]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/percpu.c
Revert "rmap: do not call mmu_notifier_invalidate_page() under ptl"
[mirror_ubuntu-artful-kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the following:
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
73
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/io.h>
78
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/percpu.h>
81
82 #include "percpu-internal.h"
83
84 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
85 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
86 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
87 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
88 #define PCPU_EMPTY_POP_PAGES_LOW 2
89 #define PCPU_EMPTY_POP_PAGES_HIGH 4
90
91 #ifdef CONFIG_SMP
92 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
93 #ifndef __addr_to_pcpu_ptr
94 #define __addr_to_pcpu_ptr(addr) \
95 (void __percpu *)((unsigned long)(addr) - \
96 (unsigned long)pcpu_base_addr + \
97 (unsigned long)__per_cpu_start)
98 #endif
99 #ifndef __pcpu_ptr_to_addr
100 #define __pcpu_ptr_to_addr(ptr) \
101 (void __force *)((unsigned long)(ptr) + \
102 (unsigned long)pcpu_base_addr - \
103 (unsigned long)__per_cpu_start)
104 #endif
105 #else /* CONFIG_SMP */
106 /* on UP, it's always identity mapped */
107 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
108 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
109 #endif /* CONFIG_SMP */
110
111 static int pcpu_unit_pages __ro_after_init;
112 static int pcpu_unit_size __ro_after_init;
113 static int pcpu_nr_units __ro_after_init;
114 static int pcpu_atom_size __ro_after_init;
115 int pcpu_nr_slots __ro_after_init;
116 static size_t pcpu_chunk_struct_size __ro_after_init;
117
118 /* cpus with the lowest and highest unit addresses */
119 static unsigned int pcpu_low_unit_cpu __ro_after_init;
120 static unsigned int pcpu_high_unit_cpu __ro_after_init;
121
122 /* the address of the first chunk which starts with the kernel static area */
123 void *pcpu_base_addr __ro_after_init;
124 EXPORT_SYMBOL_GPL(pcpu_base_addr);
125
126 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
127 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
128
129 /* group information, used for vm allocation */
130 static int pcpu_nr_groups __ro_after_init;
131 static const unsigned long *pcpu_group_offsets __ro_after_init;
132 static const size_t *pcpu_group_sizes __ro_after_init;
133
134 /*
135 * The first chunk which always exists. Note that unlike other
136 * chunks, this one can be allocated and mapped in several different
137 * ways and thus often doesn't live in the vmalloc area.
138 */
139 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
140
141 /*
142 * Optional reserved chunk. This chunk reserves part of the first
143 * chunk and serves it for reserved allocations. The amount of
144 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
145 * area doesn't exist, the following variables contain NULL and 0
146 * respectively.
147 */
148 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
149 static int pcpu_reserved_chunk_limit __ro_after_init;
150
151 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
152 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
153
154 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
155
156 /* chunks which need their map areas extended, protected by pcpu_lock */
157 static LIST_HEAD(pcpu_map_extend_chunks);
158
159 /*
160 * The number of empty populated pages, protected by pcpu_lock. The
161 * reserved chunk doesn't contribute to the count.
162 */
163 static int pcpu_nr_empty_pop_pages;
164
165 /*
166 * Balance work is used to populate or destroy chunks asynchronously. We
167 * try to keep the number of populated free pages between
168 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
169 * empty chunk.
170 */
171 static void pcpu_balance_workfn(struct work_struct *work);
172 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
173 static bool pcpu_async_enabled __read_mostly;
174 static bool pcpu_atomic_alloc_failed;
175
176 static void pcpu_schedule_balance_work(void)
177 {
178 if (pcpu_async_enabled)
179 schedule_work(&pcpu_balance_work);
180 }
181
182 static bool pcpu_addr_in_first_chunk(void *addr)
183 {
184 void *first_start = pcpu_first_chunk->base_addr;
185
186 return addr >= first_start && addr < first_start + pcpu_unit_size;
187 }
188
189 static bool pcpu_addr_in_reserved_chunk(void *addr)
190 {
191 void *first_start = pcpu_first_chunk->base_addr;
192
193 return addr >= first_start &&
194 addr < first_start + pcpu_reserved_chunk_limit;
195 }
196
197 static int __pcpu_size_to_slot(int size)
198 {
199 int highbit = fls(size); /* size is in bytes */
200 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
201 }
202
203 static int pcpu_size_to_slot(int size)
204 {
205 if (size == pcpu_unit_size)
206 return pcpu_nr_slots - 1;
207 return __pcpu_size_to_slot(size);
208 }
209
210 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
211 {
212 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
213 return 0;
214
215 return pcpu_size_to_slot(chunk->free_size);
216 }
217
218 /* set the pointer to a chunk in a page struct */
219 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
220 {
221 page->index = (unsigned long)pcpu;
222 }
223
224 /* obtain pointer to a chunk from a page struct */
225 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
226 {
227 return (struct pcpu_chunk *)page->index;
228 }
229
230 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
231 {
232 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
233 }
234
235 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
236 unsigned int cpu, int page_idx)
237 {
238 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
239 (page_idx << PAGE_SHIFT);
240 }
241
242 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
243 int *rs, int *re, int end)
244 {
245 *rs = find_next_zero_bit(chunk->populated, end, *rs);
246 *re = find_next_bit(chunk->populated, end, *rs + 1);
247 }
248
249 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
250 int *rs, int *re, int end)
251 {
252 *rs = find_next_bit(chunk->populated, end, *rs);
253 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
254 }
255
256 /*
257 * (Un)populated page region iterators. Iterate over (un)populated
258 * page regions between @start and @end in @chunk. @rs and @re should
259 * be integer variables and will be set to start and end page index of
260 * the current region.
261 */
262 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
263 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
264 (rs) < (re); \
265 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
266
267 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
271
272 /**
273 * pcpu_mem_zalloc - allocate memory
274 * @size: bytes to allocate
275 *
276 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
277 * kzalloc() is used; otherwise, vzalloc() is used. The returned
278 * memory is always zeroed.
279 *
280 * CONTEXT:
281 * Does GFP_KERNEL allocation.
282 *
283 * RETURNS:
284 * Pointer to the allocated area on success, NULL on failure.
285 */
286 static void *pcpu_mem_zalloc(size_t size)
287 {
288 if (WARN_ON_ONCE(!slab_is_available()))
289 return NULL;
290
291 if (size <= PAGE_SIZE)
292 return kzalloc(size, GFP_KERNEL);
293 else
294 return vzalloc(size);
295 }
296
297 /**
298 * pcpu_mem_free - free memory
299 * @ptr: memory to free
300 *
301 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
302 */
303 static void pcpu_mem_free(void *ptr)
304 {
305 kvfree(ptr);
306 }
307
308 /**
309 * pcpu_count_occupied_pages - count the number of pages an area occupies
310 * @chunk: chunk of interest
311 * @i: index of the area in question
312 *
313 * Count the number of pages chunk's @i'th area occupies. When the area's
314 * start and/or end address isn't aligned to page boundary, the straddled
315 * page is included in the count iff the rest of the page is free.
316 */
317 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
318 {
319 int off = chunk->map[i] & ~1;
320 int end = chunk->map[i + 1] & ~1;
321
322 if (!PAGE_ALIGNED(off) && i > 0) {
323 int prev = chunk->map[i - 1];
324
325 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
326 off = round_down(off, PAGE_SIZE);
327 }
328
329 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
330 int next = chunk->map[i + 1];
331 int nend = chunk->map[i + 2] & ~1;
332
333 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
334 end = round_up(end, PAGE_SIZE);
335 }
336
337 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
338 }
339
340 /**
341 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
342 * @chunk: chunk of interest
343 * @oslot: the previous slot it was on
344 *
345 * This function is called after an allocation or free changed @chunk.
346 * New slot according to the changed state is determined and @chunk is
347 * moved to the slot. Note that the reserved chunk is never put on
348 * chunk slots.
349 *
350 * CONTEXT:
351 * pcpu_lock.
352 */
353 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
354 {
355 int nslot = pcpu_chunk_slot(chunk);
356
357 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
358 if (oslot < nslot)
359 list_move(&chunk->list, &pcpu_slot[nslot]);
360 else
361 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
362 }
363 }
364
365 /**
366 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
367 * @chunk: chunk of interest
368 * @is_atomic: the allocation context
369 *
370 * Determine whether area map of @chunk needs to be extended. If
371 * @is_atomic, only the amount necessary for a new allocation is
372 * considered; however, async extension is scheduled if the left amount is
373 * low. If !@is_atomic, it aims for more empty space. Combined, this
374 * ensures that the map is likely to have enough available space to
375 * accomodate atomic allocations which can't extend maps directly.
376 *
377 * CONTEXT:
378 * pcpu_lock.
379 *
380 * RETURNS:
381 * New target map allocation length if extension is necessary, 0
382 * otherwise.
383 */
384 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
385 {
386 int margin, new_alloc;
387
388 lockdep_assert_held(&pcpu_lock);
389
390 if (is_atomic) {
391 margin = 3;
392
393 if (chunk->map_alloc <
394 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
395 if (list_empty(&chunk->map_extend_list)) {
396 list_add_tail(&chunk->map_extend_list,
397 &pcpu_map_extend_chunks);
398 pcpu_schedule_balance_work();
399 }
400 }
401 } else {
402 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
403 }
404
405 if (chunk->map_alloc >= chunk->map_used + margin)
406 return 0;
407
408 new_alloc = PCPU_DFL_MAP_ALLOC;
409 while (new_alloc < chunk->map_used + margin)
410 new_alloc *= 2;
411
412 return new_alloc;
413 }
414
415 /**
416 * pcpu_extend_area_map - extend area map of a chunk
417 * @chunk: chunk of interest
418 * @new_alloc: new target allocation length of the area map
419 *
420 * Extend area map of @chunk to have @new_alloc entries.
421 *
422 * CONTEXT:
423 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
424 *
425 * RETURNS:
426 * 0 on success, -errno on failure.
427 */
428 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
429 {
430 int *old = NULL, *new = NULL;
431 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
432 unsigned long flags;
433
434 lockdep_assert_held(&pcpu_alloc_mutex);
435
436 new = pcpu_mem_zalloc(new_size);
437 if (!new)
438 return -ENOMEM;
439
440 /* acquire pcpu_lock and switch to new area map */
441 spin_lock_irqsave(&pcpu_lock, flags);
442
443 if (new_alloc <= chunk->map_alloc)
444 goto out_unlock;
445
446 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
447 old = chunk->map;
448
449 memcpy(new, old, old_size);
450
451 chunk->map_alloc = new_alloc;
452 chunk->map = new;
453 new = NULL;
454
455 out_unlock:
456 spin_unlock_irqrestore(&pcpu_lock, flags);
457
458 /*
459 * pcpu_mem_free() might end up calling vfree() which uses
460 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
461 */
462 pcpu_mem_free(old);
463 pcpu_mem_free(new);
464
465 return 0;
466 }
467
468 /**
469 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
470 * @chunk: chunk the candidate area belongs to
471 * @off: the offset to the start of the candidate area
472 * @this_size: the size of the candidate area
473 * @size: the size of the target allocation
474 * @align: the alignment of the target allocation
475 * @pop_only: only allocate from already populated region
476 *
477 * We're trying to allocate @size bytes aligned at @align. @chunk's area
478 * at @off sized @this_size is a candidate. This function determines
479 * whether the target allocation fits in the candidate area and returns the
480 * number of bytes to pad after @off. If the target area doesn't fit, -1
481 * is returned.
482 *
483 * If @pop_only is %true, this function only considers the already
484 * populated part of the candidate area.
485 */
486 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
487 int size, int align, bool pop_only)
488 {
489 int cand_off = off;
490
491 while (true) {
492 int head = ALIGN(cand_off, align) - off;
493 int page_start, page_end, rs, re;
494
495 if (this_size < head + size)
496 return -1;
497
498 if (!pop_only)
499 return head;
500
501 /*
502 * If the first unpopulated page is beyond the end of the
503 * allocation, the whole allocation is populated;
504 * otherwise, retry from the end of the unpopulated area.
505 */
506 page_start = PFN_DOWN(head + off);
507 page_end = PFN_UP(head + off + size);
508
509 rs = page_start;
510 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
511 if (rs >= page_end)
512 return head;
513 cand_off = re * PAGE_SIZE;
514 }
515 }
516
517 /**
518 * pcpu_alloc_area - allocate area from a pcpu_chunk
519 * @chunk: chunk of interest
520 * @size: wanted size in bytes
521 * @align: wanted align
522 * @pop_only: allocate only from the populated area
523 * @occ_pages_p: out param for the number of pages the area occupies
524 *
525 * Try to allocate @size bytes area aligned at @align from @chunk.
526 * Note that this function only allocates the offset. It doesn't
527 * populate or map the area.
528 *
529 * @chunk->map must have at least two free slots.
530 *
531 * CONTEXT:
532 * pcpu_lock.
533 *
534 * RETURNS:
535 * Allocated offset in @chunk on success, -1 if no matching area is
536 * found.
537 */
538 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
539 bool pop_only, int *occ_pages_p)
540 {
541 int oslot = pcpu_chunk_slot(chunk);
542 int max_contig = 0;
543 int i, off;
544 bool seen_free = false;
545 int *p;
546
547 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
548 int head, tail;
549 int this_size;
550
551 off = *p;
552 if (off & 1)
553 continue;
554
555 this_size = (p[1] & ~1) - off;
556
557 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
558 pop_only);
559 if (head < 0) {
560 if (!seen_free) {
561 chunk->first_free = i;
562 seen_free = true;
563 }
564 max_contig = max(this_size, max_contig);
565 continue;
566 }
567
568 /*
569 * If head is small or the previous block is free,
570 * merge'em. Note that 'small' is defined as smaller
571 * than sizeof(int), which is very small but isn't too
572 * uncommon for percpu allocations.
573 */
574 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
575 *p = off += head;
576 if (p[-1] & 1)
577 chunk->free_size -= head;
578 else
579 max_contig = max(*p - p[-1], max_contig);
580 this_size -= head;
581 head = 0;
582 }
583
584 /* if tail is small, just keep it around */
585 tail = this_size - head - size;
586 if (tail < sizeof(int)) {
587 tail = 0;
588 size = this_size - head;
589 }
590
591 /* split if warranted */
592 if (head || tail) {
593 int nr_extra = !!head + !!tail;
594
595 /* insert new subblocks */
596 memmove(p + nr_extra + 1, p + 1,
597 sizeof(chunk->map[0]) * (chunk->map_used - i));
598 chunk->map_used += nr_extra;
599
600 if (head) {
601 if (!seen_free) {
602 chunk->first_free = i;
603 seen_free = true;
604 }
605 *++p = off += head;
606 ++i;
607 max_contig = max(head, max_contig);
608 }
609 if (tail) {
610 p[1] = off + size;
611 max_contig = max(tail, max_contig);
612 }
613 }
614
615 if (!seen_free)
616 chunk->first_free = i + 1;
617
618 /* update hint and mark allocated */
619 if (i + 1 == chunk->map_used)
620 chunk->contig_hint = max_contig; /* fully scanned */
621 else
622 chunk->contig_hint = max(chunk->contig_hint,
623 max_contig);
624
625 chunk->free_size -= size;
626 *p |= 1;
627
628 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
629 pcpu_chunk_relocate(chunk, oslot);
630 return off;
631 }
632
633 chunk->contig_hint = max_contig; /* fully scanned */
634 pcpu_chunk_relocate(chunk, oslot);
635
636 /* tell the upper layer that this chunk has no matching area */
637 return -1;
638 }
639
640 /**
641 * pcpu_free_area - free area to a pcpu_chunk
642 * @chunk: chunk of interest
643 * @freeme: offset of area to free
644 * @occ_pages_p: out param for the number of pages the area occupies
645 *
646 * Free area starting from @freeme to @chunk. Note that this function
647 * only modifies the allocation map. It doesn't depopulate or unmap
648 * the area.
649 *
650 * CONTEXT:
651 * pcpu_lock.
652 */
653 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
654 int *occ_pages_p)
655 {
656 int oslot = pcpu_chunk_slot(chunk);
657 int off = 0;
658 unsigned i, j;
659 int to_free = 0;
660 int *p;
661
662 lockdep_assert_held(&pcpu_lock);
663 pcpu_stats_area_dealloc(chunk);
664
665 freeme |= 1; /* we are searching for <given offset, in use> pair */
666
667 i = 0;
668 j = chunk->map_used;
669 while (i != j) {
670 unsigned k = (i + j) / 2;
671 off = chunk->map[k];
672 if (off < freeme)
673 i = k + 1;
674 else if (off > freeme)
675 j = k;
676 else
677 i = j = k;
678 }
679 BUG_ON(off != freeme);
680
681 if (i < chunk->first_free)
682 chunk->first_free = i;
683
684 p = chunk->map + i;
685 *p = off &= ~1;
686 chunk->free_size += (p[1] & ~1) - off;
687
688 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
689
690 /* merge with next? */
691 if (!(p[1] & 1))
692 to_free++;
693 /* merge with previous? */
694 if (i > 0 && !(p[-1] & 1)) {
695 to_free++;
696 i--;
697 p--;
698 }
699 if (to_free) {
700 chunk->map_used -= to_free;
701 memmove(p + 1, p + 1 + to_free,
702 (chunk->map_used - i) * sizeof(chunk->map[0]));
703 }
704
705 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
706 pcpu_chunk_relocate(chunk, oslot);
707 }
708
709 static struct pcpu_chunk *pcpu_alloc_chunk(void)
710 {
711 struct pcpu_chunk *chunk;
712
713 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
714 if (!chunk)
715 return NULL;
716
717 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
718 sizeof(chunk->map[0]));
719 if (!chunk->map) {
720 pcpu_mem_free(chunk);
721 return NULL;
722 }
723
724 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
725 chunk->map[0] = 0;
726 chunk->map[1] = pcpu_unit_size | 1;
727 chunk->map_used = 1;
728 chunk->has_reserved = false;
729
730 INIT_LIST_HEAD(&chunk->list);
731 INIT_LIST_HEAD(&chunk->map_extend_list);
732 chunk->free_size = pcpu_unit_size;
733 chunk->contig_hint = pcpu_unit_size;
734
735 return chunk;
736 }
737
738 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
739 {
740 if (!chunk)
741 return;
742 pcpu_mem_free(chunk->map);
743 pcpu_mem_free(chunk);
744 }
745
746 /**
747 * pcpu_chunk_populated - post-population bookkeeping
748 * @chunk: pcpu_chunk which got populated
749 * @page_start: the start page
750 * @page_end: the end page
751 *
752 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
753 * the bookkeeping information accordingly. Must be called after each
754 * successful population.
755 */
756 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
757 int page_start, int page_end)
758 {
759 int nr = page_end - page_start;
760
761 lockdep_assert_held(&pcpu_lock);
762
763 bitmap_set(chunk->populated, page_start, nr);
764 chunk->nr_populated += nr;
765 pcpu_nr_empty_pop_pages += nr;
766 }
767
768 /**
769 * pcpu_chunk_depopulated - post-depopulation bookkeeping
770 * @chunk: pcpu_chunk which got depopulated
771 * @page_start: the start page
772 * @page_end: the end page
773 *
774 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
775 * Update the bookkeeping information accordingly. Must be called after
776 * each successful depopulation.
777 */
778 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
779 int page_start, int page_end)
780 {
781 int nr = page_end - page_start;
782
783 lockdep_assert_held(&pcpu_lock);
784
785 bitmap_clear(chunk->populated, page_start, nr);
786 chunk->nr_populated -= nr;
787 pcpu_nr_empty_pop_pages -= nr;
788 }
789
790 /*
791 * Chunk management implementation.
792 *
793 * To allow different implementations, chunk alloc/free and
794 * [de]population are implemented in a separate file which is pulled
795 * into this file and compiled together. The following functions
796 * should be implemented.
797 *
798 * pcpu_populate_chunk - populate the specified range of a chunk
799 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
800 * pcpu_create_chunk - create a new chunk
801 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
802 * pcpu_addr_to_page - translate address to physical address
803 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
804 */
805 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
806 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
807 static struct pcpu_chunk *pcpu_create_chunk(void);
808 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
809 static struct page *pcpu_addr_to_page(void *addr);
810 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
811
812 #ifdef CONFIG_NEED_PER_CPU_KM
813 #include "percpu-km.c"
814 #else
815 #include "percpu-vm.c"
816 #endif
817
818 /**
819 * pcpu_chunk_addr_search - determine chunk containing specified address
820 * @addr: address for which the chunk needs to be determined.
821 *
822 * RETURNS:
823 * The address of the found chunk.
824 */
825 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
826 {
827 /* is it in the first chunk? */
828 if (pcpu_addr_in_first_chunk(addr)) {
829 /* is it in the reserved area? */
830 if (pcpu_addr_in_reserved_chunk(addr))
831 return pcpu_reserved_chunk;
832 return pcpu_first_chunk;
833 }
834
835 /*
836 * The address is relative to unit0 which might be unused and
837 * thus unmapped. Offset the address to the unit space of the
838 * current processor before looking it up in the vmalloc
839 * space. Note that any possible cpu id can be used here, so
840 * there's no need to worry about preemption or cpu hotplug.
841 */
842 addr += pcpu_unit_offsets[raw_smp_processor_id()];
843 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
844 }
845
846 /**
847 * pcpu_alloc - the percpu allocator
848 * @size: size of area to allocate in bytes
849 * @align: alignment of area (max PAGE_SIZE)
850 * @reserved: allocate from the reserved chunk if available
851 * @gfp: allocation flags
852 *
853 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
854 * contain %GFP_KERNEL, the allocation is atomic.
855 *
856 * RETURNS:
857 * Percpu pointer to the allocated area on success, NULL on failure.
858 */
859 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
860 gfp_t gfp)
861 {
862 static int warn_limit = 10;
863 struct pcpu_chunk *chunk;
864 const char *err;
865 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
866 int occ_pages = 0;
867 int slot, off, new_alloc, cpu, ret;
868 unsigned long flags;
869 void __percpu *ptr;
870
871 /*
872 * We want the lowest bit of offset available for in-use/free
873 * indicator, so force >= 16bit alignment and make size even.
874 */
875 if (unlikely(align < 2))
876 align = 2;
877
878 size = ALIGN(size, 2);
879
880 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
881 !is_power_of_2(align))) {
882 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
883 size, align);
884 return NULL;
885 }
886
887 if (!is_atomic)
888 mutex_lock(&pcpu_alloc_mutex);
889
890 spin_lock_irqsave(&pcpu_lock, flags);
891
892 /* serve reserved allocations from the reserved chunk if available */
893 if (reserved && pcpu_reserved_chunk) {
894 chunk = pcpu_reserved_chunk;
895
896 if (size > chunk->contig_hint) {
897 err = "alloc from reserved chunk failed";
898 goto fail_unlock;
899 }
900
901 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
902 spin_unlock_irqrestore(&pcpu_lock, flags);
903 if (is_atomic ||
904 pcpu_extend_area_map(chunk, new_alloc) < 0) {
905 err = "failed to extend area map of reserved chunk";
906 goto fail;
907 }
908 spin_lock_irqsave(&pcpu_lock, flags);
909 }
910
911 off = pcpu_alloc_area(chunk, size, align, is_atomic,
912 &occ_pages);
913 if (off >= 0)
914 goto area_found;
915
916 err = "alloc from reserved chunk failed";
917 goto fail_unlock;
918 }
919
920 restart:
921 /* search through normal chunks */
922 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
923 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
924 if (size > chunk->contig_hint)
925 continue;
926
927 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
928 if (new_alloc) {
929 if (is_atomic)
930 continue;
931 spin_unlock_irqrestore(&pcpu_lock, flags);
932 if (pcpu_extend_area_map(chunk,
933 new_alloc) < 0) {
934 err = "failed to extend area map";
935 goto fail;
936 }
937 spin_lock_irqsave(&pcpu_lock, flags);
938 /*
939 * pcpu_lock has been dropped, need to
940 * restart cpu_slot list walking.
941 */
942 goto restart;
943 }
944
945 off = pcpu_alloc_area(chunk, size, align, is_atomic,
946 &occ_pages);
947 if (off >= 0)
948 goto area_found;
949 }
950 }
951
952 spin_unlock_irqrestore(&pcpu_lock, flags);
953
954 /*
955 * No space left. Create a new chunk. We don't want multiple
956 * tasks to create chunks simultaneously. Serialize and create iff
957 * there's still no empty chunk after grabbing the mutex.
958 */
959 if (is_atomic) {
960 err = "atomic alloc failed, no space left";
961 goto fail;
962 }
963
964 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
965 chunk = pcpu_create_chunk();
966 if (!chunk) {
967 err = "failed to allocate new chunk";
968 goto fail;
969 }
970
971 spin_lock_irqsave(&pcpu_lock, flags);
972 pcpu_chunk_relocate(chunk, -1);
973 } else {
974 spin_lock_irqsave(&pcpu_lock, flags);
975 }
976
977 goto restart;
978
979 area_found:
980 pcpu_stats_area_alloc(chunk, size);
981 spin_unlock_irqrestore(&pcpu_lock, flags);
982
983 /* populate if not all pages are already there */
984 if (!is_atomic) {
985 int page_start, page_end, rs, re;
986
987 page_start = PFN_DOWN(off);
988 page_end = PFN_UP(off + size);
989
990 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
991 WARN_ON(chunk->immutable);
992
993 ret = pcpu_populate_chunk(chunk, rs, re);
994
995 spin_lock_irqsave(&pcpu_lock, flags);
996 if (ret) {
997 pcpu_free_area(chunk, off, &occ_pages);
998 err = "failed to populate";
999 goto fail_unlock;
1000 }
1001 pcpu_chunk_populated(chunk, rs, re);
1002 spin_unlock_irqrestore(&pcpu_lock, flags);
1003 }
1004
1005 mutex_unlock(&pcpu_alloc_mutex);
1006 }
1007
1008 if (chunk != pcpu_reserved_chunk) {
1009 spin_lock_irqsave(&pcpu_lock, flags);
1010 pcpu_nr_empty_pop_pages -= occ_pages;
1011 spin_unlock_irqrestore(&pcpu_lock, flags);
1012 }
1013
1014 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1015 pcpu_schedule_balance_work();
1016
1017 /* clear the areas and return address relative to base address */
1018 for_each_possible_cpu(cpu)
1019 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1020
1021 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1022 kmemleak_alloc_percpu(ptr, size, gfp);
1023
1024 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1025 chunk->base_addr, off, ptr);
1026
1027 return ptr;
1028
1029 fail_unlock:
1030 spin_unlock_irqrestore(&pcpu_lock, flags);
1031 fail:
1032 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1033
1034 if (!is_atomic && warn_limit) {
1035 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1036 size, align, is_atomic, err);
1037 dump_stack();
1038 if (!--warn_limit)
1039 pr_info("limit reached, disable warning\n");
1040 }
1041 if (is_atomic) {
1042 /* see the flag handling in pcpu_blance_workfn() */
1043 pcpu_atomic_alloc_failed = true;
1044 pcpu_schedule_balance_work();
1045 } else {
1046 mutex_unlock(&pcpu_alloc_mutex);
1047 }
1048 return NULL;
1049 }
1050
1051 /**
1052 * __alloc_percpu_gfp - allocate dynamic percpu area
1053 * @size: size of area to allocate in bytes
1054 * @align: alignment of area (max PAGE_SIZE)
1055 * @gfp: allocation flags
1056 *
1057 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1058 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1059 * be called from any context but is a lot more likely to fail.
1060 *
1061 * RETURNS:
1062 * Percpu pointer to the allocated area on success, NULL on failure.
1063 */
1064 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1065 {
1066 return pcpu_alloc(size, align, false, gfp);
1067 }
1068 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1069
1070 /**
1071 * __alloc_percpu - allocate dynamic percpu area
1072 * @size: size of area to allocate in bytes
1073 * @align: alignment of area (max PAGE_SIZE)
1074 *
1075 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1076 */
1077 void __percpu *__alloc_percpu(size_t size, size_t align)
1078 {
1079 return pcpu_alloc(size, align, false, GFP_KERNEL);
1080 }
1081 EXPORT_SYMBOL_GPL(__alloc_percpu);
1082
1083 /**
1084 * __alloc_reserved_percpu - allocate reserved percpu area
1085 * @size: size of area to allocate in bytes
1086 * @align: alignment of area (max PAGE_SIZE)
1087 *
1088 * Allocate zero-filled percpu area of @size bytes aligned at @align
1089 * from reserved percpu area if arch has set it up; otherwise,
1090 * allocation is served from the same dynamic area. Might sleep.
1091 * Might trigger writeouts.
1092 *
1093 * CONTEXT:
1094 * Does GFP_KERNEL allocation.
1095 *
1096 * RETURNS:
1097 * Percpu pointer to the allocated area on success, NULL on failure.
1098 */
1099 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1100 {
1101 return pcpu_alloc(size, align, true, GFP_KERNEL);
1102 }
1103
1104 /**
1105 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1106 * @work: unused
1107 *
1108 * Reclaim all fully free chunks except for the first one.
1109 */
1110 static void pcpu_balance_workfn(struct work_struct *work)
1111 {
1112 LIST_HEAD(to_free);
1113 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1114 struct pcpu_chunk *chunk, *next;
1115 int slot, nr_to_pop, ret;
1116
1117 /*
1118 * There's no reason to keep around multiple unused chunks and VM
1119 * areas can be scarce. Destroy all free chunks except for one.
1120 */
1121 mutex_lock(&pcpu_alloc_mutex);
1122 spin_lock_irq(&pcpu_lock);
1123
1124 list_for_each_entry_safe(chunk, next, free_head, list) {
1125 WARN_ON(chunk->immutable);
1126
1127 /* spare the first one */
1128 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1129 continue;
1130
1131 list_del_init(&chunk->map_extend_list);
1132 list_move(&chunk->list, &to_free);
1133 }
1134
1135 spin_unlock_irq(&pcpu_lock);
1136
1137 list_for_each_entry_safe(chunk, next, &to_free, list) {
1138 int rs, re;
1139
1140 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1141 pcpu_depopulate_chunk(chunk, rs, re);
1142 spin_lock_irq(&pcpu_lock);
1143 pcpu_chunk_depopulated(chunk, rs, re);
1144 spin_unlock_irq(&pcpu_lock);
1145 }
1146 pcpu_destroy_chunk(chunk);
1147 }
1148
1149 /* service chunks which requested async area map extension */
1150 do {
1151 int new_alloc = 0;
1152
1153 spin_lock_irq(&pcpu_lock);
1154
1155 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1156 struct pcpu_chunk, map_extend_list);
1157 if (chunk) {
1158 list_del_init(&chunk->map_extend_list);
1159 new_alloc = pcpu_need_to_extend(chunk, false);
1160 }
1161
1162 spin_unlock_irq(&pcpu_lock);
1163
1164 if (new_alloc)
1165 pcpu_extend_area_map(chunk, new_alloc);
1166 } while (chunk);
1167
1168 /*
1169 * Ensure there are certain number of free populated pages for
1170 * atomic allocs. Fill up from the most packed so that atomic
1171 * allocs don't increase fragmentation. If atomic allocation
1172 * failed previously, always populate the maximum amount. This
1173 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1174 * failing indefinitely; however, large atomic allocs are not
1175 * something we support properly and can be highly unreliable and
1176 * inefficient.
1177 */
1178 retry_pop:
1179 if (pcpu_atomic_alloc_failed) {
1180 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1181 /* best effort anyway, don't worry about synchronization */
1182 pcpu_atomic_alloc_failed = false;
1183 } else {
1184 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1185 pcpu_nr_empty_pop_pages,
1186 0, PCPU_EMPTY_POP_PAGES_HIGH);
1187 }
1188
1189 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1190 int nr_unpop = 0, rs, re;
1191
1192 if (!nr_to_pop)
1193 break;
1194
1195 spin_lock_irq(&pcpu_lock);
1196 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1197 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1198 if (nr_unpop)
1199 break;
1200 }
1201 spin_unlock_irq(&pcpu_lock);
1202
1203 if (!nr_unpop)
1204 continue;
1205
1206 /* @chunk can't go away while pcpu_alloc_mutex is held */
1207 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1208 int nr = min(re - rs, nr_to_pop);
1209
1210 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1211 if (!ret) {
1212 nr_to_pop -= nr;
1213 spin_lock_irq(&pcpu_lock);
1214 pcpu_chunk_populated(chunk, rs, rs + nr);
1215 spin_unlock_irq(&pcpu_lock);
1216 } else {
1217 nr_to_pop = 0;
1218 }
1219
1220 if (!nr_to_pop)
1221 break;
1222 }
1223 }
1224
1225 if (nr_to_pop) {
1226 /* ran out of chunks to populate, create a new one and retry */
1227 chunk = pcpu_create_chunk();
1228 if (chunk) {
1229 spin_lock_irq(&pcpu_lock);
1230 pcpu_chunk_relocate(chunk, -1);
1231 spin_unlock_irq(&pcpu_lock);
1232 goto retry_pop;
1233 }
1234 }
1235
1236 mutex_unlock(&pcpu_alloc_mutex);
1237 }
1238
1239 /**
1240 * free_percpu - free percpu area
1241 * @ptr: pointer to area to free
1242 *
1243 * Free percpu area @ptr.
1244 *
1245 * CONTEXT:
1246 * Can be called from atomic context.
1247 */
1248 void free_percpu(void __percpu *ptr)
1249 {
1250 void *addr;
1251 struct pcpu_chunk *chunk;
1252 unsigned long flags;
1253 int off, occ_pages;
1254
1255 if (!ptr)
1256 return;
1257
1258 kmemleak_free_percpu(ptr);
1259
1260 addr = __pcpu_ptr_to_addr(ptr);
1261
1262 spin_lock_irqsave(&pcpu_lock, flags);
1263
1264 chunk = pcpu_chunk_addr_search(addr);
1265 off = addr - chunk->base_addr;
1266
1267 pcpu_free_area(chunk, off, &occ_pages);
1268
1269 if (chunk != pcpu_reserved_chunk)
1270 pcpu_nr_empty_pop_pages += occ_pages;
1271
1272 /* if there are more than one fully free chunks, wake up grim reaper */
1273 if (chunk->free_size == pcpu_unit_size) {
1274 struct pcpu_chunk *pos;
1275
1276 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1277 if (pos != chunk) {
1278 pcpu_schedule_balance_work();
1279 break;
1280 }
1281 }
1282
1283 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1284
1285 spin_unlock_irqrestore(&pcpu_lock, flags);
1286 }
1287 EXPORT_SYMBOL_GPL(free_percpu);
1288
1289 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1290 {
1291 #ifdef CONFIG_SMP
1292 const size_t static_size = __per_cpu_end - __per_cpu_start;
1293 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1294 unsigned int cpu;
1295
1296 for_each_possible_cpu(cpu) {
1297 void *start = per_cpu_ptr(base, cpu);
1298 void *va = (void *)addr;
1299
1300 if (va >= start && va < start + static_size) {
1301 if (can_addr) {
1302 *can_addr = (unsigned long) (va - start);
1303 *can_addr += (unsigned long)
1304 per_cpu_ptr(base, get_boot_cpu_id());
1305 }
1306 return true;
1307 }
1308 }
1309 #endif
1310 /* on UP, can't distinguish from other static vars, always false */
1311 return false;
1312 }
1313
1314 /**
1315 * is_kernel_percpu_address - test whether address is from static percpu area
1316 * @addr: address to test
1317 *
1318 * Test whether @addr belongs to in-kernel static percpu area. Module
1319 * static percpu areas are not considered. For those, use
1320 * is_module_percpu_address().
1321 *
1322 * RETURNS:
1323 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1324 */
1325 bool is_kernel_percpu_address(unsigned long addr)
1326 {
1327 return __is_kernel_percpu_address(addr, NULL);
1328 }
1329
1330 /**
1331 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1332 * @addr: the address to be converted to physical address
1333 *
1334 * Given @addr which is dereferenceable address obtained via one of
1335 * percpu access macros, this function translates it into its physical
1336 * address. The caller is responsible for ensuring @addr stays valid
1337 * until this function finishes.
1338 *
1339 * percpu allocator has special setup for the first chunk, which currently
1340 * supports either embedding in linear address space or vmalloc mapping,
1341 * and, from the second one, the backing allocator (currently either vm or
1342 * km) provides translation.
1343 *
1344 * The addr can be translated simply without checking if it falls into the
1345 * first chunk. But the current code reflects better how percpu allocator
1346 * actually works, and the verification can discover both bugs in percpu
1347 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1348 * code.
1349 *
1350 * RETURNS:
1351 * The physical address for @addr.
1352 */
1353 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1354 {
1355 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1356 bool in_first_chunk = false;
1357 unsigned long first_low, first_high;
1358 unsigned int cpu;
1359
1360 /*
1361 * The following test on unit_low/high isn't strictly
1362 * necessary but will speed up lookups of addresses which
1363 * aren't in the first chunk.
1364 */
1365 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1366 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1367 pcpu_unit_pages);
1368 if ((unsigned long)addr >= first_low &&
1369 (unsigned long)addr < first_high) {
1370 for_each_possible_cpu(cpu) {
1371 void *start = per_cpu_ptr(base, cpu);
1372
1373 if (addr >= start && addr < start + pcpu_unit_size) {
1374 in_first_chunk = true;
1375 break;
1376 }
1377 }
1378 }
1379
1380 if (in_first_chunk) {
1381 if (!is_vmalloc_addr(addr))
1382 return __pa(addr);
1383 else
1384 return page_to_phys(vmalloc_to_page(addr)) +
1385 offset_in_page(addr);
1386 } else
1387 return page_to_phys(pcpu_addr_to_page(addr)) +
1388 offset_in_page(addr);
1389 }
1390
1391 /**
1392 * pcpu_alloc_alloc_info - allocate percpu allocation info
1393 * @nr_groups: the number of groups
1394 * @nr_units: the number of units
1395 *
1396 * Allocate ai which is large enough for @nr_groups groups containing
1397 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1398 * cpu_map array which is long enough for @nr_units and filled with
1399 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1400 * pointer of other groups.
1401 *
1402 * RETURNS:
1403 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1404 * failure.
1405 */
1406 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1407 int nr_units)
1408 {
1409 struct pcpu_alloc_info *ai;
1410 size_t base_size, ai_size;
1411 void *ptr;
1412 int unit;
1413
1414 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1415 __alignof__(ai->groups[0].cpu_map[0]));
1416 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1417
1418 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1419 if (!ptr)
1420 return NULL;
1421 ai = ptr;
1422 ptr += base_size;
1423
1424 ai->groups[0].cpu_map = ptr;
1425
1426 for (unit = 0; unit < nr_units; unit++)
1427 ai->groups[0].cpu_map[unit] = NR_CPUS;
1428
1429 ai->nr_groups = nr_groups;
1430 ai->__ai_size = PFN_ALIGN(ai_size);
1431
1432 return ai;
1433 }
1434
1435 /**
1436 * pcpu_free_alloc_info - free percpu allocation info
1437 * @ai: pcpu_alloc_info to free
1438 *
1439 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1440 */
1441 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1442 {
1443 memblock_free_early(__pa(ai), ai->__ai_size);
1444 }
1445
1446 /**
1447 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1448 * @lvl: loglevel
1449 * @ai: allocation info to dump
1450 *
1451 * Print out information about @ai using loglevel @lvl.
1452 */
1453 static void pcpu_dump_alloc_info(const char *lvl,
1454 const struct pcpu_alloc_info *ai)
1455 {
1456 int group_width = 1, cpu_width = 1, width;
1457 char empty_str[] = "--------";
1458 int alloc = 0, alloc_end = 0;
1459 int group, v;
1460 int upa, apl; /* units per alloc, allocs per line */
1461
1462 v = ai->nr_groups;
1463 while (v /= 10)
1464 group_width++;
1465
1466 v = num_possible_cpus();
1467 while (v /= 10)
1468 cpu_width++;
1469 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1470
1471 upa = ai->alloc_size / ai->unit_size;
1472 width = upa * (cpu_width + 1) + group_width + 3;
1473 apl = rounddown_pow_of_two(max(60 / width, 1));
1474
1475 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1476 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1477 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1478
1479 for (group = 0; group < ai->nr_groups; group++) {
1480 const struct pcpu_group_info *gi = &ai->groups[group];
1481 int unit = 0, unit_end = 0;
1482
1483 BUG_ON(gi->nr_units % upa);
1484 for (alloc_end += gi->nr_units / upa;
1485 alloc < alloc_end; alloc++) {
1486 if (!(alloc % apl)) {
1487 pr_cont("\n");
1488 printk("%spcpu-alloc: ", lvl);
1489 }
1490 pr_cont("[%0*d] ", group_width, group);
1491
1492 for (unit_end += upa; unit < unit_end; unit++)
1493 if (gi->cpu_map[unit] != NR_CPUS)
1494 pr_cont("%0*d ",
1495 cpu_width, gi->cpu_map[unit]);
1496 else
1497 pr_cont("%s ", empty_str);
1498 }
1499 }
1500 pr_cont("\n");
1501 }
1502
1503 /**
1504 * pcpu_setup_first_chunk - initialize the first percpu chunk
1505 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1506 * @base_addr: mapped address
1507 *
1508 * Initialize the first percpu chunk which contains the kernel static
1509 * perpcu area. This function is to be called from arch percpu area
1510 * setup path.
1511 *
1512 * @ai contains all information necessary to initialize the first
1513 * chunk and prime the dynamic percpu allocator.
1514 *
1515 * @ai->static_size is the size of static percpu area.
1516 *
1517 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1518 * reserve after the static area in the first chunk. This reserves
1519 * the first chunk such that it's available only through reserved
1520 * percpu allocation. This is primarily used to serve module percpu
1521 * static areas on architectures where the addressing model has
1522 * limited offset range for symbol relocations to guarantee module
1523 * percpu symbols fall inside the relocatable range.
1524 *
1525 * @ai->dyn_size determines the number of bytes available for dynamic
1526 * allocation in the first chunk. The area between @ai->static_size +
1527 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1528 *
1529 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1530 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1531 * @ai->dyn_size.
1532 *
1533 * @ai->atom_size is the allocation atom size and used as alignment
1534 * for vm areas.
1535 *
1536 * @ai->alloc_size is the allocation size and always multiple of
1537 * @ai->atom_size. This is larger than @ai->atom_size if
1538 * @ai->unit_size is larger than @ai->atom_size.
1539 *
1540 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1541 * percpu areas. Units which should be colocated are put into the
1542 * same group. Dynamic VM areas will be allocated according to these
1543 * groupings. If @ai->nr_groups is zero, a single group containing
1544 * all units is assumed.
1545 *
1546 * The caller should have mapped the first chunk at @base_addr and
1547 * copied static data to each unit.
1548 *
1549 * If the first chunk ends up with both reserved and dynamic areas, it
1550 * is served by two chunks - one to serve the core static and reserved
1551 * areas and the other for the dynamic area. They share the same vm
1552 * and page map but uses different area allocation map to stay away
1553 * from each other. The latter chunk is circulated in the chunk slots
1554 * and available for dynamic allocation like any other chunks.
1555 *
1556 * RETURNS:
1557 * 0 on success, -errno on failure.
1558 */
1559 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1560 void *base_addr)
1561 {
1562 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1563 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1564 size_t dyn_size = ai->dyn_size;
1565 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1566 struct pcpu_chunk *schunk, *dchunk = NULL;
1567 unsigned long *group_offsets;
1568 size_t *group_sizes;
1569 unsigned long *unit_off;
1570 unsigned int cpu;
1571 int *unit_map;
1572 int group, unit, i;
1573
1574 #define PCPU_SETUP_BUG_ON(cond) do { \
1575 if (unlikely(cond)) { \
1576 pr_emerg("failed to initialize, %s\n", #cond); \
1577 pr_emerg("cpu_possible_mask=%*pb\n", \
1578 cpumask_pr_args(cpu_possible_mask)); \
1579 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1580 BUG(); \
1581 } \
1582 } while (0)
1583
1584 /* sanity checks */
1585 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1586 #ifdef CONFIG_SMP
1587 PCPU_SETUP_BUG_ON(!ai->static_size);
1588 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1589 #endif
1590 PCPU_SETUP_BUG_ON(!base_addr);
1591 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1592 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1593 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1594 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1595 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1596 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1597
1598 /* process group information and build config tables accordingly */
1599 group_offsets = memblock_virt_alloc(ai->nr_groups *
1600 sizeof(group_offsets[0]), 0);
1601 group_sizes = memblock_virt_alloc(ai->nr_groups *
1602 sizeof(group_sizes[0]), 0);
1603 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1604 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1605
1606 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1607 unit_map[cpu] = UINT_MAX;
1608
1609 pcpu_low_unit_cpu = NR_CPUS;
1610 pcpu_high_unit_cpu = NR_CPUS;
1611
1612 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1613 const struct pcpu_group_info *gi = &ai->groups[group];
1614
1615 group_offsets[group] = gi->base_offset;
1616 group_sizes[group] = gi->nr_units * ai->unit_size;
1617
1618 for (i = 0; i < gi->nr_units; i++) {
1619 cpu = gi->cpu_map[i];
1620 if (cpu == NR_CPUS)
1621 continue;
1622
1623 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1624 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1625 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1626
1627 unit_map[cpu] = unit + i;
1628 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1629
1630 /* determine low/high unit_cpu */
1631 if (pcpu_low_unit_cpu == NR_CPUS ||
1632 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1633 pcpu_low_unit_cpu = cpu;
1634 if (pcpu_high_unit_cpu == NR_CPUS ||
1635 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1636 pcpu_high_unit_cpu = cpu;
1637 }
1638 }
1639 pcpu_nr_units = unit;
1640
1641 for_each_possible_cpu(cpu)
1642 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1643
1644 /* we're done parsing the input, undefine BUG macro and dump config */
1645 #undef PCPU_SETUP_BUG_ON
1646 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1647
1648 pcpu_nr_groups = ai->nr_groups;
1649 pcpu_group_offsets = group_offsets;
1650 pcpu_group_sizes = group_sizes;
1651 pcpu_unit_map = unit_map;
1652 pcpu_unit_offsets = unit_off;
1653
1654 /* determine basic parameters */
1655 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1656 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1657 pcpu_atom_size = ai->atom_size;
1658 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1659 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1660
1661 pcpu_stats_save_ai(ai);
1662
1663 /*
1664 * Allocate chunk slots. The additional last slot is for
1665 * empty chunks.
1666 */
1667 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1668 pcpu_slot = memblock_virt_alloc(
1669 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1670 for (i = 0; i < pcpu_nr_slots; i++)
1671 INIT_LIST_HEAD(&pcpu_slot[i]);
1672
1673 /*
1674 * Initialize static chunk. If reserved_size is zero, the
1675 * static chunk covers static area + dynamic allocation area
1676 * in the first chunk. If reserved_size is not zero, it
1677 * covers static area + reserved area (mostly used for module
1678 * static percpu allocation).
1679 */
1680 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1681 INIT_LIST_HEAD(&schunk->list);
1682 INIT_LIST_HEAD(&schunk->map_extend_list);
1683 schunk->base_addr = base_addr;
1684 schunk->map = smap;
1685 schunk->map_alloc = ARRAY_SIZE(smap);
1686 schunk->immutable = true;
1687 bitmap_fill(schunk->populated, pcpu_unit_pages);
1688 schunk->nr_populated = pcpu_unit_pages;
1689
1690 if (ai->reserved_size) {
1691 schunk->free_size = ai->reserved_size;
1692 pcpu_reserved_chunk = schunk;
1693 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1694 } else {
1695 schunk->free_size = dyn_size;
1696 dyn_size = 0; /* dynamic area covered */
1697 }
1698 schunk->contig_hint = schunk->free_size;
1699
1700 schunk->map[0] = 1;
1701 schunk->map[1] = ai->static_size;
1702 schunk->map_used = 1;
1703 if (schunk->free_size)
1704 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1705 schunk->map[schunk->map_used] |= 1;
1706 schunk->has_reserved = true;
1707
1708 /* init dynamic chunk if necessary */
1709 if (dyn_size) {
1710 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1711 INIT_LIST_HEAD(&dchunk->list);
1712 INIT_LIST_HEAD(&dchunk->map_extend_list);
1713 dchunk->base_addr = base_addr;
1714 dchunk->map = dmap;
1715 dchunk->map_alloc = ARRAY_SIZE(dmap);
1716 dchunk->immutable = true;
1717 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1718 dchunk->nr_populated = pcpu_unit_pages;
1719
1720 dchunk->contig_hint = dchunk->free_size = dyn_size;
1721 dchunk->map[0] = 1;
1722 dchunk->map[1] = pcpu_reserved_chunk_limit;
1723 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1724 dchunk->map_used = 2;
1725 dchunk->has_reserved = true;
1726 }
1727
1728 /* link the first chunk in */
1729 pcpu_first_chunk = dchunk ?: schunk;
1730 pcpu_nr_empty_pop_pages +=
1731 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1732 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1733
1734 pcpu_stats_chunk_alloc();
1735 trace_percpu_create_chunk(base_addr);
1736
1737 /* we're done */
1738 pcpu_base_addr = base_addr;
1739 return 0;
1740 }
1741
1742 #ifdef CONFIG_SMP
1743
1744 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1745 [PCPU_FC_AUTO] = "auto",
1746 [PCPU_FC_EMBED] = "embed",
1747 [PCPU_FC_PAGE] = "page",
1748 };
1749
1750 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1751
1752 static int __init percpu_alloc_setup(char *str)
1753 {
1754 if (!str)
1755 return -EINVAL;
1756
1757 if (0)
1758 /* nada */;
1759 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1760 else if (!strcmp(str, "embed"))
1761 pcpu_chosen_fc = PCPU_FC_EMBED;
1762 #endif
1763 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1764 else if (!strcmp(str, "page"))
1765 pcpu_chosen_fc = PCPU_FC_PAGE;
1766 #endif
1767 else
1768 pr_warn("unknown allocator %s specified\n", str);
1769
1770 return 0;
1771 }
1772 early_param("percpu_alloc", percpu_alloc_setup);
1773
1774 /*
1775 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1776 * Build it if needed by the arch config or the generic setup is going
1777 * to be used.
1778 */
1779 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1780 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1781 #define BUILD_EMBED_FIRST_CHUNK
1782 #endif
1783
1784 /* build pcpu_page_first_chunk() iff needed by the arch config */
1785 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1786 #define BUILD_PAGE_FIRST_CHUNK
1787 #endif
1788
1789 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1790 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1791 /**
1792 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1793 * @reserved_size: the size of reserved percpu area in bytes
1794 * @dyn_size: minimum free size for dynamic allocation in bytes
1795 * @atom_size: allocation atom size
1796 * @cpu_distance_fn: callback to determine distance between cpus, optional
1797 *
1798 * This function determines grouping of units, their mappings to cpus
1799 * and other parameters considering needed percpu size, allocation
1800 * atom size and distances between CPUs.
1801 *
1802 * Groups are always multiples of atom size and CPUs which are of
1803 * LOCAL_DISTANCE both ways are grouped together and share space for
1804 * units in the same group. The returned configuration is guaranteed
1805 * to have CPUs on different nodes on different groups and >=75% usage
1806 * of allocated virtual address space.
1807 *
1808 * RETURNS:
1809 * On success, pointer to the new allocation_info is returned. On
1810 * failure, ERR_PTR value is returned.
1811 */
1812 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1813 size_t reserved_size, size_t dyn_size,
1814 size_t atom_size,
1815 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1816 {
1817 static int group_map[NR_CPUS] __initdata;
1818 static int group_cnt[NR_CPUS] __initdata;
1819 const size_t static_size = __per_cpu_end - __per_cpu_start;
1820 int nr_groups = 1, nr_units = 0;
1821 size_t size_sum, min_unit_size, alloc_size;
1822 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1823 int last_allocs, group, unit;
1824 unsigned int cpu, tcpu;
1825 struct pcpu_alloc_info *ai;
1826 unsigned int *cpu_map;
1827
1828 /* this function may be called multiple times */
1829 memset(group_map, 0, sizeof(group_map));
1830 memset(group_cnt, 0, sizeof(group_cnt));
1831
1832 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1833 size_sum = PFN_ALIGN(static_size + reserved_size +
1834 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1835 dyn_size = size_sum - static_size - reserved_size;
1836
1837 /*
1838 * Determine min_unit_size, alloc_size and max_upa such that
1839 * alloc_size is multiple of atom_size and is the smallest
1840 * which can accommodate 4k aligned segments which are equal to
1841 * or larger than min_unit_size.
1842 */
1843 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1844
1845 alloc_size = roundup(min_unit_size, atom_size);
1846 upa = alloc_size / min_unit_size;
1847 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1848 upa--;
1849 max_upa = upa;
1850
1851 /* group cpus according to their proximity */
1852 for_each_possible_cpu(cpu) {
1853 group = 0;
1854 next_group:
1855 for_each_possible_cpu(tcpu) {
1856 if (cpu == tcpu)
1857 break;
1858 if (group_map[tcpu] == group && cpu_distance_fn &&
1859 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1860 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1861 group++;
1862 nr_groups = max(nr_groups, group + 1);
1863 goto next_group;
1864 }
1865 }
1866 group_map[cpu] = group;
1867 group_cnt[group]++;
1868 }
1869
1870 /*
1871 * Expand unit size until address space usage goes over 75%
1872 * and then as much as possible without using more address
1873 * space.
1874 */
1875 last_allocs = INT_MAX;
1876 for (upa = max_upa; upa; upa--) {
1877 int allocs = 0, wasted = 0;
1878
1879 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1880 continue;
1881
1882 for (group = 0; group < nr_groups; group++) {
1883 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1884 allocs += this_allocs;
1885 wasted += this_allocs * upa - group_cnt[group];
1886 }
1887
1888 /*
1889 * Don't accept if wastage is over 1/3. The
1890 * greater-than comparison ensures upa==1 always
1891 * passes the following check.
1892 */
1893 if (wasted > num_possible_cpus() / 3)
1894 continue;
1895
1896 /* and then don't consume more memory */
1897 if (allocs > last_allocs)
1898 break;
1899 last_allocs = allocs;
1900 best_upa = upa;
1901 }
1902 upa = best_upa;
1903
1904 /* allocate and fill alloc_info */
1905 for (group = 0; group < nr_groups; group++)
1906 nr_units += roundup(group_cnt[group], upa);
1907
1908 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1909 if (!ai)
1910 return ERR_PTR(-ENOMEM);
1911 cpu_map = ai->groups[0].cpu_map;
1912
1913 for (group = 0; group < nr_groups; group++) {
1914 ai->groups[group].cpu_map = cpu_map;
1915 cpu_map += roundup(group_cnt[group], upa);
1916 }
1917
1918 ai->static_size = static_size;
1919 ai->reserved_size = reserved_size;
1920 ai->dyn_size = dyn_size;
1921 ai->unit_size = alloc_size / upa;
1922 ai->atom_size = atom_size;
1923 ai->alloc_size = alloc_size;
1924
1925 for (group = 0, unit = 0; group_cnt[group]; group++) {
1926 struct pcpu_group_info *gi = &ai->groups[group];
1927
1928 /*
1929 * Initialize base_offset as if all groups are located
1930 * back-to-back. The caller should update this to
1931 * reflect actual allocation.
1932 */
1933 gi->base_offset = unit * ai->unit_size;
1934
1935 for_each_possible_cpu(cpu)
1936 if (group_map[cpu] == group)
1937 gi->cpu_map[gi->nr_units++] = cpu;
1938 gi->nr_units = roundup(gi->nr_units, upa);
1939 unit += gi->nr_units;
1940 }
1941 BUG_ON(unit != nr_units);
1942
1943 return ai;
1944 }
1945 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1946
1947 #if defined(BUILD_EMBED_FIRST_CHUNK)
1948 /**
1949 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1950 * @reserved_size: the size of reserved percpu area in bytes
1951 * @dyn_size: minimum free size for dynamic allocation in bytes
1952 * @atom_size: allocation atom size
1953 * @cpu_distance_fn: callback to determine distance between cpus, optional
1954 * @alloc_fn: function to allocate percpu page
1955 * @free_fn: function to free percpu page
1956 *
1957 * This is a helper to ease setting up embedded first percpu chunk and
1958 * can be called where pcpu_setup_first_chunk() is expected.
1959 *
1960 * If this function is used to setup the first chunk, it is allocated
1961 * by calling @alloc_fn and used as-is without being mapped into
1962 * vmalloc area. Allocations are always whole multiples of @atom_size
1963 * aligned to @atom_size.
1964 *
1965 * This enables the first chunk to piggy back on the linear physical
1966 * mapping which often uses larger page size. Please note that this
1967 * can result in very sparse cpu->unit mapping on NUMA machines thus
1968 * requiring large vmalloc address space. Don't use this allocator if
1969 * vmalloc space is not orders of magnitude larger than distances
1970 * between node memory addresses (ie. 32bit NUMA machines).
1971 *
1972 * @dyn_size specifies the minimum dynamic area size.
1973 *
1974 * If the needed size is smaller than the minimum or specified unit
1975 * size, the leftover is returned using @free_fn.
1976 *
1977 * RETURNS:
1978 * 0 on success, -errno on failure.
1979 */
1980 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1981 size_t atom_size,
1982 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1983 pcpu_fc_alloc_fn_t alloc_fn,
1984 pcpu_fc_free_fn_t free_fn)
1985 {
1986 void *base = (void *)ULONG_MAX;
1987 void **areas = NULL;
1988 struct pcpu_alloc_info *ai;
1989 size_t size_sum, areas_size;
1990 unsigned long max_distance;
1991 int group, i, highest_group, rc;
1992
1993 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1994 cpu_distance_fn);
1995 if (IS_ERR(ai))
1996 return PTR_ERR(ai);
1997
1998 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1999 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2000
2001 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2002 if (!areas) {
2003 rc = -ENOMEM;
2004 goto out_free;
2005 }
2006
2007 /* allocate, copy and determine base address & max_distance */
2008 highest_group = 0;
2009 for (group = 0; group < ai->nr_groups; group++) {
2010 struct pcpu_group_info *gi = &ai->groups[group];
2011 unsigned int cpu = NR_CPUS;
2012 void *ptr;
2013
2014 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2015 cpu = gi->cpu_map[i];
2016 BUG_ON(cpu == NR_CPUS);
2017
2018 /* allocate space for the whole group */
2019 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2020 if (!ptr) {
2021 rc = -ENOMEM;
2022 goto out_free_areas;
2023 }
2024 /* kmemleak tracks the percpu allocations separately */
2025 kmemleak_free(ptr);
2026 areas[group] = ptr;
2027
2028 base = min(ptr, base);
2029 if (ptr > areas[highest_group])
2030 highest_group = group;
2031 }
2032 max_distance = areas[highest_group] - base;
2033 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2034
2035 /* warn if maximum distance is further than 75% of vmalloc space */
2036 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2037 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2038 max_distance, VMALLOC_TOTAL);
2039 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2040 /* and fail if we have fallback */
2041 rc = -EINVAL;
2042 goto out_free_areas;
2043 #endif
2044 }
2045
2046 /*
2047 * Copy data and free unused parts. This should happen after all
2048 * allocations are complete; otherwise, we may end up with
2049 * overlapping groups.
2050 */
2051 for (group = 0; group < ai->nr_groups; group++) {
2052 struct pcpu_group_info *gi = &ai->groups[group];
2053 void *ptr = areas[group];
2054
2055 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2056 if (gi->cpu_map[i] == NR_CPUS) {
2057 /* unused unit, free whole */
2058 free_fn(ptr, ai->unit_size);
2059 continue;
2060 }
2061 /* copy and return the unused part */
2062 memcpy(ptr, __per_cpu_load, ai->static_size);
2063 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2064 }
2065 }
2066
2067 /* base address is now known, determine group base offsets */
2068 for (group = 0; group < ai->nr_groups; group++) {
2069 ai->groups[group].base_offset = areas[group] - base;
2070 }
2071
2072 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2073 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2074 ai->dyn_size, ai->unit_size);
2075
2076 rc = pcpu_setup_first_chunk(ai, base);
2077 goto out_free;
2078
2079 out_free_areas:
2080 for (group = 0; group < ai->nr_groups; group++)
2081 if (areas[group])
2082 free_fn(areas[group],
2083 ai->groups[group].nr_units * ai->unit_size);
2084 out_free:
2085 pcpu_free_alloc_info(ai);
2086 if (areas)
2087 memblock_free_early(__pa(areas), areas_size);
2088 return rc;
2089 }
2090 #endif /* BUILD_EMBED_FIRST_CHUNK */
2091
2092 #ifdef BUILD_PAGE_FIRST_CHUNK
2093 /**
2094 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2095 * @reserved_size: the size of reserved percpu area in bytes
2096 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2097 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2098 * @populate_pte_fn: function to populate pte
2099 *
2100 * This is a helper to ease setting up page-remapped first percpu
2101 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2102 *
2103 * This is the basic allocator. Static percpu area is allocated
2104 * page-by-page into vmalloc area.
2105 *
2106 * RETURNS:
2107 * 0 on success, -errno on failure.
2108 */
2109 int __init pcpu_page_first_chunk(size_t reserved_size,
2110 pcpu_fc_alloc_fn_t alloc_fn,
2111 pcpu_fc_free_fn_t free_fn,
2112 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2113 {
2114 static struct vm_struct vm;
2115 struct pcpu_alloc_info *ai;
2116 char psize_str[16];
2117 int unit_pages;
2118 size_t pages_size;
2119 struct page **pages;
2120 int unit, i, j, rc;
2121 int upa;
2122 int nr_g0_units;
2123
2124 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2125
2126 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2127 if (IS_ERR(ai))
2128 return PTR_ERR(ai);
2129 BUG_ON(ai->nr_groups != 1);
2130 upa = ai->alloc_size/ai->unit_size;
2131 nr_g0_units = roundup(num_possible_cpus(), upa);
2132 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2133 pcpu_free_alloc_info(ai);
2134 return -EINVAL;
2135 }
2136
2137 unit_pages = ai->unit_size >> PAGE_SHIFT;
2138
2139 /* unaligned allocations can't be freed, round up to page size */
2140 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2141 sizeof(pages[0]));
2142 pages = memblock_virt_alloc(pages_size, 0);
2143
2144 /* allocate pages */
2145 j = 0;
2146 for (unit = 0; unit < num_possible_cpus(); unit++) {
2147 unsigned int cpu = ai->groups[0].cpu_map[unit];
2148 for (i = 0; i < unit_pages; i++) {
2149 void *ptr;
2150
2151 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2152 if (!ptr) {
2153 pr_warn("failed to allocate %s page for cpu%u\n",
2154 psize_str, cpu);
2155 goto enomem;
2156 }
2157 /* kmemleak tracks the percpu allocations separately */
2158 kmemleak_free(ptr);
2159 pages[j++] = virt_to_page(ptr);
2160 }
2161 }
2162
2163 /* allocate vm area, map the pages and copy static data */
2164 vm.flags = VM_ALLOC;
2165 vm.size = num_possible_cpus() * ai->unit_size;
2166 vm_area_register_early(&vm, PAGE_SIZE);
2167
2168 for (unit = 0; unit < num_possible_cpus(); unit++) {
2169 unsigned long unit_addr =
2170 (unsigned long)vm.addr + unit * ai->unit_size;
2171
2172 for (i = 0; i < unit_pages; i++)
2173 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2174
2175 /* pte already populated, the following shouldn't fail */
2176 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2177 unit_pages);
2178 if (rc < 0)
2179 panic("failed to map percpu area, err=%d\n", rc);
2180
2181 /*
2182 * FIXME: Archs with virtual cache should flush local
2183 * cache for the linear mapping here - something
2184 * equivalent to flush_cache_vmap() on the local cpu.
2185 * flush_cache_vmap() can't be used as most supporting
2186 * data structures are not set up yet.
2187 */
2188
2189 /* copy static data */
2190 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2191 }
2192
2193 /* we're ready, commit */
2194 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2195 unit_pages, psize_str, vm.addr, ai->static_size,
2196 ai->reserved_size, ai->dyn_size);
2197
2198 rc = pcpu_setup_first_chunk(ai, vm.addr);
2199 goto out_free_ar;
2200
2201 enomem:
2202 while (--j >= 0)
2203 free_fn(page_address(pages[j]), PAGE_SIZE);
2204 rc = -ENOMEM;
2205 out_free_ar:
2206 memblock_free_early(__pa(pages), pages_size);
2207 pcpu_free_alloc_info(ai);
2208 return rc;
2209 }
2210 #endif /* BUILD_PAGE_FIRST_CHUNK */
2211
2212 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2213 /*
2214 * Generic SMP percpu area setup.
2215 *
2216 * The embedding helper is used because its behavior closely resembles
2217 * the original non-dynamic generic percpu area setup. This is
2218 * important because many archs have addressing restrictions and might
2219 * fail if the percpu area is located far away from the previous
2220 * location. As an added bonus, in non-NUMA cases, embedding is
2221 * generally a good idea TLB-wise because percpu area can piggy back
2222 * on the physical linear memory mapping which uses large page
2223 * mappings on applicable archs.
2224 */
2225 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2226 EXPORT_SYMBOL(__per_cpu_offset);
2227
2228 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2229 size_t align)
2230 {
2231 return memblock_virt_alloc_from_nopanic(
2232 size, align, __pa(MAX_DMA_ADDRESS));
2233 }
2234
2235 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2236 {
2237 memblock_free_early(__pa(ptr), size);
2238 }
2239
2240 void __init setup_per_cpu_areas(void)
2241 {
2242 unsigned long delta;
2243 unsigned int cpu;
2244 int rc;
2245
2246 /*
2247 * Always reserve area for module percpu variables. That's
2248 * what the legacy allocator did.
2249 */
2250 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2251 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2252 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2253 if (rc < 0)
2254 panic("Failed to initialize percpu areas.");
2255
2256 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2257 for_each_possible_cpu(cpu)
2258 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2259 }
2260 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2261
2262 #else /* CONFIG_SMP */
2263
2264 /*
2265 * UP percpu area setup.
2266 *
2267 * UP always uses km-based percpu allocator with identity mapping.
2268 * Static percpu variables are indistinguishable from the usual static
2269 * variables and don't require any special preparation.
2270 */
2271 void __init setup_per_cpu_areas(void)
2272 {
2273 const size_t unit_size =
2274 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2275 PERCPU_DYNAMIC_RESERVE));
2276 struct pcpu_alloc_info *ai;
2277 void *fc;
2278
2279 ai = pcpu_alloc_alloc_info(1, 1);
2280 fc = memblock_virt_alloc_from_nopanic(unit_size,
2281 PAGE_SIZE,
2282 __pa(MAX_DMA_ADDRESS));
2283 if (!ai || !fc)
2284 panic("Failed to allocate memory for percpu areas.");
2285 /* kmemleak tracks the percpu allocations separately */
2286 kmemleak_free(fc);
2287
2288 ai->dyn_size = unit_size;
2289 ai->unit_size = unit_size;
2290 ai->atom_size = unit_size;
2291 ai->alloc_size = unit_size;
2292 ai->groups[0].nr_units = 1;
2293 ai->groups[0].cpu_map[0] = 0;
2294
2295 if (pcpu_setup_first_chunk(ai, fc) < 0)
2296 panic("Failed to initialize percpu areas.");
2297 }
2298
2299 #endif /* CONFIG_SMP */
2300
2301 /*
2302 * First and reserved chunks are initialized with temporary allocation
2303 * map in initdata so that they can be used before slab is online.
2304 * This function is called after slab is brought up and replaces those
2305 * with properly allocated maps.
2306 */
2307 void __init percpu_init_late(void)
2308 {
2309 struct pcpu_chunk *target_chunks[] =
2310 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2311 struct pcpu_chunk *chunk;
2312 unsigned long flags;
2313 int i;
2314
2315 for (i = 0; (chunk = target_chunks[i]); i++) {
2316 int *map;
2317 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2318
2319 BUILD_BUG_ON(size > PAGE_SIZE);
2320
2321 map = pcpu_mem_zalloc(size);
2322 BUG_ON(!map);
2323
2324 spin_lock_irqsave(&pcpu_lock, flags);
2325 memcpy(map, chunk->map, size);
2326 chunk->map = map;
2327 spin_unlock_irqrestore(&pcpu_lock, flags);
2328 }
2329 }
2330
2331 /*
2332 * Percpu allocator is initialized early during boot when neither slab or
2333 * workqueue is available. Plug async management until everything is up
2334 * and running.
2335 */
2336 static int __init percpu_enable_async(void)
2337 {
2338 pcpu_async_enabled = true;
2339 return 0;
2340 }
2341 subsys_initcall(percpu_enable_async);