]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/percpu.c
548624309f83ea46b01c2badb77cb18bb909ec6c
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
1 /*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 * regular address to percpu pointer and back if they need to be
53 * different from the default
54 *
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 * setup the first chunk containing the kernel static percpu area
57 */
58
59 #include <linux/bitmap.h>
60 #include <linux/bootmem.h>
61 #include <linux/err.h>
62 #include <linux/list.h>
63 #include <linux/log2.h>
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/mutex.h>
67 #include <linux/percpu.h>
68 #include <linux/pfn.h>
69 #include <linux/slab.h>
70 #include <linux/spinlock.h>
71 #include <linux/vmalloc.h>
72 #include <linux/workqueue.h>
73
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77
78 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
79 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
80
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \
84 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
85 + (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
90 - (unsigned long)__per_cpu_start)
91 #endif
92
93 struct pcpu_chunk {
94 struct list_head list; /* linked to pcpu_slot lists */
95 int free_size; /* free bytes in the chunk */
96 int contig_hint; /* max contiguous size hint */
97 void *base_addr; /* base address of this chunk */
98 int map_used; /* # of map entries used */
99 int map_alloc; /* # of map entries allocated */
100 int *map; /* allocation map */
101 struct vm_struct *vm; /* mapped vmalloc region */
102 bool immutable; /* no [de]population allowed */
103 unsigned long populated[]; /* populated bitmap */
104 };
105
106 static int pcpu_unit_pages __read_mostly;
107 static int pcpu_unit_size __read_mostly;
108 static int pcpu_nr_units __read_mostly;
109 static int pcpu_chunk_size __read_mostly;
110 static int pcpu_nr_slots __read_mostly;
111 static size_t pcpu_chunk_struct_size __read_mostly;
112
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly;
115 static unsigned int pcpu_last_unit_cpu __read_mostly;
116
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr);
120
121 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
123
124 /*
125 * The first chunk which always exists. Note that unlike other
126 * chunks, this one can be allocated and mapped in several different
127 * ways and thus often doesn't live in the vmalloc area.
128 */
129 static struct pcpu_chunk *pcpu_first_chunk;
130
131 /*
132 * Optional reserved chunk. This chunk reserves part of the first
133 * chunk and serves it for reserved allocations. The amount of
134 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
135 * area doesn't exist, the following variables contain NULL and 0
136 * respectively.
137 */
138 static struct pcpu_chunk *pcpu_reserved_chunk;
139 static int pcpu_reserved_chunk_limit;
140
141 /*
142 * Synchronization rules.
143 *
144 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
145 * protects allocation/reclaim paths, chunks, populated bitmap and
146 * vmalloc mapping. The latter is a spinlock and protects the index
147 * data structures - chunk slots, chunks and area maps in chunks.
148 *
149 * During allocation, pcpu_alloc_mutex is kept locked all the time and
150 * pcpu_lock is grabbed and released as necessary. All actual memory
151 * allocations are done using GFP_KERNEL with pcpu_lock released.
152 *
153 * Free path accesses and alters only the index data structures, so it
154 * can be safely called from atomic context. When memory needs to be
155 * returned to the system, free path schedules reclaim_work which
156 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
157 * reclaimed, release both locks and frees the chunks. Note that it's
158 * necessary to grab both locks to remove a chunk from circulation as
159 * allocation path might be referencing the chunk with only
160 * pcpu_alloc_mutex locked.
161 */
162 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
163 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
164
165 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166
167 /* reclaim work to release fully free chunks, scheduled from free path */
168 static void pcpu_reclaim(struct work_struct *work);
169 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
170
171 static int __pcpu_size_to_slot(int size)
172 {
173 int highbit = fls(size); /* size is in bytes */
174 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
175 }
176
177 static int pcpu_size_to_slot(int size)
178 {
179 if (size == pcpu_unit_size)
180 return pcpu_nr_slots - 1;
181 return __pcpu_size_to_slot(size);
182 }
183
184 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
185 {
186 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
187 return 0;
188
189 return pcpu_size_to_slot(chunk->free_size);
190 }
191
192 static int pcpu_page_idx(unsigned int cpu, int page_idx)
193 {
194 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
195 }
196
197 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
198 unsigned int cpu, int page_idx)
199 {
200 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
201 (page_idx << PAGE_SHIFT);
202 }
203
204 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
205 unsigned int cpu, int page_idx)
206 {
207 /* must not be used on pre-mapped chunk */
208 WARN_ON(chunk->immutable);
209
210 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
211 }
212
213 /* set the pointer to a chunk in a page struct */
214 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
215 {
216 page->index = (unsigned long)pcpu;
217 }
218
219 /* obtain pointer to a chunk from a page struct */
220 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
221 {
222 return (struct pcpu_chunk *)page->index;
223 }
224
225 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
226 {
227 *rs = find_next_zero_bit(chunk->populated, end, *rs);
228 *re = find_next_bit(chunk->populated, end, *rs + 1);
229 }
230
231 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
232 {
233 *rs = find_next_bit(chunk->populated, end, *rs);
234 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
235 }
236
237 /*
238 * (Un)populated page region iterators. Iterate over (un)populated
239 * page regions betwen @start and @end in @chunk. @rs and @re should
240 * be integer variables and will be set to start and end page index of
241 * the current region.
242 */
243 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
244 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
245 (rs) < (re); \
246 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
247
248 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
249 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
250 (rs) < (re); \
251 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
252
253 /**
254 * pcpu_mem_alloc - allocate memory
255 * @size: bytes to allocate
256 *
257 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
258 * kzalloc() is used; otherwise, vmalloc() is used. The returned
259 * memory is always zeroed.
260 *
261 * CONTEXT:
262 * Does GFP_KERNEL allocation.
263 *
264 * RETURNS:
265 * Pointer to the allocated area on success, NULL on failure.
266 */
267 static void *pcpu_mem_alloc(size_t size)
268 {
269 if (size <= PAGE_SIZE)
270 return kzalloc(size, GFP_KERNEL);
271 else {
272 void *ptr = vmalloc(size);
273 if (ptr)
274 memset(ptr, 0, size);
275 return ptr;
276 }
277 }
278
279 /**
280 * pcpu_mem_free - free memory
281 * @ptr: memory to free
282 * @size: size of the area
283 *
284 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
285 */
286 static void pcpu_mem_free(void *ptr, size_t size)
287 {
288 if (size <= PAGE_SIZE)
289 kfree(ptr);
290 else
291 vfree(ptr);
292 }
293
294 /**
295 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
296 * @chunk: chunk of interest
297 * @oslot: the previous slot it was on
298 *
299 * This function is called after an allocation or free changed @chunk.
300 * New slot according to the changed state is determined and @chunk is
301 * moved to the slot. Note that the reserved chunk is never put on
302 * chunk slots.
303 *
304 * CONTEXT:
305 * pcpu_lock.
306 */
307 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
308 {
309 int nslot = pcpu_chunk_slot(chunk);
310
311 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
312 if (oslot < nslot)
313 list_move(&chunk->list, &pcpu_slot[nslot]);
314 else
315 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
316 }
317 }
318
319 /**
320 * pcpu_chunk_addr_search - determine chunk containing specified address
321 * @addr: address for which the chunk needs to be determined.
322 *
323 * RETURNS:
324 * The address of the found chunk.
325 */
326 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
327 {
328 void *first_start = pcpu_first_chunk->base_addr;
329
330 /* is it in the first chunk? */
331 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
332 /* is it in the reserved area? */
333 if (addr < first_start + pcpu_reserved_chunk_limit)
334 return pcpu_reserved_chunk;
335 return pcpu_first_chunk;
336 }
337
338 /*
339 * The address is relative to unit0 which might be unused and
340 * thus unmapped. Offset the address to the unit space of the
341 * current processor before looking it up in the vmalloc
342 * space. Note that any possible cpu id can be used here, so
343 * there's no need to worry about preemption or cpu hotplug.
344 */
345 addr += pcpu_unit_offsets[smp_processor_id()];
346 return pcpu_get_page_chunk(vmalloc_to_page(addr));
347 }
348
349 /**
350 * pcpu_extend_area_map - extend area map for allocation
351 * @chunk: target chunk
352 *
353 * Extend area map of @chunk so that it can accomodate an allocation.
354 * A single allocation can split an area into three areas, so this
355 * function makes sure that @chunk->map has at least two extra slots.
356 *
357 * CONTEXT:
358 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
359 * if area map is extended.
360 *
361 * RETURNS:
362 * 0 if noop, 1 if successfully extended, -errno on failure.
363 */
364 static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
365 {
366 int new_alloc;
367 int *new;
368 size_t size;
369
370 /* has enough? */
371 if (chunk->map_alloc >= chunk->map_used + 2)
372 return 0;
373
374 spin_unlock_irq(&pcpu_lock);
375
376 new_alloc = PCPU_DFL_MAP_ALLOC;
377 while (new_alloc < chunk->map_used + 2)
378 new_alloc *= 2;
379
380 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
381 if (!new) {
382 spin_lock_irq(&pcpu_lock);
383 return -ENOMEM;
384 }
385
386 /*
387 * Acquire pcpu_lock and switch to new area map. Only free
388 * could have happened inbetween, so map_used couldn't have
389 * grown.
390 */
391 spin_lock_irq(&pcpu_lock);
392 BUG_ON(new_alloc < chunk->map_used + 2);
393
394 size = chunk->map_alloc * sizeof(chunk->map[0]);
395 memcpy(new, chunk->map, size);
396
397 /*
398 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
399 * one of the first chunks and still using static map.
400 */
401 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
402 pcpu_mem_free(chunk->map, size);
403
404 chunk->map_alloc = new_alloc;
405 chunk->map = new;
406 return 0;
407 }
408
409 /**
410 * pcpu_split_block - split a map block
411 * @chunk: chunk of interest
412 * @i: index of map block to split
413 * @head: head size in bytes (can be 0)
414 * @tail: tail size in bytes (can be 0)
415 *
416 * Split the @i'th map block into two or three blocks. If @head is
417 * non-zero, @head bytes block is inserted before block @i moving it
418 * to @i+1 and reducing its size by @head bytes.
419 *
420 * If @tail is non-zero, the target block, which can be @i or @i+1
421 * depending on @head, is reduced by @tail bytes and @tail byte block
422 * is inserted after the target block.
423 *
424 * @chunk->map must have enough free slots to accomodate the split.
425 *
426 * CONTEXT:
427 * pcpu_lock.
428 */
429 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
430 int head, int tail)
431 {
432 int nr_extra = !!head + !!tail;
433
434 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
435
436 /* insert new subblocks */
437 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
438 sizeof(chunk->map[0]) * (chunk->map_used - i));
439 chunk->map_used += nr_extra;
440
441 if (head) {
442 chunk->map[i + 1] = chunk->map[i] - head;
443 chunk->map[i++] = head;
444 }
445 if (tail) {
446 chunk->map[i++] -= tail;
447 chunk->map[i] = tail;
448 }
449 }
450
451 /**
452 * pcpu_alloc_area - allocate area from a pcpu_chunk
453 * @chunk: chunk of interest
454 * @size: wanted size in bytes
455 * @align: wanted align
456 *
457 * Try to allocate @size bytes area aligned at @align from @chunk.
458 * Note that this function only allocates the offset. It doesn't
459 * populate or map the area.
460 *
461 * @chunk->map must have at least two free slots.
462 *
463 * CONTEXT:
464 * pcpu_lock.
465 *
466 * RETURNS:
467 * Allocated offset in @chunk on success, -1 if no matching area is
468 * found.
469 */
470 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
471 {
472 int oslot = pcpu_chunk_slot(chunk);
473 int max_contig = 0;
474 int i, off;
475
476 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
477 bool is_last = i + 1 == chunk->map_used;
478 int head, tail;
479
480 /* extra for alignment requirement */
481 head = ALIGN(off, align) - off;
482 BUG_ON(i == 0 && head != 0);
483
484 if (chunk->map[i] < 0)
485 continue;
486 if (chunk->map[i] < head + size) {
487 max_contig = max(chunk->map[i], max_contig);
488 continue;
489 }
490
491 /*
492 * If head is small or the previous block is free,
493 * merge'em. Note that 'small' is defined as smaller
494 * than sizeof(int), which is very small but isn't too
495 * uncommon for percpu allocations.
496 */
497 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
498 if (chunk->map[i - 1] > 0)
499 chunk->map[i - 1] += head;
500 else {
501 chunk->map[i - 1] -= head;
502 chunk->free_size -= head;
503 }
504 chunk->map[i] -= head;
505 off += head;
506 head = 0;
507 }
508
509 /* if tail is small, just keep it around */
510 tail = chunk->map[i] - head - size;
511 if (tail < sizeof(int))
512 tail = 0;
513
514 /* split if warranted */
515 if (head || tail) {
516 pcpu_split_block(chunk, i, head, tail);
517 if (head) {
518 i++;
519 off += head;
520 max_contig = max(chunk->map[i - 1], max_contig);
521 }
522 if (tail)
523 max_contig = max(chunk->map[i + 1], max_contig);
524 }
525
526 /* update hint and mark allocated */
527 if (is_last)
528 chunk->contig_hint = max_contig; /* fully scanned */
529 else
530 chunk->contig_hint = max(chunk->contig_hint,
531 max_contig);
532
533 chunk->free_size -= chunk->map[i];
534 chunk->map[i] = -chunk->map[i];
535
536 pcpu_chunk_relocate(chunk, oslot);
537 return off;
538 }
539
540 chunk->contig_hint = max_contig; /* fully scanned */
541 pcpu_chunk_relocate(chunk, oslot);
542
543 /* tell the upper layer that this chunk has no matching area */
544 return -1;
545 }
546
547 /**
548 * pcpu_free_area - free area to a pcpu_chunk
549 * @chunk: chunk of interest
550 * @freeme: offset of area to free
551 *
552 * Free area starting from @freeme to @chunk. Note that this function
553 * only modifies the allocation map. It doesn't depopulate or unmap
554 * the area.
555 *
556 * CONTEXT:
557 * pcpu_lock.
558 */
559 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
560 {
561 int oslot = pcpu_chunk_slot(chunk);
562 int i, off;
563
564 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
565 if (off == freeme)
566 break;
567 BUG_ON(off != freeme);
568 BUG_ON(chunk->map[i] > 0);
569
570 chunk->map[i] = -chunk->map[i];
571 chunk->free_size += chunk->map[i];
572
573 /* merge with previous? */
574 if (i > 0 && chunk->map[i - 1] >= 0) {
575 chunk->map[i - 1] += chunk->map[i];
576 chunk->map_used--;
577 memmove(&chunk->map[i], &chunk->map[i + 1],
578 (chunk->map_used - i) * sizeof(chunk->map[0]));
579 i--;
580 }
581 /* merge with next? */
582 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
583 chunk->map[i] += chunk->map[i + 1];
584 chunk->map_used--;
585 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
586 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
587 }
588
589 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
590 pcpu_chunk_relocate(chunk, oslot);
591 }
592
593 /**
594 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
595 * @chunk: chunk of interest
596 * @bitmapp: output parameter for bitmap
597 * @may_alloc: may allocate the array
598 *
599 * Returns pointer to array of pointers to struct page and bitmap,
600 * both of which can be indexed with pcpu_page_idx(). The returned
601 * array is cleared to zero and *@bitmapp is copied from
602 * @chunk->populated. Note that there is only one array and bitmap
603 * and access exclusion is the caller's responsibility.
604 *
605 * CONTEXT:
606 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
607 * Otherwise, don't care.
608 *
609 * RETURNS:
610 * Pointer to temp pages array on success, NULL on failure.
611 */
612 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
613 unsigned long **bitmapp,
614 bool may_alloc)
615 {
616 static struct page **pages;
617 static unsigned long *bitmap;
618 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
619 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
620 sizeof(unsigned long);
621
622 if (!pages || !bitmap) {
623 if (may_alloc && !pages)
624 pages = pcpu_mem_alloc(pages_size);
625 if (may_alloc && !bitmap)
626 bitmap = pcpu_mem_alloc(bitmap_size);
627 if (!pages || !bitmap)
628 return NULL;
629 }
630
631 memset(pages, 0, pages_size);
632 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
633
634 *bitmapp = bitmap;
635 return pages;
636 }
637
638 /**
639 * pcpu_free_pages - free pages which were allocated for @chunk
640 * @chunk: chunk pages were allocated for
641 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
642 * @populated: populated bitmap
643 * @page_start: page index of the first page to be freed
644 * @page_end: page index of the last page to be freed + 1
645 *
646 * Free pages [@page_start and @page_end) in @pages for all units.
647 * The pages were allocated for @chunk.
648 */
649 static void pcpu_free_pages(struct pcpu_chunk *chunk,
650 struct page **pages, unsigned long *populated,
651 int page_start, int page_end)
652 {
653 unsigned int cpu;
654 int i;
655
656 for_each_possible_cpu(cpu) {
657 for (i = page_start; i < page_end; i++) {
658 struct page *page = pages[pcpu_page_idx(cpu, i)];
659
660 if (page)
661 __free_page(page);
662 }
663 }
664 }
665
666 /**
667 * pcpu_alloc_pages - allocates pages for @chunk
668 * @chunk: target chunk
669 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
670 * @populated: populated bitmap
671 * @page_start: page index of the first page to be allocated
672 * @page_end: page index of the last page to be allocated + 1
673 *
674 * Allocate pages [@page_start,@page_end) into @pages for all units.
675 * The allocation is for @chunk. Percpu core doesn't care about the
676 * content of @pages and will pass it verbatim to pcpu_map_pages().
677 */
678 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
679 struct page **pages, unsigned long *populated,
680 int page_start, int page_end)
681 {
682 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
683 unsigned int cpu;
684 int i;
685
686 for_each_possible_cpu(cpu) {
687 for (i = page_start; i < page_end; i++) {
688 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
689
690 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
691 if (!*pagep) {
692 pcpu_free_pages(chunk, pages, populated,
693 page_start, page_end);
694 return -ENOMEM;
695 }
696 }
697 }
698 return 0;
699 }
700
701 /**
702 * pcpu_pre_unmap_flush - flush cache prior to unmapping
703 * @chunk: chunk the regions to be flushed belongs to
704 * @page_start: page index of the first page to be flushed
705 * @page_end: page index of the last page to be flushed + 1
706 *
707 * Pages in [@page_start,@page_end) of @chunk are about to be
708 * unmapped. Flush cache. As each flushing trial can be very
709 * expensive, issue flush on the whole region at once rather than
710 * doing it for each cpu. This could be an overkill but is more
711 * scalable.
712 */
713 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
714 int page_start, int page_end)
715 {
716 flush_cache_vunmap(
717 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
718 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
719 }
720
721 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
722 {
723 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
724 }
725
726 /**
727 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
728 * @chunk: chunk of interest
729 * @pages: pages array which can be used to pass information to free
730 * @populated: populated bitmap
731 * @page_start: page index of the first page to unmap
732 * @page_end: page index of the last page to unmap + 1
733 *
734 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
735 * Corresponding elements in @pages were cleared by the caller and can
736 * be used to carry information to pcpu_free_pages() which will be
737 * called after all unmaps are finished. The caller should call
738 * proper pre/post flush functions.
739 */
740 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
741 struct page **pages, unsigned long *populated,
742 int page_start, int page_end)
743 {
744 unsigned int cpu;
745 int i;
746
747 for_each_possible_cpu(cpu) {
748 for (i = page_start; i < page_end; i++) {
749 struct page *page;
750
751 page = pcpu_chunk_page(chunk, cpu, i);
752 WARN_ON(!page);
753 pages[pcpu_page_idx(cpu, i)] = page;
754 }
755 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
756 page_end - page_start);
757 }
758
759 for (i = page_start; i < page_end; i++)
760 __clear_bit(i, populated);
761 }
762
763 /**
764 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
765 * @chunk: pcpu_chunk the regions to be flushed belong to
766 * @page_start: page index of the first page to be flushed
767 * @page_end: page index of the last page to be flushed + 1
768 *
769 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
770 * TLB for the regions. This can be skipped if the area is to be
771 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
772 *
773 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
774 * for the whole region.
775 */
776 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
777 int page_start, int page_end)
778 {
779 flush_tlb_kernel_range(
780 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
781 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
782 }
783
784 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
785 int nr_pages)
786 {
787 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
788 PAGE_KERNEL, pages);
789 }
790
791 /**
792 * pcpu_map_pages - map pages into a pcpu_chunk
793 * @chunk: chunk of interest
794 * @pages: pages array containing pages to be mapped
795 * @populated: populated bitmap
796 * @page_start: page index of the first page to map
797 * @page_end: page index of the last page to map + 1
798 *
799 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
800 * caller is responsible for calling pcpu_post_map_flush() after all
801 * mappings are complete.
802 *
803 * This function is responsible for setting corresponding bits in
804 * @chunk->populated bitmap and whatever is necessary for reverse
805 * lookup (addr -> chunk).
806 */
807 static int pcpu_map_pages(struct pcpu_chunk *chunk,
808 struct page **pages, unsigned long *populated,
809 int page_start, int page_end)
810 {
811 unsigned int cpu, tcpu;
812 int i, err;
813
814 for_each_possible_cpu(cpu) {
815 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
816 &pages[pcpu_page_idx(cpu, page_start)],
817 page_end - page_start);
818 if (err < 0)
819 goto err;
820 }
821
822 /* mapping successful, link chunk and mark populated */
823 for (i = page_start; i < page_end; i++) {
824 for_each_possible_cpu(cpu)
825 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
826 chunk);
827 __set_bit(i, populated);
828 }
829
830 return 0;
831
832 err:
833 for_each_possible_cpu(tcpu) {
834 if (tcpu == cpu)
835 break;
836 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
837 page_end - page_start);
838 }
839 return err;
840 }
841
842 /**
843 * pcpu_post_map_flush - flush cache after mapping
844 * @chunk: pcpu_chunk the regions to be flushed belong to
845 * @page_start: page index of the first page to be flushed
846 * @page_end: page index of the last page to be flushed + 1
847 *
848 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
849 * cache.
850 *
851 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
852 * for the whole region.
853 */
854 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
855 int page_start, int page_end)
856 {
857 flush_cache_vmap(
858 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
859 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
860 }
861
862 /**
863 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
864 * @chunk: chunk to depopulate
865 * @off: offset to the area to depopulate
866 * @size: size of the area to depopulate in bytes
867 * @flush: whether to flush cache and tlb or not
868 *
869 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
870 * from @chunk. If @flush is true, vcache is flushed before unmapping
871 * and tlb after.
872 *
873 * CONTEXT:
874 * pcpu_alloc_mutex.
875 */
876 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
877 {
878 int page_start = PFN_DOWN(off);
879 int page_end = PFN_UP(off + size);
880 struct page **pages;
881 unsigned long *populated;
882 int rs, re;
883
884 /* quick path, check whether it's empty already */
885 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
886 if (rs == page_start && re == page_end)
887 return;
888 break;
889 }
890
891 /* immutable chunks can't be depopulated */
892 WARN_ON(chunk->immutable);
893
894 /*
895 * If control reaches here, there must have been at least one
896 * successful population attempt so the temp pages array must
897 * be available now.
898 */
899 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
900 BUG_ON(!pages);
901
902 /* unmap and free */
903 pcpu_pre_unmap_flush(chunk, page_start, page_end);
904
905 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
906 pcpu_unmap_pages(chunk, pages, populated, rs, re);
907
908 /* no need to flush tlb, vmalloc will handle it lazily */
909
910 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
911 pcpu_free_pages(chunk, pages, populated, rs, re);
912
913 /* commit new bitmap */
914 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
915 }
916
917 /**
918 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
919 * @chunk: chunk of interest
920 * @off: offset to the area to populate
921 * @size: size of the area to populate in bytes
922 *
923 * For each cpu, populate and map pages [@page_start,@page_end) into
924 * @chunk. The area is cleared on return.
925 *
926 * CONTEXT:
927 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
928 */
929 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
930 {
931 int page_start = PFN_DOWN(off);
932 int page_end = PFN_UP(off + size);
933 int free_end = page_start, unmap_end = page_start;
934 struct page **pages;
935 unsigned long *populated;
936 unsigned int cpu;
937 int rs, re, rc;
938
939 /* quick path, check whether all pages are already there */
940 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
941 if (rs == page_start && re == page_end)
942 goto clear;
943 break;
944 }
945
946 /* need to allocate and map pages, this chunk can't be immutable */
947 WARN_ON(chunk->immutable);
948
949 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
950 if (!pages)
951 return -ENOMEM;
952
953 /* alloc and map */
954 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
955 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
956 if (rc)
957 goto err_free;
958 free_end = re;
959 }
960
961 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
962 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
963 if (rc)
964 goto err_unmap;
965 unmap_end = re;
966 }
967 pcpu_post_map_flush(chunk, page_start, page_end);
968
969 /* commit new bitmap */
970 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
971 clear:
972 for_each_possible_cpu(cpu)
973 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
974 return 0;
975
976 err_unmap:
977 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
978 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
979 pcpu_unmap_pages(chunk, pages, populated, rs, re);
980 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
981 err_free:
982 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
983 pcpu_free_pages(chunk, pages, populated, rs, re);
984 return rc;
985 }
986
987 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
988 {
989 if (!chunk)
990 return;
991 if (chunk->vm)
992 free_vm_area(chunk->vm);
993 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
994 kfree(chunk);
995 }
996
997 static struct pcpu_chunk *alloc_pcpu_chunk(void)
998 {
999 struct pcpu_chunk *chunk;
1000
1001 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1002 if (!chunk)
1003 return NULL;
1004
1005 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1006 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1007 chunk->map[chunk->map_used++] = pcpu_unit_size;
1008
1009 chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
1010 if (!chunk->vm) {
1011 free_pcpu_chunk(chunk);
1012 return NULL;
1013 }
1014
1015 INIT_LIST_HEAD(&chunk->list);
1016 chunk->free_size = pcpu_unit_size;
1017 chunk->contig_hint = pcpu_unit_size;
1018 chunk->base_addr = chunk->vm->addr;
1019
1020 return chunk;
1021 }
1022
1023 /**
1024 * pcpu_alloc - the percpu allocator
1025 * @size: size of area to allocate in bytes
1026 * @align: alignment of area (max PAGE_SIZE)
1027 * @reserved: allocate from the reserved chunk if available
1028 *
1029 * Allocate percpu area of @size bytes aligned at @align.
1030 *
1031 * CONTEXT:
1032 * Does GFP_KERNEL allocation.
1033 *
1034 * RETURNS:
1035 * Percpu pointer to the allocated area on success, NULL on failure.
1036 */
1037 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1038 {
1039 struct pcpu_chunk *chunk;
1040 int slot, off;
1041
1042 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1043 WARN(true, "illegal size (%zu) or align (%zu) for "
1044 "percpu allocation\n", size, align);
1045 return NULL;
1046 }
1047
1048 mutex_lock(&pcpu_alloc_mutex);
1049 spin_lock_irq(&pcpu_lock);
1050
1051 /* serve reserved allocations from the reserved chunk if available */
1052 if (reserved && pcpu_reserved_chunk) {
1053 chunk = pcpu_reserved_chunk;
1054 if (size > chunk->contig_hint ||
1055 pcpu_extend_area_map(chunk) < 0)
1056 goto fail_unlock;
1057 off = pcpu_alloc_area(chunk, size, align);
1058 if (off >= 0)
1059 goto area_found;
1060 goto fail_unlock;
1061 }
1062
1063 restart:
1064 /* search through normal chunks */
1065 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1066 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1067 if (size > chunk->contig_hint)
1068 continue;
1069
1070 switch (pcpu_extend_area_map(chunk)) {
1071 case 0:
1072 break;
1073 case 1:
1074 goto restart; /* pcpu_lock dropped, restart */
1075 default:
1076 goto fail_unlock;
1077 }
1078
1079 off = pcpu_alloc_area(chunk, size, align);
1080 if (off >= 0)
1081 goto area_found;
1082 }
1083 }
1084
1085 /* hmmm... no space left, create a new chunk */
1086 spin_unlock_irq(&pcpu_lock);
1087
1088 chunk = alloc_pcpu_chunk();
1089 if (!chunk)
1090 goto fail_unlock_mutex;
1091
1092 spin_lock_irq(&pcpu_lock);
1093 pcpu_chunk_relocate(chunk, -1);
1094 goto restart;
1095
1096 area_found:
1097 spin_unlock_irq(&pcpu_lock);
1098
1099 /* populate, map and clear the area */
1100 if (pcpu_populate_chunk(chunk, off, size)) {
1101 spin_lock_irq(&pcpu_lock);
1102 pcpu_free_area(chunk, off);
1103 goto fail_unlock;
1104 }
1105
1106 mutex_unlock(&pcpu_alloc_mutex);
1107
1108 /* return address relative to base address */
1109 return __addr_to_pcpu_ptr(chunk->base_addr + off);
1110
1111 fail_unlock:
1112 spin_unlock_irq(&pcpu_lock);
1113 fail_unlock_mutex:
1114 mutex_unlock(&pcpu_alloc_mutex);
1115 return NULL;
1116 }
1117
1118 /**
1119 * __alloc_percpu - allocate dynamic percpu area
1120 * @size: size of area to allocate in bytes
1121 * @align: alignment of area (max PAGE_SIZE)
1122 *
1123 * Allocate percpu area of @size bytes aligned at @align. Might
1124 * sleep. Might trigger writeouts.
1125 *
1126 * CONTEXT:
1127 * Does GFP_KERNEL allocation.
1128 *
1129 * RETURNS:
1130 * Percpu pointer to the allocated area on success, NULL on failure.
1131 */
1132 void *__alloc_percpu(size_t size, size_t align)
1133 {
1134 return pcpu_alloc(size, align, false);
1135 }
1136 EXPORT_SYMBOL_GPL(__alloc_percpu);
1137
1138 /**
1139 * __alloc_reserved_percpu - allocate reserved percpu area
1140 * @size: size of area to allocate in bytes
1141 * @align: alignment of area (max PAGE_SIZE)
1142 *
1143 * Allocate percpu area of @size bytes aligned at @align from reserved
1144 * percpu area if arch has set it up; otherwise, allocation is served
1145 * from the same dynamic area. Might sleep. Might trigger writeouts.
1146 *
1147 * CONTEXT:
1148 * Does GFP_KERNEL allocation.
1149 *
1150 * RETURNS:
1151 * Percpu pointer to the allocated area on success, NULL on failure.
1152 */
1153 void *__alloc_reserved_percpu(size_t size, size_t align)
1154 {
1155 return pcpu_alloc(size, align, true);
1156 }
1157
1158 /**
1159 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1160 * @work: unused
1161 *
1162 * Reclaim all fully free chunks except for the first one.
1163 *
1164 * CONTEXT:
1165 * workqueue context.
1166 */
1167 static void pcpu_reclaim(struct work_struct *work)
1168 {
1169 LIST_HEAD(todo);
1170 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1171 struct pcpu_chunk *chunk, *next;
1172
1173 mutex_lock(&pcpu_alloc_mutex);
1174 spin_lock_irq(&pcpu_lock);
1175
1176 list_for_each_entry_safe(chunk, next, head, list) {
1177 WARN_ON(chunk->immutable);
1178
1179 /* spare the first one */
1180 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1181 continue;
1182
1183 list_move(&chunk->list, &todo);
1184 }
1185
1186 spin_unlock_irq(&pcpu_lock);
1187
1188 list_for_each_entry_safe(chunk, next, &todo, list) {
1189 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1190 free_pcpu_chunk(chunk);
1191 }
1192
1193 mutex_unlock(&pcpu_alloc_mutex);
1194 }
1195
1196 /**
1197 * free_percpu - free percpu area
1198 * @ptr: pointer to area to free
1199 *
1200 * Free percpu area @ptr.
1201 *
1202 * CONTEXT:
1203 * Can be called from atomic context.
1204 */
1205 void free_percpu(void *ptr)
1206 {
1207 void *addr = __pcpu_ptr_to_addr(ptr);
1208 struct pcpu_chunk *chunk;
1209 unsigned long flags;
1210 int off;
1211
1212 if (!ptr)
1213 return;
1214
1215 spin_lock_irqsave(&pcpu_lock, flags);
1216
1217 chunk = pcpu_chunk_addr_search(addr);
1218 off = addr - chunk->base_addr;
1219
1220 pcpu_free_area(chunk, off);
1221
1222 /* if there are more than one fully free chunks, wake up grim reaper */
1223 if (chunk->free_size == pcpu_unit_size) {
1224 struct pcpu_chunk *pos;
1225
1226 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1227 if (pos != chunk) {
1228 schedule_work(&pcpu_reclaim_work);
1229 break;
1230 }
1231 }
1232
1233 spin_unlock_irqrestore(&pcpu_lock, flags);
1234 }
1235 EXPORT_SYMBOL_GPL(free_percpu);
1236
1237 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1238 size_t reserved_size,
1239 ssize_t *dyn_sizep)
1240 {
1241 size_t size_sum;
1242
1243 size_sum = PFN_ALIGN(static_size + reserved_size +
1244 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1245 if (*dyn_sizep != 0)
1246 *dyn_sizep = size_sum - static_size - reserved_size;
1247
1248 return size_sum;
1249 }
1250
1251 /**
1252 * pcpu_alloc_alloc_info - allocate percpu allocation info
1253 * @nr_groups: the number of groups
1254 * @nr_units: the number of units
1255 *
1256 * Allocate ai which is large enough for @nr_groups groups containing
1257 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1258 * cpu_map array which is long enough for @nr_units and filled with
1259 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1260 * pointer of other groups.
1261 *
1262 * RETURNS:
1263 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1264 * failure.
1265 */
1266 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1267 int nr_units)
1268 {
1269 struct pcpu_alloc_info *ai;
1270 size_t base_size, ai_size;
1271 void *ptr;
1272 int unit;
1273
1274 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1275 __alignof__(ai->groups[0].cpu_map[0]));
1276 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1277
1278 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1279 if (!ptr)
1280 return NULL;
1281 ai = ptr;
1282 ptr += base_size;
1283
1284 ai->groups[0].cpu_map = ptr;
1285
1286 for (unit = 0; unit < nr_units; unit++)
1287 ai->groups[0].cpu_map[unit] = NR_CPUS;
1288
1289 ai->nr_groups = nr_groups;
1290 ai->__ai_size = PFN_ALIGN(ai_size);
1291
1292 return ai;
1293 }
1294
1295 /**
1296 * pcpu_free_alloc_info - free percpu allocation info
1297 * @ai: pcpu_alloc_info to free
1298 *
1299 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1300 */
1301 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1302 {
1303 free_bootmem(__pa(ai), ai->__ai_size);
1304 }
1305
1306 /**
1307 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1308 * @reserved_size: the size of reserved percpu area in bytes
1309 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1310 * @atom_size: allocation atom size
1311 * @cpu_distance_fn: callback to determine distance between cpus, optional
1312 *
1313 * This function determines grouping of units, their mappings to cpus
1314 * and other parameters considering needed percpu size, allocation
1315 * atom size and distances between CPUs.
1316 *
1317 * Groups are always mutliples of atom size and CPUs which are of
1318 * LOCAL_DISTANCE both ways are grouped together and share space for
1319 * units in the same group. The returned configuration is guaranteed
1320 * to have CPUs on different nodes on different groups and >=75% usage
1321 * of allocated virtual address space.
1322 *
1323 * RETURNS:
1324 * On success, pointer to the new allocation_info is returned. On
1325 * failure, ERR_PTR value is returned.
1326 */
1327 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1328 size_t reserved_size, ssize_t dyn_size,
1329 size_t atom_size,
1330 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1331 {
1332 static int group_map[NR_CPUS] __initdata;
1333 static int group_cnt[NR_CPUS] __initdata;
1334 const size_t static_size = __per_cpu_end - __per_cpu_start;
1335 int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1336 size_t size_sum, min_unit_size, alloc_size;
1337 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1338 int last_allocs, group, unit;
1339 unsigned int cpu, tcpu;
1340 struct pcpu_alloc_info *ai;
1341 unsigned int *cpu_map;
1342
1343 /*
1344 * Determine min_unit_size, alloc_size and max_upa such that
1345 * alloc_size is multiple of atom_size and is the smallest
1346 * which can accomodate 4k aligned segments which are equal to
1347 * or larger than min_unit_size.
1348 */
1349 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1350 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1351
1352 alloc_size = roundup(min_unit_size, atom_size);
1353 upa = alloc_size / min_unit_size;
1354 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1355 upa--;
1356 max_upa = upa;
1357
1358 /* group cpus according to their proximity */
1359 for_each_possible_cpu(cpu) {
1360 group = 0;
1361 next_group:
1362 for_each_possible_cpu(tcpu) {
1363 if (cpu == tcpu)
1364 break;
1365 if (group_map[tcpu] == group && cpu_distance_fn &&
1366 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1367 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1368 group++;
1369 nr_groups = max(nr_groups, group + 1);
1370 goto next_group;
1371 }
1372 }
1373 group_map[cpu] = group;
1374 group_cnt[group]++;
1375 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1376 }
1377
1378 /*
1379 * Expand unit size until address space usage goes over 75%
1380 * and then as much as possible without using more address
1381 * space.
1382 */
1383 last_allocs = INT_MAX;
1384 for (upa = max_upa; upa; upa--) {
1385 int allocs = 0, wasted = 0;
1386
1387 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1388 continue;
1389
1390 for (group = 0; group < nr_groups; group++) {
1391 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1392 allocs += this_allocs;
1393 wasted += this_allocs * upa - group_cnt[group];
1394 }
1395
1396 /*
1397 * Don't accept if wastage is over 25%. The
1398 * greater-than comparison ensures upa==1 always
1399 * passes the following check.
1400 */
1401 if (wasted > num_possible_cpus() / 3)
1402 continue;
1403
1404 /* and then don't consume more memory */
1405 if (allocs > last_allocs)
1406 break;
1407 last_allocs = allocs;
1408 best_upa = upa;
1409 }
1410 upa = best_upa;
1411
1412 /* allocate and fill alloc_info */
1413 for (group = 0; group < nr_groups; group++)
1414 nr_units += roundup(group_cnt[group], upa);
1415
1416 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1417 if (!ai)
1418 return ERR_PTR(-ENOMEM);
1419 cpu_map = ai->groups[0].cpu_map;
1420
1421 for (group = 0; group < nr_groups; group++) {
1422 ai->groups[group].cpu_map = cpu_map;
1423 cpu_map += roundup(group_cnt[group], upa);
1424 }
1425
1426 ai->static_size = static_size;
1427 ai->reserved_size = reserved_size;
1428 ai->dyn_size = dyn_size;
1429 ai->unit_size = alloc_size / upa;
1430 ai->atom_size = atom_size;
1431 ai->alloc_size = alloc_size;
1432
1433 for (group = 0, unit = 0; group_cnt[group]; group++) {
1434 struct pcpu_group_info *gi = &ai->groups[group];
1435
1436 /*
1437 * Initialize base_offset as if all groups are located
1438 * back-to-back. The caller should update this to
1439 * reflect actual allocation.
1440 */
1441 gi->base_offset = unit * ai->unit_size;
1442
1443 for_each_possible_cpu(cpu)
1444 if (group_map[cpu] == group)
1445 gi->cpu_map[gi->nr_units++] = cpu;
1446 gi->nr_units = roundup(gi->nr_units, upa);
1447 unit += gi->nr_units;
1448 }
1449 BUG_ON(unit != nr_units);
1450
1451 return ai;
1452 }
1453
1454 /**
1455 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1456 * @lvl: loglevel
1457 * @ai: allocation info to dump
1458 *
1459 * Print out information about @ai using loglevel @lvl.
1460 */
1461 static void pcpu_dump_alloc_info(const char *lvl,
1462 const struct pcpu_alloc_info *ai)
1463 {
1464 int group_width = 1, cpu_width = 1, width;
1465 char empty_str[] = "--------";
1466 int alloc = 0, alloc_end = 0;
1467 int group, v;
1468 int upa, apl; /* units per alloc, allocs per line */
1469
1470 v = ai->nr_groups;
1471 while (v /= 10)
1472 group_width++;
1473
1474 v = num_possible_cpus();
1475 while (v /= 10)
1476 cpu_width++;
1477 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1478
1479 upa = ai->alloc_size / ai->unit_size;
1480 width = upa * (cpu_width + 1) + group_width + 3;
1481 apl = rounddown_pow_of_two(max(60 / width, 1));
1482
1483 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1484 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1485 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1486
1487 for (group = 0; group < ai->nr_groups; group++) {
1488 const struct pcpu_group_info *gi = &ai->groups[group];
1489 int unit = 0, unit_end = 0;
1490
1491 BUG_ON(gi->nr_units % upa);
1492 for (alloc_end += gi->nr_units / upa;
1493 alloc < alloc_end; alloc++) {
1494 if (!(alloc % apl)) {
1495 printk("\n");
1496 printk("%spcpu-alloc: ", lvl);
1497 }
1498 printk("[%0*d] ", group_width, group);
1499
1500 for (unit_end += upa; unit < unit_end; unit++)
1501 if (gi->cpu_map[unit] != NR_CPUS)
1502 printk("%0*d ", cpu_width,
1503 gi->cpu_map[unit]);
1504 else
1505 printk("%s ", empty_str);
1506 }
1507 }
1508 printk("\n");
1509 }
1510
1511 /**
1512 * pcpu_setup_first_chunk - initialize the first percpu chunk
1513 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1514 * @base_addr: mapped address
1515 *
1516 * Initialize the first percpu chunk which contains the kernel static
1517 * perpcu area. This function is to be called from arch percpu area
1518 * setup path.
1519 *
1520 * @ai contains all information necessary to initialize the first
1521 * chunk and prime the dynamic percpu allocator.
1522 *
1523 * @ai->static_size is the size of static percpu area.
1524 *
1525 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1526 * reserve after the static area in the first chunk. This reserves
1527 * the first chunk such that it's available only through reserved
1528 * percpu allocation. This is primarily used to serve module percpu
1529 * static areas on architectures where the addressing model has
1530 * limited offset range for symbol relocations to guarantee module
1531 * percpu symbols fall inside the relocatable range.
1532 *
1533 * @ai->dyn_size determines the number of bytes available for dynamic
1534 * allocation in the first chunk. The area between @ai->static_size +
1535 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1536 *
1537 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1538 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1539 * @ai->dyn_size.
1540 *
1541 * @ai->atom_size is the allocation atom size and used as alignment
1542 * for vm areas.
1543 *
1544 * @ai->alloc_size is the allocation size and always multiple of
1545 * @ai->atom_size. This is larger than @ai->atom_size if
1546 * @ai->unit_size is larger than @ai->atom_size.
1547 *
1548 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1549 * percpu areas. Units which should be colocated are put into the
1550 * same group. Dynamic VM areas will be allocated according to these
1551 * groupings. If @ai->nr_groups is zero, a single group containing
1552 * all units is assumed.
1553 *
1554 * The caller should have mapped the first chunk at @base_addr and
1555 * copied static data to each unit.
1556 *
1557 * If the first chunk ends up with both reserved and dynamic areas, it
1558 * is served by two chunks - one to serve the core static and reserved
1559 * areas and the other for the dynamic area. They share the same vm
1560 * and page map but uses different area allocation map to stay away
1561 * from each other. The latter chunk is circulated in the chunk slots
1562 * and available for dynamic allocation like any other chunks.
1563 *
1564 * RETURNS:
1565 * 0 on success, -errno on failure.
1566 */
1567 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1568 void *base_addr)
1569 {
1570 static int smap[2], dmap[2];
1571 size_t dyn_size = ai->dyn_size;
1572 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1573 struct pcpu_chunk *schunk, *dchunk = NULL;
1574 unsigned long *unit_off;
1575 unsigned int cpu;
1576 int *unit_map;
1577 int group, unit, i;
1578
1579 /* sanity checks */
1580 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1581 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1582 BUG_ON(ai->nr_groups <= 0);
1583 BUG_ON(!ai->static_size);
1584 BUG_ON(!base_addr);
1585 BUG_ON(ai->unit_size < size_sum);
1586 BUG_ON(ai->unit_size & ~PAGE_MASK);
1587 BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1588
1589 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1590
1591 /* determine number of units and initialize unit_map and base */
1592 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1593 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1594
1595 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1596 unit_map[cpu] = NR_CPUS;
1597 pcpu_first_unit_cpu = NR_CPUS;
1598
1599 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1600 const struct pcpu_group_info *gi = &ai->groups[group];
1601
1602 for (i = 0; i < gi->nr_units; i++) {
1603 cpu = gi->cpu_map[i];
1604 if (cpu == NR_CPUS)
1605 continue;
1606
1607 BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu));
1608 BUG_ON(unit_map[cpu] != NR_CPUS);
1609
1610 unit_map[cpu] = unit + i;
1611 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1612
1613 if (pcpu_first_unit_cpu == NR_CPUS)
1614 pcpu_first_unit_cpu = cpu;
1615 }
1616 }
1617 pcpu_last_unit_cpu = cpu;
1618 pcpu_nr_units = unit;
1619
1620 for_each_possible_cpu(cpu)
1621 BUG_ON(unit_map[cpu] == NR_CPUS);
1622
1623 pcpu_unit_map = unit_map;
1624 pcpu_unit_offsets = unit_off;
1625
1626 /* determine basic parameters */
1627 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1628 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1629 pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
1630 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1631 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1632
1633 /*
1634 * Allocate chunk slots. The additional last slot is for
1635 * empty chunks.
1636 */
1637 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1638 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1639 for (i = 0; i < pcpu_nr_slots; i++)
1640 INIT_LIST_HEAD(&pcpu_slot[i]);
1641
1642 /*
1643 * Initialize static chunk. If reserved_size is zero, the
1644 * static chunk covers static area + dynamic allocation area
1645 * in the first chunk. If reserved_size is not zero, it
1646 * covers static area + reserved area (mostly used for module
1647 * static percpu allocation).
1648 */
1649 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1650 INIT_LIST_HEAD(&schunk->list);
1651 schunk->base_addr = base_addr;
1652 schunk->map = smap;
1653 schunk->map_alloc = ARRAY_SIZE(smap);
1654 schunk->immutable = true;
1655 bitmap_fill(schunk->populated, pcpu_unit_pages);
1656
1657 if (ai->reserved_size) {
1658 schunk->free_size = ai->reserved_size;
1659 pcpu_reserved_chunk = schunk;
1660 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1661 } else {
1662 schunk->free_size = dyn_size;
1663 dyn_size = 0; /* dynamic area covered */
1664 }
1665 schunk->contig_hint = schunk->free_size;
1666
1667 schunk->map[schunk->map_used++] = -ai->static_size;
1668 if (schunk->free_size)
1669 schunk->map[schunk->map_used++] = schunk->free_size;
1670
1671 /* init dynamic chunk if necessary */
1672 if (dyn_size) {
1673 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1674 INIT_LIST_HEAD(&dchunk->list);
1675 dchunk->base_addr = base_addr;
1676 dchunk->map = dmap;
1677 dchunk->map_alloc = ARRAY_SIZE(dmap);
1678 dchunk->immutable = true;
1679 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1680
1681 dchunk->contig_hint = dchunk->free_size = dyn_size;
1682 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1683 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1684 }
1685
1686 /* link the first chunk in */
1687 pcpu_first_chunk = dchunk ?: schunk;
1688 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1689
1690 /* we're done */
1691 pcpu_base_addr = base_addr;
1692 return 0;
1693 }
1694
1695 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1696 [PCPU_FC_AUTO] = "auto",
1697 [PCPU_FC_EMBED] = "embed",
1698 [PCPU_FC_PAGE] = "page",
1699 [PCPU_FC_LPAGE] = "lpage",
1700 };
1701
1702 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1703
1704 static int __init percpu_alloc_setup(char *str)
1705 {
1706 if (0)
1707 /* nada */;
1708 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1709 else if (!strcmp(str, "embed"))
1710 pcpu_chosen_fc = PCPU_FC_EMBED;
1711 #endif
1712 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1713 else if (!strcmp(str, "page"))
1714 pcpu_chosen_fc = PCPU_FC_PAGE;
1715 #endif
1716 #ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
1717 else if (!strcmp(str, "lpage"))
1718 pcpu_chosen_fc = PCPU_FC_LPAGE;
1719 #endif
1720 else
1721 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1722
1723 return 0;
1724 }
1725 early_param("percpu_alloc", percpu_alloc_setup);
1726
1727 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1728 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1729 /**
1730 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1731 * @reserved_size: the size of reserved percpu area in bytes
1732 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1733 *
1734 * This is a helper to ease setting up embedded first percpu chunk and
1735 * can be called where pcpu_setup_first_chunk() is expected.
1736 *
1737 * If this function is used to setup the first chunk, it is allocated
1738 * as a contiguous area using bootmem allocator and used as-is without
1739 * being mapped into vmalloc area. This enables the first chunk to
1740 * piggy back on the linear physical mapping which often uses larger
1741 * page size.
1742 *
1743 * When @dyn_size is positive, dynamic area might be larger than
1744 * specified to fill page alignment. When @dyn_size is auto,
1745 * @dyn_size is just big enough to fill page alignment after static
1746 * and reserved areas.
1747 *
1748 * If the needed size is smaller than the minimum or specified unit
1749 * size, the leftover is returned to the bootmem allocator.
1750 *
1751 * RETURNS:
1752 * 0 on success, -errno on failure.
1753 */
1754 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size)
1755 {
1756 struct pcpu_alloc_info *ai;
1757 size_t size_sum, chunk_size;
1758 void *base;
1759 int unit;
1760 int rc;
1761
1762 ai = pcpu_build_alloc_info(reserved_size, dyn_size, PAGE_SIZE, NULL);
1763 if (IS_ERR(ai))
1764 return PTR_ERR(ai);
1765 BUG_ON(ai->nr_groups != 1);
1766 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1767
1768 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1769 chunk_size = ai->unit_size * num_possible_cpus();
1770
1771 base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
1772 __pa(MAX_DMA_ADDRESS));
1773 if (!base) {
1774 pr_warning("PERCPU: failed to allocate %zu bytes for "
1775 "embedding\n", chunk_size);
1776 rc = -ENOMEM;
1777 goto out_free_ai;
1778 }
1779
1780 /* return the leftover and copy */
1781 for (unit = 0; unit < num_possible_cpus(); unit++) {
1782 void *ptr = base + unit * ai->unit_size;
1783
1784 free_bootmem(__pa(ptr + size_sum), ai->unit_size - size_sum);
1785 memcpy(ptr, __per_cpu_load, ai->static_size);
1786 }
1787
1788 /* we're ready, commit */
1789 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1790 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1791 ai->dyn_size, ai->unit_size);
1792
1793 rc = pcpu_setup_first_chunk(ai, base);
1794 out_free_ai:
1795 pcpu_free_alloc_info(ai);
1796 return rc;
1797 }
1798 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1799 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1800
1801 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1802 /**
1803 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1804 * @reserved_size: the size of reserved percpu area in bytes
1805 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1806 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1807 * @populate_pte_fn: function to populate pte
1808 *
1809 * This is a helper to ease setting up page-remapped first percpu
1810 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1811 *
1812 * This is the basic allocator. Static percpu area is allocated
1813 * page-by-page into vmalloc area.
1814 *
1815 * RETURNS:
1816 * 0 on success, -errno on failure.
1817 */
1818 int __init pcpu_page_first_chunk(size_t reserved_size,
1819 pcpu_fc_alloc_fn_t alloc_fn,
1820 pcpu_fc_free_fn_t free_fn,
1821 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1822 {
1823 static struct vm_struct vm;
1824 struct pcpu_alloc_info *ai;
1825 char psize_str[16];
1826 int unit_pages;
1827 size_t pages_size;
1828 struct page **pages;
1829 int unit, i, j, rc;
1830
1831 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1832
1833 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1834 if (IS_ERR(ai))
1835 return PTR_ERR(ai);
1836 BUG_ON(ai->nr_groups != 1);
1837 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1838
1839 unit_pages = ai->unit_size >> PAGE_SHIFT;
1840
1841 /* unaligned allocations can't be freed, round up to page size */
1842 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1843 sizeof(pages[0]));
1844 pages = alloc_bootmem(pages_size);
1845
1846 /* allocate pages */
1847 j = 0;
1848 for (unit = 0; unit < num_possible_cpus(); unit++)
1849 for (i = 0; i < unit_pages; i++) {
1850 unsigned int cpu = ai->groups[0].cpu_map[unit];
1851 void *ptr;
1852
1853 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1854 if (!ptr) {
1855 pr_warning("PERCPU: failed to allocate %s page "
1856 "for cpu%u\n", psize_str, cpu);
1857 goto enomem;
1858 }
1859 pages[j++] = virt_to_page(ptr);
1860 }
1861
1862 /* allocate vm area, map the pages and copy static data */
1863 vm.flags = VM_ALLOC;
1864 vm.size = num_possible_cpus() * ai->unit_size;
1865 vm_area_register_early(&vm, PAGE_SIZE);
1866
1867 for (unit = 0; unit < num_possible_cpus(); unit++) {
1868 unsigned long unit_addr =
1869 (unsigned long)vm.addr + unit * ai->unit_size;
1870
1871 for (i = 0; i < unit_pages; i++)
1872 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1873
1874 /* pte already populated, the following shouldn't fail */
1875 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1876 unit_pages);
1877 if (rc < 0)
1878 panic("failed to map percpu area, err=%d\n", rc);
1879
1880 /*
1881 * FIXME: Archs with virtual cache should flush local
1882 * cache for the linear mapping here - something
1883 * equivalent to flush_cache_vmap() on the local cpu.
1884 * flush_cache_vmap() can't be used as most supporting
1885 * data structures are not set up yet.
1886 */
1887
1888 /* copy static data */
1889 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1890 }
1891
1892 /* we're ready, commit */
1893 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1894 unit_pages, psize_str, vm.addr, ai->static_size,
1895 ai->reserved_size, ai->dyn_size);
1896
1897 rc = pcpu_setup_first_chunk(ai, vm.addr);
1898 goto out_free_ar;
1899
1900 enomem:
1901 while (--j >= 0)
1902 free_fn(page_address(pages[j]), PAGE_SIZE);
1903 rc = -ENOMEM;
1904 out_free_ar:
1905 free_bootmem(__pa(pages), pages_size);
1906 pcpu_free_alloc_info(ai);
1907 return rc;
1908 }
1909 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
1910
1911 #ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
1912 struct pcpul_ent {
1913 void *ptr;
1914 void *map_addr;
1915 };
1916
1917 static size_t pcpul_size;
1918 static size_t pcpul_lpage_size;
1919 static int pcpul_nr_lpages;
1920 static struct pcpul_ent *pcpul_map;
1921
1922 static bool __init pcpul_unit_to_cpu(int unit, const struct pcpu_alloc_info *ai,
1923 unsigned int *cpup)
1924 {
1925 int group, cunit;
1926
1927 for (group = 0, cunit = 0; group < ai->nr_groups; group++) {
1928 const struct pcpu_group_info *gi = &ai->groups[group];
1929
1930 if (unit < cunit + gi->nr_units) {
1931 if (cpup)
1932 *cpup = gi->cpu_map[unit - cunit];
1933 return true;
1934 }
1935 cunit += gi->nr_units;
1936 }
1937
1938 return false;
1939 }
1940
1941 static int __init pcpul_cpu_to_unit(int cpu, const struct pcpu_alloc_info *ai)
1942 {
1943 int group, unit, i;
1944
1945 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1946 const struct pcpu_group_info *gi = &ai->groups[group];
1947
1948 for (i = 0; i < gi->nr_units; i++)
1949 if (gi->cpu_map[i] == cpu)
1950 return unit + i;
1951 }
1952 BUG();
1953 }
1954
1955 /**
1956 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
1957 * @ai: pcpu_alloc_info
1958 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
1959 * @free_fn: function to free percpu memory, @size <= lpage_size
1960 * @map_fn: function to map percpu lpage, always called with lpage_size
1961 *
1962 * This allocator uses large page to build and map the first chunk.
1963 * Unlike other helpers, the caller should provide fully initialized
1964 * @ai. This can be done using pcpu_build_alloc_info(). This two
1965 * stage initialization is to allow arch code to evaluate the
1966 * parameters before committing to it.
1967 *
1968 * Large pages are allocated as directed by @unit_map and other
1969 * parameters and mapped to vmalloc space. Unused holes are returned
1970 * to the page allocator. Note that these holes end up being actively
1971 * mapped twice - once to the physical mapping and to the vmalloc area
1972 * for the first percpu chunk. Depending on architecture, this might
1973 * cause problem when changing page attributes of the returned area.
1974 * These double mapped areas can be detected using
1975 * pcpu_lpage_remapped().
1976 *
1977 * RETURNS:
1978 * 0 on success, -errno on failure.
1979 */
1980 int __init pcpu_lpage_first_chunk(const struct pcpu_alloc_info *ai,
1981 pcpu_fc_alloc_fn_t alloc_fn,
1982 pcpu_fc_free_fn_t free_fn,
1983 pcpu_fc_map_fn_t map_fn)
1984 {
1985 static struct vm_struct vm;
1986 const size_t lpage_size = ai->atom_size;
1987 size_t chunk_size, map_size;
1988 unsigned int cpu;
1989 int i, j, unit, nr_units, rc;
1990
1991 nr_units = 0;
1992 for (i = 0; i < ai->nr_groups; i++)
1993 nr_units += ai->groups[i].nr_units;
1994
1995 chunk_size = ai->unit_size * nr_units;
1996 BUG_ON(chunk_size % lpage_size);
1997
1998 pcpul_size = ai->static_size + ai->reserved_size + ai->dyn_size;
1999 pcpul_lpage_size = lpage_size;
2000 pcpul_nr_lpages = chunk_size / lpage_size;
2001
2002 /* allocate pointer array and alloc large pages */
2003 map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
2004 pcpul_map = alloc_bootmem(map_size);
2005
2006 /* allocate all pages */
2007 for (i = 0; i < pcpul_nr_lpages; i++) {
2008 size_t offset = i * lpage_size;
2009 int first_unit = offset / ai->unit_size;
2010 int last_unit = (offset + lpage_size - 1) / ai->unit_size;
2011 void *ptr;
2012
2013 /* find out which cpu is mapped to this unit */
2014 for (unit = first_unit; unit <= last_unit; unit++)
2015 if (pcpul_unit_to_cpu(unit, ai, &cpu))
2016 goto found;
2017 continue;
2018 found:
2019 ptr = alloc_fn(cpu, lpage_size, lpage_size);
2020 if (!ptr) {
2021 pr_warning("PERCPU: failed to allocate large page "
2022 "for cpu%u\n", cpu);
2023 goto enomem;
2024 }
2025
2026 pcpul_map[i].ptr = ptr;
2027 }
2028
2029 /* return unused holes */
2030 for (unit = 0; unit < nr_units; unit++) {
2031 size_t start = unit * ai->unit_size;
2032 size_t end = start + ai->unit_size;
2033 size_t off, next;
2034
2035 /* don't free used part of occupied unit */
2036 if (pcpul_unit_to_cpu(unit, ai, NULL))
2037 start += pcpul_size;
2038
2039 /* unit can span more than one page, punch the holes */
2040 for (off = start; off < end; off = next) {
2041 void *ptr = pcpul_map[off / lpage_size].ptr;
2042 next = min(roundup(off + 1, lpage_size), end);
2043 if (ptr)
2044 free_fn(ptr + off % lpage_size, next - off);
2045 }
2046 }
2047
2048 /* allocate address, map and copy */
2049 vm.flags = VM_ALLOC;
2050 vm.size = chunk_size;
2051 vm_area_register_early(&vm, ai->unit_size);
2052
2053 for (i = 0; i < pcpul_nr_lpages; i++) {
2054 if (!pcpul_map[i].ptr)
2055 continue;
2056 pcpul_map[i].map_addr = vm.addr + i * lpage_size;
2057 map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
2058 }
2059
2060 for_each_possible_cpu(cpu)
2061 memcpy(vm.addr + pcpul_cpu_to_unit(cpu, ai) * ai->unit_size,
2062 __per_cpu_load, ai->static_size);
2063
2064 /* we're ready, commit */
2065 pr_info("PERCPU: large pages @%p s%zu r%zu d%zu u%zu\n",
2066 vm.addr, ai->static_size, ai->reserved_size, ai->dyn_size,
2067 ai->unit_size);
2068
2069 rc = pcpu_setup_first_chunk(ai, vm.addr);
2070
2071 /*
2072 * Sort pcpul_map array for pcpu_lpage_remapped(). Unmapped
2073 * lpages are pushed to the end and trimmed.
2074 */
2075 for (i = 0; i < pcpul_nr_lpages - 1; i++)
2076 for (j = i + 1; j < pcpul_nr_lpages; j++) {
2077 struct pcpul_ent tmp;
2078
2079 if (!pcpul_map[j].ptr)
2080 continue;
2081 if (pcpul_map[i].ptr &&
2082 pcpul_map[i].ptr < pcpul_map[j].ptr)
2083 continue;
2084
2085 tmp = pcpul_map[i];
2086 pcpul_map[i] = pcpul_map[j];
2087 pcpul_map[j] = tmp;
2088 }
2089
2090 while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
2091 pcpul_nr_lpages--;
2092
2093 return rc;
2094
2095 enomem:
2096 for (i = 0; i < pcpul_nr_lpages; i++)
2097 if (pcpul_map[i].ptr)
2098 free_fn(pcpul_map[i].ptr, lpage_size);
2099 free_bootmem(__pa(pcpul_map), map_size);
2100 return -ENOMEM;
2101 }
2102
2103 /**
2104 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
2105 * @kaddr: the kernel address in question
2106 *
2107 * Determine whether @kaddr falls in the pcpul recycled area. This is
2108 * used by pageattr to detect VM aliases and break up the pcpu large
2109 * page mapping such that the same physical page is not mapped under
2110 * different attributes.
2111 *
2112 * The recycled area is always at the tail of a partially used large
2113 * page.
2114 *
2115 * RETURNS:
2116 * Address of corresponding remapped pcpu address if match is found;
2117 * otherwise, NULL.
2118 */
2119 void *pcpu_lpage_remapped(void *kaddr)
2120 {
2121 unsigned long lpage_mask = pcpul_lpage_size - 1;
2122 void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
2123 unsigned long offset = (unsigned long)kaddr & lpage_mask;
2124 int left = 0, right = pcpul_nr_lpages - 1;
2125 int pos;
2126
2127 /* pcpul in use at all? */
2128 if (!pcpul_map)
2129 return NULL;
2130
2131 /* okay, perform binary search */
2132 while (left <= right) {
2133 pos = (left + right) / 2;
2134
2135 if (pcpul_map[pos].ptr < lpage_addr)
2136 left = pos + 1;
2137 else if (pcpul_map[pos].ptr > lpage_addr)
2138 right = pos - 1;
2139 else
2140 return pcpul_map[pos].map_addr + offset;
2141 }
2142
2143 return NULL;
2144 }
2145 #endif /* CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK */
2146
2147 /*
2148 * Generic percpu area setup.
2149 *
2150 * The embedding helper is used because its behavior closely resembles
2151 * the original non-dynamic generic percpu area setup. This is
2152 * important because many archs have addressing restrictions and might
2153 * fail if the percpu area is located far away from the previous
2154 * location. As an added bonus, in non-NUMA cases, embedding is
2155 * generally a good idea TLB-wise because percpu area can piggy back
2156 * on the physical linear memory mapping which uses large page
2157 * mappings on applicable archs.
2158 */
2159 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2160 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2161 EXPORT_SYMBOL(__per_cpu_offset);
2162
2163 void __init setup_per_cpu_areas(void)
2164 {
2165 unsigned long delta;
2166 unsigned int cpu;
2167 int rc;
2168
2169 /*
2170 * Always reserve area for module percpu variables. That's
2171 * what the legacy allocator did.
2172 */
2173 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2174 PERCPU_DYNAMIC_RESERVE);
2175 if (rc < 0)
2176 panic("Failed to initialized percpu areas.");
2177
2178 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2179 for_each_possible_cpu(cpu)
2180 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2181 }
2182 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */