk->bound_map);
999
1000 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1001
1002 /* update first free bit */
1003 if (bit_off == chunk->first_bit)
1004 chunk->first_bit = find_next_zero_bit(
1005 chunk->alloc_map,
1006 pcpu_chunk_map_bits(chunk),
1007 bit_off + alloc_bits);
1008
1009 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1010
1011 pcpu_chunk_relocate(chunk, oslot);
1012
1013 return bit_off * PCPU_MIN_ALLOC_SIZE;
1014 }
1015
1016 /**
1017 * pcpu_free_area - frees the corresponding offset
1018 * @chunk: chunk of interest
1019 * @off: addr offset into chunk
1020 *
1021 * This function determines the size of an allocation to free using
1022 * the boundary bitmap and clears the allocation map.
1023 */
1024 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1025 {
1026 int bit_off, bits, end, oslot;
1027
1028 lockdep_assert_held(&pcpu_lock);
1029 pcpu_stats_area_dealloc(chunk);
1030
1031 oslot = pcpu_chunk_slot(chunk);
1032
1033 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1034
1035 /* find end index */
1036 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1037 bit_off + 1);
1038 bits = end - bit_off;
1039 bitmap_clear(chunk->alloc_map, bit_off, bits);
1040
1041 /* update metadata */
1042 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1043
1044 /* update first free bit */
1045 chunk->first_bit = min(chunk->first_bit, bit_off);
1046
1047 pcpu_block_update_hint_free(chunk, bit_off, bits);
1048
1049 pcpu_chunk_relocate(chunk, oslot);
1050 }
1051
1052 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1053 {
1054 struct pcpu_block_md *md_block;
1055
1056 for (md_block = chunk->md_blocks;
1057 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1058 md_block++) {
1059 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1060 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1061 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1062 }
1063 }
1064
1065 /**
1066 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1067 * @tmp_addr: the start of the region served
1068 * @map_size: size of the region served
1069 *
1070 * This is responsible for creating the chunks that serve the first chunk. The
1071 * base_addr is page aligned down of @tmp_addr while the region end is page
1072 * aligned up. Offsets are kept track of to determine the region served. All
1073 * this is done to appease the bitmap allocator in avoiding partial blocks.
1074 *
1075 * RETURNS:
1076 * Chunk serving the region at @tmp_addr of @map_size.
1077 */
1078 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1079 int map_size)
1080 {
1081 struct pcpu_chunk *chunk;
1082 unsigned long aligned_addr, lcm_align;
1083 int start_offset, offset_bits, region_size, region_bits;
1084
1085 /* region calculations */
1086 aligned_addr = tmp_addr & PAGE_MASK;
1087
1088 start_offset = tmp_addr - aligned_addr;
1089
1090 /*
1091 * Align the end of the region with the LCM of PAGE_SIZE and
1092 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1093 * the other.
1094 */
1095 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1096 region_size = ALIGN(start_offset + map_size, lcm_align);
1097
1098 /* allocate chunk */
1099 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1100 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1101 0);
1102
1103 INIT_LIST_HEAD(&chunk->list);
1104
1105 chunk->base_addr = (void *)aligned_addr;
1106 chunk->start_offset = start_offset;
1107 chunk->end_offset = region_size - chunk->start_offset - map_size;
1108
1109 chunk->nr_pages = region_size >> PAGE_SHIFT;
1110 region_bits = pcpu_chunk_map_bits(chunk);
1111
1112 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1113 sizeof(chunk->alloc_map[0]), 0);
1114 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1115 sizeof(chunk->bound_map[0]), 0);
1116 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1117 sizeof(chunk->md_blocks[0]), 0);
1118 pcpu_init_md_blocks(chunk);
1119
1120 /* manage populated page bitmap */
1121 chunk->immutable = true;
1122 bitmap_fill(chunk->populated, chunk->nr_pages);
1123 chunk->nr_populated = chunk->nr_pages;
1124 chunk->nr_empty_pop_pages =
1125 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1126 map_size / PCPU_MIN_ALLOC_SIZE);
1127
1128 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1129 chunk->free_bytes = map_size;
1130
1131 if (chunk->start_offset) {
1132 /* hide the beginning of the bitmap */
1133 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1134 bitmap_set(chunk->alloc_map, 0, offset_bits);
1135 set_bit(0, chunk->bound_map);
1136 set_bit(offset_bits, chunk->bound_map);
1137
1138 chunk->first_bit = offset_bits;
1139
1140 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1141 }
1142
1143 if (chunk->end_offset) {
1144 /* hide the end of the bitmap */
1145 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1146 bitmap_set(chunk->alloc_map,
1147 pcpu_chunk_map_bits(chunk) - offset_bits,
1148 offset_bits);
1149 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1150 chunk->bound_map);
1151 set_bit(region_bits, chunk->bound_map);
1152
1153 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1154 - offset_bits, offset_bits);
1155 }
1156
1157 return chunk;
1158 }
1159
1160 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1161 {
1162 struct pcpu_chunk *chunk;
1163 int region_bits;
1164
1165 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1166 if (!chunk)
1167 return NULL;
1168
1169 INIT_LIST_HEAD(&chunk->list);
1170 chunk->nr_pages = pcpu_unit_pages;
1171 region_bits = pcpu_chunk_map_bits(chunk);
1172
1173 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1174 sizeof(chunk->alloc_map[0]), gfp);
1175 if (!chunk->alloc_map)
1176 goto alloc_map_fail;
1177
1178 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1179 sizeof(chunk->bound_map[0]), gfp);
1180 if (!chunk->bound_map)
1181 goto bound_map_fail;
1182
1183 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1184 sizeof(chunk->md_blocks[0]), gfp);
1185 if (!chunk->md_blocks)
1186 goto md_blocks_fail;
1187
1188 pcpu_init_md_blocks(chunk);
1189
1190 /* init metadata */
1191 chunk->contig_bits = region_bits;
1192 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1193
1194 return chunk;
1195
1196 md_blocks_fail:
1197 pcpu_mem_free(chunk->bound_map);
1198 bound_map_fail:
1199 pcpu_mem_free(chunk->alloc_map);
1200 alloc_map_fail:
1201 pcpu_mem_free(chunk);
1202
1203 return NULL;
1204 }
1205
1206 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1207 {
1208 if (!chunk)
1209 return;
1210 pcpu_mem_free(chunk->bound_map);
1211 pcpu_mem_free(chunk->alloc_map);
1212 pcpu_mem_free(chunk);
1213 }
1214
1215 /**
1216 * pcpu_chunk_populated - post-population bookkeeping
1217 * @chunk: pcpu_chunk which got populated
1218 * @page_start: the start page
1219 * @page_end: the end page
1220 * @for_alloc: if this is to populate for allocation
1221 *
1222 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1223 * the bookkeeping information accordingly. Must be called after each
1224 * successful population.
1225 *
1226 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1227 * is to serve an allocation in that area.
1228 */
1229 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1230 int page_end, bool for_alloc)
1231 {
1232 int nr = page_end - page_start;
1233
1234 lockdep_assert_held(&pcpu_lock);
1235
1236 bitmap_set(chunk->populated, page_start, nr);
1237 chunk->nr_populated += nr;
1238
1239 if (!for_alloc) {
1240 chunk->nr_empty_pop_pages += nr;
1241 pcpu_nr_empty_pop_pages += nr;
1242 }
1243 }
1244
1245 /**
1246 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1247 * @chunk: pcpu_chunk which got depopulated
1248 * @page_start: the start page
1249 * @page_end: the end page
1250 *
1251 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1252 * Update the bookkeeping information accordingly. Must be called after
1253 * each successful depopulation.
1254 */
1255 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1256 int page_start, int page_end)
1257 {
1258 int nr = page_end - page_start;
1259
1260 lockdep_assert_held(&pcpu_lock);
1261
1262 bitmap_clear(chunk->populated, page_start, nr);
1263 chunk->nr_populated -= nr;
1264 chunk->nr_empty_pop_pages -= nr;
1265 pcpu_nr_empty_pop_pages -= nr;
1266 }
1267
1268 /*
1269 * Chunk management implementation.
1270 *
1271 * To allow different implementations, chunk alloc/free and
1272 * [de]population are implemented in a separate file which is pulled
1273 * into this file and compiled together. The following functions
1274 * should be implemented.
1275 *
1276 * pcpu_populate_chunk - populate the specified range of a chunk
1277 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1278 * pcpu_create_chunk - create a new chunk
1279 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1280 * pcpu_addr_to_page - translate address to physical address
1281 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1282 */
1283 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size,
1284 gfp_t gfp);
1285 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1286 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1287 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1288 static struct page *pcpu_addr_to_page(void *addr);
1289 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1290
1291 #ifdef CONFIG_NEED_PER_CPU_KM
1292 #include "percpu-km.c"
1293 #else
1294 #include "percpu-vm.c"
1295 #endif
1296
1297 /**
1298 * pcpu_chunk_addr_search - determine chunk containing specified address
1299 * @addr: address for which the chunk needs to be determined.
1300 *
1301 * This is an internal function that handles all but static allocations.
1302 * Static percpu address values should never be passed into the allocator.
1303 *
1304 * RETURNS:
1305 * The address of the found chunk.
1306 */
1307 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1308 {
1309 /* is it in the dynamic region (first chunk)? */
1310 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1311 return pcpu_first_chunk;
1312
1313 /* is it in the reserved region? */
1314 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1315 return pcpu_reserved_chunk;
1316
1317 /*
1318 * The address is relative to unit0 which might be unused and
1319 * thus unmapped. Offset the address to the unit space of the
1320 * current processor before looking it up in the vmalloc
1321 * space. Note that any possible cpu id can be used here, so
1322 * there's no need to worry about preemption or cpu hotplug.
1323 */
1324 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1325 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1326 }
1327
1328 /**
1329 * pcpu_alloc - the percpu allocator
1330 * @size: size of area to allocate in bytes
1331 * @align: alignment of area (max PAGE_SIZE)
1332 * @reserved: allocate from the reserved chunk if available
1333 * @gfp: allocation flags
1334 *
1335 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1336 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1337 * then no warning will be triggered on invalid or failed allocation
1338 * requests.
1339 *
1340 * RETURNS:
1341 * Percpu pointer to the allocated area on success, NULL on failure.
1342 */
1343 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1344 gfp_t gfp)
1345 {
1346 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1347 bool do_warn = !(gfp & __GFP_NOWARN);
1348 static int warn_limit = 10;
1349 struct pcpu_chunk *chunk;
1350 const char *err;
1351 int slot, off, cpu, ret;
1352 unsigned long flags;
1353 void __percpu *ptr;
1354 size_t bits, bit_align;
1355
1356 /*
1357 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1358 * therefore alignment must be a minimum of that many bytes.
1359 * An allocation may have internal fragmentation from rounding up
1360 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1361 */
1362 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1363 align = PCPU_MIN_ALLOC_SIZE;
1364
1365 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1366 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1367 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1368
1369 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1370 !is_power_of_2(align))) {
1371 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1372 size, align);
1373 return NULL;
1374 }
1375
1376 if (!is_atomic)
1377 mutex_lock(&pcpu_alloc_mutex);
1378
1379 spin_lock_irqsave(&pcpu_lock, flags);
1380
1381 /* serve reserved allocations from the reserved chunk if available */
1382 if (reserved && pcpu_reserved_chunk) {
1383 chunk = pcpu_reserved_chunk;
1384
1385 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1386 if (off < 0) {
1387 err = "alloc from reserved chunk failed";
1388 goto fail_unlock;
1389 }
1390
1391 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1392 if (off >= 0)
1393 goto area_found;
1394
1395 err = "alloc from reserved chunk failed";
1396 goto fail_unlock;
1397 }
1398
1399 restart:
1400 /* search through normal chunks */
1401 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1402 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1403 off = pcpu_find_block_fit(chunk, bits, bit_align,
1404 is_atomic);
1405 if (off < 0)
1406 continue;
1407
1408 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1409 if (off >= 0)
1410 goto area_found;
1411
1412 }
1413 }
1414
1415 spin_unlock_irqrestore(&pcpu_lock, flags);
1416
1417 /*
1418 * No space left. Create a new chunk. We don't want multiple
1419 * tasks to create chunks simultaneously. Serialize and create iff
1420 * there's still no empty chunk after grabbing the mutex.
1421 */
1422 if (is_atomic) {
1423 err = "atomic alloc failed, no space left";
1424 goto fail;
1425 }
1426
1427 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1428 chunk = pcpu_create_chunk(0);
1429 if (!chunk) {
1430 err = "failed to allocate new chunk";
1431 goto fail;
1432 }
1433
1434 spin_lock_irqsave(&pcpu_lock, flags);
1435 pcpu_chunk_relocate(chunk, -1);
1436 } else {
1437 spin_lock_irqsave(&pcpu_lock, flags);
1438 }
1439
1440 goto restart;
1441
1442 area_found:
1443 pcpu_stats_area_alloc(chunk, size);
1444 spin_unlock_irqrestore(&pcpu_lock, flags);
1445
1446 /* populate if not all pages are already there */
1447 if (!is_atomic) {
1448 int page_start, page_end, rs, re;
1449
1450 page_start = PFN_DOWN(off);
1451 page_end = PFN_UP(off + size);
1452
1453 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1454 page_start, page_end) {
1455 WARN_ON(chunk->immutable);
1456
1457 ret = pcpu_populate_chunk(chunk, rs, re, 0);
1458
1459 spin_lock_irqsave(&pcpu_lock, flags);
1460 if (ret) {
1461 pcpu_free_area(chunk, off);
1462 err = "failed to populate";
1463 goto fail_unlock;
1464 }
1465 pcpu_chunk_populated(chunk, rs, re, true);
1466 spin_unlock_irqrestore(&pcpu_lock, flags);
1467 }
1468
1469 mutex_unlock(&pcpu_alloc_mutex);
1470 }
1471
1472 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1473 pcpu_schedule_balance_work();
1474
1475 /* clear the areas and return address relative to base address */
1476 for_each_possible_cpu(cpu)
1477 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1478
1479 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1480 kmemleak_alloc_percpu(ptr, size, gfp);
1481
1482 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1483 chunk->base_addr, off, ptr);
1484
1485 return ptr;
1486
1487 fail_unlock:
1488 spin_unlock_irqrestore(&pcpu_lock, flags);
1489 fail:
1490 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1491
1492 if (!is_atomic && do_warn && warn_limit) {
1493 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1494 size, align, is_atomic, err);
1495 dump_stack();
1496 if (!--warn_limit)
1497 pr_info("limit reached, disable warning\n");
1498 }
1499 if (is_atomic) {
1500 /* see the flag handling in pcpu_blance_workfn() */
1501 pcpu_atomic_alloc_failed = true;
1502 pcpu_schedule_balance_work();
1503 } else {
1504 mutex_unlock(&pcpu_alloc_mutex);
1505 }
1506 return NULL;
1507 }
1508
1509 /**
1510 * __alloc_percpu_gfp - allocate dynamic percpu area
1511 * @size: size of area to allocate in bytes
1512 * @align: alignment of area (max PAGE_SIZE)
1513 * @gfp: allocation flags
1514 *
1515 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1516 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1517 * be called from any context but is a lot more likely to fail. If @gfp
1518 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1519 * allocation requests.
1520 *
1521 * RETURNS:
1522 * Percpu pointer to the allocated area on success, NULL on failure.
1523 */
1524 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1525 {
1526 return pcpu_alloc(size, align, false, gfp);
1527 }
1528 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1529
1530 /**
1531 * __alloc_percpu - allocate dynamic percpu area
1532 * @size: size of area to allocate in bytes
1533 * @align: alignment of area (max PAGE_SIZE)
1534 *
1535 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1536 */
1537 void __percpu *__alloc_percpu(size_t size, size_t align)
1538 {
1539 return pcpu_alloc(size, align, false, GFP_KERNEL);
1540 }
1541 EXPORT_SYMBOL_GPL(__alloc_percpu);
1542
1543 /**
1544 * __alloc_reserved_percpu - allocate reserved percpu area
1545 * @size: size of area to allocate in bytes
1546 * @align: alignment of area (max PAGE_SIZE)
1547 *
1548 * Allocate zero-filled percpu area of @size bytes aligned at @align
1549 * from reserved percpu area if arch has set it up; otherwise,
1550 * allocation is served from the same dynamic area. Might sleep.
1551 * Might trigger writeouts.
1552 *
1553 * CONTEXT:
1554 * Does GFP_KERNEL allocation.
1555 *
1556 * RETURNS:
1557 * Percpu pointer to the allocated area on success, NULL on failure.
1558 */
1559 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1560 {
1561 return pcpu_alloc(size, align, true, GFP_KERNEL);
1562 }
1563
1564 /**
1565 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1566 * @work: unused
1567 *
1568 * Reclaim all fully free chunks except for the first one. This is also
1569 * responsible for maintaining the pool of empty populated pages. However,
1570 * it is possible that this is called when physical memory is scarce causing
1571 * OOM killer to be triggered. We should avoid doing so until an actual
1572 * allocation causes the failure as it is possible that requests can be
1573 * serviced from already backed regions.
1574 */
1575 static void pcpu_balance_workfn(struct work_struct *work)
1576 {
1577 /* gfp flags passed to underlying allocators */
1578 const gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN;
1579 LIST_HEAD(to_free);
1580 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1581 struct pcpu_chunk *chunk, *next;
1582 int slot, nr_to_pop, ret;
1583
1584 /*
1585 * There's no reason to keep around multiple unused chunks and VM
1586 * areas can be scarce. Destroy all free chunks except for one.
1587 */
1588 mutex_lock(&pcpu_alloc_mutex);
1589 spin_lock_irq(&pcpu_lock);
1590
1591 list_for_each_entry_safe(chunk, next, free_head, list) {
1592 WARN_ON(chunk->immutable);
1593
1594 /* spare the first one */
1595 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1596 continue;
1597
1598 list_move(&chunk->list, &to_free);
1599 }
1600
1601 spin_unlock_irq(&pcpu_lock);
1602
1603 list_for_each_entry_safe(chunk, next, &to_free, list) {
1604 int rs, re;
1605
1606 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1607 chunk->nr_pages) {
1608 pcpu_depopulate_chunk(chunk, rs, re);
1609 spin_lock_irq(&pcpu_lock);
1610 pcpu_chunk_depopulated(chunk, rs, re);
1611 spin_unlock_irq(&pcpu_lock);
1612 }
1613 pcpu_destroy_chunk(chunk);
1614 }
1615
1616 /*
1617 * Ensure there are certain number of free populated pages for
1618 * atomic allocs. Fill up from the most packed so that atomic
1619 * allocs don't increase fragmentation. If atomic allocation
1620 * failed previously, always populate the maximum amount. This
1621 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1622 * failing indefinitely; however, large atomic allocs are not
1623 * something we support properly and can be highly unreliable and
1624 * inefficient.
1625 */
1626 retry_pop:
1627 if (pcpu_atomic_alloc_failed) {
1628 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1629 /* best effort anyway, don't worry about synchronization */
1630 pcpu_atomic_alloc_failed = false;
1631 } else {
1632 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1633 pcpu_nr_empty_pop_pages,
1634 0, PCPU_EMPTY_POP_PAGES_HIGH);
1635 }
1636
1637 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1638 int nr_unpop = 0, rs, re;
1639
1640 if (!nr_to_pop)
1641 break;
1642
1643 spin_lock_irq(&pcpu_lock);
1644 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1645 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1646 if (nr_unpop)
1647 break;
1648 }
1649 spin_unlock_irq(&pcpu_lock);
1650
1651 if (!nr_unpop)
1652 continue;
1653
1654 /* @chunk can't go away while pcpu_alloc_mutex is held */
1655 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1656 chunk->nr_pages) {
1657 int nr = min(re - rs, nr_to_pop);
1658
1659 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1660 if (!ret) {
1661 nr_to_pop -= nr;
1662 spin_lock_irq(&pcpu_lock);
1663 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1664 spin_unlock_irq(&pcpu_lock);
1665 } else {
1666 nr_to_pop = 0;
1667 }
1668
1669 if (!nr_to_pop)
1670 break;
1671 }
1672 }
1673
1674 if (nr_to_pop) {
1675 /* ran out of chunks to populate, create a new one and retry */
1676 chunk = pcpu_create_chunk(gfp);
1677 if (chunk) {
1678 spin_lock_irq(&pcpu_lock);
1679 pcpu_chunk_relocate(chunk, -1);
1680 spin_unlock_irq(&pcpu_lock);
1681 goto retry_pop;
1682 }
1683 }
1684
1685 mutex_unlock(&pcpu_alloc_mutex);
1686 }
1687
1688 /**
1689 * free_percpu - free percpu area
1690 * @ptr: pointer to area to free
1691 *
1692 * Free percpu area @ptr.
1693 *
1694 * CONTEXT:
1695 * Can be called from atomic context.
1696 */
1697 void free_percpu(void __percpu *ptr)
1698 {
1699 void *addr;
1700 struct pcpu_chunk *chunk;
1701 unsigned long flags;
1702 int off;
1703
1704 if (!ptr)
1705 return;
1706
1707 kmemleak_free_percpu(ptr);
1708
1709 addr = __pcpu_ptr_to_addr(ptr);
1710
1711 spin_lock_irqsave(&pcpu_lock, flags);
1712
1713 chunk = pcpu_chunk_addr_search(addr);
1714 off = addr - chunk->base_addr;
1715
1716 pcpu_free_area(chunk, off);
1717
1718 /* if there are more than one fully free chunks, wake up grim reaper */
1719 if (chunk->free_bytes == pcpu_unit_size) {
1720 struct pcpu_chunk *pos;
1721
1722 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1723 if (pos != chunk) {
1724 pcpu_schedule_balance_work();
1725 break;
1726 }
1727 }
1728
1729 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1730
1731 spin_unlock_irqrestore(&pcpu_lock, flags);
1732 }
1733 EXPORT_SYMBOL_GPL(free_percpu);
1734
1735 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1736 {
1737 #ifdef CONFIG_SMP
1738 const size_t static_size = __per_cpu_end - __per_cpu_start;
1739 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1740 unsigned int cpu;
1741
1742 for_each_possible_cpu(cpu) {
1743 void *start = per_cpu_ptr(base, cpu);
1744 void *va = (void *)addr;
1745
1746 if (va >= start && va < start + static_size) {
1747 if (can_addr) {
1748 *can_addr = (unsigned long) (va - start);
1749 *can_addr += (unsigned long)
1750 per_cpu_ptr(base, get_boot_cpu_id());
1751 }
1752 return true;
1753 }
1754 }
1755 #endif
1756 /* on UP, can't distinguish from other static vars, always false */
1757 return false;
1758 }
1759
1760 /**
1761 * is_kernel_percpu_address - test whether address is from static percpu area
1762 * @addr: address to test
1763 *
1764 * Test whether @addr belongs to in-kernel static percpu area. Module
1765 * static percpu areas are not considered. For those, use
1766 * is_module_percpu_address().
1767 *
1768 * RETURNS:
1769 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1770 */
1771 bool is_kernel_percpu_address(unsigned long addr)
1772 {
1773 return __is_kernel_percpu_address(addr, NULL);
1774 }
1775
1776 /**
1777 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1778 * @addr: the address to be converted to physical address
1779 *
1780 * Given @addr which is dereferenceable address obtained via one of
1781 * percpu access macros, this function translates it into its physical
1782 * address. The caller is responsible for ensuring @addr stays valid
1783 * until this function finishes.
1784 *
1785 * percpu allocator has special setup for the first chunk, which currently
1786 * supports either embedding in linear address space or vmalloc mapping,
1787 * and, from the second one, the backing allocator (currently either vm or
1788 * km) provides translation.
1789 *
1790 * The addr can be translated simply without checking if it falls into the
1791 * first chunk. But the current code reflects better how percpu allocator
1792 * actually works, and the verification can discover both bugs in percpu
1793 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1794 * code.
1795 *
1796 * RETURNS:
1797 * The physical address for @addr.
1798 */
1799 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1800 {
1801 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1802 bool in_first_chunk = false;
1803 unsigned long first_low, first_high;
1804 unsigned int cpu;
1805
1806 /*
1807 * The following test on unit_low/high isn't strictly
1808 * necessary but will speed up lookups of addresses which
1809 * aren't in the first chunk.
1810 *
1811 * The address check is against full chunk sizes. pcpu_base_addr
1812 * points to the beginning of the first chunk including the
1813 * static region. Assumes good intent as the first chunk may
1814 * not be full (ie. < pcpu_unit_pages in size).
1815 */
1816 first_low = (unsigned long)pcpu_base_addr +
1817 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1818 first_high = (unsigned long)pcpu_base_addr +
1819 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1820 if ((unsigned long)addr >= first_low &&
1821 (unsigned long)addr < first_high) {
1822 for_each_possible_cpu(cpu) {
1823 void *start = per_cpu_ptr(base, cpu);
1824
1825 if (addr >= start && addr < start + pcpu_unit_size) {
1826 in_first_chunk = true;
1827 break;
1828 }
1829 }
1830 }
1831
1832 if (in_first_chunk) {
1833 if (!is_vmalloc_addr(addr))
1834 return __pa(addr);
1835 else
1836 return page_to_phys(vmalloc_to_page(addr)) +
1837 offset_in_page(addr);
1838 } else
1839 return page_to_phys(pcpu_addr_to_page(addr)) +
1840 offset_in_page(addr);
1841 }
1842
1843 /**
1844 * pcpu_alloc_alloc_info - allocate percpu allocation info
1845 * @nr_groups: the number of groups
1846 * @nr_units: the number of units
1847 *
1848 * Allocate ai which is large enough for @nr_groups groups containing
1849 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1850 * cpu_map array which is long enough for @nr_units and filled with
1851 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1852 * pointer of other groups.
1853 *
1854 * RETURNS:
1855 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1856 * failure.
1857 */
1858 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1859 int nr_units)
1860 {
1861 struct pcpu_alloc_info *ai;
1862 size_t base_size, ai_size;
1863 void *ptr;
1864 int unit;
1865
1866 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1867 __alignof__(ai->groups[0].cpu_map[0]));
1868 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1869
1870 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1871 if (!ptr)
1872 return NULL;
1873 ai = ptr;
1874 ptr += base_size;
1875
1876 ai->groups[0].cpu_map = ptr;
1877
1878 for (unit = 0; unit < nr_units; unit++)
1879 ai->groups[0].cpu_map[unit] = NR_CPUS;
1880
1881 ai->nr_groups = nr_groups;
1882 ai->__ai_size = PFN_ALIGN(ai_size);
1883
1884 return ai;
1885 }
1886
1887 /**
1888 * pcpu_free_alloc_info - free percpu allocation info
1889 * @ai: pcpu_alloc_info to free
1890 *
1891 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1892 */
1893 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1894 {
1895 memblock_free_early(__pa(ai), ai->__ai_size);
1896 }
1897
1898 /**
1899 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1900 * @lvl: loglevel
1901 * @ai: allocation info to dump
1902 *
1903 * Print out information about @ai using loglevel @lvl.
1904 */
1905 static void pcpu_dump_alloc_info(const char *lvl,
1906 const struct pcpu_alloc_info *ai)
1907 {
1908 int group_width = 1, cpu_width = 1, width;
1909 char empty_str[] = "--------";
1910 int alloc = 0, alloc_end = 0;
1911 int group, v;
1912 int upa, apl; /* units per alloc, allocs per line */
1913
1914 v = ai->nr_groups;
1915 while (v /= 10)
1916 group_width++;
1917
1918 v = num_possible_cpus();
1919 while (v /= 10)
1920 cpu_width++;
1921 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1922
1923 upa = ai->alloc_size / ai->unit_size;
1924 width = upa * (cpu_width + 1) + group_width + 3;
1925 apl = rounddown_pow_of_two(max(60 / width, 1));
1926
1927 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1928 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1929 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1930
1931 for (group = 0; group < ai->nr_groups; group++) {
1932 const struct pcpu_group_info *gi = &ai->groups[group];
1933 int unit = 0, unit_end = 0;
1934
1935 BUG_ON(gi->nr_units % upa);
1936 for (alloc_end += gi->nr_units / upa;
1937 alloc < alloc_end; alloc++) {
1938 if (!(alloc % apl)) {
1939 pr_cont("\n");
1940 printk("%spcpu-alloc: ", lvl);
1941 }
1942 pr_cont("[%0*d] ", group_width, group);
1943
1944 for (unit_end += upa; unit < unit_end; unit++)
1945 if (gi->cpu_map[unit] != NR_CPUS)
1946 pr_cont("%0*d ",
1947 cpu_width, gi->cpu_map[unit]);
1948 else
1949 pr_cont("%s ", empty_str);
1950 }
1951 }
1952 pr_cont("\n");
1953 }
1954
1955 /**
1956 * pcpu_setup_first_chunk - initialize the first percpu chunk
1957 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1958 * @base_addr: mapped address
1959 *
1960 * Initialize the first percpu chunk which contains the kernel static
1961 * perpcu area. This function is to be called from arch percpu area
1962 * setup path.
1963 *
1964 * @ai contains all information necessary to initialize the first
1965 * chunk and prime the dynamic percpu allocator.
1966 *
1967 * @ai->static_size is the size of static percpu area.
1968 *
1969 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1970 * reserve after the static area in the first chunk. This reserves
1971 * the first chunk such that it's available only through reserved
1972 * percpu allocation. This is primarily used to serve module percpu
1973 * static areas on architectures where the addressing model has
1974 * limited offset range for symbol relocations to guarantee module
1975 * percpu symbols fall inside the relocatable range.
1976 *
1977 * @ai->dyn_size determines the number of bytes available for dynamic
1978 * allocation in the first chunk. The area between @ai->static_size +
1979 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1980 *
1981 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1982 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1983 * @ai->dyn_size.
1984 *
1985 * @ai->atom_size is the allocation atom size and used as alignment
1986 * for vm areas.
1987 *
1988 * @ai->alloc_size is the allocation size and always multiple of
1989 * @ai->atom_size. This is larger than @ai->atom_size if
1990 * @ai->unit_size is larger than @ai->atom_size.
1991 *
1992 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1993 * percpu areas. Units which should be colocated are put into the
1994 * same group. Dynamic VM areas will be allocated according to these
1995 * groupings. If @ai->nr_groups is zero, a single group containing
1996 * all units is assumed.
1997 *
1998 * The caller should have mapped the first chunk at @base_addr and
1999 * copied static data to each unit.
2000 *
2001 * The first chunk will always contain a static and a dynamic region.
2002 * However, the static region is not managed by any chunk. If the first
2003 * chunk also contains a reserved region, it is served by two chunks -
2004 * one for the reserved region and one for the dynamic region. They
2005 * share the same vm, but use offset regions in the area allocation map.
2006 * The chunk serving the dynamic region is circulated in the chunk slots
2007 * and available for dynamic allocation like any other chunk.
2008 *
2009 * RETURNS:
2010 * 0 on success, -errno on failure.
2011 */
2012 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2013 void *base_addr)
2014 {
2015 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2016 size_t static_size, dyn_size;
2017 struct pcpu_chunk *chunk;
2018 unsigned long *group_offsets;
2019 size_t *group_sizes;
2020 unsigned long *unit_off;
2021 unsigned int cpu;
2022 int *unit_map;
2023 int group, unit, i;
2024 int map_size;
2025 unsigned long tmp_addr;
2026
2027 #define PCPU_SETUP_BUG_ON(cond) do { \
2028 if (unlikely(cond)) { \
2029 pr_emerg("failed to initialize, %s\n", #cond); \
2030 pr_emerg("cpu_possible_mask=%*pb\n", \
2031 cpumask_pr_args(cpu_possible_mask)); \
2032 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2033 BUG(); \
2034 } \
2035 } while (0)
2036
2037 /* sanity checks */
2038 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2039 #ifdef CONFIG_SMP
2040 PCPU_SETUP_BUG_ON(!ai->static_size);
2041 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2042 #endif
2043 PCPU_SETUP_BUG_ON(!base_addr);
2044 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2045 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2046 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2047 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2048 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2049 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2050 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2051 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2052 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2053 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2054 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2055
2056 /* process group information and build config tables accordingly */
2057 group_offsets = memblock_virt_alloc(ai->nr_groups *
2058 sizeof(group_offsets[0]), 0);
2059 group_sizes = memblock_virt_alloc(ai->nr_groups *
2060 sizeof(group_sizes[0]), 0);
2061 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2062 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2063
2064 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2065 unit_map[cpu] = UINT_MAX;
2066
2067 pcpu_low_unit_cpu = NR_CPUS;
2068 pcpu_high_unit_cpu = NR_CPUS;
2069
2070 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2071 const struct pcpu_group_info *gi = &ai->groups[group];
2072
2073 group_offsets[group] = gi->base_offset;
2074 group_sizes[group] = gi->nr_units * ai->unit_size;
2075
2076 for (i = 0; i < gi->nr_units; i++) {
2077 cpu = gi->cpu_map[i];
2078 if (cpu == NR_CPUS)
2079 continue;
2080
2081 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2082 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2083 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2084
2085 unit_map[cpu] = unit + i;
2086 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2087
2088 /* determine low/high unit_cpu */
2089 if (pcpu_low_unit_cpu == NR_CPUS ||
2090 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2091 pcpu_low_unit_cpu = cpu;
2092 if (pcpu_high_unit_cpu == NR_CPUS ||
2093 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2094 pcpu_high_unit_cpu = cpu;
2095 }
2096 }
2097 pcpu_nr_units = unit;
2098
2099 for_each_possible_cpu(cpu)
2100 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2101
2102 /* we're done parsing the input, undefine BUG macro and dump config */
2103 #undef PCPU_SETUP_BUG_ON
2104 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2105
2106 pcpu_nr_groups = ai->nr_groups;
2107 pcpu_group_offsets = group_offsets;
2108 pcpu_group_sizes = group_sizes;
2109 pcpu_unit_map = unit_map;
2110 pcpu_unit_offsets = unit_off;
2111
2112 /* determine basic parameters */
2113 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2114 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2115 pcpu_atom_size = ai->atom_size;
2116 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2117 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2118
2119 pcpu_stats_save_ai(ai);
2120
2121 /*
2122 * Allocate chunk slots. The additional last slot is for
2123 * empty chunks.
2124 */
2125 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2126 pcpu_slot = memblock_virt_alloc(
2127 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2128 for (i = 0; i < pcpu_nr_slots; i++)
2129 INIT_LIST_HEAD(&pcpu_slot[i]);
2130
2131 /*
2132 * The end of the static region needs to be aligned with the
2133 * minimum allocation size as this offsets the reserved and
2134 * dynamic region. The first chunk ends page aligned by
2135 * expanding the dynamic region, therefore the dynamic region
2136 * can be shrunk to compensate while still staying above the
2137 * configured sizes.
2138 */
2139 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2140 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2141
2142 /*
2143 * Initialize first chunk.
2144 * If the reserved_size is non-zero, this initializes the reserved
2145 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2146 * and the dynamic region is initialized here. The first chunk,
2147 * pcpu_first_chunk, will always point to the chunk that serves
2148 * the dynamic region.
2149 */
2150 tmp_addr = (unsigned long)base_addr + static_size;
2151 map_size = ai->reserved_size ?: dyn_size;
2152 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2153
2154 /* init dynamic chunk if necessary */
2155 if (ai->reserved_size) {
2156 pcpu_reserved_chunk = chunk;
2157
2158 tmp_addr = (unsigned long)base_addr + static_size +
2159 ai->reserved_size;
2160 map_size = dyn_size;
2161 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2162 }
2163
2164 /* link the first chunk in */
2165 pcpu_first_chunk = chunk;
2166 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2167 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2168
2169 pcpu_stats_chunk_alloc();
2170 trace_percpu_create_chunk(base_addr);
2171
2172 /* we're done */
2173 pcpu_base_addr = base_addr;
2174 return 0;
2175 }
2176
2177 #ifdef CONFIG_SMP
2178
2179 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2180 [PCPU_FC_AUTO] = "auto",
2181 [PCPU_FC_EMBED] = "embed",
2182 [PCPU_FC_PAGE] = "page",
2183 };
2184
2185 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2186
2187 static int __init percpu_alloc_setup(char *str)
2188 {
2189 if (!str)
2190 return -EINVAL;
2191
2192 if (0)
2193 /* nada */;
2194 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2195 else if (!strcmp(str, "embed"))
2196 pcpu_chosen_fc = PCPU_FC_EMBED;
2197 #endif
2198 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2199 else if (!strcmp(str, "page"))
2200 pcpu_chosen_fc = PCPU_FC_PAGE;
2201 #endif
2202 else
2203 pr_warn("unknown allocator %s specified\n", str);
2204
2205 return 0;
2206 }
2207 early_param("percpu_alloc", percpu_alloc_setup);
2208
2209 /*
2210 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2211 * Build it if needed by the arch config or the generic setup is going
2212 * to be used.
2213 */
2214 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2215 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2216 #define BUILD_EMBED_FIRST_CHUNK
2217 #endif
2218
2219 /* build pcpu_page_first_chunk() iff needed by the arch config */
2220 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2221 #define BUILD_PAGE_FIRST_CHUNK
2222 #endif
2223
2224 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2225 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2226 /**
2227 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2228 * @reserved_size: the size of reserved percpu area in bytes
2229 * @dyn_size: minimum free size for dynamic allocation in bytes
2230 * @atom_size: allocation atom size
2231 * @cpu_distance_fn: callback to determine distance between cpus, optional
2232 *
2233 * This function determines grouping of units, their mappings to cpus
2234 * and other parameters considering needed percpu size, allocation
2235 * atom size and distances between CPUs.
2236 *
2237 * Groups are always multiples of atom size and CPUs which are of
2238 * LOCAL_DISTANCE both ways are grouped together and share space for
2239 * units in the same group. The returned configuration is guaranteed
2240 * to have CPUs on different nodes on different groups and >=75% usage
2241 * of allocated virtual address space.
2242 *
2243 * RETURNS:
2244 * On success, pointer to the new allocation_info is returned. On
2245 * failure, ERR_PTR value is returned.
2246 */
2247 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2248 size_t reserved_size, size_t dyn_size,
2249 size_t atom_size,
2250 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2251 {
2252 static int group_map[NR_CPUS] __initdata;
2253 static int group_cnt[NR_CPUS] __initdata;
2254 const size_t static_size = __per_cpu_end - __per_cpu_start;
2255 int nr_groups = 1, nr_units = 0;
2256 size_t size_sum, min_unit_size, alloc_size;
2257 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2258 int last_allocs, group, unit;
2259 unsigned int cpu, tcpu;
2260 struct pcpu_alloc_info *ai;
2261 unsigned int *cpu_map;
2262
2263 /* this function may be called multiple times */
2264 memset(group_map, 0, sizeof(group_map));
2265 memset(group_cnt, 0, sizeof(group_cnt));
2266
2267 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2268 size_sum = PFN_ALIGN(static_size + reserved_size +
2269 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2270 dyn_size = size_sum - static_size - reserved_size;
2271
2272 /*
2273 * Determine min_unit_size, alloc_size and max_upa such that
2274 * alloc_size is multiple of atom_size and is the smallest
2275 * which can accommodate 4k aligned segments which are equal to
2276 * or larger than min_unit_size.
2277 */
2278 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2279
2280 /* determine the maximum # of units that can fit in an allocation */
2281 alloc_size = roundup(min_unit_size, atom_size);
2282 upa = alloc_size / min_unit_size;
2283 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2284 upa--;
2285 max_upa = upa;
2286
2287 /* group cpus according to their proximity */
2288 for_each_possible_cpu(cpu) {
2289 group = 0;
2290 next_group:
2291 for_each_possible_cpu(tcpu) {
2292 if (cpu == tcpu)
2293 break;
2294 if (group_map[tcpu] == group && cpu_distance_fn &&
2295 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2296 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2297 group++;
2298 nr_groups = max(nr_groups, group + 1);
2299 goto next_group;
2300 }
2301 }
2302 group_map[cpu] = group;
2303 group_cnt[group]++;
2304 }
2305
2306 /*
2307 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2308 * Expand the unit_size until we use >= 75% of the units allocated.
2309 * Related to atom_size, which could be much larger than the unit_size.
2310 */
2311 last_allocs = INT_MAX;
2312 for (upa = max_upa; upa; upa--) {
2313 int allocs = 0, wasted = 0;
2314
2315 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2316 continue;
2317
2318 for (group = 0; group < nr_groups; group++) {
2319 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2320 allocs += this_allocs;
2321 wasted += this_allocs * upa - group_cnt[group];
2322 }
2323
2324 /*
2325 * Don't accept if wastage is over 1/3. The
2326 * greater-than comparison ensures upa==1 always
2327 * passes the following check.
2328 */
2329 if (wasted > num_possible_cpus() / 3)
2330 continue;
2331
2332 /* and then don't consume more memory */
2333 if (allocs > last_allocs)
2334 break;
2335 last_allocs = allocs;
2336 best_upa = upa;
2337 }
2338 upa = best_upa;
2339
2340 /* allocate and fill alloc_info */
2341 for (group = 0; group < nr_groups; group++)
2342 nr_units += roundup(group_cnt[group], upa);
2343
2344 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2345 if (!ai)
2346 return ERR_PTR(-ENOMEM);
2347 cpu_map = ai->groups[0].cpu_map;
2348
2349 for (group = 0; group < nr_groups; group++) {
2350 ai->groups[group].cpu_map = cpu_map;
2351 cpu_map += roundup(group_cnt[group], upa);
2352 }
2353
2354 ai->static_size = static_size;
2355 ai->reserved_size = reserved_size;
2356 ai->dyn_size = dyn_size;
2357 ai->unit_size = alloc_size / upa;
2358 ai->atom_size = atom_size;
2359 ai->alloc_size = alloc_size;
2360
2361 for (group = 0, unit = 0; group_cnt[group]; group++) {
2362 struct pcpu_group_info *gi = &ai->groups[group];
2363
2364 /*
2365 * Initialize base_offset as if all groups are located
2366 * back-to-back. The caller should update this to
2367 * reflect actual allocation.
2368 */
2369 gi->base_offset = unit * ai->unit_size;
2370
2371 for_each_possible_cpu(cpu)
2372 if (group_map[cpu] == group)
2373 gi->cpu_map[gi->nr_units++] = cpu;
2374 gi->nr_units = roundup(gi->nr_units, upa);
2375 unit += gi->nr_units;
2376 }
2377 BUG_ON(unit != nr_units);
2378
2379 return ai;
2380 }
2381 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2382
2383 #if defined(BUILD_EMBED_FIRST_CHUNK)
2384 /**
2385 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2386 * @reserved_size: the size of reserved percpu area in bytes
2387 * @dyn_size: minimum free size for dynamic allocation in bytes
2388 * @atom_size: allocation atom size
2389 * @cpu_distance_fn: callback to determine distance between cpus, optional
2390 * @alloc_fn: function to allocate percpu page
2391 * @free_fn: function to free percpu page
2392 *
2393 * This is a helper to ease setting up embedded first percpu chunk and
2394 * can be called where pcpu_setup_first_chunk() is expected.
2395 *
2396 * If this function is used to setup the first chunk, it is allocated
2397 * by calling @alloc_fn and used as-is without being mapped into
2398 * vmalloc area. Allocations are always whole multiples of @atom_size
2399 * aligned to @atom_size.
2400 *
2401 * This enables the first chunk to piggy back on the linear physical
2402 * mapping which often uses larger page size. Please note that this
2403 * can result in very sparse cpu->unit mapping on NUMA machines thus
2404 * requiring large vmalloc address space. Don't use this allocator if
2405 * vmalloc space is not orders of magnitude larger than distances
2406 * between node memory addresses (ie. 32bit NUMA machines).
2407 *
2408 * @dyn_size specifies the minimum dynamic area size.
2409 *
2410 * If the needed size is smaller than the minimum or specified unit
2411 * size, the leftover is returned using @free_fn.
2412 *
2413 * RETURNS:
2414 * 0 on success, -errno on failure.
2415 */
2416 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2417 size_t atom_size,
2418 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2419 pcpu_fc_alloc_fn_t alloc_fn,
2420 pcpu_fc_free_fn_t free_fn)
2421 {
2422 void *base = (void *)ULONG_MAX;
2423 void **areas = NULL;
2424 struct pcpu_alloc_info *ai;
2425 size_t size_sum, areas_size;
2426 unsigned long max_distance;
2427 int group, i, highest_group, rc;
2428
2429 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2430 cpu_distance_fn);
2431 if (IS_ERR(ai))
2432 return PTR_ERR(ai);
2433
2434 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2435 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2436
2437 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2438 if (!areas) {
2439 rc = -ENOMEM;
2440 goto out_free;
2441 }
2442
2443 /* allocate, copy and determine base address & max_distance */
2444 highest_group = 0;
2445 for (group = 0; group < ai->nr_groups; group++) {
2446 struct pcpu_group_info *gi = &ai->groups[group];
2447 unsigned int cpu = NR_CPUS;
2448 void *ptr;
2449
2450 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2451 cpu = gi->cpu_map[i];
2452 BUG_ON(cpu == NR_CPUS);
2453
2454 /* allocate space for the whole group */
2455 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2456 if (!ptr) {
2457 rc = -ENOMEM;
2458 goto out_free_areas;
2459 }
2460 /* kmemleak tracks the percpu allocations separately */
2461 kmemleak_free(ptr);
2462 areas[group] = ptr;
2463
2464 base = min(ptr, base);
2465 if (ptr > areas[highest_group])
2466 highest_group = group;
2467 }
2468 max_distance = areas[highest_group] - base;
2469 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2470
2471 /* warn if maximum distance is further than 75% of vmalloc space */
2472 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2473 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2474 max_distance, VMALLOC_TOTAL);
2475 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2476 /* and fail if we have fallback */
2477 rc = -EINVAL;
2478 goto out_free_areas;
2479 #endif
2480 }
2481
2482 /*
2483 * Copy data and free unused parts. This should happen after all
2484 * allocations are complete; otherwise, we may end up with
2485 * overlapping groups.
2486 */
2487 for (group = 0; group < ai->nr_groups; group++) {
2488 struct pcpu_group_info *gi = &ai->groups[group];
2489 void *ptr = areas[group];
2490
2491 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2492 if (gi->cpu_map[i] == NR_CPUS) {
2493 /* unused unit, free whole */
2494 free_fn(ptr, ai->unit_size);
2495 continue;
2496 }
2497 /* copy and return the unused part */
2498 memcpy(ptr, __per_cpu_load, ai->static_size);
2499 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2500 }
2501 }
2502
2503 /* base address is now known, determine group base offsets */
2504 for (group = 0; group < ai->nr_groups; group++) {
2505 ai->groups[group].base_offset = areas[group] - base;
2506 }
2507
2508 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2509 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2510 ai->dyn_size, ai->unit_size);
2511
2512 rc = pcpu_setup_first_chunk(ai, base);
2513 goto out_free;
2514
2515 out_free_areas:
2516 for (group = 0; group < ai->nr_groups; group++)
2517 if (areas[group])
2518 free_fn(areas[group],
2519 ai->groups[group].nr_units * ai->unit_size);
2520 out_free:
2521 pcpu_free_alloc_info(ai);
2522 if (areas)
2523 memblock_free_early(__pa(areas), areas_size);
2524 return rc;
2525 }
2526 #endif /* BUILD_EMBED_FIRST_CHUNK */
2527
2528 #ifdef BUILD_PAGE_FIRST_CHUNK
2529 /**
2530 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2531 * @reserved_size: the size of reserved percpu area in bytes
2532 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2533 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2534 * @populate_pte_fn: function to populate pte
2535 *
2536 * This is a helper to ease setting up page-remapped first percpu
2537 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2538 *
2539 * This is the basic allocator. Static percpu area is allocated
2540 * page-by-page into vmalloc area.
2541 *
2542 * RETURNS:
2543 * 0 on success, -errno on failure.
2544 */
2545 int __init pcpu_page_first_chunk(size_t reserved_size,
2546 pcpu_fc_alloc_fn_t alloc_fn,
2547 pcpu_fc_free_fn_t free_fn,
2548 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2549 {
2550 static struct vm_struct vm;
2551 struct pcpu_alloc_info *ai;
2552 char psize_str[16];
2553 int unit_pages;
2554 size_t pages_size;
2555 struct page **pages;
2556 int unit, i, j, rc;
2557 int upa;
2558 int nr_g0_units;
2559
2560 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2561
2562 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2563 if (IS_ERR(ai))
2564 return PTR_ERR(ai);
2565 BUG_ON(ai->nr_groups != 1);
2566 upa = ai->alloc_size/ai->unit_size;
2567 nr_g0_units = roundup(num_possible_cpus(), upa);
2568 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2569 pcpu_free_alloc_info(ai);
2570 return -EINVAL;
2571 }
2572
2573 unit_pages = ai->unit_size >> PAGE_SHIFT;
2574
2575 /* unaligned allocations can't be freed, round up to page size */
2576 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2577 sizeof(pages[0]));
2578 pages = memblock_virt_alloc(pages_size, 0);
2579
2580 /* allocate pages */
2581 j = 0;
2582 for (unit = 0; unit < num_possible_cpus(); unit++) {
2583 unsigned int cpu = ai->groups[0].cpu_map[unit];
2584 for (i = 0; i < unit_pages; i++) {
2585 void *ptr;
2586
2587 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2588 if (!ptr) {
2589 pr_warn("failed to allocate %s page for cpu%u\n",
2590 psize_str, cpu);
2591 goto enomem;
2592 }
2593 /* kmemleak tracks the percpu allocations separately */
2594 kmemleak_free(ptr);
2595 pages[j++] = virt_to_page(ptr);
2596 }
2597 }
2598
2599 /* allocate vm area, map the pages and copy static data */
2600 vm.flags = VM_ALLOC;
2601 vm.size = num_possible_cpus() * ai->unit_size;
2602 vm_area_register_early(&vm, PAGE_SIZE);
2603
2604 for (unit = 0; unit < num_possible_cpus(); unit++) {
2605 unsigned long unit_addr =
2606 (unsigned long)vm.addr + unit * ai->unit_size;
2607
2608 for (i = 0; i < unit_pages; i++)
2609 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2610
2611 /* pte already populated, the following shouldn't fail */
2612 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2613 unit_pages);
2614 if (rc < 0)
2615 panic("failed to map percpu area, err=%d\n", rc);
2616
2617 /*
2618 * FIXME: Archs with virtual cache should flush local
2619 * cache for the linear mapping here - something
2620 * equivalent to flush_cache_vmap() on the local cpu.
2621 * flush_cache_vmap() can't be used as most supporting
2622 * data structures are not set up yet.
2623 */
2624
2625 /* copy static data */
2626 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2627 }
2628
2629 /* we're ready, commit */
2630 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2631 unit_pages, psize_str, vm.addr, ai->static_size,
2632 ai->reserved_size, ai->dyn_size);
2633
2634 rc = pcpu_setup_first_chunk(ai, vm.addr);
2635 goto out_free_ar;
2636
2637 enomem:
2638 while (--j >= 0)
2639 free_fn(page_address(pages[j]), PAGE_SIZE);
2640 rc = -ENOMEM;
2641 out_free_ar:
2642 memblock_free_early(__pa(pages), pages_size);
2643 pcpu_free_alloc_info(ai);
2644 return rc;
2645 }
2646 #endif /* BUILD_PAGE_FIRST_CHUNK */
2647
2648 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2649 /*
2650 * Generic SMP percpu area setup.
2651 *
2652 * The embedding helper is used because its behavior closely resembles
2653 * the original non-dynamic generic percpu area setup. This is
2654 * important because many archs have addressing restrictions and might
2655 * fail if the percpu area is located far away from the previous
2656 * location. As an added bonus, in non-NUMA cases, embedding is
2657 * generally a good idea TLB-wise because percpu area can piggy back
2658 * on the physical linear memory mapping which uses large page
2659 * mappings on applicable archs.
2660 */
2661 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2662 EXPORT_SYMBOL(__per_cpu_offset);
2663
2664 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2665 size_t align)
2666 {
2667 return memblock_virt_alloc_from_nopanic(
2668 size, align, __pa(MAX_DMA_ADDRESS));
2669 }
2670
2671 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2672 {
2673 memblock_free_early(__pa(ptr), size);
2674 }
2675
2676 void __init setup_per_cpu_areas(void)
2677 {
2678 unsigned long delta;
2679 unsigned int cpu;
2680 int rc;
2681
2682 /*
2683 * Always reserve area for module percpu variables. That's
2684 * what the legacy allocator did.
2685 */
2686 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2687 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2688 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2689 if (rc < 0)
2690 panic("Failed to initialize percpu areas.");
2691
2692 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2693 for_each_possible_cpu(cpu)
2694 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2695 }
2696 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2697
2698 #else /* CONFIG_SMP */
2699
2700 /*
2701 * UP percpu area setup.
2702 *
2703 * UP always uses km-based percpu allocator with identity mapping.
2704 * Static percpu variables are indistinguishable from the usual static
2705 * variables and don't require any special preparation.
2706 */
2707 void __init setup_per_cpu_areas(void)
2708 {
2709 const size_t unit_size =
2710 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2711 PERCPU_DYNAMIC_RESERVE));
2712 struct pcpu_alloc_info *ai;
2713 void *fc;
2714
2715 ai = pcpu_alloc_alloc_info(1, 1);
2716 fc = memblock_virt_alloc_from_nopanic(unit_size,
2717 PAGE_SIZE,
2718 __pa(MAX_DMA_ADDRESS));
2719 if (!ai || !fc)
2720 panic("Failed to allocate memory for percpu areas.");
2721 /* kmemleak tracks the percpu allocations separately */
2722 kmemleak_free(fc);
2723
2724 ai->dyn_size = unit_size;
2725 ai->unit_size = unit_size;
2726 ai->atom_size = unit_size;
2727 ai->alloc_size = unit_size;
2728 ai->groups[0].nr_units = 1;
2729 ai->groups[0].cpu_map[0] = 0;
2730
2731 if (pcpu_setup_first_chunk(ai, fc) < 0)
2732 panic("Failed to initialize percpu areas.");
2733 #ifdef CONFIG_CRIS
2734 #warning "the CRIS architecture has physical and virtual addresses confused"
2735 #else
2736 pcpu_free_alloc_info(ai);
2737 #endif
2738 }
2739
2740 #endif /* CONFIG_SMP */
2741
2742 /*
2743 * Percpu allocator is initialized early during boot when neither slab or
2744 * workqueue is available. Plug async management until everything is up
2745 * and running.
2746 */
2747 static int __init percpu_enable_async(void)
2748 {
2749 pcpu_async_enabled = true;
2750 return 0;
2751 }
2752 subsys_initcall(percpu_enable_async);