]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/percpu.c
ALSA: hda/realtek - Fix silent output on MSI-GL73
[mirror_ubuntu-bionic-kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
9 *
10 * This file is released under the GPLv2 license.
11 *
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
16 *
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
21 *
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
28 *
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
32 *
33 * <Static | [Reserved] | Dynamic>
34 *
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
39 *
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
48 *
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
54 *
55 * To use this allocator, arch code should do the following:
56 *
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
60 *
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
63 */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
84
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92
93 #include "percpu-internal.h"
94
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
97
98 #define PCPU_EMPTY_POP_PAGES_LOW 2
99 #define PCPU_EMPTY_POP_PAGES_HIGH 4
100
101 #ifdef CONFIG_SMP
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr) \
105 (void __percpu *)((unsigned long)(addr) - \
106 (unsigned long)pcpu_base_addr + \
107 (unsigned long)__per_cpu_start)
108 #endif
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr) \
111 (void __force *)((unsigned long)(ptr) + \
112 (unsigned long)pcpu_base_addr - \
113 (unsigned long)__per_cpu_start)
114 #endif
115 #else /* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
119 #endif /* CONFIG_SMP */
120
121 static int pcpu_unit_pages __ro_after_init;
122 static int pcpu_unit_size __ro_after_init;
123 static int pcpu_nr_units __ro_after_init;
124 static int pcpu_atom_size __ro_after_init;
125 int pcpu_nr_slots __ro_after_init;
126 static size_t pcpu_chunk_struct_size __ro_after_init;
127
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init;
131
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr);
135
136 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
138
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init;
141 static const unsigned long *pcpu_group_offsets __ro_after_init;
142 static const size_t *pcpu_group_sizes __ro_after_init;
143
144 /*
145 * The first chunk which always exists. Note that unlike other
146 * chunks, this one can be allocated and mapped in several different
147 * ways and thus often doesn't live in the vmalloc area.
148 */
149 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
150
151 /*
152 * Optional reserved chunk. This chunk reserves part of the first
153 * chunk and serves it for reserved allocations. When the reserved
154 * region doesn't exist, the following variable is NULL.
155 */
156 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157
158 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
160
161 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks);
165
166 /*
167 * The number of empty populated pages, protected by pcpu_lock. The
168 * reserved chunk doesn't contribute to the count.
169 */
170 int pcpu_nr_empty_pop_pages;
171
172 /*
173 * Balance work is used to populate or destroy chunks asynchronously. We
174 * try to keep the number of populated free pages between
175 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
176 * empty chunk.
177 */
178 static void pcpu_balance_workfn(struct work_struct *work);
179 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
180 static bool pcpu_async_enabled __read_mostly;
181 static bool pcpu_atomic_alloc_failed;
182
183 static void pcpu_schedule_balance_work(void)
184 {
185 if (pcpu_async_enabled)
186 schedule_work(&pcpu_balance_work);
187 }
188
189 /**
190 * pcpu_addr_in_chunk - check if the address is served from this chunk
191 * @chunk: chunk of interest
192 * @addr: percpu address
193 *
194 * RETURNS:
195 * True if the address is served from this chunk.
196 */
197 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
198 {
199 void *start_addr, *end_addr;
200
201 if (!chunk)
202 return false;
203
204 start_addr = chunk->base_addr + chunk->start_offset;
205 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
206 chunk->end_offset;
207
208 return addr >= start_addr && addr < end_addr;
209 }
210
211 static int __pcpu_size_to_slot(int size)
212 {
213 int highbit = fls(size); /* size is in bytes */
214 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
215 }
216
217 static int pcpu_size_to_slot(int size)
218 {
219 if (size == pcpu_unit_size)
220 return pcpu_nr_slots - 1;
221 return __pcpu_size_to_slot(size);
222 }
223
224 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
225 {
226 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
227 return 0;
228
229 return pcpu_size_to_slot(chunk->free_bytes);
230 }
231
232 /* set the pointer to a chunk in a page struct */
233 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
234 {
235 page->index = (unsigned long)pcpu;
236 }
237
238 /* obtain pointer to a chunk from a page struct */
239 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
240 {
241 return (struct pcpu_chunk *)page->index;
242 }
243
244 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
245 {
246 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
247 }
248
249 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
250 {
251 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
252 }
253
254 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
255 unsigned int cpu, int page_idx)
256 {
257 return (unsigned long)chunk->base_addr +
258 pcpu_unit_page_offset(cpu, page_idx);
259 }
260
261 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
262 {
263 *rs = find_next_zero_bit(bitmap, end, *rs);
264 *re = find_next_bit(bitmap, end, *rs + 1);
265 }
266
267 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
268 {
269 *rs = find_next_bit(bitmap, end, *rs);
270 *re = find_next_zero_bit(bitmap, end, *rs + 1);
271 }
272
273 /*
274 * Bitmap region iterators. Iterates over the bitmap between
275 * [@start, @end) in @chunk. @rs and @re should be integer variables
276 * and will be set to start and end index of the current free region.
277 */
278 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
282
283 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
284 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
285 (rs) < (re); \
286 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
287
288 /*
289 * The following are helper functions to help access bitmaps and convert
290 * between bitmap offsets to address offsets.
291 */
292 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
293 {
294 return chunk->alloc_map +
295 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
296 }
297
298 static unsigned long pcpu_off_to_block_index(int off)
299 {
300 return off / PCPU_BITMAP_BLOCK_BITS;
301 }
302
303 static unsigned long pcpu_off_to_block_off(int off)
304 {
305 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
306 }
307
308 static unsigned long pcpu_block_off_to_off(int index, int off)
309 {
310 return index * PCPU_BITMAP_BLOCK_BITS + off;
311 }
312
313 /**
314 * pcpu_next_md_free_region - finds the next hint free area
315 * @chunk: chunk of interest
316 * @bit_off: chunk offset
317 * @bits: size of free area
318 *
319 * Helper function for pcpu_for_each_md_free_region. It checks
320 * block->contig_hint and performs aggregation across blocks to find the
321 * next hint. It modifies bit_off and bits in-place to be consumed in the
322 * loop.
323 */
324 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
325 int *bits)
326 {
327 int i = pcpu_off_to_block_index(*bit_off);
328 int block_off = pcpu_off_to_block_off(*bit_off);
329 struct pcpu_block_md *block;
330
331 *bits = 0;
332 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
333 block++, i++) {
334 /* handles contig area across blocks */
335 if (*bits) {
336 *bits += block->left_free;
337 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
338 continue;
339 return;
340 }
341
342 /*
343 * This checks three things. First is there a contig_hint to
344 * check. Second, have we checked this hint before by
345 * comparing the block_off. Third, is this the same as the
346 * right contig hint. In the last case, it spills over into
347 * the next block and should be handled by the contig area
348 * across blocks code.
349 */
350 *bits = block->contig_hint;
351 if (*bits && block->contig_hint_start >= block_off &&
352 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
353 *bit_off = pcpu_block_off_to_off(i,
354 block->contig_hint_start);
355 return;
356 }
357 /* reset to satisfy the second predicate above */
358 block_off = 0;
359
360 *bits = block->right_free;
361 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
362 }
363 }
364
365 /**
366 * pcpu_next_fit_region - finds fit areas for a given allocation request
367 * @chunk: chunk of interest
368 * @alloc_bits: size of allocation
369 * @align: alignment of area (max PAGE_SIZE)
370 * @bit_off: chunk offset
371 * @bits: size of free area
372 *
373 * Finds the next free region that is viable for use with a given size and
374 * alignment. This only returns if there is a valid area to be used for this
375 * allocation. block->first_free is returned if the allocation request fits
376 * within the block to see if the request can be fulfilled prior to the contig
377 * hint.
378 */
379 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
380 int align, int *bit_off, int *bits)
381 {
382 int i = pcpu_off_to_block_index(*bit_off);
383 int block_off = pcpu_off_to_block_off(*bit_off);
384 struct pcpu_block_md *block;
385
386 *bits = 0;
387 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
388 block++, i++) {
389 /* handles contig area across blocks */
390 if (*bits) {
391 *bits += block->left_free;
392 if (*bits >= alloc_bits)
393 return;
394 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
395 continue;
396 }
397
398 /* check block->contig_hint */
399 *bits = ALIGN(block->contig_hint_start, align) -
400 block->contig_hint_start;
401 /*
402 * This uses the block offset to determine if this has been
403 * checked in the prior iteration.
404 */
405 if (block->contig_hint &&
406 block->contig_hint_start >= block_off &&
407 block->contig_hint >= *bits + alloc_bits) {
408 *bits += alloc_bits + block->contig_hint_start -
409 block->first_free;
410 *bit_off = pcpu_block_off_to_off(i, block->first_free);
411 return;
412 }
413 /* reset to satisfy the second predicate above */
414 block_off = 0;
415
416 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
417 align);
418 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
419 *bit_off = pcpu_block_off_to_off(i, *bit_off);
420 if (*bits >= alloc_bits)
421 return;
422 }
423
424 /* no valid offsets were found - fail condition */
425 *bit_off = pcpu_chunk_map_bits(chunk);
426 }
427
428 /*
429 * Metadata free area iterators. These perform aggregation of free areas
430 * based on the metadata blocks and return the offset @bit_off and size in
431 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
432 * a fit is found for the allocation request.
433 */
434 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
435 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
436 (bit_off) < pcpu_chunk_map_bits((chunk)); \
437 (bit_off) += (bits) + 1, \
438 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
439
440 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
441 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
442 &(bits)); \
443 (bit_off) < pcpu_chunk_map_bits((chunk)); \
444 (bit_off) += (bits), \
445 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
446 &(bits)))
447
448 /**
449 * pcpu_mem_zalloc - allocate memory
450 * @size: bytes to allocate
451 * @gfp: allocation flags
452 *
453 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
454 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
455 * This is to facilitate passing through whitelisted flags. The
456 * returned memory is always zeroed.
457 *
458 * CONTEXT:
459 * Does GFP_KERNEL allocation.
460 *
461 * RETURNS:
462 * Pointer to the allocated area on success, NULL on failure.
463 */
464 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
465 {
466 if (WARN_ON_ONCE(!slab_is_available()))
467 return NULL;
468
469 if (size <= PAGE_SIZE)
470 return kzalloc(size, gfp | GFP_KERNEL);
471 else
472 return __vmalloc(size, gfp | GFP_KERNEL | __GFP_ZERO,
473 PAGE_KERNEL);
474 }
475
476 /**
477 * pcpu_mem_free - free memory
478 * @ptr: memory to free
479 *
480 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
481 */
482 static void pcpu_mem_free(void *ptr)
483 {
484 kvfree(ptr);
485 }
486
487 /**
488 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
489 * @chunk: chunk of interest
490 * @oslot: the previous slot it was on
491 *
492 * This function is called after an allocation or free changed @chunk.
493 * New slot according to the changed state is determined and @chunk is
494 * moved to the slot. Note that the reserved chunk is never put on
495 * chunk slots.
496 *
497 * CONTEXT:
498 * pcpu_lock.
499 */
500 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
501 {
502 int nslot = pcpu_chunk_slot(chunk);
503
504 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
505 if (oslot < nslot)
506 list_move(&chunk->list, &pcpu_slot[nslot]);
507 else
508 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
509 }
510 }
511
512 /**
513 * pcpu_cnt_pop_pages- counts populated backing pages in range
514 * @chunk: chunk of interest
515 * @bit_off: start offset
516 * @bits: size of area to check
517 *
518 * Calculates the number of populated pages in the region
519 * [page_start, page_end). This keeps track of how many empty populated
520 * pages are available and decide if async work should be scheduled.
521 *
522 * RETURNS:
523 * The nr of populated pages.
524 */
525 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
526 int bits)
527 {
528 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
529 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
530
531 if (page_start >= page_end)
532 return 0;
533
534 /*
535 * bitmap_weight counts the number of bits set in a bitmap up to
536 * the specified number of bits. This is counting the populated
537 * pages up to page_end and then subtracting the populated pages
538 * up to page_start to count the populated pages in
539 * [page_start, page_end).
540 */
541 return bitmap_weight(chunk->populated, page_end) -
542 bitmap_weight(chunk->populated, page_start);
543 }
544
545 /**
546 * pcpu_chunk_update - updates the chunk metadata given a free area
547 * @chunk: chunk of interest
548 * @bit_off: chunk offset
549 * @bits: size of free area
550 *
551 * This updates the chunk's contig hint and starting offset given a free area.
552 * Choose the best starting offset if the contig hint is equal.
553 */
554 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
555 {
556 if (bits > chunk->contig_bits) {
557 chunk->contig_bits_start = bit_off;
558 chunk->contig_bits = bits;
559 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
560 (!bit_off ||
561 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
562 /* use the start with the best alignment */
563 chunk->contig_bits_start = bit_off;
564 }
565 }
566
567 /**
568 * pcpu_chunk_refresh_hint - updates metadata about a chunk
569 * @chunk: chunk of interest
570 *
571 * Iterates over the metadata blocks to find the largest contig area.
572 * It also counts the populated pages and uses the delta to update the
573 * global count.
574 *
575 * Updates:
576 * chunk->contig_bits
577 * chunk->contig_bits_start
578 * nr_empty_pop_pages (chunk and global)
579 */
580 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
581 {
582 int bit_off, bits, nr_empty_pop_pages;
583
584 /* clear metadata */
585 chunk->contig_bits = 0;
586
587 bit_off = chunk->first_bit;
588 bits = nr_empty_pop_pages = 0;
589 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
590 pcpu_chunk_update(chunk, bit_off, bits);
591
592 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
593 }
594
595 /*
596 * Keep track of nr_empty_pop_pages.
597 *
598 * The chunk maintains the previous number of free pages it held,
599 * so the delta is used to update the global counter. The reserved
600 * chunk is not part of the free page count as they are populated
601 * at init and are special to serving reserved allocations.
602 */
603 if (chunk != pcpu_reserved_chunk)
604 pcpu_nr_empty_pop_pages +=
605 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
606
607 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
608 }
609
610 /**
611 * pcpu_block_update - updates a block given a free area
612 * @block: block of interest
613 * @start: start offset in block
614 * @end: end offset in block
615 *
616 * Updates a block given a known free area. The region [start, end) is
617 * expected to be the entirety of the free area within a block. Chooses
618 * the best starting offset if the contig hints are equal.
619 */
620 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
621 {
622 int contig = end - start;
623
624 block->first_free = min(block->first_free, start);
625 if (start == 0)
626 block->left_free = contig;
627
628 if (end == PCPU_BITMAP_BLOCK_BITS)
629 block->right_free = contig;
630
631 if (contig > block->contig_hint) {
632 block->contig_hint_start = start;
633 block->contig_hint = contig;
634 } else if (block->contig_hint_start && contig == block->contig_hint &&
635 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
636 /* use the start with the best alignment */
637 block->contig_hint_start = start;
638 }
639 }
640
641 /**
642 * pcpu_block_refresh_hint
643 * @chunk: chunk of interest
644 * @index: index of the metadata block
645 *
646 * Scans over the block beginning at first_free and updates the block
647 * metadata accordingly.
648 */
649 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
650 {
651 struct pcpu_block_md *block = chunk->md_blocks + index;
652 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
653 int rs, re; /* region start, region end */
654
655 /* clear hints */
656 block->contig_hint = 0;
657 block->left_free = block->right_free = 0;
658
659 /* iterate over free areas and update the contig hints */
660 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
661 PCPU_BITMAP_BLOCK_BITS) {
662 pcpu_block_update(block, rs, re);
663 }
664 }
665
666 /**
667 * pcpu_block_update_hint_alloc - update hint on allocation path
668 * @chunk: chunk of interest
669 * @bit_off: chunk offset
670 * @bits: size of request
671 *
672 * Updates metadata for the allocation path. The metadata only has to be
673 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
674 * scans are required if the block's contig hint is broken.
675 */
676 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
677 int bits)
678 {
679 struct pcpu_block_md *s_block, *e_block, *block;
680 int s_index, e_index; /* block indexes of the freed allocation */
681 int s_off, e_off; /* block offsets of the freed allocation */
682
683 /*
684 * Calculate per block offsets.
685 * The calculation uses an inclusive range, but the resulting offsets
686 * are [start, end). e_index always points to the last block in the
687 * range.
688 */
689 s_index = pcpu_off_to_block_index(bit_off);
690 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
691 s_off = pcpu_off_to_block_off(bit_off);
692 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
693
694 s_block = chunk->md_blocks + s_index;
695 e_block = chunk->md_blocks + e_index;
696
697 /*
698 * Update s_block.
699 * block->first_free must be updated if the allocation takes its place.
700 * If the allocation breaks the contig_hint, a scan is required to
701 * restore this hint.
702 */
703 if (s_off == s_block->first_free)
704 s_block->first_free = find_next_zero_bit(
705 pcpu_index_alloc_map(chunk, s_index),
706 PCPU_BITMAP_BLOCK_BITS,
707 s_off + bits);
708
709 if (s_off >= s_block->contig_hint_start &&
710 s_off < s_block->contig_hint_start + s_block->contig_hint) {
711 /* block contig hint is broken - scan to fix it */
712 pcpu_block_refresh_hint(chunk, s_index);
713 } else {
714 /* update left and right contig manually */
715 s_block->left_free = min(s_block->left_free, s_off);
716 if (s_index == e_index)
717 s_block->right_free = min_t(int, s_block->right_free,
718 PCPU_BITMAP_BLOCK_BITS - e_off);
719 else
720 s_block->right_free = 0;
721 }
722
723 /*
724 * Update e_block.
725 */
726 if (s_index != e_index) {
727 /*
728 * When the allocation is across blocks, the end is along
729 * the left part of the e_block.
730 */
731 e_block->first_free = find_next_zero_bit(
732 pcpu_index_alloc_map(chunk, e_index),
733 PCPU_BITMAP_BLOCK_BITS, e_off);
734
735 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
736 /* reset the block */
737 e_block++;
738 } else {
739 if (e_off > e_block->contig_hint_start) {
740 /* contig hint is broken - scan to fix it */
741 pcpu_block_refresh_hint(chunk, e_index);
742 } else {
743 e_block->left_free = 0;
744 e_block->right_free =
745 min_t(int, e_block->right_free,
746 PCPU_BITMAP_BLOCK_BITS - e_off);
747 }
748 }
749
750 /* update in-between md_blocks */
751 for (block = s_block + 1; block < e_block; block++) {
752 block->contig_hint = 0;
753 block->left_free = 0;
754 block->right_free = 0;
755 }
756 }
757
758 /*
759 * The only time a full chunk scan is required is if the chunk
760 * contig hint is broken. Otherwise, it means a smaller space
761 * was used and therefore the chunk contig hint is still correct.
762 */
763 if (bit_off >= chunk->contig_bits_start &&
764 bit_off < chunk->contig_bits_start + chunk->contig_bits)
765 pcpu_chunk_refresh_hint(chunk);
766 }
767
768 /**
769 * pcpu_block_update_hint_free - updates the block hints on the free path
770 * @chunk: chunk of interest
771 * @bit_off: chunk offset
772 * @bits: size of request
773 *
774 * Updates metadata for the allocation path. This avoids a blind block
775 * refresh by making use of the block contig hints. If this fails, it scans
776 * forward and backward to determine the extent of the free area. This is
777 * capped at the boundary of blocks.
778 *
779 * A chunk update is triggered if a page becomes free, a block becomes free,
780 * or the free spans across blocks. This tradeoff is to minimize iterating
781 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
782 * may be off by up to a page, but it will never be more than the available
783 * space. If the contig hint is contained in one block, it will be accurate.
784 */
785 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
786 int bits)
787 {
788 struct pcpu_block_md *s_block, *e_block, *block;
789 int s_index, e_index; /* block indexes of the freed allocation */
790 int s_off, e_off; /* block offsets of the freed allocation */
791 int start, end; /* start and end of the whole free area */
792
793 /*
794 * Calculate per block offsets.
795 * The calculation uses an inclusive range, but the resulting offsets
796 * are [start, end). e_index always points to the last block in the
797 * range.
798 */
799 s_index = pcpu_off_to_block_index(bit_off);
800 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
801 s_off = pcpu_off_to_block_off(bit_off);
802 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
803
804 s_block = chunk->md_blocks + s_index;
805 e_block = chunk->md_blocks + e_index;
806
807 /*
808 * Check if the freed area aligns with the block->contig_hint.
809 * If it does, then the scan to find the beginning/end of the
810 * larger free area can be avoided.
811 *
812 * start and end refer to beginning and end of the free area
813 * within each their respective blocks. This is not necessarily
814 * the entire free area as it may span blocks past the beginning
815 * or end of the block.
816 */
817 start = s_off;
818 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
819 start = s_block->contig_hint_start;
820 } else {
821 /*
822 * Scan backwards to find the extent of the free area.
823 * find_last_bit returns the starting bit, so if the start bit
824 * is returned, that means there was no last bit and the
825 * remainder of the chunk is free.
826 */
827 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
828 start);
829 start = (start == l_bit) ? 0 : l_bit + 1;
830 }
831
832 end = e_off;
833 if (e_off == e_block->contig_hint_start)
834 end = e_block->contig_hint_start + e_block->contig_hint;
835 else
836 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
837 PCPU_BITMAP_BLOCK_BITS, end);
838
839 /* update s_block */
840 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
841 pcpu_block_update(s_block, start, e_off);
842
843 /* freeing in the same block */
844 if (s_index != e_index) {
845 /* update e_block */
846 pcpu_block_update(e_block, 0, end);
847
848 /* reset md_blocks in the middle */
849 for (block = s_block + 1; block < e_block; block++) {
850 block->first_free = 0;
851 block->contig_hint_start = 0;
852 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
853 block->left_free = PCPU_BITMAP_BLOCK_BITS;
854 block->right_free = PCPU_BITMAP_BLOCK_BITS;
855 }
856 }
857
858 /*
859 * Refresh chunk metadata when the free makes a page free, a block
860 * free, or spans across blocks. The contig hint may be off by up to
861 * a page, but if the hint is contained in a block, it will be accurate
862 * with the else condition below.
863 */
864 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
865 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
866 s_index != e_index)
867 pcpu_chunk_refresh_hint(chunk);
868 else
869 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
870 s_block->contig_hint);
871 }
872
873 /**
874 * pcpu_is_populated - determines if the region is populated
875 * @chunk: chunk of interest
876 * @bit_off: chunk offset
877 * @bits: size of area
878 * @next_off: return value for the next offset to start searching
879 *
880 * For atomic allocations, check if the backing pages are populated.
881 *
882 * RETURNS:
883 * Bool if the backing pages are populated.
884 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
885 */
886 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
887 int *next_off)
888 {
889 int page_start, page_end, rs, re;
890
891 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
892 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
893
894 rs = page_start;
895 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
896 if (rs >= page_end)
897 return true;
898
899 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
900 return false;
901 }
902
903 /**
904 * pcpu_find_block_fit - finds the block index to start searching
905 * @chunk: chunk of interest
906 * @alloc_bits: size of request in allocation units
907 * @align: alignment of area (max PAGE_SIZE bytes)
908 * @pop_only: use populated regions only
909 *
910 * Given a chunk and an allocation spec, find the offset to begin searching
911 * for a free region. This iterates over the bitmap metadata blocks to
912 * find an offset that will be guaranteed to fit the requirements. It is
913 * not quite first fit as if the allocation does not fit in the contig hint
914 * of a block or chunk, it is skipped. This errs on the side of caution
915 * to prevent excess iteration. Poor alignment can cause the allocator to
916 * skip over blocks and chunks that have valid free areas.
917 *
918 * RETURNS:
919 * The offset in the bitmap to begin searching.
920 * -1 if no offset is found.
921 */
922 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
923 size_t align, bool pop_only)
924 {
925 int bit_off, bits, next_off;
926
927 /*
928 * Check to see if the allocation can fit in the chunk's contig hint.
929 * This is an optimization to prevent scanning by assuming if it
930 * cannot fit in the global hint, there is memory pressure and creating
931 * a new chunk would happen soon.
932 */
933 bit_off = ALIGN(chunk->contig_bits_start, align) -
934 chunk->contig_bits_start;
935 if (bit_off + alloc_bits > chunk->contig_bits)
936 return -1;
937
938 bit_off = chunk->first_bit;
939 bits = 0;
940 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
941 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
942 &next_off))
943 break;
944
945 bit_off = next_off;
946 bits = 0;
947 }
948
949 if (bit_off == pcpu_chunk_map_bits(chunk))
950 return -1;
951
952 return bit_off;
953 }
954
955 /**
956 * pcpu_alloc_area - allocates an area from a pcpu_chunk
957 * @chunk: chunk of interest
958 * @alloc_bits: size of request in allocation units
959 * @align: alignment of area (max PAGE_SIZE)
960 * @start: bit_off to start searching
961 *
962 * This function takes in a @start offset to begin searching to fit an
963 * allocation of @alloc_bits with alignment @align. It needs to scan
964 * the allocation map because if it fits within the block's contig hint,
965 * @start will be block->first_free. This is an attempt to fill the
966 * allocation prior to breaking the contig hint. The allocation and
967 * boundary maps are updated accordingly if it confirms a valid
968 * free area.
969 *
970 * RETURNS:
971 * Allocated addr offset in @chunk on success.
972 * -1 if no matching area is found.
973 */
974 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
975 size_t align, int start)
976 {
977 size_t align_mask = (align) ? (align - 1) : 0;
978 int bit_off, end, oslot;
979
980 lockdep_assert_held(&pcpu_lock);
981
982 oslot = pcpu_chunk_slot(chunk);
983
984 /*
985 * Search to find a fit.
986 */
987 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
988 pcpu_chunk_map_bits(chunk));
989 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
990 alloc_bits, align_mask);
991 if (bit_off >= end)
992 return -1;
993
994 /* update alloc map */
995 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
996
997 /* update boundary map */
998 set_bit(bit_off, chunk->bound_map);
999 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1000 set_bit(bit_off + alloc_bits, chunk->bound_map);
1001
1002 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1003
1004 /* update first free bit */
1005 if (bit_off == chunk->first_bit)
1006 chunk->first_bit = find_next_zero_bit(
1007 chunk->alloc_map,
1008 pcpu_chunk_map_bits(chunk),
1009 bit_off + alloc_bits);
1010
1011 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1012
1013 pcpu_chunk_relocate(chunk, oslot);
1014
1015 return bit_off * PCPU_MIN_ALLOC_SIZE;
1016 }
1017
1018 /**
1019 * pcpu_free_area - frees the corresponding offset
1020 * @chunk: chunk of interest
1021 * @off: addr offset into chunk
1022 *
1023 * This function determines the size of an allocation to free using
1024 * the boundary bitmap and clears the allocation map.
1025 */
1026 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1027 {
1028 int bit_off, bits, end, oslot;
1029
1030 lockdep_assert_held(&pcpu_lock);
1031 pcpu_stats_area_dealloc(chunk);
1032
1033 oslot = pcpu_chunk_slot(chunk);
1034
1035 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1036
1037 /* find end index */
1038 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1039 bit_off + 1);
1040 bits = end - bit_off;
1041 bitmap_clear(chunk->alloc_map, bit_off, bits);
1042
1043 /* update metadata */
1044 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1045
1046 /* update first free bit */
1047 chunk->first_bit = min(chunk->first_bit, bit_off);
1048
1049 pcpu_block_update_hint_free(chunk, bit_off, bits);
1050
1051 pcpu_chunk_relocate(chunk, oslot);
1052 }
1053
1054 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1055 {
1056 struct pcpu_block_md *md_block;
1057
1058 for (md_block = chunk->md_blocks;
1059 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1060 md_block++) {
1061 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1062 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1063 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1064 }
1065 }
1066
1067 /**
1068 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1069 * @tmp_addr: the start of the region served
1070 * @map_size: size of the region served
1071 *
1072 * This is responsible for creating the chunks that serve the first chunk. The
1073 * base_addr is page aligned down of @tmp_addr while the region end is page
1074 * aligned up. Offsets are kept track of to determine the region served. All
1075 * this is done to appease the bitmap allocator in avoiding partial blocks.
1076 *
1077 * RETURNS:
1078 * Chunk serving the region at @tmp_addr of @map_size.
1079 */
1080 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1081 int map_size)
1082 {
1083 struct pcpu_chunk *chunk;
1084 unsigned long aligned_addr, lcm_align;
1085 int start_offset, offset_bits, region_size, region_bits;
1086
1087 /* region calculations */
1088 aligned_addr = tmp_addr & PAGE_MASK;
1089
1090 start_offset = tmp_addr - aligned_addr;
1091
1092 /*
1093 * Align the end of the region with the LCM of PAGE_SIZE and
1094 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1095 * the other.
1096 */
1097 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1098 region_size = ALIGN(start_offset + map_size, lcm_align);
1099
1100 /* allocate chunk */
1101 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1102 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1103 0);
1104
1105 INIT_LIST_HEAD(&chunk->list);
1106
1107 chunk->base_addr = (void *)aligned_addr;
1108 chunk->start_offset = start_offset;
1109 chunk->end_offset = region_size - chunk->start_offset - map_size;
1110
1111 chunk->nr_pages = region_size >> PAGE_SHIFT;
1112 region_bits = pcpu_chunk_map_bits(chunk);
1113
1114 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1115 sizeof(chunk->alloc_map[0]), 0);
1116 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1117 sizeof(chunk->bound_map[0]), 0);
1118 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1119 sizeof(chunk->md_blocks[0]), 0);
1120 pcpu_init_md_blocks(chunk);
1121
1122 /* manage populated page bitmap */
1123 chunk->immutable = true;
1124 bitmap_fill(chunk->populated, chunk->nr_pages);
1125 chunk->nr_populated = chunk->nr_pages;
1126 chunk->nr_empty_pop_pages =
1127 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1128 map_size / PCPU_MIN_ALLOC_SIZE);
1129
1130 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1131 chunk->free_bytes = map_size;
1132
1133 if (chunk->start_offset) {
1134 /* hide the beginning of the bitmap */
1135 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1136 bitmap_set(chunk->alloc_map, 0, offset_bits);
1137 set_bit(0, chunk->bound_map);
1138 set_bit(offset_bits, chunk->bound_map);
1139
1140 chunk->first_bit = offset_bits;
1141
1142 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1143 }
1144
1145 if (chunk->end_offset) {
1146 /* hide the end of the bitmap */
1147 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1148 bitmap_set(chunk->alloc_map,
1149 pcpu_chunk_map_bits(chunk) - offset_bits,
1150 offset_bits);
1151 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1152 chunk->bound_map);
1153 set_bit(region_bits, chunk->bound_map);
1154
1155 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1156 - offset_bits, offset_bits);
1157 }
1158
1159 return chunk;
1160 }
1161
1162 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1163 {
1164 struct pcpu_chunk *chunk;
1165 int region_bits;
1166
1167 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1168 if (!chunk)
1169 return NULL;
1170
1171 INIT_LIST_HEAD(&chunk->list);
1172 chunk->nr_pages = pcpu_unit_pages;
1173 region_bits = pcpu_chunk_map_bits(chunk);
1174
1175 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1176 sizeof(chunk->alloc_map[0]), gfp);
1177 if (!chunk->alloc_map)
1178 goto alloc_map_fail;
1179
1180 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1181 sizeof(chunk->bound_map[0]), gfp);
1182 if (!chunk->bound_map)
1183 goto bound_map_fail;
1184
1185 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1186 sizeof(chunk->md_blocks[0]), gfp);
1187 if (!chunk->md_blocks)
1188 goto md_blocks_fail;
1189
1190 pcpu_init_md_blocks(chunk);
1191
1192 /* init metadata */
1193 chunk->contig_bits = region_bits;
1194 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1195
1196 return chunk;
1197
1198 md_blocks_fail:
1199 pcpu_mem_free(chunk->bound_map);
1200 bound_map_fail:
1201 pcpu_mem_free(chunk->alloc_map);
1202 alloc_map_fail:
1203 pcpu_mem_free(chunk);
1204
1205 return NULL;
1206 }
1207
1208 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1209 {
1210 if (!chunk)
1211 return;
1212 pcpu_mem_free(chunk->md_blocks);
1213 pcpu_mem_free(chunk->bound_map);
1214 pcpu_mem_free(chunk->alloc_map);
1215 pcpu_mem_free(chunk);
1216 }
1217
1218 /**
1219 * pcpu_chunk_populated - post-population bookkeeping
1220 * @chunk: pcpu_chunk which got populated
1221 * @page_start: the start page
1222 * @page_end: the end page
1223 * @for_alloc: if this is to populate for allocation
1224 *
1225 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1226 * the bookkeeping information accordingly. Must be called after each
1227 * successful population.
1228 *
1229 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1230 * is to serve an allocation in that area.
1231 */
1232 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1233 int page_end, bool for_alloc)
1234 {
1235 int nr = page_end - page_start;
1236
1237 lockdep_assert_held(&pcpu_lock);
1238
1239 bitmap_set(chunk->populated, page_start, nr);
1240 chunk->nr_populated += nr;
1241
1242 if (!for_alloc) {
1243 chunk->nr_empty_pop_pages += nr;
1244 pcpu_nr_empty_pop_pages += nr;
1245 }
1246 }
1247
1248 /**
1249 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1250 * @chunk: pcpu_chunk which got depopulated
1251 * @page_start: the start page
1252 * @page_end: the end page
1253 *
1254 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1255 * Update the bookkeeping information accordingly. Must be called after
1256 * each successful depopulation.
1257 */
1258 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1259 int page_start, int page_end)
1260 {
1261 int nr = page_end - page_start;
1262
1263 lockdep_assert_held(&pcpu_lock);
1264
1265 bitmap_clear(chunk->populated, page_start, nr);
1266 chunk->nr_populated -= nr;
1267 chunk->nr_empty_pop_pages -= nr;
1268 pcpu_nr_empty_pop_pages -= nr;
1269 }
1270
1271 /*
1272 * Chunk management implementation.
1273 *
1274 * To allow different implementations, chunk alloc/free and
1275 * [de]population are implemented in a separate file which is pulled
1276 * into this file and compiled together. The following functions
1277 * should be implemented.
1278 *
1279 * pcpu_populate_chunk - populate the specified range of a chunk
1280 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1281 * pcpu_create_chunk - create a new chunk
1282 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1283 * pcpu_addr_to_page - translate address to physical address
1284 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1285 */
1286 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size,
1287 gfp_t gfp);
1288 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1289 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1290 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1291 static struct page *pcpu_addr_to_page(void *addr);
1292 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1293
1294 #ifdef CONFIG_NEED_PER_CPU_KM
1295 #include "percpu-km.c"
1296 #else
1297 #include "percpu-vm.c"
1298 #endif
1299
1300 /**
1301 * pcpu_chunk_addr_search - determine chunk containing specified address
1302 * @addr: address for which the chunk needs to be determined.
1303 *
1304 * This is an internal function that handles all but static allocations.
1305 * Static percpu address values should never be passed into the allocator.
1306 *
1307 * RETURNS:
1308 * The address of the found chunk.
1309 */
1310 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1311 {
1312 /* is it in the dynamic region (first chunk)? */
1313 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1314 return pcpu_first_chunk;
1315
1316 /* is it in the reserved region? */
1317 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1318 return pcpu_reserved_chunk;
1319
1320 /*
1321 * The address is relative to unit0 which might be unused and
1322 * thus unmapped. Offset the address to the unit space of the
1323 * current processor before looking it up in the vmalloc
1324 * space. Note that any possible cpu id can be used here, so
1325 * there's no need to worry about preemption or cpu hotplug.
1326 */
1327 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1328 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1329 }
1330
1331 /**
1332 * pcpu_alloc - the percpu allocator
1333 * @size: size of area to allocate in bytes
1334 * @align: alignment of area (max PAGE_SIZE)
1335 * @reserved: allocate from the reserved chunk if available
1336 * @gfp: allocation flags
1337 *
1338 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1339 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1340 * then no warning will be triggered on invalid or failed allocation
1341 * requests.
1342 *
1343 * RETURNS:
1344 * Percpu pointer to the allocated area on success, NULL on failure.
1345 */
1346 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1347 gfp_t gfp)
1348 {
1349 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1350 bool do_warn = !(gfp & __GFP_NOWARN);
1351 static int warn_limit = 10;
1352 struct pcpu_chunk *chunk;
1353 const char *err;
1354 int slot, off, cpu, ret;
1355 unsigned long flags;
1356 void __percpu *ptr;
1357 size_t bits, bit_align;
1358
1359 /*
1360 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1361 * therefore alignment must be a minimum of that many bytes.
1362 * An allocation may have internal fragmentation from rounding up
1363 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1364 */
1365 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1366 align = PCPU_MIN_ALLOC_SIZE;
1367
1368 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1369 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1370 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1371
1372 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1373 !is_power_of_2(align))) {
1374 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1375 size, align);
1376 return NULL;
1377 }
1378
1379 if (!is_atomic)
1380 mutex_lock(&pcpu_alloc_mutex);
1381
1382 spin_lock_irqsave(&pcpu_lock, flags);
1383
1384 /* serve reserved allocations from the reserved chunk if available */
1385 if (reserved && pcpu_reserved_chunk) {
1386 chunk = pcpu_reserved_chunk;
1387
1388 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1389 if (off < 0) {
1390 err = "alloc from reserved chunk failed";
1391 goto fail_unlock;
1392 }
1393
1394 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1395 if (off >= 0)
1396 goto area_found;
1397
1398 err = "alloc from reserved chunk failed";
1399 goto fail_unlock;
1400 }
1401
1402 restart:
1403 /* search through normal chunks */
1404 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1405 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1406 off = pcpu_find_block_fit(chunk, bits, bit_align,
1407 is_atomic);
1408 if (off < 0)
1409 continue;
1410
1411 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1412 if (off >= 0)
1413 goto area_found;
1414
1415 }
1416 }
1417
1418 spin_unlock_irqrestore(&pcpu_lock, flags);
1419
1420 /*
1421 * No space left. Create a new chunk. We don't want multiple
1422 * tasks to create chunks simultaneously. Serialize and create iff
1423 * there's still no empty chunk after grabbing the mutex.
1424 */
1425 if (is_atomic) {
1426 err = "atomic alloc failed, no space left";
1427 goto fail;
1428 }
1429
1430 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1431 chunk = pcpu_create_chunk(0);
1432 if (!chunk) {
1433 err = "failed to allocate new chunk";
1434 goto fail;
1435 }
1436
1437 spin_lock_irqsave(&pcpu_lock, flags);
1438 pcpu_chunk_relocate(chunk, -1);
1439 } else {
1440 spin_lock_irqsave(&pcpu_lock, flags);
1441 }
1442
1443 goto restart;
1444
1445 area_found:
1446 pcpu_stats_area_alloc(chunk, size);
1447 spin_unlock_irqrestore(&pcpu_lock, flags);
1448
1449 /* populate if not all pages are already there */
1450 if (!is_atomic) {
1451 int page_start, page_end, rs, re;
1452
1453 page_start = PFN_DOWN(off);
1454 page_end = PFN_UP(off + size);
1455
1456 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1457 page_start, page_end) {
1458 WARN_ON(chunk->immutable);
1459
1460 ret = pcpu_populate_chunk(chunk, rs, re, 0);
1461
1462 spin_lock_irqsave(&pcpu_lock, flags);
1463 if (ret) {
1464 pcpu_free_area(chunk, off);
1465 err = "failed to populate";
1466 goto fail_unlock;
1467 }
1468 pcpu_chunk_populated(chunk, rs, re, true);
1469 spin_unlock_irqrestore(&pcpu_lock, flags);
1470 }
1471
1472 mutex_unlock(&pcpu_alloc_mutex);
1473 }
1474
1475 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1476 pcpu_schedule_balance_work();
1477
1478 /* clear the areas and return address relative to base address */
1479 for_each_possible_cpu(cpu)
1480 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1481
1482 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1483 kmemleak_alloc_percpu(ptr, size, gfp);
1484
1485 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1486 chunk->base_addr, off, ptr);
1487
1488 return ptr;
1489
1490 fail_unlock:
1491 spin_unlock_irqrestore(&pcpu_lock, flags);
1492 fail:
1493 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1494
1495 if (!is_atomic && do_warn && warn_limit) {
1496 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1497 size, align, is_atomic, err);
1498 dump_stack();
1499 if (!--warn_limit)
1500 pr_info("limit reached, disable warning\n");
1501 }
1502 if (is_atomic) {
1503 /* see the flag handling in pcpu_blance_workfn() */
1504 pcpu_atomic_alloc_failed = true;
1505 pcpu_schedule_balance_work();
1506 } else {
1507 mutex_unlock(&pcpu_alloc_mutex);
1508 }
1509 return NULL;
1510 }
1511
1512 /**
1513 * __alloc_percpu_gfp - allocate dynamic percpu area
1514 * @size: size of area to allocate in bytes
1515 * @align: alignment of area (max PAGE_SIZE)
1516 * @gfp: allocation flags
1517 *
1518 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1519 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1520 * be called from any context but is a lot more likely to fail. If @gfp
1521 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1522 * allocation requests.
1523 *
1524 * RETURNS:
1525 * Percpu pointer to the allocated area on success, NULL on failure.
1526 */
1527 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1528 {
1529 return pcpu_alloc(size, align, false, gfp);
1530 }
1531 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1532
1533 /**
1534 * __alloc_percpu - allocate dynamic percpu area
1535 * @size: size of area to allocate in bytes
1536 * @align: alignment of area (max PAGE_SIZE)
1537 *
1538 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1539 */
1540 void __percpu *__alloc_percpu(size_t size, size_t align)
1541 {
1542 return pcpu_alloc(size, align, false, GFP_KERNEL);
1543 }
1544 EXPORT_SYMBOL_GPL(__alloc_percpu);
1545
1546 /**
1547 * __alloc_reserved_percpu - allocate reserved percpu area
1548 * @size: size of area to allocate in bytes
1549 * @align: alignment of area (max PAGE_SIZE)
1550 *
1551 * Allocate zero-filled percpu area of @size bytes aligned at @align
1552 * from reserved percpu area if arch has set it up; otherwise,
1553 * allocation is served from the same dynamic area. Might sleep.
1554 * Might trigger writeouts.
1555 *
1556 * CONTEXT:
1557 * Does GFP_KERNEL allocation.
1558 *
1559 * RETURNS:
1560 * Percpu pointer to the allocated area on success, NULL on failure.
1561 */
1562 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1563 {
1564 return pcpu_alloc(size, align, true, GFP_KERNEL);
1565 }
1566
1567 /**
1568 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1569 * @work: unused
1570 *
1571 * Reclaim all fully free chunks except for the first one. This is also
1572 * responsible for maintaining the pool of empty populated pages. However,
1573 * it is possible that this is called when physical memory is scarce causing
1574 * OOM killer to be triggered. We should avoid doing so until an actual
1575 * allocation causes the failure as it is possible that requests can be
1576 * serviced from already backed regions.
1577 */
1578 static void pcpu_balance_workfn(struct work_struct *work)
1579 {
1580 /* gfp flags passed to underlying allocators */
1581 const gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN;
1582 LIST_HEAD(to_free);
1583 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1584 struct pcpu_chunk *chunk, *next;
1585 int slot, nr_to_pop, ret;
1586
1587 /*
1588 * There's no reason to keep around multiple unused chunks and VM
1589 * areas can be scarce. Destroy all free chunks except for one.
1590 */
1591 mutex_lock(&pcpu_alloc_mutex);
1592 spin_lock_irq(&pcpu_lock);
1593
1594 list_for_each_entry_safe(chunk, next, free_head, list) {
1595 WARN_ON(chunk->immutable);
1596
1597 /* spare the first one */
1598 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1599 continue;
1600
1601 list_move(&chunk->list, &to_free);
1602 }
1603
1604 spin_unlock_irq(&pcpu_lock);
1605
1606 list_for_each_entry_safe(chunk, next, &to_free, list) {
1607 int rs, re;
1608
1609 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1610 chunk->nr_pages) {
1611 pcpu_depopulate_chunk(chunk, rs, re);
1612 spin_lock_irq(&pcpu_lock);
1613 pcpu_chunk_depopulated(chunk, rs, re);
1614 spin_unlock_irq(&pcpu_lock);
1615 }
1616 pcpu_destroy_chunk(chunk);
1617 }
1618
1619 /*
1620 * Ensure there are certain number of free populated pages for
1621 * atomic allocs. Fill up from the most packed so that atomic
1622 * allocs don't increase fragmentation. If atomic allocation
1623 * failed previously, always populate the maximum amount. This
1624 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1625 * failing indefinitely; however, large atomic allocs are not
1626 * something we support properly and can be highly unreliable and
1627 * inefficient.
1628 */
1629 retry_pop:
1630 if (pcpu_atomic_alloc_failed) {
1631 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1632 /* best effort anyway, don't worry about synchronization */
1633 pcpu_atomic_alloc_failed = false;
1634 } else {
1635 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1636 pcpu_nr_empty_pop_pages,
1637 0, PCPU_EMPTY_POP_PAGES_HIGH);
1638 }
1639
1640 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1641 int nr_unpop = 0, rs, re;
1642
1643 if (!nr_to_pop)
1644 break;
1645
1646 spin_lock_irq(&pcpu_lock);
1647 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1648 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1649 if (nr_unpop)
1650 break;
1651 }
1652 spin_unlock_irq(&pcpu_lock);
1653
1654 if (!nr_unpop)
1655 continue;
1656
1657 /* @chunk can't go away while pcpu_alloc_mutex is held */
1658 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1659 chunk->nr_pages) {
1660 int nr = min(re - rs, nr_to_pop);
1661
1662 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1663 if (!ret) {
1664 nr_to_pop -= nr;
1665 spin_lock_irq(&pcpu_lock);
1666 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1667 spin_unlock_irq(&pcpu_lock);
1668 } else {
1669 nr_to_pop = 0;
1670 }
1671
1672 if (!nr_to_pop)
1673 break;
1674 }
1675 }
1676
1677 if (nr_to_pop) {
1678 /* ran out of chunks to populate, create a new one and retry */
1679 chunk = pcpu_create_chunk(gfp);
1680 if (chunk) {
1681 spin_lock_irq(&pcpu_lock);
1682 pcpu_chunk_relocate(chunk, -1);
1683 spin_unlock_irq(&pcpu_lock);
1684 goto retry_pop;
1685 }
1686 }
1687
1688 mutex_unlock(&pcpu_alloc_mutex);
1689 }
1690
1691 /**
1692 * free_percpu - free percpu area
1693 * @ptr: pointer to area to free
1694 *
1695 * Free percpu area @ptr.
1696 *
1697 * CONTEXT:
1698 * Can be called from atomic context.
1699 */
1700 void free_percpu(void __percpu *ptr)
1701 {
1702 void *addr;
1703 struct pcpu_chunk *chunk;
1704 unsigned long flags;
1705 int off;
1706 bool need_balance = false;
1707
1708 if (!ptr)
1709 return;
1710
1711 kmemleak_free_percpu(ptr);
1712
1713 addr = __pcpu_ptr_to_addr(ptr);
1714
1715 spin_lock_irqsave(&pcpu_lock, flags);
1716
1717 chunk = pcpu_chunk_addr_search(addr);
1718 off = addr - chunk->base_addr;
1719
1720 pcpu_free_area(chunk, off);
1721
1722 /* if there are more than one fully free chunks, wake up grim reaper */
1723 if (chunk->free_bytes == pcpu_unit_size) {
1724 struct pcpu_chunk *pos;
1725
1726 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1727 if (pos != chunk) {
1728 need_balance = true;
1729 break;
1730 }
1731 }
1732
1733 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1734
1735 spin_unlock_irqrestore(&pcpu_lock, flags);
1736
1737 if (need_balance)
1738 pcpu_schedule_balance_work();
1739 }
1740 EXPORT_SYMBOL_GPL(free_percpu);
1741
1742 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1743 {
1744 #ifdef CONFIG_SMP
1745 const size_t static_size = __per_cpu_end - __per_cpu_start;
1746 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1747 unsigned int cpu;
1748
1749 for_each_possible_cpu(cpu) {
1750 void *start = per_cpu_ptr(base, cpu);
1751 void *va = (void *)addr;
1752
1753 if (va >= start && va < start + static_size) {
1754 if (can_addr) {
1755 *can_addr = (unsigned long) (va - start);
1756 *can_addr += (unsigned long)
1757 per_cpu_ptr(base, get_boot_cpu_id());
1758 }
1759 return true;
1760 }
1761 }
1762 #endif
1763 /* on UP, can't distinguish from other static vars, always false */
1764 return false;
1765 }
1766
1767 /**
1768 * is_kernel_percpu_address - test whether address is from static percpu area
1769 * @addr: address to test
1770 *
1771 * Test whether @addr belongs to in-kernel static percpu area. Module
1772 * static percpu areas are not considered. For those, use
1773 * is_module_percpu_address().
1774 *
1775 * RETURNS:
1776 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1777 */
1778 bool is_kernel_percpu_address(unsigned long addr)
1779 {
1780 return __is_kernel_percpu_address(addr, NULL);
1781 }
1782
1783 /**
1784 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1785 * @addr: the address to be converted to physical address
1786 *
1787 * Given @addr which is dereferenceable address obtained via one of
1788 * percpu access macros, this function translates it into its physical
1789 * address. The caller is responsible for ensuring @addr stays valid
1790 * until this function finishes.
1791 *
1792 * percpu allocator has special setup for the first chunk, which currently
1793 * supports either embedding in linear address space or vmalloc mapping,
1794 * and, from the second one, the backing allocator (currently either vm or
1795 * km) provides translation.
1796 *
1797 * The addr can be translated simply without checking if it falls into the
1798 * first chunk. But the current code reflects better how percpu allocator
1799 * actually works, and the verification can discover both bugs in percpu
1800 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1801 * code.
1802 *
1803 * RETURNS:
1804 * The physical address for @addr.
1805 */
1806 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1807 {
1808 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1809 bool in_first_chunk = false;
1810 unsigned long first_low, first_high;
1811 unsigned int cpu;
1812
1813 /*
1814 * The following test on unit_low/high isn't strictly
1815 * necessary but will speed up lookups of addresses which
1816 * aren't in the first chunk.
1817 *
1818 * The address check is against full chunk sizes. pcpu_base_addr
1819 * points to the beginning of the first chunk including the
1820 * static region. Assumes good intent as the first chunk may
1821 * not be full (ie. < pcpu_unit_pages in size).
1822 */
1823 first_low = (unsigned long)pcpu_base_addr +
1824 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1825 first_high = (unsigned long)pcpu_base_addr +
1826 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1827 if ((unsigned long)addr >= first_low &&
1828 (unsigned long)addr < first_high) {
1829 for_each_possible_cpu(cpu) {
1830 void *start = per_cpu_ptr(base, cpu);
1831
1832 if (addr >= start && addr < start + pcpu_unit_size) {
1833 in_first_chunk = true;
1834 break;
1835 }
1836 }
1837 }
1838
1839 if (in_first_chunk) {
1840 if (!is_vmalloc_addr(addr))
1841 return __pa(addr);
1842 else
1843 return page_to_phys(vmalloc_to_page(addr)) +
1844 offset_in_page(addr);
1845 } else
1846 return page_to_phys(pcpu_addr_to_page(addr)) +
1847 offset_in_page(addr);
1848 }
1849
1850 /**
1851 * pcpu_alloc_alloc_info - allocate percpu allocation info
1852 * @nr_groups: the number of groups
1853 * @nr_units: the number of units
1854 *
1855 * Allocate ai which is large enough for @nr_groups groups containing
1856 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1857 * cpu_map array which is long enough for @nr_units and filled with
1858 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1859 * pointer of other groups.
1860 *
1861 * RETURNS:
1862 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1863 * failure.
1864 */
1865 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1866 int nr_units)
1867 {
1868 struct pcpu_alloc_info *ai;
1869 size_t base_size, ai_size;
1870 void *ptr;
1871 int unit;
1872
1873 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1874 __alignof__(ai->groups[0].cpu_map[0]));
1875 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1876
1877 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1878 if (!ptr)
1879 return NULL;
1880 ai = ptr;
1881 ptr += base_size;
1882
1883 ai->groups[0].cpu_map = ptr;
1884
1885 for (unit = 0; unit < nr_units; unit++)
1886 ai->groups[0].cpu_map[unit] = NR_CPUS;
1887
1888 ai->nr_groups = nr_groups;
1889 ai->__ai_size = PFN_ALIGN(ai_size);
1890
1891 return ai;
1892 }
1893
1894 /**
1895 * pcpu_free_alloc_info - free percpu allocation info
1896 * @ai: pcpu_alloc_info to free
1897 *
1898 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1899 */
1900 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1901 {
1902 memblock_free_early(__pa(ai), ai->__ai_size);
1903 }
1904
1905 /**
1906 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1907 * @lvl: loglevel
1908 * @ai: allocation info to dump
1909 *
1910 * Print out information about @ai using loglevel @lvl.
1911 */
1912 static void pcpu_dump_alloc_info(const char *lvl,
1913 const struct pcpu_alloc_info *ai)
1914 {
1915 int group_width = 1, cpu_width = 1, width;
1916 char empty_str[] = "--------";
1917 int alloc = 0, alloc_end = 0;
1918 int group, v;
1919 int upa, apl; /* units per alloc, allocs per line */
1920
1921 v = ai->nr_groups;
1922 while (v /= 10)
1923 group_width++;
1924
1925 v = num_possible_cpus();
1926 while (v /= 10)
1927 cpu_width++;
1928 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1929
1930 upa = ai->alloc_size / ai->unit_size;
1931 width = upa * (cpu_width + 1) + group_width + 3;
1932 apl = rounddown_pow_of_two(max(60 / width, 1));
1933
1934 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1935 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1936 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1937
1938 for (group = 0; group < ai->nr_groups; group++) {
1939 const struct pcpu_group_info *gi = &ai->groups[group];
1940 int unit = 0, unit_end = 0;
1941
1942 BUG_ON(gi->nr_units % upa);
1943 for (alloc_end += gi->nr_units / upa;
1944 alloc < alloc_end; alloc++) {
1945 if (!(alloc % apl)) {
1946 pr_cont("\n");
1947 printk("%spcpu-alloc: ", lvl);
1948 }
1949 pr_cont("[%0*d] ", group_width, group);
1950
1951 for (unit_end += upa; unit < unit_end; unit++)
1952 if (gi->cpu_map[unit] != NR_CPUS)
1953 pr_cont("%0*d ",
1954 cpu_width, gi->cpu_map[unit]);
1955 else
1956 pr_cont("%s ", empty_str);
1957 }
1958 }
1959 pr_cont("\n");
1960 }
1961
1962 /**
1963 * pcpu_setup_first_chunk - initialize the first percpu chunk
1964 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1965 * @base_addr: mapped address
1966 *
1967 * Initialize the first percpu chunk which contains the kernel static
1968 * perpcu area. This function is to be called from arch percpu area
1969 * setup path.
1970 *
1971 * @ai contains all information necessary to initialize the first
1972 * chunk and prime the dynamic percpu allocator.
1973 *
1974 * @ai->static_size is the size of static percpu area.
1975 *
1976 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1977 * reserve after the static area in the first chunk. This reserves
1978 * the first chunk such that it's available only through reserved
1979 * percpu allocation. This is primarily used to serve module percpu
1980 * static areas on architectures where the addressing model has
1981 * limited offset range for symbol relocations to guarantee module
1982 * percpu symbols fall inside the relocatable range.
1983 *
1984 * @ai->dyn_size determines the number of bytes available for dynamic
1985 * allocation in the first chunk. The area between @ai->static_size +
1986 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1987 *
1988 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1989 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1990 * @ai->dyn_size.
1991 *
1992 * @ai->atom_size is the allocation atom size and used as alignment
1993 * for vm areas.
1994 *
1995 * @ai->alloc_size is the allocation size and always multiple of
1996 * @ai->atom_size. This is larger than @ai->atom_size if
1997 * @ai->unit_size is larger than @ai->atom_size.
1998 *
1999 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2000 * percpu areas. Units which should be colocated are put into the
2001 * same group. Dynamic VM areas will be allocated according to these
2002 * groupings. If @ai->nr_groups is zero, a single group containing
2003 * all units is assumed.
2004 *
2005 * The caller should have mapped the first chunk at @base_addr and
2006 * copied static data to each unit.
2007 *
2008 * The first chunk will always contain a static and a dynamic region.
2009 * However, the static region is not managed by any chunk. If the first
2010 * chunk also contains a reserved region, it is served by two chunks -
2011 * one for the reserved region and one for the dynamic region. They
2012 * share the same vm, but use offset regions in the area allocation map.
2013 * The chunk serving the dynamic region is circulated in the chunk slots
2014 * and available for dynamic allocation like any other chunk.
2015 *
2016 * RETURNS:
2017 * 0 on success, -errno on failure.
2018 */
2019 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2020 void *base_addr)
2021 {
2022 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2023 size_t static_size, dyn_size;
2024 struct pcpu_chunk *chunk;
2025 unsigned long *group_offsets;
2026 size_t *group_sizes;
2027 unsigned long *unit_off;
2028 unsigned int cpu;
2029 int *unit_map;
2030 int group, unit, i;
2031 int map_size;
2032 unsigned long tmp_addr;
2033
2034 #define PCPU_SETUP_BUG_ON(cond) do { \
2035 if (unlikely(cond)) { \
2036 pr_emerg("failed to initialize, %s\n", #cond); \
2037 pr_emerg("cpu_possible_mask=%*pb\n", \
2038 cpumask_pr_args(cpu_possible_mask)); \
2039 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2040 BUG(); \
2041 } \
2042 } while (0)
2043
2044 /* sanity checks */
2045 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2046 #ifdef CONFIG_SMP
2047 PCPU_SETUP_BUG_ON(!ai->static_size);
2048 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2049 #endif
2050 PCPU_SETUP_BUG_ON(!base_addr);
2051 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2052 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2053 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2054 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2055 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2056 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2057 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2058 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2059 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2060 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2061 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2062
2063 /* process group information and build config tables accordingly */
2064 group_offsets = memblock_virt_alloc(ai->nr_groups *
2065 sizeof(group_offsets[0]), 0);
2066 group_sizes = memblock_virt_alloc(ai->nr_groups *
2067 sizeof(group_sizes[0]), 0);
2068 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2069 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2070
2071 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2072 unit_map[cpu] = UINT_MAX;
2073
2074 pcpu_low_unit_cpu = NR_CPUS;
2075 pcpu_high_unit_cpu = NR_CPUS;
2076
2077 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2078 const struct pcpu_group_info *gi = &ai->groups[group];
2079
2080 group_offsets[group] = gi->base_offset;
2081 group_sizes[group] = gi->nr_units * ai->unit_size;
2082
2083 for (i = 0; i < gi->nr_units; i++) {
2084 cpu = gi->cpu_map[i];
2085 if (cpu == NR_CPUS)
2086 continue;
2087
2088 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2089 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2090 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2091
2092 unit_map[cpu] = unit + i;
2093 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2094
2095 /* determine low/high unit_cpu */
2096 if (pcpu_low_unit_cpu == NR_CPUS ||
2097 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2098 pcpu_low_unit_cpu = cpu;
2099 if (pcpu_high_unit_cpu == NR_CPUS ||
2100 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2101 pcpu_high_unit_cpu = cpu;
2102 }
2103 }
2104 pcpu_nr_units = unit;
2105
2106 for_each_possible_cpu(cpu)
2107 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2108
2109 /* we're done parsing the input, undefine BUG macro and dump config */
2110 #undef PCPU_SETUP_BUG_ON
2111 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2112
2113 pcpu_nr_groups = ai->nr_groups;
2114 pcpu_group_offsets = group_offsets;
2115 pcpu_group_sizes = group_sizes;
2116 pcpu_unit_map = unit_map;
2117 pcpu_unit_offsets = unit_off;
2118
2119 /* determine basic parameters */
2120 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2121 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2122 pcpu_atom_size = ai->atom_size;
2123 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2124 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2125
2126 pcpu_stats_save_ai(ai);
2127
2128 /*
2129 * Allocate chunk slots. The additional last slot is for
2130 * empty chunks.
2131 */
2132 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2133 pcpu_slot = memblock_virt_alloc(
2134 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2135 for (i = 0; i < pcpu_nr_slots; i++)
2136 INIT_LIST_HEAD(&pcpu_slot[i]);
2137
2138 /*
2139 * The end of the static region needs to be aligned with the
2140 * minimum allocation size as this offsets the reserved and
2141 * dynamic region. The first chunk ends page aligned by
2142 * expanding the dynamic region, therefore the dynamic region
2143 * can be shrunk to compensate while still staying above the
2144 * configured sizes.
2145 */
2146 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2147 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2148
2149 /*
2150 * Initialize first chunk.
2151 * If the reserved_size is non-zero, this initializes the reserved
2152 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2153 * and the dynamic region is initialized here. The first chunk,
2154 * pcpu_first_chunk, will always point to the chunk that serves
2155 * the dynamic region.
2156 */
2157 tmp_addr = (unsigned long)base_addr + static_size;
2158 map_size = ai->reserved_size ?: dyn_size;
2159 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2160
2161 /* init dynamic chunk if necessary */
2162 if (ai->reserved_size) {
2163 pcpu_reserved_chunk = chunk;
2164
2165 tmp_addr = (unsigned long)base_addr + static_size +
2166 ai->reserved_size;
2167 map_size = dyn_size;
2168 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2169 }
2170
2171 /* link the first chunk in */
2172 pcpu_first_chunk = chunk;
2173 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2174 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2175
2176 pcpu_stats_chunk_alloc();
2177 trace_percpu_create_chunk(base_addr);
2178
2179 /* we're done */
2180 pcpu_base_addr = base_addr;
2181 return 0;
2182 }
2183
2184 #ifdef CONFIG_SMP
2185
2186 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2187 [PCPU_FC_AUTO] = "auto",
2188 [PCPU_FC_EMBED] = "embed",
2189 [PCPU_FC_PAGE] = "page",
2190 };
2191
2192 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2193
2194 static int __init percpu_alloc_setup(char *str)
2195 {
2196 if (!str)
2197 return -EINVAL;
2198
2199 if (0)
2200 /* nada */;
2201 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2202 else if (!strcmp(str, "embed"))
2203 pcpu_chosen_fc = PCPU_FC_EMBED;
2204 #endif
2205 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2206 else if (!strcmp(str, "page"))
2207 pcpu_chosen_fc = PCPU_FC_PAGE;
2208 #endif
2209 else
2210 pr_warn("unknown allocator %s specified\n", str);
2211
2212 return 0;
2213 }
2214 early_param("percpu_alloc", percpu_alloc_setup);
2215
2216 /*
2217 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2218 * Build it if needed by the arch config or the generic setup is going
2219 * to be used.
2220 */
2221 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2222 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2223 #define BUILD_EMBED_FIRST_CHUNK
2224 #endif
2225
2226 /* build pcpu_page_first_chunk() iff needed by the arch config */
2227 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2228 #define BUILD_PAGE_FIRST_CHUNK
2229 #endif
2230
2231 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2232 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2233 /**
2234 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2235 * @reserved_size: the size of reserved percpu area in bytes
2236 * @dyn_size: minimum free size for dynamic allocation in bytes
2237 * @atom_size: allocation atom size
2238 * @cpu_distance_fn: callback to determine distance between cpus, optional
2239 *
2240 * This function determines grouping of units, their mappings to cpus
2241 * and other parameters considering needed percpu size, allocation
2242 * atom size and distances between CPUs.
2243 *
2244 * Groups are always multiples of atom size and CPUs which are of
2245 * LOCAL_DISTANCE both ways are grouped together and share space for
2246 * units in the same group. The returned configuration is guaranteed
2247 * to have CPUs on different nodes on different groups and >=75% usage
2248 * of allocated virtual address space.
2249 *
2250 * RETURNS:
2251 * On success, pointer to the new allocation_info is returned. On
2252 * failure, ERR_PTR value is returned.
2253 */
2254 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2255 size_t reserved_size, size_t dyn_size,
2256 size_t atom_size,
2257 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2258 {
2259 static int group_map[NR_CPUS] __initdata;
2260 static int group_cnt[NR_CPUS] __initdata;
2261 const size_t static_size = __per_cpu_end - __per_cpu_start;
2262 int nr_groups = 1, nr_units = 0;
2263 size_t size_sum, min_unit_size, alloc_size;
2264 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2265 int last_allocs, group, unit;
2266 unsigned int cpu, tcpu;
2267 struct pcpu_alloc_info *ai;
2268 unsigned int *cpu_map;
2269
2270 /* this function may be called multiple times */
2271 memset(group_map, 0, sizeof(group_map));
2272 memset(group_cnt, 0, sizeof(group_cnt));
2273
2274 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2275 size_sum = PFN_ALIGN(static_size + reserved_size +
2276 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2277 dyn_size = size_sum - static_size - reserved_size;
2278
2279 /*
2280 * Determine min_unit_size, alloc_size and max_upa such that
2281 * alloc_size is multiple of atom_size and is the smallest
2282 * which can accommodate 4k aligned segments which are equal to
2283 * or larger than min_unit_size.
2284 */
2285 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2286
2287 /* determine the maximum # of units that can fit in an allocation */
2288 alloc_size = roundup(min_unit_size, atom_size);
2289 upa = alloc_size / min_unit_size;
2290 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2291 upa--;
2292 max_upa = upa;
2293
2294 /* group cpus according to their proximity */
2295 for_each_possible_cpu(cpu) {
2296 group = 0;
2297 next_group:
2298 for_each_possible_cpu(tcpu) {
2299 if (cpu == tcpu)
2300 break;
2301 if (group_map[tcpu] == group && cpu_distance_fn &&
2302 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2303 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2304 group++;
2305 nr_groups = max(nr_groups, group + 1);
2306 goto next_group;
2307 }
2308 }
2309 group_map[cpu] = group;
2310 group_cnt[group]++;
2311 }
2312
2313 /*
2314 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2315 * Expand the unit_size until we use >= 75% of the units allocated.
2316 * Related to atom_size, which could be much larger than the unit_size.
2317 */
2318 last_allocs = INT_MAX;
2319 for (upa = max_upa; upa; upa--) {
2320 int allocs = 0, wasted = 0;
2321
2322 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2323 continue;
2324
2325 for (group = 0; group < nr_groups; group++) {
2326 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2327 allocs += this_allocs;
2328 wasted += this_allocs * upa - group_cnt[group];
2329 }
2330
2331 /*
2332 * Don't accept if wastage is over 1/3. The
2333 * greater-than comparison ensures upa==1 always
2334 * passes the following check.
2335 */
2336 if (wasted > num_possible_cpus() / 3)
2337 continue;
2338
2339 /* and then don't consume more memory */
2340 if (allocs > last_allocs)
2341 break;
2342 last_allocs = allocs;
2343 best_upa = upa;
2344 }
2345 upa = best_upa;
2346
2347 /* allocate and fill alloc_info */
2348 for (group = 0; group < nr_groups; group++)
2349 nr_units += roundup(group_cnt[group], upa);
2350
2351 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2352 if (!ai)
2353 return ERR_PTR(-ENOMEM);
2354 cpu_map = ai->groups[0].cpu_map;
2355
2356 for (group = 0; group < nr_groups; group++) {
2357 ai->groups[group].cpu_map = cpu_map;
2358 cpu_map += roundup(group_cnt[group], upa);
2359 }
2360
2361 ai->static_size = static_size;
2362 ai->reserved_size = reserved_size;
2363 ai->dyn_size = dyn_size;
2364 ai->unit_size = alloc_size / upa;
2365 ai->atom_size = atom_size;
2366 ai->alloc_size = alloc_size;
2367
2368 for (group = 0, unit = 0; group_cnt[group]; group++) {
2369 struct pcpu_group_info *gi = &ai->groups[group];
2370
2371 /*
2372 * Initialize base_offset as if all groups are located
2373 * back-to-back. The caller should update this to
2374 * reflect actual allocation.
2375 */
2376 gi->base_offset = unit * ai->unit_size;
2377
2378 for_each_possible_cpu(cpu)
2379 if (group_map[cpu] == group)
2380 gi->cpu_map[gi->nr_units++] = cpu;
2381 gi->nr_units = roundup(gi->nr_units, upa);
2382 unit += gi->nr_units;
2383 }
2384 BUG_ON(unit != nr_units);
2385
2386 return ai;
2387 }
2388 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2389
2390 #if defined(BUILD_EMBED_FIRST_CHUNK)
2391 /**
2392 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2393 * @reserved_size: the size of reserved percpu area in bytes
2394 * @dyn_size: minimum free size for dynamic allocation in bytes
2395 * @atom_size: allocation atom size
2396 * @cpu_distance_fn: callback to determine distance between cpus, optional
2397 * @alloc_fn: function to allocate percpu page
2398 * @free_fn: function to free percpu page
2399 *
2400 * This is a helper to ease setting up embedded first percpu chunk and
2401 * can be called where pcpu_setup_first_chunk() is expected.
2402 *
2403 * If this function is used to setup the first chunk, it is allocated
2404 * by calling @alloc_fn and used as-is without being mapped into
2405 * vmalloc area. Allocations are always whole multiples of @atom_size
2406 * aligned to @atom_size.
2407 *
2408 * This enables the first chunk to piggy back on the linear physical
2409 * mapping which often uses larger page size. Please note that this
2410 * can result in very sparse cpu->unit mapping on NUMA machines thus
2411 * requiring large vmalloc address space. Don't use this allocator if
2412 * vmalloc space is not orders of magnitude larger than distances
2413 * between node memory addresses (ie. 32bit NUMA machines).
2414 *
2415 * @dyn_size specifies the minimum dynamic area size.
2416 *
2417 * If the needed size is smaller than the minimum or specified unit
2418 * size, the leftover is returned using @free_fn.
2419 *
2420 * RETURNS:
2421 * 0 on success, -errno on failure.
2422 */
2423 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2424 size_t atom_size,
2425 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2426 pcpu_fc_alloc_fn_t alloc_fn,
2427 pcpu_fc_free_fn_t free_fn)
2428 {
2429 void *base = (void *)ULONG_MAX;
2430 void **areas = NULL;
2431 struct pcpu_alloc_info *ai;
2432 size_t size_sum, areas_size;
2433 unsigned long max_distance;
2434 int group, i, highest_group, rc;
2435
2436 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2437 cpu_distance_fn);
2438 if (IS_ERR(ai))
2439 return PTR_ERR(ai);
2440
2441 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2442 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2443
2444 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2445 if (!areas) {
2446 rc = -ENOMEM;
2447 goto out_free;
2448 }
2449
2450 /* allocate, copy and determine base address & max_distance */
2451 highest_group = 0;
2452 for (group = 0; group < ai->nr_groups; group++) {
2453 struct pcpu_group_info *gi = &ai->groups[group];
2454 unsigned int cpu = NR_CPUS;
2455 void *ptr;
2456
2457 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2458 cpu = gi->cpu_map[i];
2459 BUG_ON(cpu == NR_CPUS);
2460
2461 /* allocate space for the whole group */
2462 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2463 if (!ptr) {
2464 rc = -ENOMEM;
2465 goto out_free_areas;
2466 }
2467 /* kmemleak tracks the percpu allocations separately */
2468 kmemleak_free(ptr);
2469 areas[group] = ptr;
2470
2471 base = min(ptr, base);
2472 if (ptr > areas[highest_group])
2473 highest_group = group;
2474 }
2475 max_distance = areas[highest_group] - base;
2476 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2477
2478 /* warn if maximum distance is further than 75% of vmalloc space */
2479 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2480 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2481 max_distance, VMALLOC_TOTAL);
2482 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2483 /* and fail if we have fallback */
2484 rc = -EINVAL;
2485 goto out_free_areas;
2486 #endif
2487 }
2488
2489 /*
2490 * Copy data and free unused parts. This should happen after all
2491 * allocations are complete; otherwise, we may end up with
2492 * overlapping groups.
2493 */
2494 for (group = 0; group < ai->nr_groups; group++) {
2495 struct pcpu_group_info *gi = &ai->groups[group];
2496 void *ptr = areas[group];
2497
2498 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2499 if (gi->cpu_map[i] == NR_CPUS) {
2500 /* unused unit, free whole */
2501 free_fn(ptr, ai->unit_size);
2502 continue;
2503 }
2504 /* copy and return the unused part */
2505 memcpy(ptr, __per_cpu_load, ai->static_size);
2506 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2507 }
2508 }
2509
2510 /* base address is now known, determine group base offsets */
2511 for (group = 0; group < ai->nr_groups; group++) {
2512 ai->groups[group].base_offset = areas[group] - base;
2513 }
2514
2515 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2516 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2517 ai->dyn_size, ai->unit_size);
2518
2519 rc = pcpu_setup_first_chunk(ai, base);
2520 goto out_free;
2521
2522 out_free_areas:
2523 for (group = 0; group < ai->nr_groups; group++)
2524 if (areas[group])
2525 free_fn(areas[group],
2526 ai->groups[group].nr_units * ai->unit_size);
2527 out_free:
2528 pcpu_free_alloc_info(ai);
2529 if (areas)
2530 memblock_free_early(__pa(areas), areas_size);
2531 return rc;
2532 }
2533 #endif /* BUILD_EMBED_FIRST_CHUNK */
2534
2535 #ifdef BUILD_PAGE_FIRST_CHUNK
2536 /**
2537 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2538 * @reserved_size: the size of reserved percpu area in bytes
2539 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2540 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2541 * @populate_pte_fn: function to populate pte
2542 *
2543 * This is a helper to ease setting up page-remapped first percpu
2544 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2545 *
2546 * This is the basic allocator. Static percpu area is allocated
2547 * page-by-page into vmalloc area.
2548 *
2549 * RETURNS:
2550 * 0 on success, -errno on failure.
2551 */
2552 int __init pcpu_page_first_chunk(size_t reserved_size,
2553 pcpu_fc_alloc_fn_t alloc_fn,
2554 pcpu_fc_free_fn_t free_fn,
2555 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2556 {
2557 static struct vm_struct vm;
2558 struct pcpu_alloc_info *ai;
2559 char psize_str[16];
2560 int unit_pages;
2561 size_t pages_size;
2562 struct page **pages;
2563 int unit, i, j, rc;
2564 int upa;
2565 int nr_g0_units;
2566
2567 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2568
2569 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2570 if (IS_ERR(ai))
2571 return PTR_ERR(ai);
2572 BUG_ON(ai->nr_groups != 1);
2573 upa = ai->alloc_size/ai->unit_size;
2574 nr_g0_units = roundup(num_possible_cpus(), upa);
2575 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2576 pcpu_free_alloc_info(ai);
2577 return -EINVAL;
2578 }
2579
2580 unit_pages = ai->unit_size >> PAGE_SHIFT;
2581
2582 /* unaligned allocations can't be freed, round up to page size */
2583 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2584 sizeof(pages[0]));
2585 pages = memblock_virt_alloc(pages_size, 0);
2586
2587 /* allocate pages */
2588 j = 0;
2589 for (unit = 0; unit < num_possible_cpus(); unit++) {
2590 unsigned int cpu = ai->groups[0].cpu_map[unit];
2591 for (i = 0; i < unit_pages; i++) {
2592 void *ptr;
2593
2594 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2595 if (!ptr) {
2596 pr_warn("failed to allocate %s page for cpu%u\n",
2597 psize_str, cpu);
2598 goto enomem;
2599 }
2600 /* kmemleak tracks the percpu allocations separately */
2601 kmemleak_free(ptr);
2602 pages[j++] = virt_to_page(ptr);
2603 }
2604 }
2605
2606 /* allocate vm area, map the pages and copy static data */
2607 vm.flags = VM_ALLOC;
2608 vm.size = num_possible_cpus() * ai->unit_size;
2609 vm_area_register_early(&vm, PAGE_SIZE);
2610
2611 for (unit = 0; unit < num_possible_cpus(); unit++) {
2612 unsigned long unit_addr =
2613 (unsigned long)vm.addr + unit * ai->unit_size;
2614
2615 for (i = 0; i < unit_pages; i++)
2616 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2617
2618 /* pte already populated, the following shouldn't fail */
2619 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2620 unit_pages);
2621 if (rc < 0)
2622 panic("failed to map percpu area, err=%d\n", rc);
2623
2624 /*
2625 * FIXME: Archs with virtual cache should flush local
2626 * cache for the linear mapping here - something
2627 * equivalent to flush_cache_vmap() on the local cpu.
2628 * flush_cache_vmap() can't be used as most supporting
2629 * data structures are not set up yet.
2630 */
2631
2632 /* copy static data */
2633 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2634 }
2635
2636 /* we're ready, commit */
2637 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2638 unit_pages, psize_str, ai->static_size,
2639 ai->reserved_size, ai->dyn_size);
2640
2641 rc = pcpu_setup_first_chunk(ai, vm.addr);
2642 goto out_free_ar;
2643
2644 enomem:
2645 while (--j >= 0)
2646 free_fn(page_address(pages[j]), PAGE_SIZE);
2647 rc = -ENOMEM;
2648 out_free_ar:
2649 memblock_free_early(__pa(pages), pages_size);
2650 pcpu_free_alloc_info(ai);
2651 return rc;
2652 }
2653 #endif /* BUILD_PAGE_FIRST_CHUNK */
2654
2655 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2656 /*
2657 * Generic SMP percpu area setup.
2658 *
2659 * The embedding helper is used because its behavior closely resembles
2660 * the original non-dynamic generic percpu area setup. This is
2661 * important because many archs have addressing restrictions and might
2662 * fail if the percpu area is located far away from the previous
2663 * location. As an added bonus, in non-NUMA cases, embedding is
2664 * generally a good idea TLB-wise because percpu area can piggy back
2665 * on the physical linear memory mapping which uses large page
2666 * mappings on applicable archs.
2667 */
2668 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2669 EXPORT_SYMBOL(__per_cpu_offset);
2670
2671 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2672 size_t align)
2673 {
2674 return memblock_virt_alloc_from_nopanic(
2675 size, align, __pa(MAX_DMA_ADDRESS));
2676 }
2677
2678 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2679 {
2680 memblock_free_early(__pa(ptr), size);
2681 }
2682
2683 void __init setup_per_cpu_areas(void)
2684 {
2685 unsigned long delta;
2686 unsigned int cpu;
2687 int rc;
2688
2689 /*
2690 * Always reserve area for module percpu variables. That's
2691 * what the legacy allocator did.
2692 */
2693 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2694 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2695 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2696 if (rc < 0)
2697 panic("Failed to initialize percpu areas.");
2698
2699 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2700 for_each_possible_cpu(cpu)
2701 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2702 }
2703 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2704
2705 #else /* CONFIG_SMP */
2706
2707 /*
2708 * UP percpu area setup.
2709 *
2710 * UP always uses km-based percpu allocator with identity mapping.
2711 * Static percpu variables are indistinguishable from the usual static
2712 * variables and don't require any special preparation.
2713 */
2714 void __init setup_per_cpu_areas(void)
2715 {
2716 const size_t unit_size =
2717 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2718 PERCPU_DYNAMIC_RESERVE));
2719 struct pcpu_alloc_info *ai;
2720 void *fc;
2721
2722 ai = pcpu_alloc_alloc_info(1, 1);
2723 fc = memblock_virt_alloc_from_nopanic(unit_size,
2724 PAGE_SIZE,
2725 __pa(MAX_DMA_ADDRESS));
2726 if (!ai || !fc)
2727 panic("Failed to allocate memory for percpu areas.");
2728 /* kmemleak tracks the percpu allocations separately */
2729 kmemleak_free(fc);
2730
2731 ai->dyn_size = unit_size;
2732 ai->unit_size = unit_size;
2733 ai->atom_size = unit_size;
2734 ai->alloc_size = unit_size;
2735 ai->groups[0].nr_units = 1;
2736 ai->groups[0].cpu_map[0] = 0;
2737
2738 if (pcpu_setup_first_chunk(ai, fc) < 0)
2739 panic("Failed to initialize percpu areas.");
2740 #ifdef CONFIG_CRIS
2741 #warning "the CRIS architecture has physical and virtual addresses confused"
2742 #else
2743 pcpu_free_alloc_info(ai);
2744 #endif
2745 }
2746
2747 #endif /* CONFIG_SMP */
2748
2749 /*
2750 * Percpu allocator is initialized early during boot when neither slab or
2751 * workqueue is available. Plug async management until everything is up
2752 * and running.
2753 */
2754 static int __init percpu_enable_async(void)
2755 {
2756 pcpu_async_enabled = true;
2757 return 0;
2758 }
2759 subsys_initcall(percpu_enable_async);