]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/percpu.c
Merge tag 'for-4.20/block-20181021' of git://git.kernel.dk/linux-block
[mirror_ubuntu-focal-kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
10 * This file is released under the GPLv2 license.
11 *
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
39 *
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
54 *
55 * To use this allocator, arch code should do the following:
56 *
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
60 *
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92
93 #include "percpu-internal.h"
94
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
97
98 #define PCPU_EMPTY_POP_PAGES_LOW 2
99 #define PCPU_EMPTY_POP_PAGES_HIGH 4
100
101 #ifdef CONFIG_SMP
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr) \
105 (void __percpu *)((unsigned long)(addr) - \
106 (unsigned long)pcpu_base_addr + \
107 (unsigned long)__per_cpu_start)
108 #endif
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr) \
111 (void __force *)((unsigned long)(ptr) + \
112 (unsigned long)pcpu_base_addr - \
113 (unsigned long)__per_cpu_start)
114 #endif
115 #else /* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
119 #endif /* CONFIG_SMP */
120
121 static int pcpu_unit_pages __ro_after_init;
122 static int pcpu_unit_size __ro_after_init;
123 static int pcpu_nr_units __ro_after_init;
124 static int pcpu_atom_size __ro_after_init;
125 int pcpu_nr_slots __ro_after_init;
126 static size_t pcpu_chunk_struct_size __ro_after_init;
127
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init;
131
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr);
135
136 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
138
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init;
141 static const unsigned long *pcpu_group_offsets __ro_after_init;
142 static const size_t *pcpu_group_sizes __ro_after_init;
143
144 /*
145 * The first chunk which always exists. Note that unlike other
146 * chunks, this one can be allocated and mapped in several different
147 * ways and thus often doesn't live in the vmalloc area.
148 */
149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150
151 /*
152 * Optional reserved chunk. This chunk reserves part of the first
153 * chunk and serves it for reserved allocations. When the reserved
154 * region doesn't exist, the following variable is NULL.
155 */
156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157
158 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
160
161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks);
165
166 /*
167 * The number of empty populated pages, protected by pcpu_lock. The
168 * reserved chunk doesn't contribute to the count.
169 */
170 int pcpu_nr_empty_pop_pages;
171
172 /*
173 * The number of populated pages in use by the allocator, protected by
174 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
175 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
176 * and increments/decrements this count by 1).
177 */
178 static unsigned long pcpu_nr_populated;
179
180 /*
181 * Balance work is used to populate or destroy chunks asynchronously. We
182 * try to keep the number of populated free pages between
183 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
184 * empty chunk.
185 */
186 static void pcpu_balance_workfn(struct work_struct *work);
187 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
188 static bool pcpu_async_enabled __read_mostly;
189 static bool pcpu_atomic_alloc_failed;
190
191 static void pcpu_schedule_balance_work(void)
192 {
193 if (pcpu_async_enabled)
194 schedule_work(&pcpu_balance_work);
195 }
196
197 /**
198 * pcpu_addr_in_chunk - check if the address is served from this chunk
199 * @chunk: chunk of interest
200 * @addr: percpu address
201 *
202 * RETURNS:
203 * True if the address is served from this chunk.
204 */
205 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
206 {
207 void *start_addr, *end_addr;
208
209 if (!chunk)
210 return false;
211
212 start_addr = chunk->base_addr + chunk->start_offset;
213 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
214 chunk->end_offset;
215
216 return addr >= start_addr && addr < end_addr;
217 }
218
219 static int __pcpu_size_to_slot(int size)
220 {
221 int highbit = fls(size); /* size is in bytes */
222 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
223 }
224
225 static int pcpu_size_to_slot(int size)
226 {
227 if (size == pcpu_unit_size)
228 return pcpu_nr_slots - 1;
229 return __pcpu_size_to_slot(size);
230 }
231
232 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
233 {
234 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
235 return 0;
236
237 return pcpu_size_to_slot(chunk->free_bytes);
238 }
239
240 /* set the pointer to a chunk in a page struct */
241 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
242 {
243 page->index = (unsigned long)pcpu;
244 }
245
246 /* obtain pointer to a chunk from a page struct */
247 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
248 {
249 return (struct pcpu_chunk *)page->index;
250 }
251
252 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
253 {
254 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
255 }
256
257 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
258 {
259 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
260 }
261
262 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
263 unsigned int cpu, int page_idx)
264 {
265 return (unsigned long)chunk->base_addr +
266 pcpu_unit_page_offset(cpu, page_idx);
267 }
268
269 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
270 {
271 *rs = find_next_zero_bit(bitmap, end, *rs);
272 *re = find_next_bit(bitmap, end, *rs + 1);
273 }
274
275 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
276 {
277 *rs = find_next_bit(bitmap, end, *rs);
278 *re = find_next_zero_bit(bitmap, end, *rs + 1);
279 }
280
281 /*
282 * Bitmap region iterators. Iterates over the bitmap between
283 * [@start, @end) in @chunk. @rs and @re should be integer variables
284 * and will be set to start and end index of the current free region.
285 */
286 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
287 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
288 (rs) < (re); \
289 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
290
291 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
292 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
293 (rs) < (re); \
294 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
295
296 /*
297 * The following are helper functions to help access bitmaps and convert
298 * between bitmap offsets to address offsets.
299 */
300 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
301 {
302 return chunk->alloc_map +
303 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
304 }
305
306 static unsigned long pcpu_off_to_block_index(int off)
307 {
308 return off / PCPU_BITMAP_BLOCK_BITS;
309 }
310
311 static unsigned long pcpu_off_to_block_off(int off)
312 {
313 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
314 }
315
316 static unsigned long pcpu_block_off_to_off(int index, int off)
317 {
318 return index * PCPU_BITMAP_BLOCK_BITS + off;
319 }
320
321 /**
322 * pcpu_next_md_free_region - finds the next hint free area
323 * @chunk: chunk of interest
324 * @bit_off: chunk offset
325 * @bits: size of free area
326 *
327 * Helper function for pcpu_for_each_md_free_region. It checks
328 * block->contig_hint and performs aggregation across blocks to find the
329 * next hint. It modifies bit_off and bits in-place to be consumed in the
330 * loop.
331 */
332 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
333 int *bits)
334 {
335 int i = pcpu_off_to_block_index(*bit_off);
336 int block_off = pcpu_off_to_block_off(*bit_off);
337 struct pcpu_block_md *block;
338
339 *bits = 0;
340 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
341 block++, i++) {
342 /* handles contig area across blocks */
343 if (*bits) {
344 *bits += block->left_free;
345 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
346 continue;
347 return;
348 }
349
350 /*
351 * This checks three things. First is there a contig_hint to
352 * check. Second, have we checked this hint before by
353 * comparing the block_off. Third, is this the same as the
354 * right contig hint. In the last case, it spills over into
355 * the next block and should be handled by the contig area
356 * across blocks code.
357 */
358 *bits = block->contig_hint;
359 if (*bits && block->contig_hint_start >= block_off &&
360 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
361 *bit_off = pcpu_block_off_to_off(i,
362 block->contig_hint_start);
363 return;
364 }
365 /* reset to satisfy the second predicate above */
366 block_off = 0;
367
368 *bits = block->right_free;
369 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
370 }
371 }
372
373 /**
374 * pcpu_next_fit_region - finds fit areas for a given allocation request
375 * @chunk: chunk of interest
376 * @alloc_bits: size of allocation
377 * @align: alignment of area (max PAGE_SIZE)
378 * @bit_off: chunk offset
379 * @bits: size of free area
380 *
381 * Finds the next free region that is viable for use with a given size and
382 * alignment. This only returns if there is a valid area to be used for this
383 * allocation. block->first_free is returned if the allocation request fits
384 * within the block to see if the request can be fulfilled prior to the contig
385 * hint.
386 */
387 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
388 int align, int *bit_off, int *bits)
389 {
390 int i = pcpu_off_to_block_index(*bit_off);
391 int block_off = pcpu_off_to_block_off(*bit_off);
392 struct pcpu_block_md *block;
393
394 *bits = 0;
395 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
396 block++, i++) {
397 /* handles contig area across blocks */
398 if (*bits) {
399 *bits += block->left_free;
400 if (*bits >= alloc_bits)
401 return;
402 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
403 continue;
404 }
405
406 /* check block->contig_hint */
407 *bits = ALIGN(block->contig_hint_start, align) -
408 block->contig_hint_start;
409 /*
410 * This uses the block offset to determine if this has been
411 * checked in the prior iteration.
412 */
413 if (block->contig_hint &&
414 block->contig_hint_start >= block_off &&
415 block->contig_hint >= *bits + alloc_bits) {
416 *bits += alloc_bits + block->contig_hint_start -
417 block->first_free;
418 *bit_off = pcpu_block_off_to_off(i, block->first_free);
419 return;
420 }
421 /* reset to satisfy the second predicate above */
422 block_off = 0;
423
424 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
425 align);
426 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
427 *bit_off = pcpu_block_off_to_off(i, *bit_off);
428 if (*bits >= alloc_bits)
429 return;
430 }
431
432 /* no valid offsets were found - fail condition */
433 *bit_off = pcpu_chunk_map_bits(chunk);
434 }
435
436 /*
437 * Metadata free area iterators. These perform aggregation of free areas
438 * based on the metadata blocks and return the offset @bit_off and size in
439 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
440 * a fit is found for the allocation request.
441 */
442 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
443 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
444 (bit_off) < pcpu_chunk_map_bits((chunk)); \
445 (bit_off) += (bits) + 1, \
446 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
447
448 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
449 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
450 &(bits)); \
451 (bit_off) < pcpu_chunk_map_bits((chunk)); \
452 (bit_off) += (bits), \
453 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
454 &(bits)))
455
456 /**
457 * pcpu_mem_zalloc - allocate memory
458 * @size: bytes to allocate
459 * @gfp: allocation flags
460 *
461 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
462 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
463 * This is to facilitate passing through whitelisted flags. The
464 * returned memory is always zeroed.
465 *
466 * RETURNS:
467 * Pointer to the allocated area on success, NULL on failure.
468 */
469 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
470 {
471 if (WARN_ON_ONCE(!slab_is_available()))
472 return NULL;
473
474 if (size <= PAGE_SIZE)
475 return kzalloc(size, gfp);
476 else
477 return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
478 }
479
480 /**
481 * pcpu_mem_free - free memory
482 * @ptr: memory to free
483 *
484 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
485 */
486 static void pcpu_mem_free(void *ptr)
487 {
488 kvfree(ptr);
489 }
490
491 /**
492 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
493 * @chunk: chunk of interest
494 * @oslot: the previous slot it was on
495 *
496 * This function is called after an allocation or free changed @chunk.
497 * New slot according to the changed state is determined and @chunk is
498 * moved to the slot. Note that the reserved chunk is never put on
499 * chunk slots.
500 *
501 * CONTEXT:
502 * pcpu_lock.
503 */
504 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
505 {
506 int nslot = pcpu_chunk_slot(chunk);
507
508 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
509 if (oslot < nslot)
510 list_move(&chunk->list, &pcpu_slot[nslot]);
511 else
512 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
513 }
514 }
515
516 /**
517 * pcpu_cnt_pop_pages- counts populated backing pages in range
518 * @chunk: chunk of interest
519 * @bit_off: start offset
520 * @bits: size of area to check
521 *
522 * Calculates the number of populated pages in the region
523 * [page_start, page_end). This keeps track of how many empty populated
524 * pages are available and decide if async work should be scheduled.
525 *
526 * RETURNS:
527 * The nr of populated pages.
528 */
529 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
530 int bits)
531 {
532 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
533 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
534
535 if (page_start >= page_end)
536 return 0;
537
538 /*
539 * bitmap_weight counts the number of bits set in a bitmap up to
540 * the specified number of bits. This is counting the populated
541 * pages up to page_end and then subtracting the populated pages
542 * up to page_start to count the populated pages in
543 * [page_start, page_end).
544 */
545 return bitmap_weight(chunk->populated, page_end) -
546 bitmap_weight(chunk->populated, page_start);
547 }
548
549 /**
550 * pcpu_chunk_update - updates the chunk metadata given a free area
551 * @chunk: chunk of interest
552 * @bit_off: chunk offset
553 * @bits: size of free area
554 *
555 * This updates the chunk's contig hint and starting offset given a free area.
556 * Choose the best starting offset if the contig hint is equal.
557 */
558 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
559 {
560 if (bits > chunk->contig_bits) {
561 chunk->contig_bits_start = bit_off;
562 chunk->contig_bits = bits;
563 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
564 (!bit_off ||
565 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
566 /* use the start with the best alignment */
567 chunk->contig_bits_start = bit_off;
568 }
569 }
570
571 /**
572 * pcpu_chunk_refresh_hint - updates metadata about a chunk
573 * @chunk: chunk of interest
574 *
575 * Iterates over the metadata blocks to find the largest contig area.
576 * It also counts the populated pages and uses the delta to update the
577 * global count.
578 *
579 * Updates:
580 * chunk->contig_bits
581 * chunk->contig_bits_start
582 * nr_empty_pop_pages (chunk and global)
583 */
584 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
585 {
586 int bit_off, bits, nr_empty_pop_pages;
587
588 /* clear metadata */
589 chunk->contig_bits = 0;
590
591 bit_off = chunk->first_bit;
592 bits = nr_empty_pop_pages = 0;
593 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
594 pcpu_chunk_update(chunk, bit_off, bits);
595
596 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
597 }
598
599 /*
600 * Keep track of nr_empty_pop_pages.
601 *
602 * The chunk maintains the previous number of free pages it held,
603 * so the delta is used to update the global counter. The reserved
604 * chunk is not part of the free page count as they are populated
605 * at init and are special to serving reserved allocations.
606 */
607 if (chunk != pcpu_reserved_chunk)
608 pcpu_nr_empty_pop_pages +=
609 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
610
611 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
612 }
613
614 /**
615 * pcpu_block_update - updates a block given a free area
616 * @block: block of interest
617 * @start: start offset in block
618 * @end: end offset in block
619 *
620 * Updates a block given a known free area. The region [start, end) is
621 * expected to be the entirety of the free area within a block. Chooses
622 * the best starting offset if the contig hints are equal.
623 */
624 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
625 {
626 int contig = end - start;
627
628 block->first_free = min(block->first_free, start);
629 if (start == 0)
630 block->left_free = contig;
631
632 if (end == PCPU_BITMAP_BLOCK_BITS)
633 block->right_free = contig;
634
635 if (contig > block->contig_hint) {
636 block->contig_hint_start = start;
637 block->contig_hint = contig;
638 } else if (block->contig_hint_start && contig == block->contig_hint &&
639 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
640 /* use the start with the best alignment */
641 block->contig_hint_start = start;
642 }
643 }
644
645 /**
646 * pcpu_block_refresh_hint
647 * @chunk: chunk of interest
648 * @index: index of the metadata block
649 *
650 * Scans over the block beginning at first_free and updates the block
651 * metadata accordingly.
652 */
653 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
654 {
655 struct pcpu_block_md *block = chunk->md_blocks + index;
656 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
657 int rs, re; /* region start, region end */
658
659 /* clear hints */
660 block->contig_hint = 0;
661 block->left_free = block->right_free = 0;
662
663 /* iterate over free areas and update the contig hints */
664 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
665 PCPU_BITMAP_BLOCK_BITS) {
666 pcpu_block_update(block, rs, re);
667 }
668 }
669
670 /**
671 * pcpu_block_update_hint_alloc - update hint on allocation path
672 * @chunk: chunk of interest
673 * @bit_off: chunk offset
674 * @bits: size of request
675 *
676 * Updates metadata for the allocation path. The metadata only has to be
677 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
678 * scans are required if the block's contig hint is broken.
679 */
680 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
681 int bits)
682 {
683 struct pcpu_block_md *s_block, *e_block, *block;
684 int s_index, e_index; /* block indexes of the freed allocation */
685 int s_off, e_off; /* block offsets of the freed allocation */
686
687 /*
688 * Calculate per block offsets.
689 * The calculation uses an inclusive range, but the resulting offsets
690 * are [start, end). e_index always points to the last block in the
691 * range.
692 */
693 s_index = pcpu_off_to_block_index(bit_off);
694 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
695 s_off = pcpu_off_to_block_off(bit_off);
696 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
697
698 s_block = chunk->md_blocks + s_index;
699 e_block = chunk->md_blocks + e_index;
700
701 /*
702 * Update s_block.
703 * block->first_free must be updated if the allocation takes its place.
704 * If the allocation breaks the contig_hint, a scan is required to
705 * restore this hint.
706 */
707 if (s_off == s_block->first_free)
708 s_block->first_free = find_next_zero_bit(
709 pcpu_index_alloc_map(chunk, s_index),
710 PCPU_BITMAP_BLOCK_BITS,
711 s_off + bits);
712
713 if (s_off >= s_block->contig_hint_start &&
714 s_off < s_block->contig_hint_start + s_block->contig_hint) {
715 /* block contig hint is broken - scan to fix it */
716 pcpu_block_refresh_hint(chunk, s_index);
717 } else {
718 /* update left and right contig manually */
719 s_block->left_free = min(s_block->left_free, s_off);
720 if (s_index == e_index)
721 s_block->right_free = min_t(int, s_block->right_free,
722 PCPU_BITMAP_BLOCK_BITS - e_off);
723 else
724 s_block->right_free = 0;
725 }
726
727 /*
728 * Update e_block.
729 */
730 if (s_index != e_index) {
731 /*
732 * When the allocation is across blocks, the end is along
733 * the left part of the e_block.
734 */
735 e_block->first_free = find_next_zero_bit(
736 pcpu_index_alloc_map(chunk, e_index),
737 PCPU_BITMAP_BLOCK_BITS, e_off);
738
739 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
740 /* reset the block */
741 e_block++;
742 } else {
743 if (e_off > e_block->contig_hint_start) {
744 /* contig hint is broken - scan to fix it */
745 pcpu_block_refresh_hint(chunk, e_index);
746 } else {
747 e_block->left_free = 0;
748 e_block->right_free =
749 min_t(int, e_block->right_free,
750 PCPU_BITMAP_BLOCK_BITS - e_off);
751 }
752 }
753
754 /* update in-between md_blocks */
755 for (block = s_block + 1; block < e_block; block++) {
756 block->contig_hint = 0;
757 block->left_free = 0;
758 block->right_free = 0;
759 }
760 }
761
762 /*
763 * The only time a full chunk scan is required is if the chunk
764 * contig hint is broken. Otherwise, it means a smaller space
765 * was used and therefore the chunk contig hint is still correct.
766 */
767 if (bit_off >= chunk->contig_bits_start &&
768 bit_off < chunk->contig_bits_start + chunk->contig_bits)
769 pcpu_chunk_refresh_hint(chunk);
770 }
771
772 /**
773 * pcpu_block_update_hint_free - updates the block hints on the free path
774 * @chunk: chunk of interest
775 * @bit_off: chunk offset
776 * @bits: size of request
777 *
778 * Updates metadata for the allocation path. This avoids a blind block
779 * refresh by making use of the block contig hints. If this fails, it scans
780 * forward and backward to determine the extent of the free area. This is
781 * capped at the boundary of blocks.
782 *
783 * A chunk update is triggered if a page becomes free, a block becomes free,
784 * or the free spans across blocks. This tradeoff is to minimize iterating
785 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
786 * may be off by up to a page, but it will never be more than the available
787 * space. If the contig hint is contained in one block, it will be accurate.
788 */
789 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
790 int bits)
791 {
792 struct pcpu_block_md *s_block, *e_block, *block;
793 int s_index, e_index; /* block indexes of the freed allocation */
794 int s_off, e_off; /* block offsets of the freed allocation */
795 int start, end; /* start and end of the whole free area */
796
797 /*
798 * Calculate per block offsets.
799 * The calculation uses an inclusive range, but the resulting offsets
800 * are [start, end). e_index always points to the last block in the
801 * range.
802 */
803 s_index = pcpu_off_to_block_index(bit_off);
804 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
805 s_off = pcpu_off_to_block_off(bit_off);
806 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
807
808 s_block = chunk->md_blocks + s_index;
809 e_block = chunk->md_blocks + e_index;
810
811 /*
812 * Check if the freed area aligns with the block->contig_hint.
813 * If it does, then the scan to find the beginning/end of the
814 * larger free area can be avoided.
815 *
816 * start and end refer to beginning and end of the free area
817 * within each their respective blocks. This is not necessarily
818 * the entire free area as it may span blocks past the beginning
819 * or end of the block.
820 */
821 start = s_off;
822 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
823 start = s_block->contig_hint_start;
824 } else {
825 /*
826 * Scan backwards to find the extent of the free area.
827 * find_last_bit returns the starting bit, so if the start bit
828 * is returned, that means there was no last bit and the
829 * remainder of the chunk is free.
830 */
831 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
832 start);
833 start = (start == l_bit) ? 0 : l_bit + 1;
834 }
835
836 end = e_off;
837 if (e_off == e_block->contig_hint_start)
838 end = e_block->contig_hint_start + e_block->contig_hint;
839 else
840 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
841 PCPU_BITMAP_BLOCK_BITS, end);
842
843 /* update s_block */
844 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
845 pcpu_block_update(s_block, start, e_off);
846
847 /* freeing in the same block */
848 if (s_index != e_index) {
849 /* update e_block */
850 pcpu_block_update(e_block, 0, end);
851
852 /* reset md_blocks in the middle */
853 for (block = s_block + 1; block < e_block; block++) {
854 block->first_free = 0;
855 block->contig_hint_start = 0;
856 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
857 block->left_free = PCPU_BITMAP_BLOCK_BITS;
858 block->right_free = PCPU_BITMAP_BLOCK_BITS;
859 }
860 }
861
862 /*
863 * Refresh chunk metadata when the free makes a page free, a block
864 * free, or spans across blocks. The contig hint may be off by up to
865 * a page, but if the hint is contained in a block, it will be accurate
866 * with the else condition below.
867 */
868 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
869 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
870 s_index != e_index)
871 pcpu_chunk_refresh_hint(chunk);
872 else
873 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
874 s_block->contig_hint);
875 }
876
877 /**
878 * pcpu_is_populated - determines if the region is populated
879 * @chunk: chunk of interest
880 * @bit_off: chunk offset
881 * @bits: size of area
882 * @next_off: return value for the next offset to start searching
883 *
884 * For atomic allocations, check if the backing pages are populated.
885 *
886 * RETURNS:
887 * Bool if the backing pages are populated.
888 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
889 */
890 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
891 int *next_off)
892 {
893 int page_start, page_end, rs, re;
894
895 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
896 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
897
898 rs = page_start;
899 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
900 if (rs >= page_end)
901 return true;
902
903 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
904 return false;
905 }
906
907 /**
908 * pcpu_find_block_fit - finds the block index to start searching
909 * @chunk: chunk of interest
910 * @alloc_bits: size of request in allocation units
911 * @align: alignment of area (max PAGE_SIZE bytes)
912 * @pop_only: use populated regions only
913 *
914 * Given a chunk and an allocation spec, find the offset to begin searching
915 * for a free region. This iterates over the bitmap metadata blocks to
916 * find an offset that will be guaranteed to fit the requirements. It is
917 * not quite first fit as if the allocation does not fit in the contig hint
918 * of a block or chunk, it is skipped. This errs on the side of caution
919 * to prevent excess iteration. Poor alignment can cause the allocator to
920 * skip over blocks and chunks that have valid free areas.
921 *
922 * RETURNS:
923 * The offset in the bitmap to begin searching.
924 * -1 if no offset is found.
925 */
926 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
927 size_t align, bool pop_only)
928 {
929 int bit_off, bits, next_off;
930
931 /*
932 * Check to see if the allocation can fit in the chunk's contig hint.
933 * This is an optimization to prevent scanning by assuming if it
934 * cannot fit in the global hint, there is memory pressure and creating
935 * a new chunk would happen soon.
936 */
937 bit_off = ALIGN(chunk->contig_bits_start, align) -
938 chunk->contig_bits_start;
939 if (bit_off + alloc_bits > chunk->contig_bits)
940 return -1;
941
942 bit_off = chunk->first_bit;
943 bits = 0;
944 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
945 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
946 &next_off))
947 break;
948
949 bit_off = next_off;
950 bits = 0;
951 }
952
953 if (bit_off == pcpu_chunk_map_bits(chunk))
954 return -1;
955
956 return bit_off;
957 }
958
959 /**
960 * pcpu_alloc_area - allocates an area from a pcpu_chunk
961 * @chunk: chunk of interest
962 * @alloc_bits: size of request in allocation units
963 * @align: alignment of area (max PAGE_SIZE)
964 * @start: bit_off to start searching
965 *
966 * This function takes in a @start offset to begin searching to fit an
967 * allocation of @alloc_bits with alignment @align. It needs to scan
968 * the allocation map because if it fits within the block's contig hint,
969 * @start will be block->first_free. This is an attempt to fill the
970 * allocation prior to breaking the contig hint. The allocation and
971 * boundary maps are updated accordingly if it confirms a valid
972 * free area.
973 *
974 * RETURNS:
975 * Allocated addr offset in @chunk on success.
976 * -1 if no matching area is found.
977 */
978 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
979 size_t align, int start)
980 {
981 size_t align_mask = (align) ? (align - 1) : 0;
982 int bit_off, end, oslot;
983
984 lockdep_assert_held(&pcpu_lock);
985
986 oslot = pcpu_chunk_slot(chunk);
987
988 /*
989 * Search to find a fit.
990 */
991 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
992 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
993 alloc_bits, align_mask);
994 if (bit_off >= end)
995 return -1;
996
997 /* update alloc map */
998 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
999
1000 /* update boundary map */
1001 set_bit(bit_off, chunk->bound_map);
1002 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1003 set_bit(bit_off + alloc_bits, chunk->bound_map);
1004
1005 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1006
1007 /* update first free bit */
1008 if (bit_off == chunk->first_bit)
1009 chunk->first_bit = find_next_zero_bit(
1010 chunk->alloc_map,
1011 pcpu_chunk_map_bits(chunk),
1012 bit_off + alloc_bits);
1013
1014 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1015
1016 pcpu_chunk_relocate(chunk, oslot);
1017
1018 return bit_off * PCPU_MIN_ALLOC_SIZE;
1019 }
1020
1021 /**
1022 * pcpu_free_area - frees the corresponding offset
1023 * @chunk: chunk of interest
1024 * @off: addr offset into chunk
1025 *
1026 * This function determines the size of an allocation to free using
1027 * the boundary bitmap and clears the allocation map.
1028 */
1029 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1030 {
1031 int bit_off, bits, end, oslot;
1032
1033 lockdep_assert_held(&pcpu_lock);
1034 pcpu_stats_area_dealloc(chunk);
1035
1036 oslot = pcpu_chunk_slot(chunk);
1037
1038 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1039
1040 /* find end index */
1041 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1042 bit_off + 1);
1043 bits = end - bit_off;
1044 bitmap_clear(chunk->alloc_map, bit_off, bits);
1045
1046 /* update metadata */
1047 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1048
1049 /* update first free bit */
1050 chunk->first_bit = min(chunk->first_bit, bit_off);
1051
1052 pcpu_block_update_hint_free(chunk, bit_off, bits);
1053
1054 pcpu_chunk_relocate(chunk, oslot);
1055 }
1056
1057 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1058 {
1059 struct pcpu_block_md *md_block;
1060
1061 for (md_block = chunk->md_blocks;
1062 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1063 md_block++) {
1064 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1065 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1066 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1067 }
1068 }
1069
1070 /**
1071 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1072 * @tmp_addr: the start of the region served
1073 * @map_size: size of the region served
1074 *
1075 * This is responsible for creating the chunks that serve the first chunk. The
1076 * base_addr is page aligned down of @tmp_addr while the region end is page
1077 * aligned up. Offsets are kept track of to determine the region served. All
1078 * this is done to appease the bitmap allocator in avoiding partial blocks.
1079 *
1080 * RETURNS:
1081 * Chunk serving the region at @tmp_addr of @map_size.
1082 */
1083 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1084 int map_size)
1085 {
1086 struct pcpu_chunk *chunk;
1087 unsigned long aligned_addr, lcm_align;
1088 int start_offset, offset_bits, region_size, region_bits;
1089
1090 /* region calculations */
1091 aligned_addr = tmp_addr & PAGE_MASK;
1092
1093 start_offset = tmp_addr - aligned_addr;
1094
1095 /*
1096 * Align the end of the region with the LCM of PAGE_SIZE and
1097 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1098 * the other.
1099 */
1100 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1101 region_size = ALIGN(start_offset + map_size, lcm_align);
1102
1103 /* allocate chunk */
1104 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1105 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1106 0);
1107
1108 INIT_LIST_HEAD(&chunk->list);
1109
1110 chunk->base_addr = (void *)aligned_addr;
1111 chunk->start_offset = start_offset;
1112 chunk->end_offset = region_size - chunk->start_offset - map_size;
1113
1114 chunk->nr_pages = region_size >> PAGE_SHIFT;
1115 region_bits = pcpu_chunk_map_bits(chunk);
1116
1117 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1118 sizeof(chunk->alloc_map[0]), 0);
1119 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1120 sizeof(chunk->bound_map[0]), 0);
1121 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1122 sizeof(chunk->md_blocks[0]), 0);
1123 pcpu_init_md_blocks(chunk);
1124
1125 /* manage populated page bitmap */
1126 chunk->immutable = true;
1127 bitmap_fill(chunk->populated, chunk->nr_pages);
1128 chunk->nr_populated = chunk->nr_pages;
1129 chunk->nr_empty_pop_pages =
1130 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1131 map_size / PCPU_MIN_ALLOC_SIZE);
1132
1133 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1134 chunk->free_bytes = map_size;
1135
1136 if (chunk->start_offset) {
1137 /* hide the beginning of the bitmap */
1138 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1139 bitmap_set(chunk->alloc_map, 0, offset_bits);
1140 set_bit(0, chunk->bound_map);
1141 set_bit(offset_bits, chunk->bound_map);
1142
1143 chunk->first_bit = offset_bits;
1144
1145 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1146 }
1147
1148 if (chunk->end_offset) {
1149 /* hide the end of the bitmap */
1150 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1151 bitmap_set(chunk->alloc_map,
1152 pcpu_chunk_map_bits(chunk) - offset_bits,
1153 offset_bits);
1154 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1155 chunk->bound_map);
1156 set_bit(region_bits, chunk->bound_map);
1157
1158 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1159 - offset_bits, offset_bits);
1160 }
1161
1162 return chunk;
1163 }
1164
1165 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1166 {
1167 struct pcpu_chunk *chunk;
1168 int region_bits;
1169
1170 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1171 if (!chunk)
1172 return NULL;
1173
1174 INIT_LIST_HEAD(&chunk->list);
1175 chunk->nr_pages = pcpu_unit_pages;
1176 region_bits = pcpu_chunk_map_bits(chunk);
1177
1178 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1179 sizeof(chunk->alloc_map[0]), gfp);
1180 if (!chunk->alloc_map)
1181 goto alloc_map_fail;
1182
1183 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1184 sizeof(chunk->bound_map[0]), gfp);
1185 if (!chunk->bound_map)
1186 goto bound_map_fail;
1187
1188 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1189 sizeof(chunk->md_blocks[0]), gfp);
1190 if (!chunk->md_blocks)
1191 goto md_blocks_fail;
1192
1193 pcpu_init_md_blocks(chunk);
1194
1195 /* init metadata */
1196 chunk->contig_bits = region_bits;
1197 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1198
1199 return chunk;
1200
1201 md_blocks_fail:
1202 pcpu_mem_free(chunk->bound_map);
1203 bound_map_fail:
1204 pcpu_mem_free(chunk->alloc_map);
1205 alloc_map_fail:
1206 pcpu_mem_free(chunk);
1207
1208 return NULL;
1209 }
1210
1211 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1212 {
1213 if (!chunk)
1214 return;
1215 pcpu_mem_free(chunk->md_blocks);
1216 pcpu_mem_free(chunk->bound_map);
1217 pcpu_mem_free(chunk->alloc_map);
1218 pcpu_mem_free(chunk);
1219 }
1220
1221 /**
1222 * pcpu_chunk_populated - post-population bookkeeping
1223 * @chunk: pcpu_chunk which got populated
1224 * @page_start: the start page
1225 * @page_end: the end page
1226 * @for_alloc: if this is to populate for allocation
1227 *
1228 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1229 * the bookkeeping information accordingly. Must be called after each
1230 * successful population.
1231 *
1232 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1233 * is to serve an allocation in that area.
1234 */
1235 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1236 int page_end, bool for_alloc)
1237 {
1238 int nr = page_end - page_start;
1239
1240 lockdep_assert_held(&pcpu_lock);
1241
1242 bitmap_set(chunk->populated, page_start, nr);
1243 chunk->nr_populated += nr;
1244 pcpu_nr_populated += nr;
1245
1246 if (!for_alloc) {
1247 chunk->nr_empty_pop_pages += nr;
1248 pcpu_nr_empty_pop_pages += nr;
1249 }
1250 }
1251
1252 /**
1253 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1254 * @chunk: pcpu_chunk which got depopulated
1255 * @page_start: the start page
1256 * @page_end: the end page
1257 *
1258 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1259 * Update the bookkeeping information accordingly. Must be called after
1260 * each successful depopulation.
1261 */
1262 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1263 int page_start, int page_end)
1264 {
1265 int nr = page_end - page_start;
1266
1267 lockdep_assert_held(&pcpu_lock);
1268
1269 bitmap_clear(chunk->populated, page_start, nr);
1270 chunk->nr_populated -= nr;
1271 chunk->nr_empty_pop_pages -= nr;
1272 pcpu_nr_empty_pop_pages -= nr;
1273 pcpu_nr_populated -= nr;
1274 }
1275
1276 /*
1277 * Chunk management implementation.
1278 *
1279 * To allow different implementations, chunk alloc/free and
1280 * [de]population are implemented in a separate file which is pulled
1281 * into this file and compiled together. The following functions
1282 * should be implemented.
1283 *
1284 * pcpu_populate_chunk - populate the specified range of a chunk
1285 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1286 * pcpu_create_chunk - create a new chunk
1287 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1288 * pcpu_addr_to_page - translate address to physical address
1289 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1290 */
1291 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1292 int page_start, int page_end, gfp_t gfp);
1293 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1294 int page_start, int page_end);
1295 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1296 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1297 static struct page *pcpu_addr_to_page(void *addr);
1298 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1299
1300 #ifdef CONFIG_NEED_PER_CPU_KM
1301 #include "percpu-km.c"
1302 #else
1303 #include "percpu-vm.c"
1304 #endif
1305
1306 /**
1307 * pcpu_chunk_addr_search - determine chunk containing specified address
1308 * @addr: address for which the chunk needs to be determined.
1309 *
1310 * This is an internal function that handles all but static allocations.
1311 * Static percpu address values should never be passed into the allocator.
1312 *
1313 * RETURNS:
1314 * The address of the found chunk.
1315 */
1316 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1317 {
1318 /* is it in the dynamic region (first chunk)? */
1319 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1320 return pcpu_first_chunk;
1321
1322 /* is it in the reserved region? */
1323 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1324 return pcpu_reserved_chunk;
1325
1326 /*
1327 * The address is relative to unit0 which might be unused and
1328 * thus unmapped. Offset the address to the unit space of the
1329 * current processor before looking it up in the vmalloc
1330 * space. Note that any possible cpu id can be used here, so
1331 * there's no need to worry about preemption or cpu hotplug.
1332 */
1333 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1334 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1335 }
1336
1337 /**
1338 * pcpu_alloc - the percpu allocator
1339 * @size: size of area to allocate in bytes
1340 * @align: alignment of area (max PAGE_SIZE)
1341 * @reserved: allocate from the reserved chunk if available
1342 * @gfp: allocation flags
1343 *
1344 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1345 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1346 * then no warning will be triggered on invalid or failed allocation
1347 * requests.
1348 *
1349 * RETURNS:
1350 * Percpu pointer to the allocated area on success, NULL on failure.
1351 */
1352 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1353 gfp_t gfp)
1354 {
1355 /* whitelisted flags that can be passed to the backing allocators */
1356 gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1357 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1358 bool do_warn = !(gfp & __GFP_NOWARN);
1359 static int warn_limit = 10;
1360 struct pcpu_chunk *chunk;
1361 const char *err;
1362 int slot, off, cpu, ret;
1363 unsigned long flags;
1364 void __percpu *ptr;
1365 size_t bits, bit_align;
1366
1367 /*
1368 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1369 * therefore alignment must be a minimum of that many bytes.
1370 * An allocation may have internal fragmentation from rounding up
1371 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1372 */
1373 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1374 align = PCPU_MIN_ALLOC_SIZE;
1375
1376 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1377 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1378 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1379
1380 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1381 !is_power_of_2(align))) {
1382 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1383 size, align);
1384 return NULL;
1385 }
1386
1387 if (!is_atomic) {
1388 /*
1389 * pcpu_balance_workfn() allocates memory under this mutex,
1390 * and it may wait for memory reclaim. Allow current task
1391 * to become OOM victim, in case of memory pressure.
1392 */
1393 if (gfp & __GFP_NOFAIL)
1394 mutex_lock(&pcpu_alloc_mutex);
1395 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1396 return NULL;
1397 }
1398
1399 spin_lock_irqsave(&pcpu_lock, flags);
1400
1401 /* serve reserved allocations from the reserved chunk if available */
1402 if (reserved && pcpu_reserved_chunk) {
1403 chunk = pcpu_reserved_chunk;
1404
1405 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1406 if (off < 0) {
1407 err = "alloc from reserved chunk failed";
1408 goto fail_unlock;
1409 }
1410
1411 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1412 if (off >= 0)
1413 goto area_found;
1414
1415 err = "alloc from reserved chunk failed";
1416 goto fail_unlock;
1417 }
1418
1419 restart:
1420 /* search through normal chunks */
1421 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1422 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1423 off = pcpu_find_block_fit(chunk, bits, bit_align,
1424 is_atomic);
1425 if (off < 0)
1426 continue;
1427
1428 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1429 if (off >= 0)
1430 goto area_found;
1431
1432 }
1433 }
1434
1435 spin_unlock_irqrestore(&pcpu_lock, flags);
1436
1437 /*
1438 * No space left. Create a new chunk. We don't want multiple
1439 * tasks to create chunks simultaneously. Serialize and create iff
1440 * there's still no empty chunk after grabbing the mutex.
1441 */
1442 if (is_atomic) {
1443 err = "atomic alloc failed, no space left";
1444 goto fail;
1445 }
1446
1447 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1448 chunk = pcpu_create_chunk(pcpu_gfp);
1449 if (!chunk) {
1450 err = "failed to allocate new chunk";
1451 goto fail;
1452 }
1453
1454 spin_lock_irqsave(&pcpu_lock, flags);
1455 pcpu_chunk_relocate(chunk, -1);
1456 } else {
1457 spin_lock_irqsave(&pcpu_lock, flags);
1458 }
1459
1460 goto restart;
1461
1462 area_found:
1463 pcpu_stats_area_alloc(chunk, size);
1464 spin_unlock_irqrestore(&pcpu_lock, flags);
1465
1466 /* populate if not all pages are already there */
1467 if (!is_atomic) {
1468 int page_start, page_end, rs, re;
1469
1470 page_start = PFN_DOWN(off);
1471 page_end = PFN_UP(off + size);
1472
1473 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1474 page_start, page_end) {
1475 WARN_ON(chunk->immutable);
1476
1477 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1478
1479 spin_lock_irqsave(&pcpu_lock, flags);
1480 if (ret) {
1481 pcpu_free_area(chunk, off);
1482 err = "failed to populate";
1483 goto fail_unlock;
1484 }
1485 pcpu_chunk_populated(chunk, rs, re, true);
1486 spin_unlock_irqrestore(&pcpu_lock, flags);
1487 }
1488
1489 mutex_unlock(&pcpu_alloc_mutex);
1490 }
1491
1492 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1493 pcpu_schedule_balance_work();
1494
1495 /* clear the areas and return address relative to base address */
1496 for_each_possible_cpu(cpu)
1497 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1498
1499 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1500 kmemleak_alloc_percpu(ptr, size, gfp);
1501
1502 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1503 chunk->base_addr, off, ptr);
1504
1505 return ptr;
1506
1507 fail_unlock:
1508 spin_unlock_irqrestore(&pcpu_lock, flags);
1509 fail:
1510 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1511
1512 if (!is_atomic && do_warn && warn_limit) {
1513 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1514 size, align, is_atomic, err);
1515 dump_stack();
1516 if (!--warn_limit)
1517 pr_info("limit reached, disable warning\n");
1518 }
1519 if (is_atomic) {
1520 /* see the flag handling in pcpu_blance_workfn() */
1521 pcpu_atomic_alloc_failed = true;
1522 pcpu_schedule_balance_work();
1523 } else {
1524 mutex_unlock(&pcpu_alloc_mutex);
1525 }
1526 return NULL;
1527 }
1528
1529 /**
1530 * __alloc_percpu_gfp - allocate dynamic percpu area
1531 * @size: size of area to allocate in bytes
1532 * @align: alignment of area (max PAGE_SIZE)
1533 * @gfp: allocation flags
1534 *
1535 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1536 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1537 * be called from any context but is a lot more likely to fail. If @gfp
1538 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1539 * allocation requests.
1540 *
1541 * RETURNS:
1542 * Percpu pointer to the allocated area on success, NULL on failure.
1543 */
1544 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1545 {
1546 return pcpu_alloc(size, align, false, gfp);
1547 }
1548 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1549
1550 /**
1551 * __alloc_percpu - allocate dynamic percpu area
1552 * @size: size of area to allocate in bytes
1553 * @align: alignment of area (max PAGE_SIZE)
1554 *
1555 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1556 */
1557 void __percpu *__alloc_percpu(size_t size, size_t align)
1558 {
1559 return pcpu_alloc(size, align, false, GFP_KERNEL);
1560 }
1561 EXPORT_SYMBOL_GPL(__alloc_percpu);
1562
1563 /**
1564 * __alloc_reserved_percpu - allocate reserved percpu area
1565 * @size: size of area to allocate in bytes
1566 * @align: alignment of area (max PAGE_SIZE)
1567 *
1568 * Allocate zero-filled percpu area of @size bytes aligned at @align
1569 * from reserved percpu area if arch has set it up; otherwise,
1570 * allocation is served from the same dynamic area. Might sleep.
1571 * Might trigger writeouts.
1572 *
1573 * CONTEXT:
1574 * Does GFP_KERNEL allocation.
1575 *
1576 * RETURNS:
1577 * Percpu pointer to the allocated area on success, NULL on failure.
1578 */
1579 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1580 {
1581 return pcpu_alloc(size, align, true, GFP_KERNEL);
1582 }
1583
1584 /**
1585 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1586 * @work: unused
1587 *
1588 * Reclaim all fully free chunks except for the first one. This is also
1589 * responsible for maintaining the pool of empty populated pages. However,
1590 * it is possible that this is called when physical memory is scarce causing
1591 * OOM killer to be triggered. We should avoid doing so until an actual
1592 * allocation causes the failure as it is possible that requests can be
1593 * serviced from already backed regions.
1594 */
1595 static void pcpu_balance_workfn(struct work_struct *work)
1596 {
1597 /* gfp flags passed to underlying allocators */
1598 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1599 LIST_HEAD(to_free);
1600 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1601 struct pcpu_chunk *chunk, *next;
1602 int slot, nr_to_pop, ret;
1603
1604 /*
1605 * There's no reason to keep around multiple unused chunks and VM
1606 * areas can be scarce. Destroy all free chunks except for one.
1607 */
1608 mutex_lock(&pcpu_alloc_mutex);
1609 spin_lock_irq(&pcpu_lock);
1610
1611 list_for_each_entry_safe(chunk, next, free_head, list) {
1612 WARN_ON(chunk->immutable);
1613
1614 /* spare the first one */
1615 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1616 continue;
1617
1618 list_move(&chunk->list, &to_free);
1619 }
1620
1621 spin_unlock_irq(&pcpu_lock);
1622
1623 list_for_each_entry_safe(chunk, next, &to_free, list) {
1624 int rs, re;
1625
1626 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1627 chunk->nr_pages) {
1628 pcpu_depopulate_chunk(chunk, rs, re);
1629 spin_lock_irq(&pcpu_lock);
1630 pcpu_chunk_depopulated(chunk, rs, re);
1631 spin_unlock_irq(&pcpu_lock);
1632 }
1633 pcpu_destroy_chunk(chunk);
1634 cond_resched();
1635 }
1636
1637 /*
1638 * Ensure there are certain number of free populated pages for
1639 * atomic allocs. Fill up from the most packed so that atomic
1640 * allocs don't increase fragmentation. If atomic allocation
1641 * failed previously, always populate the maximum amount. This
1642 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1643 * failing indefinitely; however, large atomic allocs are not
1644 * something we support properly and can be highly unreliable and
1645 * inefficient.
1646 */
1647 retry_pop:
1648 if (pcpu_atomic_alloc_failed) {
1649 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1650 /* best effort anyway, don't worry about synchronization */
1651 pcpu_atomic_alloc_failed = false;
1652 } else {
1653 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1654 pcpu_nr_empty_pop_pages,
1655 0, PCPU_EMPTY_POP_PAGES_HIGH);
1656 }
1657
1658 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1659 int nr_unpop = 0, rs, re;
1660
1661 if (!nr_to_pop)
1662 break;
1663
1664 spin_lock_irq(&pcpu_lock);
1665 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1666 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1667 if (nr_unpop)
1668 break;
1669 }
1670 spin_unlock_irq(&pcpu_lock);
1671
1672 if (!nr_unpop)
1673 continue;
1674
1675 /* @chunk can't go away while pcpu_alloc_mutex is held */
1676 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1677 chunk->nr_pages) {
1678 int nr = min(re - rs, nr_to_pop);
1679
1680 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1681 if (!ret) {
1682 nr_to_pop -= nr;
1683 spin_lock_irq(&pcpu_lock);
1684 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1685 spin_unlock_irq(&pcpu_lock);
1686 } else {
1687 nr_to_pop = 0;
1688 }
1689
1690 if (!nr_to_pop)
1691 break;
1692 }
1693 }
1694
1695 if (nr_to_pop) {
1696 /* ran out of chunks to populate, create a new one and retry */
1697 chunk = pcpu_create_chunk(gfp);
1698 if (chunk) {
1699 spin_lock_irq(&pcpu_lock);
1700 pcpu_chunk_relocate(chunk, -1);
1701 spin_unlock_irq(&pcpu_lock);
1702 goto retry_pop;
1703 }
1704 }
1705
1706 mutex_unlock(&pcpu_alloc_mutex);
1707 }
1708
1709 /**
1710 * free_percpu - free percpu area
1711 * @ptr: pointer to area to free
1712 *
1713 * Free percpu area @ptr.
1714 *
1715 * CONTEXT:
1716 * Can be called from atomic context.
1717 */
1718 void free_percpu(void __percpu *ptr)
1719 {
1720 void *addr;
1721 struct pcpu_chunk *chunk;
1722 unsigned long flags;
1723 int off;
1724
1725 if (!ptr)
1726 return;
1727
1728 kmemleak_free_percpu(ptr);
1729
1730 addr = __pcpu_ptr_to_addr(ptr);
1731
1732 spin_lock_irqsave(&pcpu_lock, flags);
1733
1734 chunk = pcpu_chunk_addr_search(addr);
1735 off = addr - chunk->base_addr;
1736
1737 pcpu_free_area(chunk, off);
1738
1739 /* if there are more than one fully free chunks, wake up grim reaper */
1740 if (chunk->free_bytes == pcpu_unit_size) {
1741 struct pcpu_chunk *pos;
1742
1743 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1744 if (pos != chunk) {
1745 pcpu_schedule_balance_work();
1746 break;
1747 }
1748 }
1749
1750 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1751
1752 spin_unlock_irqrestore(&pcpu_lock, flags);
1753 }
1754 EXPORT_SYMBOL_GPL(free_percpu);
1755
1756 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1757 {
1758 #ifdef CONFIG_SMP
1759 const size_t static_size = __per_cpu_end - __per_cpu_start;
1760 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1761 unsigned int cpu;
1762
1763 for_each_possible_cpu(cpu) {
1764 void *start = per_cpu_ptr(base, cpu);
1765 void *va = (void *)addr;
1766
1767 if (va >= start && va < start + static_size) {
1768 if (can_addr) {
1769 *can_addr = (unsigned long) (va - start);
1770 *can_addr += (unsigned long)
1771 per_cpu_ptr(base, get_boot_cpu_id());
1772 }
1773 return true;
1774 }
1775 }
1776 #endif
1777 /* on UP, can't distinguish from other static vars, always false */
1778 return false;
1779 }
1780
1781 /**
1782 * is_kernel_percpu_address - test whether address is from static percpu area
1783 * @addr: address to test
1784 *
1785 * Test whether @addr belongs to in-kernel static percpu area. Module
1786 * static percpu areas are not considered. For those, use
1787 * is_module_percpu_address().
1788 *
1789 * RETURNS:
1790 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1791 */
1792 bool is_kernel_percpu_address(unsigned long addr)
1793 {
1794 return __is_kernel_percpu_address(addr, NULL);
1795 }
1796
1797 /**
1798 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1799 * @addr: the address to be converted to physical address
1800 *
1801 * Given @addr which is dereferenceable address obtained via one of
1802 * percpu access macros, this function translates it into its physical
1803 * address. The caller is responsible for ensuring @addr stays valid
1804 * until this function finishes.
1805 *
1806 * percpu allocator has special setup for the first chunk, which currently
1807 * supports either embedding in linear address space or vmalloc mapping,
1808 * and, from the second one, the backing allocator (currently either vm or
1809 * km) provides translation.
1810 *
1811 * The addr can be translated simply without checking if it falls into the
1812 * first chunk. But the current code reflects better how percpu allocator
1813 * actually works, and the verification can discover both bugs in percpu
1814 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1815 * code.
1816 *
1817 * RETURNS:
1818 * The physical address for @addr.
1819 */
1820 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1821 {
1822 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1823 bool in_first_chunk = false;
1824 unsigned long first_low, first_high;
1825 unsigned int cpu;
1826
1827 /*
1828 * The following test on unit_low/high isn't strictly
1829 * necessary but will speed up lookups of addresses which
1830 * aren't in the first chunk.
1831 *
1832 * The address check is against full chunk sizes. pcpu_base_addr
1833 * points to the beginning of the first chunk including the
1834 * static region. Assumes good intent as the first chunk may
1835 * not be full (ie. < pcpu_unit_pages in size).
1836 */
1837 first_low = (unsigned long)pcpu_base_addr +
1838 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1839 first_high = (unsigned long)pcpu_base_addr +
1840 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1841 if ((unsigned long)addr >= first_low &&
1842 (unsigned long)addr < first_high) {
1843 for_each_possible_cpu(cpu) {
1844 void *start = per_cpu_ptr(base, cpu);
1845
1846 if (addr >= start && addr < start + pcpu_unit_size) {
1847 in_first_chunk = true;
1848 break;
1849 }
1850 }
1851 }
1852
1853 if (in_first_chunk) {
1854 if (!is_vmalloc_addr(addr))
1855 return __pa(addr);
1856 else
1857 return page_to_phys(vmalloc_to_page(addr)) +
1858 offset_in_page(addr);
1859 } else
1860 return page_to_phys(pcpu_addr_to_page(addr)) +
1861 offset_in_page(addr);
1862 }
1863
1864 /**
1865 * pcpu_alloc_alloc_info - allocate percpu allocation info
1866 * @nr_groups: the number of groups
1867 * @nr_units: the number of units
1868 *
1869 * Allocate ai which is large enough for @nr_groups groups containing
1870 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1871 * cpu_map array which is long enough for @nr_units and filled with
1872 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1873 * pointer of other groups.
1874 *
1875 * RETURNS:
1876 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1877 * failure.
1878 */
1879 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1880 int nr_units)
1881 {
1882 struct pcpu_alloc_info *ai;
1883 size_t base_size, ai_size;
1884 void *ptr;
1885 int unit;
1886
1887 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1888 __alignof__(ai->groups[0].cpu_map[0]));
1889 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1890
1891 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1892 if (!ptr)
1893 return NULL;
1894 ai = ptr;
1895 ptr += base_size;
1896
1897 ai->groups[0].cpu_map = ptr;
1898
1899 for (unit = 0; unit < nr_units; unit++)
1900 ai->groups[0].cpu_map[unit] = NR_CPUS;
1901
1902 ai->nr_groups = nr_groups;
1903 ai->__ai_size = PFN_ALIGN(ai_size);
1904
1905 return ai;
1906 }
1907
1908 /**
1909 * pcpu_free_alloc_info - free percpu allocation info
1910 * @ai: pcpu_alloc_info to free
1911 *
1912 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1913 */
1914 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1915 {
1916 memblock_free_early(__pa(ai), ai->__ai_size);
1917 }
1918
1919 /**
1920 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1921 * @lvl: loglevel
1922 * @ai: allocation info to dump
1923 *
1924 * Print out information about @ai using loglevel @lvl.
1925 */
1926 static void pcpu_dump_alloc_info(const char *lvl,
1927 const struct pcpu_alloc_info *ai)
1928 {
1929 int group_width = 1, cpu_width = 1, width;
1930 char empty_str[] = "--------";
1931 int alloc = 0, alloc_end = 0;
1932 int group, v;
1933 int upa, apl; /* units per alloc, allocs per line */
1934
1935 v = ai->nr_groups;
1936 while (v /= 10)
1937 group_width++;
1938
1939 v = num_possible_cpus();
1940 while (v /= 10)
1941 cpu_width++;
1942 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1943
1944 upa = ai->alloc_size / ai->unit_size;
1945 width = upa * (cpu_width + 1) + group_width + 3;
1946 apl = rounddown_pow_of_two(max(60 / width, 1));
1947
1948 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1949 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1950 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1951
1952 for (group = 0; group < ai->nr_groups; group++) {
1953 const struct pcpu_group_info *gi = &ai->groups[group];
1954 int unit = 0, unit_end = 0;
1955
1956 BUG_ON(gi->nr_units % upa);
1957 for (alloc_end += gi->nr_units / upa;
1958 alloc < alloc_end; alloc++) {
1959 if (!(alloc % apl)) {
1960 pr_cont("\n");
1961 printk("%spcpu-alloc: ", lvl);
1962 }
1963 pr_cont("[%0*d] ", group_width, group);
1964
1965 for (unit_end += upa; unit < unit_end; unit++)
1966 if (gi->cpu_map[unit] != NR_CPUS)
1967 pr_cont("%0*d ",
1968 cpu_width, gi->cpu_map[unit]);
1969 else
1970 pr_cont("%s ", empty_str);
1971 }
1972 }
1973 pr_cont("\n");
1974 }
1975
1976 /**
1977 * pcpu_setup_first_chunk - initialize the first percpu chunk
1978 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1979 * @base_addr: mapped address
1980 *
1981 * Initialize the first percpu chunk which contains the kernel static
1982 * perpcu area. This function is to be called from arch percpu area
1983 * setup path.
1984 *
1985 * @ai contains all information necessary to initialize the first
1986 * chunk and prime the dynamic percpu allocator.
1987 *
1988 * @ai->static_size is the size of static percpu area.
1989 *
1990 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1991 * reserve after the static area in the first chunk. This reserves
1992 * the first chunk such that it's available only through reserved
1993 * percpu allocation. This is primarily used to serve module percpu
1994 * static areas on architectures where the addressing model has
1995 * limited offset range for symbol relocations to guarantee module
1996 * percpu symbols fall inside the relocatable range.
1997 *
1998 * @ai->dyn_size determines the number of bytes available for dynamic
1999 * allocation in the first chunk. The area between @ai->static_size +
2000 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2001 *
2002 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2003 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2004 * @ai->dyn_size.
2005 *
2006 * @ai->atom_size is the allocation atom size and used as alignment
2007 * for vm areas.
2008 *
2009 * @ai->alloc_size is the allocation size and always multiple of
2010 * @ai->atom_size. This is larger than @ai->atom_size if
2011 * @ai->unit_size is larger than @ai->atom_size.
2012 *
2013 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2014 * percpu areas. Units which should be colocated are put into the
2015 * same group. Dynamic VM areas will be allocated according to these
2016 * groupings. If @ai->nr_groups is zero, a single group containing
2017 * all units is assumed.
2018 *
2019 * The caller should have mapped the first chunk at @base_addr and
2020 * copied static data to each unit.
2021 *
2022 * The first chunk will always contain a static and a dynamic region.
2023 * However, the static region is not managed by any chunk. If the first
2024 * chunk also contains a reserved region, it is served by two chunks -
2025 * one for the reserved region and one for the dynamic region. They
2026 * share the same vm, but use offset regions in the area allocation map.
2027 * The chunk serving the dynamic region is circulated in the chunk slots
2028 * and available for dynamic allocation like any other chunk.
2029 *
2030 * RETURNS:
2031 * 0 on success, -errno on failure.
2032 */
2033 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2034 void *base_addr)
2035 {
2036 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2037 size_t static_size, dyn_size;
2038 struct pcpu_chunk *chunk;
2039 unsigned long *group_offsets;
2040 size_t *group_sizes;
2041 unsigned long *unit_off;
2042 unsigned int cpu;
2043 int *unit_map;
2044 int group, unit, i;
2045 int map_size;
2046 unsigned long tmp_addr;
2047
2048 #define PCPU_SETUP_BUG_ON(cond) do { \
2049 if (unlikely(cond)) { \
2050 pr_emerg("failed to initialize, %s\n", #cond); \
2051 pr_emerg("cpu_possible_mask=%*pb\n", \
2052 cpumask_pr_args(cpu_possible_mask)); \
2053 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2054 BUG(); \
2055 } \
2056 } while (0)
2057
2058 /* sanity checks */
2059 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2060 #ifdef CONFIG_SMP
2061 PCPU_SETUP_BUG_ON(!ai->static_size);
2062 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2063 #endif
2064 PCPU_SETUP_BUG_ON(!base_addr);
2065 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2066 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2067 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2068 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2069 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2070 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2071 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2072 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2073 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2074 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2075 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2076
2077 /* process group information and build config tables accordingly */
2078 group_offsets = memblock_virt_alloc(ai->nr_groups *
2079 sizeof(group_offsets[0]), 0);
2080 group_sizes = memblock_virt_alloc(ai->nr_groups *
2081 sizeof(group_sizes[0]), 0);
2082 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2083 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2084
2085 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2086 unit_map[cpu] = UINT_MAX;
2087
2088 pcpu_low_unit_cpu = NR_CPUS;
2089 pcpu_high_unit_cpu = NR_CPUS;
2090
2091 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2092 const struct pcpu_group_info *gi = &ai->groups[group];
2093
2094 group_offsets[group] = gi->base_offset;
2095 group_sizes[group] = gi->nr_units * ai->unit_size;
2096
2097 for (i = 0; i < gi->nr_units; i++) {
2098 cpu = gi->cpu_map[i];
2099 if (cpu == NR_CPUS)
2100 continue;
2101
2102 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2103 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2104 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2105
2106 unit_map[cpu] = unit + i;
2107 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2108
2109 /* determine low/high unit_cpu */
2110 if (pcpu_low_unit_cpu == NR_CPUS ||
2111 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2112 pcpu_low_unit_cpu = cpu;
2113 if (pcpu_high_unit_cpu == NR_CPUS ||
2114 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2115 pcpu_high_unit_cpu = cpu;
2116 }
2117 }
2118 pcpu_nr_units = unit;
2119
2120 for_each_possible_cpu(cpu)
2121 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2122
2123 /* we're done parsing the input, undefine BUG macro and dump config */
2124 #undef PCPU_SETUP_BUG_ON
2125 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2126
2127 pcpu_nr_groups = ai->nr_groups;
2128 pcpu_group_offsets = group_offsets;
2129 pcpu_group_sizes = group_sizes;
2130 pcpu_unit_map = unit_map;
2131 pcpu_unit_offsets = unit_off;
2132
2133 /* determine basic parameters */
2134 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2135 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2136 pcpu_atom_size = ai->atom_size;
2137 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2138 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2139
2140 pcpu_stats_save_ai(ai);
2141
2142 /*
2143 * Allocate chunk slots. The additional last slot is for
2144 * empty chunks.
2145 */
2146 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2147 pcpu_slot = memblock_virt_alloc(
2148 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2149 for (i = 0; i < pcpu_nr_slots; i++)
2150 INIT_LIST_HEAD(&pcpu_slot[i]);
2151
2152 /*
2153 * The end of the static region needs to be aligned with the
2154 * minimum allocation size as this offsets the reserved and
2155 * dynamic region. The first chunk ends page aligned by
2156 * expanding the dynamic region, therefore the dynamic region
2157 * can be shrunk to compensate while still staying above the
2158 * configured sizes.
2159 */
2160 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2161 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2162
2163 /*
2164 * Initialize first chunk.
2165 * If the reserved_size is non-zero, this initializes the reserved
2166 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2167 * and the dynamic region is initialized here. The first chunk,
2168 * pcpu_first_chunk, will always point to the chunk that serves
2169 * the dynamic region.
2170 */
2171 tmp_addr = (unsigned long)base_addr + static_size;
2172 map_size = ai->reserved_size ?: dyn_size;
2173 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2174
2175 /* init dynamic chunk if necessary */
2176 if (ai->reserved_size) {
2177 pcpu_reserved_chunk = chunk;
2178
2179 tmp_addr = (unsigned long)base_addr + static_size +
2180 ai->reserved_size;
2181 map_size = dyn_size;
2182 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2183 }
2184
2185 /* link the first chunk in */
2186 pcpu_first_chunk = chunk;
2187 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2188 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2189
2190 /* include all regions of the first chunk */
2191 pcpu_nr_populated += PFN_DOWN(size_sum);
2192
2193 pcpu_stats_chunk_alloc();
2194 trace_percpu_create_chunk(base_addr);
2195
2196 /* we're done */
2197 pcpu_base_addr = base_addr;
2198 return 0;
2199 }
2200
2201 #ifdef CONFIG_SMP
2202
2203 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2204 [PCPU_FC_AUTO] = "auto",
2205 [PCPU_FC_EMBED] = "embed",
2206 [PCPU_FC_PAGE] = "page",
2207 };
2208
2209 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2210
2211 static int __init percpu_alloc_setup(char *str)
2212 {
2213 if (!str)
2214 return -EINVAL;
2215
2216 if (0)
2217 /* nada */;
2218 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2219 else if (!strcmp(str, "embed"))
2220 pcpu_chosen_fc = PCPU_FC_EMBED;
2221 #endif
2222 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2223 else if (!strcmp(str, "page"))
2224 pcpu_chosen_fc = PCPU_FC_PAGE;
2225 #endif
2226 else
2227 pr_warn("unknown allocator %s specified\n", str);
2228
2229 return 0;
2230 }
2231 early_param("percpu_alloc", percpu_alloc_setup);
2232
2233 /*
2234 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2235 * Build it if needed by the arch config or the generic setup is going
2236 * to be used.
2237 */
2238 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2239 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2240 #define BUILD_EMBED_FIRST_CHUNK
2241 #endif
2242
2243 /* build pcpu_page_first_chunk() iff needed by the arch config */
2244 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2245 #define BUILD_PAGE_FIRST_CHUNK
2246 #endif
2247
2248 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2249 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2250 /**
2251 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2252 * @reserved_size: the size of reserved percpu area in bytes
2253 * @dyn_size: minimum free size for dynamic allocation in bytes
2254 * @atom_size: allocation atom size
2255 * @cpu_distance_fn: callback to determine distance between cpus, optional
2256 *
2257 * This function determines grouping of units, their mappings to cpus
2258 * and other parameters considering needed percpu size, allocation
2259 * atom size and distances between CPUs.
2260 *
2261 * Groups are always multiples of atom size and CPUs which are of
2262 * LOCAL_DISTANCE both ways are grouped together and share space for
2263 * units in the same group. The returned configuration is guaranteed
2264 * to have CPUs on different nodes on different groups and >=75% usage
2265 * of allocated virtual address space.
2266 *
2267 * RETURNS:
2268 * On success, pointer to the new allocation_info is returned. On
2269 * failure, ERR_PTR value is returned.
2270 */
2271 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2272 size_t reserved_size, size_t dyn_size,
2273 size_t atom_size,
2274 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2275 {
2276 static int group_map[NR_CPUS] __initdata;
2277 static int group_cnt[NR_CPUS] __initdata;
2278 const size_t static_size = __per_cpu_end - __per_cpu_start;
2279 int nr_groups = 1, nr_units = 0;
2280 size_t size_sum, min_unit_size, alloc_size;
2281 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2282 int last_allocs, group, unit;
2283 unsigned int cpu, tcpu;
2284 struct pcpu_alloc_info *ai;
2285 unsigned int *cpu_map;
2286
2287 /* this function may be called multiple times */
2288 memset(group_map, 0, sizeof(group_map));
2289 memset(group_cnt, 0, sizeof(group_cnt));
2290
2291 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2292 size_sum = PFN_ALIGN(static_size + reserved_size +
2293 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2294 dyn_size = size_sum - static_size - reserved_size;
2295
2296 /*
2297 * Determine min_unit_size, alloc_size and max_upa such that
2298 * alloc_size is multiple of atom_size and is the smallest
2299 * which can accommodate 4k aligned segments which are equal to
2300 * or larger than min_unit_size.
2301 */
2302 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2303
2304 /* determine the maximum # of units that can fit in an allocation */
2305 alloc_size = roundup(min_unit_size, atom_size);
2306 upa = alloc_size / min_unit_size;
2307 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2308 upa--;
2309 max_upa = upa;
2310
2311 /* group cpus according to their proximity */
2312 for_each_possible_cpu(cpu) {
2313 group = 0;
2314 next_group:
2315 for_each_possible_cpu(tcpu) {
2316 if (cpu == tcpu)
2317 break;
2318 if (group_map[tcpu] == group && cpu_distance_fn &&
2319 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2320 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2321 group++;
2322 nr_groups = max(nr_groups, group + 1);
2323 goto next_group;
2324 }
2325 }
2326 group_map[cpu] = group;
2327 group_cnt[group]++;
2328 }
2329
2330 /*
2331 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2332 * Expand the unit_size until we use >= 75% of the units allocated.
2333 * Related to atom_size, which could be much larger than the unit_size.
2334 */
2335 last_allocs = INT_MAX;
2336 for (upa = max_upa; upa; upa--) {
2337 int allocs = 0, wasted = 0;
2338
2339 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2340 continue;
2341
2342 for (group = 0; group < nr_groups; group++) {
2343 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2344 allocs += this_allocs;
2345 wasted += this_allocs * upa - group_cnt[group];
2346 }
2347
2348 /*
2349 * Don't accept if wastage is over 1/3. The
2350 * greater-than comparison ensures upa==1 always
2351 * passes the following check.
2352 */
2353 if (wasted > num_possible_cpus() / 3)
2354 continue;
2355
2356 /* and then don't consume more memory */
2357 if (allocs > last_allocs)
2358 break;
2359 last_allocs = allocs;
2360 best_upa = upa;
2361 }
2362 upa = best_upa;
2363
2364 /* allocate and fill alloc_info */
2365 for (group = 0; group < nr_groups; group++)
2366 nr_units += roundup(group_cnt[group], upa);
2367
2368 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2369 if (!ai)
2370 return ERR_PTR(-ENOMEM);
2371 cpu_map = ai->groups[0].cpu_map;
2372
2373 for (group = 0; group < nr_groups; group++) {
2374 ai->groups[group].cpu_map = cpu_map;
2375 cpu_map += roundup(group_cnt[group], upa);
2376 }
2377
2378 ai->static_size = static_size;
2379 ai->reserved_size = reserved_size;
2380 ai->dyn_size = dyn_size;
2381 ai->unit_size = alloc_size / upa;
2382 ai->atom_size = atom_size;
2383 ai->alloc_size = alloc_size;
2384
2385 for (group = 0, unit = 0; group_cnt[group]; group++) {
2386 struct pcpu_group_info *gi = &ai->groups[group];
2387
2388 /*
2389 * Initialize base_offset as if all groups are located
2390 * back-to-back. The caller should update this to
2391 * reflect actual allocation.
2392 */
2393 gi->base_offset = unit * ai->unit_size;
2394
2395 for_each_possible_cpu(cpu)
2396 if (group_map[cpu] == group)
2397 gi->cpu_map[gi->nr_units++] = cpu;
2398 gi->nr_units = roundup(gi->nr_units, upa);
2399 unit += gi->nr_units;
2400 }
2401 BUG_ON(unit != nr_units);
2402
2403 return ai;
2404 }
2405 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2406
2407 #if defined(BUILD_EMBED_FIRST_CHUNK)
2408 /**
2409 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2410 * @reserved_size: the size of reserved percpu area in bytes
2411 * @dyn_size: minimum free size for dynamic allocation in bytes
2412 * @atom_size: allocation atom size
2413 * @cpu_distance_fn: callback to determine distance between cpus, optional
2414 * @alloc_fn: function to allocate percpu page
2415 * @free_fn: function to free percpu page
2416 *
2417 * This is a helper to ease setting up embedded first percpu chunk and
2418 * can be called where pcpu_setup_first_chunk() is expected.
2419 *
2420 * If this function is used to setup the first chunk, it is allocated
2421 * by calling @alloc_fn and used as-is without being mapped into
2422 * vmalloc area. Allocations are always whole multiples of @atom_size
2423 * aligned to @atom_size.
2424 *
2425 * This enables the first chunk to piggy back on the linear physical
2426 * mapping which often uses larger page size. Please note that this
2427 * can result in very sparse cpu->unit mapping on NUMA machines thus
2428 * requiring large vmalloc address space. Don't use this allocator if
2429 * vmalloc space is not orders of magnitude larger than distances
2430 * between node memory addresses (ie. 32bit NUMA machines).
2431 *
2432 * @dyn_size specifies the minimum dynamic area size.
2433 *
2434 * If the needed size is smaller than the minimum or specified unit
2435 * size, the leftover is returned using @free_fn.
2436 *
2437 * RETURNS:
2438 * 0 on success, -errno on failure.
2439 */
2440 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2441 size_t atom_size,
2442 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2443 pcpu_fc_alloc_fn_t alloc_fn,
2444 pcpu_fc_free_fn_t free_fn)
2445 {
2446 void *base = (void *)ULONG_MAX;
2447 void **areas = NULL;
2448 struct pcpu_alloc_info *ai;
2449 size_t size_sum, areas_size;
2450 unsigned long max_distance;
2451 int group, i, highest_group, rc;
2452
2453 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2454 cpu_distance_fn);
2455 if (IS_ERR(ai))
2456 return PTR_ERR(ai);
2457
2458 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2459 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2460
2461 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2462 if (!areas) {
2463 rc = -ENOMEM;
2464 goto out_free;
2465 }
2466
2467 /* allocate, copy and determine base address & max_distance */
2468 highest_group = 0;
2469 for (group = 0; group < ai->nr_groups; group++) {
2470 struct pcpu_group_info *gi = &ai->groups[group];
2471 unsigned int cpu = NR_CPUS;
2472 void *ptr;
2473
2474 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2475 cpu = gi->cpu_map[i];
2476 BUG_ON(cpu == NR_CPUS);
2477
2478 /* allocate space for the whole group */
2479 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2480 if (!ptr) {
2481 rc = -ENOMEM;
2482 goto out_free_areas;
2483 }
2484 /* kmemleak tracks the percpu allocations separately */
2485 kmemleak_free(ptr);
2486 areas[group] = ptr;
2487
2488 base = min(ptr, base);
2489 if (ptr > areas[highest_group])
2490 highest_group = group;
2491 }
2492 max_distance = areas[highest_group] - base;
2493 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2494
2495 /* warn if maximum distance is further than 75% of vmalloc space */
2496 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2497 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2498 max_distance, VMALLOC_TOTAL);
2499 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2500 /* and fail if we have fallback */
2501 rc = -EINVAL;
2502 goto out_free_areas;
2503 #endif
2504 }
2505
2506 /*
2507 * Copy data and free unused parts. This should happen after all
2508 * allocations are complete; otherwise, we may end up with
2509 * overlapping groups.
2510 */
2511 for (group = 0; group < ai->nr_groups; group++) {
2512 struct pcpu_group_info *gi = &ai->groups[group];
2513 void *ptr = areas[group];
2514
2515 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2516 if (gi->cpu_map[i] == NR_CPUS) {
2517 /* unused unit, free whole */
2518 free_fn(ptr, ai->unit_size);
2519 continue;
2520 }
2521 /* copy and return the unused part */
2522 memcpy(ptr, __per_cpu_load, ai->static_size);
2523 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2524 }
2525 }
2526
2527 /* base address is now known, determine group base offsets */
2528 for (group = 0; group < ai->nr_groups; group++) {
2529 ai->groups[group].base_offset = areas[group] - base;
2530 }
2531
2532 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2533 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2534 ai->dyn_size, ai->unit_size);
2535
2536 rc = pcpu_setup_first_chunk(ai, base);
2537 goto out_free;
2538
2539 out_free_areas:
2540 for (group = 0; group < ai->nr_groups; group++)
2541 if (areas[group])
2542 free_fn(areas[group],
2543 ai->groups[group].nr_units * ai->unit_size);
2544 out_free:
2545 pcpu_free_alloc_info(ai);
2546 if (areas)
2547 memblock_free_early(__pa(areas), areas_size);
2548 return rc;
2549 }
2550 #endif /* BUILD_EMBED_FIRST_CHUNK */
2551
2552 #ifdef BUILD_PAGE_FIRST_CHUNK
2553 /**
2554 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2555 * @reserved_size: the size of reserved percpu area in bytes
2556 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2557 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2558 * @populate_pte_fn: function to populate pte
2559 *
2560 * This is a helper to ease setting up page-remapped first percpu
2561 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2562 *
2563 * This is the basic allocator. Static percpu area is allocated
2564 * page-by-page into vmalloc area.
2565 *
2566 * RETURNS:
2567 * 0 on success, -errno on failure.
2568 */
2569 int __init pcpu_page_first_chunk(size_t reserved_size,
2570 pcpu_fc_alloc_fn_t alloc_fn,
2571 pcpu_fc_free_fn_t free_fn,
2572 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2573 {
2574 static struct vm_struct vm;
2575 struct pcpu_alloc_info *ai;
2576 char psize_str[16];
2577 int unit_pages;
2578 size_t pages_size;
2579 struct page **pages;
2580 int unit, i, j, rc;
2581 int upa;
2582 int nr_g0_units;
2583
2584 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2585
2586 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2587 if (IS_ERR(ai))
2588 return PTR_ERR(ai);
2589 BUG_ON(ai->nr_groups != 1);
2590 upa = ai->alloc_size/ai->unit_size;
2591 nr_g0_units = roundup(num_possible_cpus(), upa);
2592 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2593 pcpu_free_alloc_info(ai);
2594 return -EINVAL;
2595 }
2596
2597 unit_pages = ai->unit_size >> PAGE_SHIFT;
2598
2599 /* unaligned allocations can't be freed, round up to page size */
2600 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2601 sizeof(pages[0]));
2602 pages = memblock_virt_alloc(pages_size, 0);
2603
2604 /* allocate pages */
2605 j = 0;
2606 for (unit = 0; unit < num_possible_cpus(); unit++) {
2607 unsigned int cpu = ai->groups[0].cpu_map[unit];
2608 for (i = 0; i < unit_pages; i++) {
2609 void *ptr;
2610
2611 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2612 if (!ptr) {
2613 pr_warn("failed to allocate %s page for cpu%u\n",
2614 psize_str, cpu);
2615 goto enomem;
2616 }
2617 /* kmemleak tracks the percpu allocations separately */
2618 kmemleak_free(ptr);
2619 pages[j++] = virt_to_page(ptr);
2620 }
2621 }
2622
2623 /* allocate vm area, map the pages and copy static data */
2624 vm.flags = VM_ALLOC;
2625 vm.size = num_possible_cpus() * ai->unit_size;
2626 vm_area_register_early(&vm, PAGE_SIZE);
2627
2628 for (unit = 0; unit < num_possible_cpus(); unit++) {
2629 unsigned long unit_addr =
2630 (unsigned long)vm.addr + unit * ai->unit_size;
2631
2632 for (i = 0; i < unit_pages; i++)
2633 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2634
2635 /* pte already populated, the following shouldn't fail */
2636 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2637 unit_pages);
2638 if (rc < 0)
2639 panic("failed to map percpu area, err=%d\n", rc);
2640
2641 /*
2642 * FIXME: Archs with virtual cache should flush local
2643 * cache for the linear mapping here - something
2644 * equivalent to flush_cache_vmap() on the local cpu.
2645 * flush_cache_vmap() can't be used as most supporting
2646 * data structures are not set up yet.
2647 */
2648
2649 /* copy static data */
2650 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2651 }
2652
2653 /* we're ready, commit */
2654 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2655 unit_pages, psize_str, vm.addr, ai->static_size,
2656 ai->reserved_size, ai->dyn_size);
2657
2658 rc = pcpu_setup_first_chunk(ai, vm.addr);
2659 goto out_free_ar;
2660
2661 enomem:
2662 while (--j >= 0)
2663 free_fn(page_address(pages[j]), PAGE_SIZE);
2664 rc = -ENOMEM;
2665 out_free_ar:
2666 memblock_free_early(__pa(pages), pages_size);
2667 pcpu_free_alloc_info(ai);
2668 return rc;
2669 }
2670 #endif /* BUILD_PAGE_FIRST_CHUNK */
2671
2672 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2673 /*
2674 * Generic SMP percpu area setup.
2675 *
2676 * The embedding helper is used because its behavior closely resembles
2677 * the original non-dynamic generic percpu area setup. This is
2678 * important because many archs have addressing restrictions and might
2679 * fail if the percpu area is located far away from the previous
2680 * location. As an added bonus, in non-NUMA cases, embedding is
2681 * generally a good idea TLB-wise because percpu area can piggy back
2682 * on the physical linear memory mapping which uses large page
2683 * mappings on applicable archs.
2684 */
2685 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2686 EXPORT_SYMBOL(__per_cpu_offset);
2687
2688 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2689 size_t align)
2690 {
2691 return memblock_virt_alloc_from_nopanic(
2692 size, align, __pa(MAX_DMA_ADDRESS));
2693 }
2694
2695 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2696 {
2697 memblock_free_early(__pa(ptr), size);
2698 }
2699
2700 void __init setup_per_cpu_areas(void)
2701 {
2702 unsigned long delta;
2703 unsigned int cpu;
2704 int rc;
2705
2706 /*
2707 * Always reserve area for module percpu variables. That's
2708 * what the legacy allocator did.
2709 */
2710 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2711 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2712 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2713 if (rc < 0)
2714 panic("Failed to initialize percpu areas.");
2715
2716 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2717 for_each_possible_cpu(cpu)
2718 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2719 }
2720 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2721
2722 #else /* CONFIG_SMP */
2723
2724 /*
2725 * UP percpu area setup.
2726 *
2727 * UP always uses km-based percpu allocator with identity mapping.
2728 * Static percpu variables are indistinguishable from the usual static
2729 * variables and don't require any special preparation.
2730 */
2731 void __init setup_per_cpu_areas(void)
2732 {
2733 const size_t unit_size =
2734 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2735 PERCPU_DYNAMIC_RESERVE));
2736 struct pcpu_alloc_info *ai;
2737 void *fc;
2738
2739 ai = pcpu_alloc_alloc_info(1, 1);
2740 fc = memblock_virt_alloc_from_nopanic(unit_size,
2741 PAGE_SIZE,
2742 __pa(MAX_DMA_ADDRESS));
2743 if (!ai || !fc)
2744 panic("Failed to allocate memory for percpu areas.");
2745 /* kmemleak tracks the percpu allocations separately */
2746 kmemleak_free(fc);
2747
2748 ai->dyn_size = unit_size;
2749 ai->unit_size = unit_size;
2750 ai->atom_size = unit_size;
2751 ai->alloc_size = unit_size;
2752 ai->groups[0].nr_units = 1;
2753 ai->groups[0].cpu_map[0] = 0;
2754
2755 if (pcpu_setup_first_chunk(ai, fc) < 0)
2756 panic("Failed to initialize percpu areas.");
2757 pcpu_free_alloc_info(ai);
2758 }
2759
2760 #endif /* CONFIG_SMP */
2761
2762 /*
2763 * pcpu_nr_pages - calculate total number of populated backing pages
2764 *
2765 * This reflects the number of pages populated to back chunks. Metadata is
2766 * excluded in the number exposed in meminfo as the number of backing pages
2767 * scales with the number of cpus and can quickly outweigh the memory used for
2768 * metadata. It also keeps this calculation nice and simple.
2769 *
2770 * RETURNS:
2771 * Total number of populated backing pages in use by the allocator.
2772 */
2773 unsigned long pcpu_nr_pages(void)
2774 {
2775 return pcpu_nr_populated * pcpu_nr_units;
2776 }
2777
2778 /*
2779 * Percpu allocator is initialized early during boot when neither slab or
2780 * workqueue is available. Plug async management until everything is up
2781 * and running.
2782 */
2783 static int __init percpu_enable_async(void)
2784 {
2785 pcpu_async_enabled = true;
2786 return 0;
2787 }
2788 subsys_initcall(percpu_enable_async);