]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/percpu.c
UBUNTU: [Config] enable signing for ppc64el
[mirror_ubuntu-impish-kernel.git] / mm / percpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/percpu.c - percpu memory allocator
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
10 *
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
38 *
39 * The allocator organizes chunks into lists according to free size and
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
44 *
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
52 *
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
58 *
59 * To use this allocator, arch code should do the following:
60 *
61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
64 *
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
67 */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/lcm.h>
76 #include <linux/list.h>
77 #include <linux/log2.h>
78 #include <linux/mm.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/percpu.h>
82 #include <linux/pfn.h>
83 #include <linux/slab.h>
84 #include <linux/spinlock.h>
85 #include <linux/vmalloc.h>
86 #include <linux/workqueue.h>
87 #include <linux/kmemleak.h>
88 #include <linux/sched.h>
89 #include <linux/sched/mm.h>
90 #include <linux/memcontrol.h>
91
92 #include <asm/cacheflush.h>
93 #include <asm/sections.h>
94 #include <asm/tlbflush.h>
95 #include <asm/io.h>
96
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/percpu.h>
99
100 #include "percpu-internal.h"
101
102 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
103 #define PCPU_SLOT_BASE_SHIFT 5
104 /* chunks in slots below this are subject to being sidelined on failed alloc */
105 #define PCPU_SLOT_FAIL_THRESHOLD 3
106
107 #define PCPU_EMPTY_POP_PAGES_LOW 2
108 #define PCPU_EMPTY_POP_PAGES_HIGH 4
109
110 #ifdef CONFIG_SMP
111 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
112 #ifndef __addr_to_pcpu_ptr
113 #define __addr_to_pcpu_ptr(addr) \
114 (void __percpu *)((unsigned long)(addr) - \
115 (unsigned long)pcpu_base_addr + \
116 (unsigned long)__per_cpu_start)
117 #endif
118 #ifndef __pcpu_ptr_to_addr
119 #define __pcpu_ptr_to_addr(ptr) \
120 (void __force *)((unsigned long)(ptr) + \
121 (unsigned long)pcpu_base_addr - \
122 (unsigned long)__per_cpu_start)
123 #endif
124 #else /* CONFIG_SMP */
125 /* on UP, it's always identity mapped */
126 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
127 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
128 #endif /* CONFIG_SMP */
129
130 static int pcpu_unit_pages __ro_after_init;
131 static int pcpu_unit_size __ro_after_init;
132 static int pcpu_nr_units __ro_after_init;
133 static int pcpu_atom_size __ro_after_init;
134 int pcpu_nr_slots __ro_after_init;
135 static size_t pcpu_chunk_struct_size __ro_after_init;
136
137 /* cpus with the lowest and highest unit addresses */
138 static unsigned int pcpu_low_unit_cpu __ro_after_init;
139 static unsigned int pcpu_high_unit_cpu __ro_after_init;
140
141 /* the address of the first chunk which starts with the kernel static area */
142 void *pcpu_base_addr __ro_after_init;
143 EXPORT_SYMBOL_GPL(pcpu_base_addr);
144
145 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
146 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
147
148 /* group information, used for vm allocation */
149 static int pcpu_nr_groups __ro_after_init;
150 static const unsigned long *pcpu_group_offsets __ro_after_init;
151 static const size_t *pcpu_group_sizes __ro_after_init;
152
153 /*
154 * The first chunk which always exists. Note that unlike other
155 * chunks, this one can be allocated and mapped in several different
156 * ways and thus often doesn't live in the vmalloc area.
157 */
158 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
159
160 /*
161 * Optional reserved chunk. This chunk reserves part of the first
162 * chunk and serves it for reserved allocations. When the reserved
163 * region doesn't exist, the following variable is NULL.
164 */
165 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
166
167 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
168 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
169
170 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
171
172 /* chunks which need their map areas extended, protected by pcpu_lock */
173 static LIST_HEAD(pcpu_map_extend_chunks);
174
175 /*
176 * The number of empty populated pages by chunk type, protected by pcpu_lock.
177 * The reserved chunk doesn't contribute to the count.
178 */
179 int pcpu_nr_empty_pop_pages[PCPU_NR_CHUNK_TYPES];
180
181 /*
182 * The number of populated pages in use by the allocator, protected by
183 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
184 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
185 * and increments/decrements this count by 1).
186 */
187 static unsigned long pcpu_nr_populated;
188
189 /*
190 * Balance work is used to populate or destroy chunks asynchronously. We
191 * try to keep the number of populated free pages between
192 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
193 * empty chunk.
194 */
195 static void pcpu_balance_workfn(struct work_struct *work);
196 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
197 static bool pcpu_async_enabled __read_mostly;
198 static bool pcpu_atomic_alloc_failed;
199
200 static void pcpu_schedule_balance_work(void)
201 {
202 if (pcpu_async_enabled)
203 schedule_work(&pcpu_balance_work);
204 }
205
206 /**
207 * pcpu_addr_in_chunk - check if the address is served from this chunk
208 * @chunk: chunk of interest
209 * @addr: percpu address
210 *
211 * RETURNS:
212 * True if the address is served from this chunk.
213 */
214 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
215 {
216 void *start_addr, *end_addr;
217
218 if (!chunk)
219 return false;
220
221 start_addr = chunk->base_addr + chunk->start_offset;
222 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
223 chunk->end_offset;
224
225 return addr >= start_addr && addr < end_addr;
226 }
227
228 static int __pcpu_size_to_slot(int size)
229 {
230 int highbit = fls(size); /* size is in bytes */
231 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
232 }
233
234 static int pcpu_size_to_slot(int size)
235 {
236 if (size == pcpu_unit_size)
237 return pcpu_nr_slots - 1;
238 return __pcpu_size_to_slot(size);
239 }
240
241 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
242 {
243 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
244
245 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
246 chunk_md->contig_hint == 0)
247 return 0;
248
249 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
250 }
251
252 /* set the pointer to a chunk in a page struct */
253 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
254 {
255 page->index = (unsigned long)pcpu;
256 }
257
258 /* obtain pointer to a chunk from a page struct */
259 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
260 {
261 return (struct pcpu_chunk *)page->index;
262 }
263
264 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
265 {
266 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
267 }
268
269 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
270 {
271 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
272 }
273
274 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
275 unsigned int cpu, int page_idx)
276 {
277 return (unsigned long)chunk->base_addr +
278 pcpu_unit_page_offset(cpu, page_idx);
279 }
280
281 /*
282 * The following are helper functions to help access bitmaps and convert
283 * between bitmap offsets to address offsets.
284 */
285 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
286 {
287 return chunk->alloc_map +
288 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
289 }
290
291 static unsigned long pcpu_off_to_block_index(int off)
292 {
293 return off / PCPU_BITMAP_BLOCK_BITS;
294 }
295
296 static unsigned long pcpu_off_to_block_off(int off)
297 {
298 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
299 }
300
301 static unsigned long pcpu_block_off_to_off(int index, int off)
302 {
303 return index * PCPU_BITMAP_BLOCK_BITS + off;
304 }
305
306 /*
307 * pcpu_next_hint - determine which hint to use
308 * @block: block of interest
309 * @alloc_bits: size of allocation
310 *
311 * This determines if we should scan based on the scan_hint or first_free.
312 * In general, we want to scan from first_free to fulfill allocations by
313 * first fit. However, if we know a scan_hint at position scan_hint_start
314 * cannot fulfill an allocation, we can begin scanning from there knowing
315 * the contig_hint will be our fallback.
316 */
317 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
318 {
319 /*
320 * The three conditions below determine if we can skip past the
321 * scan_hint. First, does the scan hint exist. Second, is the
322 * contig_hint after the scan_hint (possibly not true iff
323 * contig_hint == scan_hint). Third, is the allocation request
324 * larger than the scan_hint.
325 */
326 if (block->scan_hint &&
327 block->contig_hint_start > block->scan_hint_start &&
328 alloc_bits > block->scan_hint)
329 return block->scan_hint_start + block->scan_hint;
330
331 return block->first_free;
332 }
333
334 /**
335 * pcpu_next_md_free_region - finds the next hint free area
336 * @chunk: chunk of interest
337 * @bit_off: chunk offset
338 * @bits: size of free area
339 *
340 * Helper function for pcpu_for_each_md_free_region. It checks
341 * block->contig_hint and performs aggregation across blocks to find the
342 * next hint. It modifies bit_off and bits in-place to be consumed in the
343 * loop.
344 */
345 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
346 int *bits)
347 {
348 int i = pcpu_off_to_block_index(*bit_off);
349 int block_off = pcpu_off_to_block_off(*bit_off);
350 struct pcpu_block_md *block;
351
352 *bits = 0;
353 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
354 block++, i++) {
355 /* handles contig area across blocks */
356 if (*bits) {
357 *bits += block->left_free;
358 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
359 continue;
360 return;
361 }
362
363 /*
364 * This checks three things. First is there a contig_hint to
365 * check. Second, have we checked this hint before by
366 * comparing the block_off. Third, is this the same as the
367 * right contig hint. In the last case, it spills over into
368 * the next block and should be handled by the contig area
369 * across blocks code.
370 */
371 *bits = block->contig_hint;
372 if (*bits && block->contig_hint_start >= block_off &&
373 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
374 *bit_off = pcpu_block_off_to_off(i,
375 block->contig_hint_start);
376 return;
377 }
378 /* reset to satisfy the second predicate above */
379 block_off = 0;
380
381 *bits = block->right_free;
382 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
383 }
384 }
385
386 /**
387 * pcpu_next_fit_region - finds fit areas for a given allocation request
388 * @chunk: chunk of interest
389 * @alloc_bits: size of allocation
390 * @align: alignment of area (max PAGE_SIZE)
391 * @bit_off: chunk offset
392 * @bits: size of free area
393 *
394 * Finds the next free region that is viable for use with a given size and
395 * alignment. This only returns if there is a valid area to be used for this
396 * allocation. block->first_free is returned if the allocation request fits
397 * within the block to see if the request can be fulfilled prior to the contig
398 * hint.
399 */
400 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
401 int align, int *bit_off, int *bits)
402 {
403 int i = pcpu_off_to_block_index(*bit_off);
404 int block_off = pcpu_off_to_block_off(*bit_off);
405 struct pcpu_block_md *block;
406
407 *bits = 0;
408 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
409 block++, i++) {
410 /* handles contig area across blocks */
411 if (*bits) {
412 *bits += block->left_free;
413 if (*bits >= alloc_bits)
414 return;
415 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
416 continue;
417 }
418
419 /* check block->contig_hint */
420 *bits = ALIGN(block->contig_hint_start, align) -
421 block->contig_hint_start;
422 /*
423 * This uses the block offset to determine if this has been
424 * checked in the prior iteration.
425 */
426 if (block->contig_hint &&
427 block->contig_hint_start >= block_off &&
428 block->contig_hint >= *bits + alloc_bits) {
429 int start = pcpu_next_hint(block, alloc_bits);
430
431 *bits += alloc_bits + block->contig_hint_start -
432 start;
433 *bit_off = pcpu_block_off_to_off(i, start);
434 return;
435 }
436 /* reset to satisfy the second predicate above */
437 block_off = 0;
438
439 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
440 align);
441 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
442 *bit_off = pcpu_block_off_to_off(i, *bit_off);
443 if (*bits >= alloc_bits)
444 return;
445 }
446
447 /* no valid offsets were found - fail condition */
448 *bit_off = pcpu_chunk_map_bits(chunk);
449 }
450
451 /*
452 * Metadata free area iterators. These perform aggregation of free areas
453 * based on the metadata blocks and return the offset @bit_off and size in
454 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
455 * a fit is found for the allocation request.
456 */
457 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
458 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
459 (bit_off) < pcpu_chunk_map_bits((chunk)); \
460 (bit_off) += (bits) + 1, \
461 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
462
463 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
464 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
465 &(bits)); \
466 (bit_off) < pcpu_chunk_map_bits((chunk)); \
467 (bit_off) += (bits), \
468 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
469 &(bits)))
470
471 /**
472 * pcpu_mem_zalloc - allocate memory
473 * @size: bytes to allocate
474 * @gfp: allocation flags
475 *
476 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
477 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
478 * This is to facilitate passing through whitelisted flags. The
479 * returned memory is always zeroed.
480 *
481 * RETURNS:
482 * Pointer to the allocated area on success, NULL on failure.
483 */
484 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
485 {
486 if (WARN_ON_ONCE(!slab_is_available()))
487 return NULL;
488
489 if (size <= PAGE_SIZE)
490 return kzalloc(size, gfp);
491 else
492 return __vmalloc(size, gfp | __GFP_ZERO);
493 }
494
495 /**
496 * pcpu_mem_free - free memory
497 * @ptr: memory to free
498 *
499 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
500 */
501 static void pcpu_mem_free(void *ptr)
502 {
503 kvfree(ptr);
504 }
505
506 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
507 bool move_front)
508 {
509 if (chunk != pcpu_reserved_chunk) {
510 struct list_head *pcpu_slot;
511
512 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
513 if (move_front)
514 list_move(&chunk->list, &pcpu_slot[slot]);
515 else
516 list_move_tail(&chunk->list, &pcpu_slot[slot]);
517 }
518 }
519
520 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
521 {
522 __pcpu_chunk_move(chunk, slot, true);
523 }
524
525 /**
526 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
527 * @chunk: chunk of interest
528 * @oslot: the previous slot it was on
529 *
530 * This function is called after an allocation or free changed @chunk.
531 * New slot according to the changed state is determined and @chunk is
532 * moved to the slot. Note that the reserved chunk is never put on
533 * chunk slots.
534 *
535 * CONTEXT:
536 * pcpu_lock.
537 */
538 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
539 {
540 int nslot = pcpu_chunk_slot(chunk);
541
542 if (oslot != nslot)
543 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
544 }
545
546 /*
547 * pcpu_update_empty_pages - update empty page counters
548 * @chunk: chunk of interest
549 * @nr: nr of empty pages
550 *
551 * This is used to keep track of the empty pages now based on the premise
552 * a md_block covers a page. The hint update functions recognize if a block
553 * is made full or broken to calculate deltas for keeping track of free pages.
554 */
555 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
556 {
557 chunk->nr_empty_pop_pages += nr;
558 if (chunk != pcpu_reserved_chunk)
559 pcpu_nr_empty_pop_pages[pcpu_chunk_type(chunk)] += nr;
560 }
561
562 /*
563 * pcpu_region_overlap - determines if two regions overlap
564 * @a: start of first region, inclusive
565 * @b: end of first region, exclusive
566 * @x: start of second region, inclusive
567 * @y: end of second region, exclusive
568 *
569 * This is used to determine if the hint region [a, b) overlaps with the
570 * allocated region [x, y).
571 */
572 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
573 {
574 return (a < y) && (x < b);
575 }
576
577 /**
578 * pcpu_block_update - updates a block given a free area
579 * @block: block of interest
580 * @start: start offset in block
581 * @end: end offset in block
582 *
583 * Updates a block given a known free area. The region [start, end) is
584 * expected to be the entirety of the free area within a block. Chooses
585 * the best starting offset if the contig hints are equal.
586 */
587 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
588 {
589 int contig = end - start;
590
591 block->first_free = min(block->first_free, start);
592 if (start == 0)
593 block->left_free = contig;
594
595 if (end == block->nr_bits)
596 block->right_free = contig;
597
598 if (contig > block->contig_hint) {
599 /* promote the old contig_hint to be the new scan_hint */
600 if (start > block->contig_hint_start) {
601 if (block->contig_hint > block->scan_hint) {
602 block->scan_hint_start =
603 block->contig_hint_start;
604 block->scan_hint = block->contig_hint;
605 } else if (start < block->scan_hint_start) {
606 /*
607 * The old contig_hint == scan_hint. But, the
608 * new contig is larger so hold the invariant
609 * scan_hint_start < contig_hint_start.
610 */
611 block->scan_hint = 0;
612 }
613 } else {
614 block->scan_hint = 0;
615 }
616 block->contig_hint_start = start;
617 block->contig_hint = contig;
618 } else if (contig == block->contig_hint) {
619 if (block->contig_hint_start &&
620 (!start ||
621 __ffs(start) > __ffs(block->contig_hint_start))) {
622 /* start has a better alignment so use it */
623 block->contig_hint_start = start;
624 if (start < block->scan_hint_start &&
625 block->contig_hint > block->scan_hint)
626 block->scan_hint = 0;
627 } else if (start > block->scan_hint_start ||
628 block->contig_hint > block->scan_hint) {
629 /*
630 * Knowing contig == contig_hint, update the scan_hint
631 * if it is farther than or larger than the current
632 * scan_hint.
633 */
634 block->scan_hint_start = start;
635 block->scan_hint = contig;
636 }
637 } else {
638 /*
639 * The region is smaller than the contig_hint. So only update
640 * the scan_hint if it is larger than or equal and farther than
641 * the current scan_hint.
642 */
643 if ((start < block->contig_hint_start &&
644 (contig > block->scan_hint ||
645 (contig == block->scan_hint &&
646 start > block->scan_hint_start)))) {
647 block->scan_hint_start = start;
648 block->scan_hint = contig;
649 }
650 }
651 }
652
653 /*
654 * pcpu_block_update_scan - update a block given a free area from a scan
655 * @chunk: chunk of interest
656 * @bit_off: chunk offset
657 * @bits: size of free area
658 *
659 * Finding the final allocation spot first goes through pcpu_find_block_fit()
660 * to find a block that can hold the allocation and then pcpu_alloc_area()
661 * where a scan is used. When allocations require specific alignments,
662 * we can inadvertently create holes which will not be seen in the alloc
663 * or free paths.
664 *
665 * This takes a given free area hole and updates a block as it may change the
666 * scan_hint. We need to scan backwards to ensure we don't miss free bits
667 * from alignment.
668 */
669 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
670 int bits)
671 {
672 int s_off = pcpu_off_to_block_off(bit_off);
673 int e_off = s_off + bits;
674 int s_index, l_bit;
675 struct pcpu_block_md *block;
676
677 if (e_off > PCPU_BITMAP_BLOCK_BITS)
678 return;
679
680 s_index = pcpu_off_to_block_index(bit_off);
681 block = chunk->md_blocks + s_index;
682
683 /* scan backwards in case of alignment skipping free bits */
684 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
685 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
686
687 pcpu_block_update(block, s_off, e_off);
688 }
689
690 /**
691 * pcpu_chunk_refresh_hint - updates metadata about a chunk
692 * @chunk: chunk of interest
693 * @full_scan: if we should scan from the beginning
694 *
695 * Iterates over the metadata blocks to find the largest contig area.
696 * A full scan can be avoided on the allocation path as this is triggered
697 * if we broke the contig_hint. In doing so, the scan_hint will be before
698 * the contig_hint or after if the scan_hint == contig_hint. This cannot
699 * be prevented on freeing as we want to find the largest area possibly
700 * spanning blocks.
701 */
702 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
703 {
704 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
705 int bit_off, bits;
706
707 /* promote scan_hint to contig_hint */
708 if (!full_scan && chunk_md->scan_hint) {
709 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
710 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
711 chunk_md->contig_hint = chunk_md->scan_hint;
712 chunk_md->scan_hint = 0;
713 } else {
714 bit_off = chunk_md->first_free;
715 chunk_md->contig_hint = 0;
716 }
717
718 bits = 0;
719 pcpu_for_each_md_free_region(chunk, bit_off, bits)
720 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
721 }
722
723 /**
724 * pcpu_block_refresh_hint
725 * @chunk: chunk of interest
726 * @index: index of the metadata block
727 *
728 * Scans over the block beginning at first_free and updates the block
729 * metadata accordingly.
730 */
731 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
732 {
733 struct pcpu_block_md *block = chunk->md_blocks + index;
734 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
735 unsigned int rs, re, start; /* region start, region end */
736
737 /* promote scan_hint to contig_hint */
738 if (block->scan_hint) {
739 start = block->scan_hint_start + block->scan_hint;
740 block->contig_hint_start = block->scan_hint_start;
741 block->contig_hint = block->scan_hint;
742 block->scan_hint = 0;
743 } else {
744 start = block->first_free;
745 block->contig_hint = 0;
746 }
747
748 block->right_free = 0;
749
750 /* iterate over free areas and update the contig hints */
751 bitmap_for_each_clear_region(alloc_map, rs, re, start,
752 PCPU_BITMAP_BLOCK_BITS)
753 pcpu_block_update(block, rs, re);
754 }
755
756 /**
757 * pcpu_block_update_hint_alloc - update hint on allocation path
758 * @chunk: chunk of interest
759 * @bit_off: chunk offset
760 * @bits: size of request
761 *
762 * Updates metadata for the allocation path. The metadata only has to be
763 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
764 * scans are required if the block's contig hint is broken.
765 */
766 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
767 int bits)
768 {
769 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
770 int nr_empty_pages = 0;
771 struct pcpu_block_md *s_block, *e_block, *block;
772 int s_index, e_index; /* block indexes of the freed allocation */
773 int s_off, e_off; /* block offsets of the freed allocation */
774
775 /*
776 * Calculate per block offsets.
777 * The calculation uses an inclusive range, but the resulting offsets
778 * are [start, end). e_index always points to the last block in the
779 * range.
780 */
781 s_index = pcpu_off_to_block_index(bit_off);
782 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
783 s_off = pcpu_off_to_block_off(bit_off);
784 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
785
786 s_block = chunk->md_blocks + s_index;
787 e_block = chunk->md_blocks + e_index;
788
789 /*
790 * Update s_block.
791 * block->first_free must be updated if the allocation takes its place.
792 * If the allocation breaks the contig_hint, a scan is required to
793 * restore this hint.
794 */
795 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
796 nr_empty_pages++;
797
798 if (s_off == s_block->first_free)
799 s_block->first_free = find_next_zero_bit(
800 pcpu_index_alloc_map(chunk, s_index),
801 PCPU_BITMAP_BLOCK_BITS,
802 s_off + bits);
803
804 if (pcpu_region_overlap(s_block->scan_hint_start,
805 s_block->scan_hint_start + s_block->scan_hint,
806 s_off,
807 s_off + bits))
808 s_block->scan_hint = 0;
809
810 if (pcpu_region_overlap(s_block->contig_hint_start,
811 s_block->contig_hint_start +
812 s_block->contig_hint,
813 s_off,
814 s_off + bits)) {
815 /* block contig hint is broken - scan to fix it */
816 if (!s_off)
817 s_block->left_free = 0;
818 pcpu_block_refresh_hint(chunk, s_index);
819 } else {
820 /* update left and right contig manually */
821 s_block->left_free = min(s_block->left_free, s_off);
822 if (s_index == e_index)
823 s_block->right_free = min_t(int, s_block->right_free,
824 PCPU_BITMAP_BLOCK_BITS - e_off);
825 else
826 s_block->right_free = 0;
827 }
828
829 /*
830 * Update e_block.
831 */
832 if (s_index != e_index) {
833 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
834 nr_empty_pages++;
835
836 /*
837 * When the allocation is across blocks, the end is along
838 * the left part of the e_block.
839 */
840 e_block->first_free = find_next_zero_bit(
841 pcpu_index_alloc_map(chunk, e_index),
842 PCPU_BITMAP_BLOCK_BITS, e_off);
843
844 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
845 /* reset the block */
846 e_block++;
847 } else {
848 if (e_off > e_block->scan_hint_start)
849 e_block->scan_hint = 0;
850
851 e_block->left_free = 0;
852 if (e_off > e_block->contig_hint_start) {
853 /* contig hint is broken - scan to fix it */
854 pcpu_block_refresh_hint(chunk, e_index);
855 } else {
856 e_block->right_free =
857 min_t(int, e_block->right_free,
858 PCPU_BITMAP_BLOCK_BITS - e_off);
859 }
860 }
861
862 /* update in-between md_blocks */
863 nr_empty_pages += (e_index - s_index - 1);
864 for (block = s_block + 1; block < e_block; block++) {
865 block->scan_hint = 0;
866 block->contig_hint = 0;
867 block->left_free = 0;
868 block->right_free = 0;
869 }
870 }
871
872 if (nr_empty_pages)
873 pcpu_update_empty_pages(chunk, -nr_empty_pages);
874
875 if (pcpu_region_overlap(chunk_md->scan_hint_start,
876 chunk_md->scan_hint_start +
877 chunk_md->scan_hint,
878 bit_off,
879 bit_off + bits))
880 chunk_md->scan_hint = 0;
881
882 /*
883 * The only time a full chunk scan is required is if the chunk
884 * contig hint is broken. Otherwise, it means a smaller space
885 * was used and therefore the chunk contig hint is still correct.
886 */
887 if (pcpu_region_overlap(chunk_md->contig_hint_start,
888 chunk_md->contig_hint_start +
889 chunk_md->contig_hint,
890 bit_off,
891 bit_off + bits))
892 pcpu_chunk_refresh_hint(chunk, false);
893 }
894
895 /**
896 * pcpu_block_update_hint_free - updates the block hints on the free path
897 * @chunk: chunk of interest
898 * @bit_off: chunk offset
899 * @bits: size of request
900 *
901 * Updates metadata for the allocation path. This avoids a blind block
902 * refresh by making use of the block contig hints. If this fails, it scans
903 * forward and backward to determine the extent of the free area. This is
904 * capped at the boundary of blocks.
905 *
906 * A chunk update is triggered if a page becomes free, a block becomes free,
907 * or the free spans across blocks. This tradeoff is to minimize iterating
908 * over the block metadata to update chunk_md->contig_hint.
909 * chunk_md->contig_hint may be off by up to a page, but it will never be more
910 * than the available space. If the contig hint is contained in one block, it
911 * will be accurate.
912 */
913 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
914 int bits)
915 {
916 int nr_empty_pages = 0;
917 struct pcpu_block_md *s_block, *e_block, *block;
918 int s_index, e_index; /* block indexes of the freed allocation */
919 int s_off, e_off; /* block offsets of the freed allocation */
920 int start, end; /* start and end of the whole free area */
921
922 /*
923 * Calculate per block offsets.
924 * The calculation uses an inclusive range, but the resulting offsets
925 * are [start, end). e_index always points to the last block in the
926 * range.
927 */
928 s_index = pcpu_off_to_block_index(bit_off);
929 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
930 s_off = pcpu_off_to_block_off(bit_off);
931 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
932
933 s_block = chunk->md_blocks + s_index;
934 e_block = chunk->md_blocks + e_index;
935
936 /*
937 * Check if the freed area aligns with the block->contig_hint.
938 * If it does, then the scan to find the beginning/end of the
939 * larger free area can be avoided.
940 *
941 * start and end refer to beginning and end of the free area
942 * within each their respective blocks. This is not necessarily
943 * the entire free area as it may span blocks past the beginning
944 * or end of the block.
945 */
946 start = s_off;
947 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
948 start = s_block->contig_hint_start;
949 } else {
950 /*
951 * Scan backwards to find the extent of the free area.
952 * find_last_bit returns the starting bit, so if the start bit
953 * is returned, that means there was no last bit and the
954 * remainder of the chunk is free.
955 */
956 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
957 start);
958 start = (start == l_bit) ? 0 : l_bit + 1;
959 }
960
961 end = e_off;
962 if (e_off == e_block->contig_hint_start)
963 end = e_block->contig_hint_start + e_block->contig_hint;
964 else
965 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
966 PCPU_BITMAP_BLOCK_BITS, end);
967
968 /* update s_block */
969 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
970 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
971 nr_empty_pages++;
972 pcpu_block_update(s_block, start, e_off);
973
974 /* freeing in the same block */
975 if (s_index != e_index) {
976 /* update e_block */
977 if (end == PCPU_BITMAP_BLOCK_BITS)
978 nr_empty_pages++;
979 pcpu_block_update(e_block, 0, end);
980
981 /* reset md_blocks in the middle */
982 nr_empty_pages += (e_index - s_index - 1);
983 for (block = s_block + 1; block < e_block; block++) {
984 block->first_free = 0;
985 block->scan_hint = 0;
986 block->contig_hint_start = 0;
987 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
988 block->left_free = PCPU_BITMAP_BLOCK_BITS;
989 block->right_free = PCPU_BITMAP_BLOCK_BITS;
990 }
991 }
992
993 if (nr_empty_pages)
994 pcpu_update_empty_pages(chunk, nr_empty_pages);
995
996 /*
997 * Refresh chunk metadata when the free makes a block free or spans
998 * across blocks. The contig_hint may be off by up to a page, but if
999 * the contig_hint is contained in a block, it will be accurate with
1000 * the else condition below.
1001 */
1002 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1003 pcpu_chunk_refresh_hint(chunk, true);
1004 else
1005 pcpu_block_update(&chunk->chunk_md,
1006 pcpu_block_off_to_off(s_index, start),
1007 end);
1008 }
1009
1010 /**
1011 * pcpu_is_populated - determines if the region is populated
1012 * @chunk: chunk of interest
1013 * @bit_off: chunk offset
1014 * @bits: size of area
1015 * @next_off: return value for the next offset to start searching
1016 *
1017 * For atomic allocations, check if the backing pages are populated.
1018 *
1019 * RETURNS:
1020 * Bool if the backing pages are populated.
1021 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1022 */
1023 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1024 int *next_off)
1025 {
1026 unsigned int page_start, page_end, rs, re;
1027
1028 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1029 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1030
1031 rs = page_start;
1032 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1033 if (rs >= page_end)
1034 return true;
1035
1036 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1037 return false;
1038 }
1039
1040 /**
1041 * pcpu_find_block_fit - finds the block index to start searching
1042 * @chunk: chunk of interest
1043 * @alloc_bits: size of request in allocation units
1044 * @align: alignment of area (max PAGE_SIZE bytes)
1045 * @pop_only: use populated regions only
1046 *
1047 * Given a chunk and an allocation spec, find the offset to begin searching
1048 * for a free region. This iterates over the bitmap metadata blocks to
1049 * find an offset that will be guaranteed to fit the requirements. It is
1050 * not quite first fit as if the allocation does not fit in the contig hint
1051 * of a block or chunk, it is skipped. This errs on the side of caution
1052 * to prevent excess iteration. Poor alignment can cause the allocator to
1053 * skip over blocks and chunks that have valid free areas.
1054 *
1055 * RETURNS:
1056 * The offset in the bitmap to begin searching.
1057 * -1 if no offset is found.
1058 */
1059 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1060 size_t align, bool pop_only)
1061 {
1062 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1063 int bit_off, bits, next_off;
1064
1065 /*
1066 * Check to see if the allocation can fit in the chunk's contig hint.
1067 * This is an optimization to prevent scanning by assuming if it
1068 * cannot fit in the global hint, there is memory pressure and creating
1069 * a new chunk would happen soon.
1070 */
1071 bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1072 chunk_md->contig_hint_start;
1073 if (bit_off + alloc_bits > chunk_md->contig_hint)
1074 return -1;
1075
1076 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1077 bits = 0;
1078 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1079 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1080 &next_off))
1081 break;
1082
1083 bit_off = next_off;
1084 bits = 0;
1085 }
1086
1087 if (bit_off == pcpu_chunk_map_bits(chunk))
1088 return -1;
1089
1090 return bit_off;
1091 }
1092
1093 /*
1094 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1095 * @map: the address to base the search on
1096 * @size: the bitmap size in bits
1097 * @start: the bitnumber to start searching at
1098 * @nr: the number of zeroed bits we're looking for
1099 * @align_mask: alignment mask for zero area
1100 * @largest_off: offset of the largest area skipped
1101 * @largest_bits: size of the largest area skipped
1102 *
1103 * The @align_mask should be one less than a power of 2.
1104 *
1105 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1106 * the largest area that was skipped. This is imperfect, but in general is
1107 * good enough. The largest remembered region is the largest failed region
1108 * seen. This does not include anything we possibly skipped due to alignment.
1109 * pcpu_block_update_scan() does scan backwards to try and recover what was
1110 * lost to alignment. While this can cause scanning to miss earlier possible
1111 * free areas, smaller allocations will eventually fill those holes.
1112 */
1113 static unsigned long pcpu_find_zero_area(unsigned long *map,
1114 unsigned long size,
1115 unsigned long start,
1116 unsigned long nr,
1117 unsigned long align_mask,
1118 unsigned long *largest_off,
1119 unsigned long *largest_bits)
1120 {
1121 unsigned long index, end, i, area_off, area_bits;
1122 again:
1123 index = find_next_zero_bit(map, size, start);
1124
1125 /* Align allocation */
1126 index = __ALIGN_MASK(index, align_mask);
1127 area_off = index;
1128
1129 end = index + nr;
1130 if (end > size)
1131 return end;
1132 i = find_next_bit(map, end, index);
1133 if (i < end) {
1134 area_bits = i - area_off;
1135 /* remember largest unused area with best alignment */
1136 if (area_bits > *largest_bits ||
1137 (area_bits == *largest_bits && *largest_off &&
1138 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1139 *largest_off = area_off;
1140 *largest_bits = area_bits;
1141 }
1142
1143 start = i + 1;
1144 goto again;
1145 }
1146 return index;
1147 }
1148
1149 /**
1150 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1151 * @chunk: chunk of interest
1152 * @alloc_bits: size of request in allocation units
1153 * @align: alignment of area (max PAGE_SIZE)
1154 * @start: bit_off to start searching
1155 *
1156 * This function takes in a @start offset to begin searching to fit an
1157 * allocation of @alloc_bits with alignment @align. It needs to scan
1158 * the allocation map because if it fits within the block's contig hint,
1159 * @start will be block->first_free. This is an attempt to fill the
1160 * allocation prior to breaking the contig hint. The allocation and
1161 * boundary maps are updated accordingly if it confirms a valid
1162 * free area.
1163 *
1164 * RETURNS:
1165 * Allocated addr offset in @chunk on success.
1166 * -1 if no matching area is found.
1167 */
1168 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1169 size_t align, int start)
1170 {
1171 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1172 size_t align_mask = (align) ? (align - 1) : 0;
1173 unsigned long area_off = 0, area_bits = 0;
1174 int bit_off, end, oslot;
1175
1176 lockdep_assert_held(&pcpu_lock);
1177
1178 oslot = pcpu_chunk_slot(chunk);
1179
1180 /*
1181 * Search to find a fit.
1182 */
1183 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1184 pcpu_chunk_map_bits(chunk));
1185 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1186 align_mask, &area_off, &area_bits);
1187 if (bit_off >= end)
1188 return -1;
1189
1190 if (area_bits)
1191 pcpu_block_update_scan(chunk, area_off, area_bits);
1192
1193 /* update alloc map */
1194 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1195
1196 /* update boundary map */
1197 set_bit(bit_off, chunk->bound_map);
1198 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1199 set_bit(bit_off + alloc_bits, chunk->bound_map);
1200
1201 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1202
1203 /* update first free bit */
1204 if (bit_off == chunk_md->first_free)
1205 chunk_md->first_free = find_next_zero_bit(
1206 chunk->alloc_map,
1207 pcpu_chunk_map_bits(chunk),
1208 bit_off + alloc_bits);
1209
1210 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1211
1212 pcpu_chunk_relocate(chunk, oslot);
1213
1214 return bit_off * PCPU_MIN_ALLOC_SIZE;
1215 }
1216
1217 /**
1218 * pcpu_free_area - frees the corresponding offset
1219 * @chunk: chunk of interest
1220 * @off: addr offset into chunk
1221 *
1222 * This function determines the size of an allocation to free using
1223 * the boundary bitmap and clears the allocation map.
1224 *
1225 * RETURNS:
1226 * Number of freed bytes.
1227 */
1228 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1229 {
1230 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1231 int bit_off, bits, end, oslot, freed;
1232
1233 lockdep_assert_held(&pcpu_lock);
1234 pcpu_stats_area_dealloc(chunk);
1235
1236 oslot = pcpu_chunk_slot(chunk);
1237
1238 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1239
1240 /* find end index */
1241 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1242 bit_off + 1);
1243 bits = end - bit_off;
1244 bitmap_clear(chunk->alloc_map, bit_off, bits);
1245
1246 freed = bits * PCPU_MIN_ALLOC_SIZE;
1247
1248 /* update metadata */
1249 chunk->free_bytes += freed;
1250
1251 /* update first free bit */
1252 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1253
1254 pcpu_block_update_hint_free(chunk, bit_off, bits);
1255
1256 pcpu_chunk_relocate(chunk, oslot);
1257
1258 return freed;
1259 }
1260
1261 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1262 {
1263 block->scan_hint = 0;
1264 block->contig_hint = nr_bits;
1265 block->left_free = nr_bits;
1266 block->right_free = nr_bits;
1267 block->first_free = 0;
1268 block->nr_bits = nr_bits;
1269 }
1270
1271 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1272 {
1273 struct pcpu_block_md *md_block;
1274
1275 /* init the chunk's block */
1276 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1277
1278 for (md_block = chunk->md_blocks;
1279 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1280 md_block++)
1281 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1282 }
1283
1284 /**
1285 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1286 * @tmp_addr: the start of the region served
1287 * @map_size: size of the region served
1288 *
1289 * This is responsible for creating the chunks that serve the first chunk. The
1290 * base_addr is page aligned down of @tmp_addr while the region end is page
1291 * aligned up. Offsets are kept track of to determine the region served. All
1292 * this is done to appease the bitmap allocator in avoiding partial blocks.
1293 *
1294 * RETURNS:
1295 * Chunk serving the region at @tmp_addr of @map_size.
1296 */
1297 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1298 int map_size)
1299 {
1300 struct pcpu_chunk *chunk;
1301 unsigned long aligned_addr, lcm_align;
1302 int start_offset, offset_bits, region_size, region_bits;
1303 size_t alloc_size;
1304
1305 /* region calculations */
1306 aligned_addr = tmp_addr & PAGE_MASK;
1307
1308 start_offset = tmp_addr - aligned_addr;
1309
1310 /*
1311 * Align the end of the region with the LCM of PAGE_SIZE and
1312 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1313 * the other.
1314 */
1315 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1316 region_size = ALIGN(start_offset + map_size, lcm_align);
1317
1318 /* allocate chunk */
1319 alloc_size = struct_size(chunk, populated,
1320 BITS_TO_LONGS(region_size >> PAGE_SHIFT));
1321 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1322 if (!chunk)
1323 panic("%s: Failed to allocate %zu bytes\n", __func__,
1324 alloc_size);
1325
1326 INIT_LIST_HEAD(&chunk->list);
1327
1328 chunk->base_addr = (void *)aligned_addr;
1329 chunk->start_offset = start_offset;
1330 chunk->end_offset = region_size - chunk->start_offset - map_size;
1331
1332 chunk->nr_pages = region_size >> PAGE_SHIFT;
1333 region_bits = pcpu_chunk_map_bits(chunk);
1334
1335 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1336 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1337 if (!chunk->alloc_map)
1338 panic("%s: Failed to allocate %zu bytes\n", __func__,
1339 alloc_size);
1340
1341 alloc_size =
1342 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1343 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1344 if (!chunk->bound_map)
1345 panic("%s: Failed to allocate %zu bytes\n", __func__,
1346 alloc_size);
1347
1348 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1349 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1350 if (!chunk->md_blocks)
1351 panic("%s: Failed to allocate %zu bytes\n", __func__,
1352 alloc_size);
1353
1354 #ifdef CONFIG_MEMCG_KMEM
1355 /* first chunk isn't memcg-aware */
1356 chunk->obj_cgroups = NULL;
1357 #endif
1358 pcpu_init_md_blocks(chunk);
1359
1360 /* manage populated page bitmap */
1361 chunk->immutable = true;
1362 bitmap_fill(chunk->populated, chunk->nr_pages);
1363 chunk->nr_populated = chunk->nr_pages;
1364 chunk->nr_empty_pop_pages = chunk->nr_pages;
1365
1366 chunk->free_bytes = map_size;
1367
1368 if (chunk->start_offset) {
1369 /* hide the beginning of the bitmap */
1370 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1371 bitmap_set(chunk->alloc_map, 0, offset_bits);
1372 set_bit(0, chunk->bound_map);
1373 set_bit(offset_bits, chunk->bound_map);
1374
1375 chunk->chunk_md.first_free = offset_bits;
1376
1377 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1378 }
1379
1380 if (chunk->end_offset) {
1381 /* hide the end of the bitmap */
1382 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1383 bitmap_set(chunk->alloc_map,
1384 pcpu_chunk_map_bits(chunk) - offset_bits,
1385 offset_bits);
1386 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1387 chunk->bound_map);
1388 set_bit(region_bits, chunk->bound_map);
1389
1390 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1391 - offset_bits, offset_bits);
1392 }
1393
1394 return chunk;
1395 }
1396
1397 static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
1398 {
1399 struct pcpu_chunk *chunk;
1400 int region_bits;
1401
1402 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1403 if (!chunk)
1404 return NULL;
1405
1406 INIT_LIST_HEAD(&chunk->list);
1407 chunk->nr_pages = pcpu_unit_pages;
1408 region_bits = pcpu_chunk_map_bits(chunk);
1409
1410 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1411 sizeof(chunk->alloc_map[0]), gfp);
1412 if (!chunk->alloc_map)
1413 goto alloc_map_fail;
1414
1415 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1416 sizeof(chunk->bound_map[0]), gfp);
1417 if (!chunk->bound_map)
1418 goto bound_map_fail;
1419
1420 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1421 sizeof(chunk->md_blocks[0]), gfp);
1422 if (!chunk->md_blocks)
1423 goto md_blocks_fail;
1424
1425 #ifdef CONFIG_MEMCG_KMEM
1426 if (pcpu_is_memcg_chunk(type)) {
1427 chunk->obj_cgroups =
1428 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1429 sizeof(struct obj_cgroup *), gfp);
1430 if (!chunk->obj_cgroups)
1431 goto objcg_fail;
1432 }
1433 #endif
1434
1435 pcpu_init_md_blocks(chunk);
1436
1437 /* init metadata */
1438 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1439
1440 return chunk;
1441
1442 #ifdef CONFIG_MEMCG_KMEM
1443 objcg_fail:
1444 pcpu_mem_free(chunk->md_blocks);
1445 #endif
1446 md_blocks_fail:
1447 pcpu_mem_free(chunk->bound_map);
1448 bound_map_fail:
1449 pcpu_mem_free(chunk->alloc_map);
1450 alloc_map_fail:
1451 pcpu_mem_free(chunk);
1452
1453 return NULL;
1454 }
1455
1456 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1457 {
1458 if (!chunk)
1459 return;
1460 #ifdef CONFIG_MEMCG_KMEM
1461 pcpu_mem_free(chunk->obj_cgroups);
1462 #endif
1463 pcpu_mem_free(chunk->md_blocks);
1464 pcpu_mem_free(chunk->bound_map);
1465 pcpu_mem_free(chunk->alloc_map);
1466 pcpu_mem_free(chunk);
1467 }
1468
1469 /**
1470 * pcpu_chunk_populated - post-population bookkeeping
1471 * @chunk: pcpu_chunk which got populated
1472 * @page_start: the start page
1473 * @page_end: the end page
1474 *
1475 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1476 * the bookkeeping information accordingly. Must be called after each
1477 * successful population.
1478 *
1479 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1480 * is to serve an allocation in that area.
1481 */
1482 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1483 int page_end)
1484 {
1485 int nr = page_end - page_start;
1486
1487 lockdep_assert_held(&pcpu_lock);
1488
1489 bitmap_set(chunk->populated, page_start, nr);
1490 chunk->nr_populated += nr;
1491 pcpu_nr_populated += nr;
1492
1493 pcpu_update_empty_pages(chunk, nr);
1494 }
1495
1496 /**
1497 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1498 * @chunk: pcpu_chunk which got depopulated
1499 * @page_start: the start page
1500 * @page_end: the end page
1501 *
1502 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1503 * Update the bookkeeping information accordingly. Must be called after
1504 * each successful depopulation.
1505 */
1506 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1507 int page_start, int page_end)
1508 {
1509 int nr = page_end - page_start;
1510
1511 lockdep_assert_held(&pcpu_lock);
1512
1513 bitmap_clear(chunk->populated, page_start, nr);
1514 chunk->nr_populated -= nr;
1515 pcpu_nr_populated -= nr;
1516
1517 pcpu_update_empty_pages(chunk, -nr);
1518 }
1519
1520 /*
1521 * Chunk management implementation.
1522 *
1523 * To allow different implementations, chunk alloc/free and
1524 * [de]population are implemented in a separate file which is pulled
1525 * into this file and compiled together. The following functions
1526 * should be implemented.
1527 *
1528 * pcpu_populate_chunk - populate the specified range of a chunk
1529 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1530 * pcpu_create_chunk - create a new chunk
1531 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1532 * pcpu_addr_to_page - translate address to physical address
1533 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1534 */
1535 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1536 int page_start, int page_end, gfp_t gfp);
1537 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1538 int page_start, int page_end);
1539 static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
1540 gfp_t gfp);
1541 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1542 static struct page *pcpu_addr_to_page(void *addr);
1543 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1544
1545 #ifdef CONFIG_NEED_PER_CPU_KM
1546 #include "percpu-km.c"
1547 #else
1548 #include "percpu-vm.c"
1549 #endif
1550
1551 /**
1552 * pcpu_chunk_addr_search - determine chunk containing specified address
1553 * @addr: address for which the chunk needs to be determined.
1554 *
1555 * This is an internal function that handles all but static allocations.
1556 * Static percpu address values should never be passed into the allocator.
1557 *
1558 * RETURNS:
1559 * The address of the found chunk.
1560 */
1561 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1562 {
1563 /* is it in the dynamic region (first chunk)? */
1564 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1565 return pcpu_first_chunk;
1566
1567 /* is it in the reserved region? */
1568 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1569 return pcpu_reserved_chunk;
1570
1571 /*
1572 * The address is relative to unit0 which might be unused and
1573 * thus unmapped. Offset the address to the unit space of the
1574 * current processor before looking it up in the vmalloc
1575 * space. Note that any possible cpu id can be used here, so
1576 * there's no need to worry about preemption or cpu hotplug.
1577 */
1578 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1579 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1580 }
1581
1582 #ifdef CONFIG_MEMCG_KMEM
1583 static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1584 struct obj_cgroup **objcgp)
1585 {
1586 struct obj_cgroup *objcg;
1587
1588 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT))
1589 return PCPU_CHUNK_ROOT;
1590
1591 objcg = get_obj_cgroup_from_current();
1592 if (!objcg)
1593 return PCPU_CHUNK_ROOT;
1594
1595 if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1596 obj_cgroup_put(objcg);
1597 return PCPU_FAIL_ALLOC;
1598 }
1599
1600 *objcgp = objcg;
1601 return PCPU_CHUNK_MEMCG;
1602 }
1603
1604 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1605 struct pcpu_chunk *chunk, int off,
1606 size_t size)
1607 {
1608 if (!objcg)
1609 return;
1610
1611 if (chunk) {
1612 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1613
1614 rcu_read_lock();
1615 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1616 size * num_possible_cpus());
1617 rcu_read_unlock();
1618 } else {
1619 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1620 obj_cgroup_put(objcg);
1621 }
1622 }
1623
1624 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1625 {
1626 struct obj_cgroup *objcg;
1627
1628 if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
1629 return;
1630
1631 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1632 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1633
1634 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1635
1636 rcu_read_lock();
1637 mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B,
1638 -(size * num_possible_cpus()));
1639 rcu_read_unlock();
1640
1641 obj_cgroup_put(objcg);
1642 }
1643
1644 #else /* CONFIG_MEMCG_KMEM */
1645 static enum pcpu_chunk_type
1646 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1647 {
1648 return PCPU_CHUNK_ROOT;
1649 }
1650
1651 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1652 struct pcpu_chunk *chunk, int off,
1653 size_t size)
1654 {
1655 }
1656
1657 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1658 {
1659 }
1660 #endif /* CONFIG_MEMCG_KMEM */
1661
1662 /**
1663 * pcpu_alloc - the percpu allocator
1664 * @size: size of area to allocate in bytes
1665 * @align: alignment of area (max PAGE_SIZE)
1666 * @reserved: allocate from the reserved chunk if available
1667 * @gfp: allocation flags
1668 *
1669 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1670 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1671 * then no warning will be triggered on invalid or failed allocation
1672 * requests.
1673 *
1674 * RETURNS:
1675 * Percpu pointer to the allocated area on success, NULL on failure.
1676 */
1677 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1678 gfp_t gfp)
1679 {
1680 gfp_t pcpu_gfp;
1681 bool is_atomic;
1682 bool do_warn;
1683 enum pcpu_chunk_type type;
1684 struct list_head *pcpu_slot;
1685 struct obj_cgroup *objcg = NULL;
1686 static int warn_limit = 10;
1687 struct pcpu_chunk *chunk, *next;
1688 const char *err;
1689 int slot, off, cpu, ret;
1690 unsigned long flags;
1691 void __percpu *ptr;
1692 size_t bits, bit_align;
1693
1694 gfp = current_gfp_context(gfp);
1695 /* whitelisted flags that can be passed to the backing allocators */
1696 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1697 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1698 do_warn = !(gfp & __GFP_NOWARN);
1699
1700 /*
1701 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1702 * therefore alignment must be a minimum of that many bytes.
1703 * An allocation may have internal fragmentation from rounding up
1704 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1705 */
1706 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1707 align = PCPU_MIN_ALLOC_SIZE;
1708
1709 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1710 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1711 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1712
1713 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1714 !is_power_of_2(align))) {
1715 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1716 size, align);
1717 return NULL;
1718 }
1719
1720 type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
1721 if (unlikely(type == PCPU_FAIL_ALLOC))
1722 return NULL;
1723 pcpu_slot = pcpu_chunk_list(type);
1724
1725 if (!is_atomic) {
1726 /*
1727 * pcpu_balance_workfn() allocates memory under this mutex,
1728 * and it may wait for memory reclaim. Allow current task
1729 * to become OOM victim, in case of memory pressure.
1730 */
1731 if (gfp & __GFP_NOFAIL) {
1732 mutex_lock(&pcpu_alloc_mutex);
1733 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1734 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1735 return NULL;
1736 }
1737 }
1738
1739 spin_lock_irqsave(&pcpu_lock, flags);
1740
1741 /* serve reserved allocations from the reserved chunk if available */
1742 if (reserved && pcpu_reserved_chunk) {
1743 chunk = pcpu_reserved_chunk;
1744
1745 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1746 if (off < 0) {
1747 err = "alloc from reserved chunk failed";
1748 goto fail_unlock;
1749 }
1750
1751 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1752 if (off >= 0)
1753 goto area_found;
1754
1755 err = "alloc from reserved chunk failed";
1756 goto fail_unlock;
1757 }
1758
1759 restart:
1760 /* search through normal chunks */
1761 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1762 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1763 off = pcpu_find_block_fit(chunk, bits, bit_align,
1764 is_atomic);
1765 if (off < 0) {
1766 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1767 pcpu_chunk_move(chunk, 0);
1768 continue;
1769 }
1770
1771 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1772 if (off >= 0)
1773 goto area_found;
1774
1775 }
1776 }
1777
1778 spin_unlock_irqrestore(&pcpu_lock, flags);
1779
1780 /*
1781 * No space left. Create a new chunk. We don't want multiple
1782 * tasks to create chunks simultaneously. Serialize and create iff
1783 * there's still no empty chunk after grabbing the mutex.
1784 */
1785 if (is_atomic) {
1786 err = "atomic alloc failed, no space left";
1787 goto fail;
1788 }
1789
1790 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1791 chunk = pcpu_create_chunk(type, pcpu_gfp);
1792 if (!chunk) {
1793 err = "failed to allocate new chunk";
1794 goto fail;
1795 }
1796
1797 spin_lock_irqsave(&pcpu_lock, flags);
1798 pcpu_chunk_relocate(chunk, -1);
1799 } else {
1800 spin_lock_irqsave(&pcpu_lock, flags);
1801 }
1802
1803 goto restart;
1804
1805 area_found:
1806 pcpu_stats_area_alloc(chunk, size);
1807 spin_unlock_irqrestore(&pcpu_lock, flags);
1808
1809 /* populate if not all pages are already there */
1810 if (!is_atomic) {
1811 unsigned int page_start, page_end, rs, re;
1812
1813 page_start = PFN_DOWN(off);
1814 page_end = PFN_UP(off + size);
1815
1816 bitmap_for_each_clear_region(chunk->populated, rs, re,
1817 page_start, page_end) {
1818 WARN_ON(chunk->immutable);
1819
1820 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1821
1822 spin_lock_irqsave(&pcpu_lock, flags);
1823 if (ret) {
1824 pcpu_free_area(chunk, off);
1825 err = "failed to populate";
1826 goto fail_unlock;
1827 }
1828 pcpu_chunk_populated(chunk, rs, re);
1829 spin_unlock_irqrestore(&pcpu_lock, flags);
1830 }
1831
1832 mutex_unlock(&pcpu_alloc_mutex);
1833 }
1834
1835 if (pcpu_nr_empty_pop_pages[type] < PCPU_EMPTY_POP_PAGES_LOW)
1836 pcpu_schedule_balance_work();
1837
1838 /* clear the areas and return address relative to base address */
1839 for_each_possible_cpu(cpu)
1840 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1841
1842 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1843 kmemleak_alloc_percpu(ptr, size, gfp);
1844
1845 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1846 chunk->base_addr, off, ptr);
1847
1848 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1849
1850 return ptr;
1851
1852 fail_unlock:
1853 spin_unlock_irqrestore(&pcpu_lock, flags);
1854 fail:
1855 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1856
1857 if (!is_atomic && do_warn && warn_limit) {
1858 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1859 size, align, is_atomic, err);
1860 dump_stack();
1861 if (!--warn_limit)
1862 pr_info("limit reached, disable warning\n");
1863 }
1864 if (is_atomic) {
1865 /* see the flag handling in pcpu_balance_workfn() */
1866 pcpu_atomic_alloc_failed = true;
1867 pcpu_schedule_balance_work();
1868 } else {
1869 mutex_unlock(&pcpu_alloc_mutex);
1870 }
1871
1872 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1873
1874 return NULL;
1875 }
1876
1877 /**
1878 * __alloc_percpu_gfp - allocate dynamic percpu area
1879 * @size: size of area to allocate in bytes
1880 * @align: alignment of area (max PAGE_SIZE)
1881 * @gfp: allocation flags
1882 *
1883 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1884 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1885 * be called from any context but is a lot more likely to fail. If @gfp
1886 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1887 * allocation requests.
1888 *
1889 * RETURNS:
1890 * Percpu pointer to the allocated area on success, NULL on failure.
1891 */
1892 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1893 {
1894 return pcpu_alloc(size, align, false, gfp);
1895 }
1896 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1897
1898 /**
1899 * __alloc_percpu - allocate dynamic percpu area
1900 * @size: size of area to allocate in bytes
1901 * @align: alignment of area (max PAGE_SIZE)
1902 *
1903 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1904 */
1905 void __percpu *__alloc_percpu(size_t size, size_t align)
1906 {
1907 return pcpu_alloc(size, align, false, GFP_KERNEL);
1908 }
1909 EXPORT_SYMBOL_GPL(__alloc_percpu);
1910
1911 /**
1912 * __alloc_reserved_percpu - allocate reserved percpu area
1913 * @size: size of area to allocate in bytes
1914 * @align: alignment of area (max PAGE_SIZE)
1915 *
1916 * Allocate zero-filled percpu area of @size bytes aligned at @align
1917 * from reserved percpu area if arch has set it up; otherwise,
1918 * allocation is served from the same dynamic area. Might sleep.
1919 * Might trigger writeouts.
1920 *
1921 * CONTEXT:
1922 * Does GFP_KERNEL allocation.
1923 *
1924 * RETURNS:
1925 * Percpu pointer to the allocated area on success, NULL on failure.
1926 */
1927 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1928 {
1929 return pcpu_alloc(size, align, true, GFP_KERNEL);
1930 }
1931
1932 /**
1933 * __pcpu_balance_workfn - manage the amount of free chunks and populated pages
1934 * @type: chunk type
1935 *
1936 * Reclaim all fully free chunks except for the first one. This is also
1937 * responsible for maintaining the pool of empty populated pages. However,
1938 * it is possible that this is called when physical memory is scarce causing
1939 * OOM killer to be triggered. We should avoid doing so until an actual
1940 * allocation causes the failure as it is possible that requests can be
1941 * serviced from already backed regions.
1942 */
1943 static void __pcpu_balance_workfn(enum pcpu_chunk_type type)
1944 {
1945 /* gfp flags passed to underlying allocators */
1946 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1947 LIST_HEAD(to_free);
1948 struct list_head *pcpu_slot = pcpu_chunk_list(type);
1949 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1950 struct pcpu_chunk *chunk, *next;
1951 int slot, nr_to_pop, ret;
1952
1953 /*
1954 * There's no reason to keep around multiple unused chunks and VM
1955 * areas can be scarce. Destroy all free chunks except for one.
1956 */
1957 mutex_lock(&pcpu_alloc_mutex);
1958 spin_lock_irq(&pcpu_lock);
1959
1960 list_for_each_entry_safe(chunk, next, free_head, list) {
1961 WARN_ON(chunk->immutable);
1962
1963 /* spare the first one */
1964 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1965 continue;
1966
1967 list_move(&chunk->list, &to_free);
1968 }
1969
1970 spin_unlock_irq(&pcpu_lock);
1971
1972 list_for_each_entry_safe(chunk, next, &to_free, list) {
1973 unsigned int rs, re;
1974
1975 bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1976 chunk->nr_pages) {
1977 pcpu_depopulate_chunk(chunk, rs, re);
1978 spin_lock_irq(&pcpu_lock);
1979 pcpu_chunk_depopulated(chunk, rs, re);
1980 spin_unlock_irq(&pcpu_lock);
1981 }
1982 pcpu_destroy_chunk(chunk);
1983 cond_resched();
1984 }
1985
1986 /*
1987 * Ensure there are certain number of free populated pages for
1988 * atomic allocs. Fill up from the most packed so that atomic
1989 * allocs don't increase fragmentation. If atomic allocation
1990 * failed previously, always populate the maximum amount. This
1991 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1992 * failing indefinitely; however, large atomic allocs are not
1993 * something we support properly and can be highly unreliable and
1994 * inefficient.
1995 */
1996 retry_pop:
1997 if (pcpu_atomic_alloc_failed) {
1998 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1999 /* best effort anyway, don't worry about synchronization */
2000 pcpu_atomic_alloc_failed = false;
2001 } else {
2002 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
2003 pcpu_nr_empty_pop_pages[type],
2004 0, PCPU_EMPTY_POP_PAGES_HIGH);
2005 }
2006
2007 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
2008 unsigned int nr_unpop = 0, rs, re;
2009
2010 if (!nr_to_pop)
2011 break;
2012
2013 spin_lock_irq(&pcpu_lock);
2014 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
2015 nr_unpop = chunk->nr_pages - chunk->nr_populated;
2016 if (nr_unpop)
2017 break;
2018 }
2019 spin_unlock_irq(&pcpu_lock);
2020
2021 if (!nr_unpop)
2022 continue;
2023
2024 /* @chunk can't go away while pcpu_alloc_mutex is held */
2025 bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2026 chunk->nr_pages) {
2027 int nr = min_t(int, re - rs, nr_to_pop);
2028
2029 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2030 if (!ret) {
2031 nr_to_pop -= nr;
2032 spin_lock_irq(&pcpu_lock);
2033 pcpu_chunk_populated(chunk, rs, rs + nr);
2034 spin_unlock_irq(&pcpu_lock);
2035 } else {
2036 nr_to_pop = 0;
2037 }
2038
2039 if (!nr_to_pop)
2040 break;
2041 }
2042 }
2043
2044 if (nr_to_pop) {
2045 /* ran out of chunks to populate, create a new one and retry */
2046 chunk = pcpu_create_chunk(type, gfp);
2047 if (chunk) {
2048 spin_lock_irq(&pcpu_lock);
2049 pcpu_chunk_relocate(chunk, -1);
2050 spin_unlock_irq(&pcpu_lock);
2051 goto retry_pop;
2052 }
2053 }
2054
2055 mutex_unlock(&pcpu_alloc_mutex);
2056 }
2057
2058 /**
2059 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2060 * @work: unused
2061 *
2062 * Call __pcpu_balance_workfn() for each chunk type.
2063 */
2064 static void pcpu_balance_workfn(struct work_struct *work)
2065 {
2066 enum pcpu_chunk_type type;
2067
2068 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2069 __pcpu_balance_workfn(type);
2070 }
2071
2072 /**
2073 * free_percpu - free percpu area
2074 * @ptr: pointer to area to free
2075 *
2076 * Free percpu area @ptr.
2077 *
2078 * CONTEXT:
2079 * Can be called from atomic context.
2080 */
2081 void free_percpu(void __percpu *ptr)
2082 {
2083 void *addr;
2084 struct pcpu_chunk *chunk;
2085 unsigned long flags;
2086 int size, off;
2087 bool need_balance = false;
2088 struct list_head *pcpu_slot;
2089
2090 if (!ptr)
2091 return;
2092
2093 kmemleak_free_percpu(ptr);
2094
2095 addr = __pcpu_ptr_to_addr(ptr);
2096
2097 spin_lock_irqsave(&pcpu_lock, flags);
2098
2099 chunk = pcpu_chunk_addr_search(addr);
2100 off = addr - chunk->base_addr;
2101
2102 size = pcpu_free_area(chunk, off);
2103
2104 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
2105
2106 pcpu_memcg_free_hook(chunk, off, size);
2107
2108 /* if there are more than one fully free chunks, wake up grim reaper */
2109 if (chunk->free_bytes == pcpu_unit_size) {
2110 struct pcpu_chunk *pos;
2111
2112 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
2113 if (pos != chunk) {
2114 need_balance = true;
2115 break;
2116 }
2117 }
2118
2119 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2120
2121 spin_unlock_irqrestore(&pcpu_lock, flags);
2122
2123 if (need_balance)
2124 pcpu_schedule_balance_work();
2125 }
2126 EXPORT_SYMBOL_GPL(free_percpu);
2127
2128 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2129 {
2130 #ifdef CONFIG_SMP
2131 const size_t static_size = __per_cpu_end - __per_cpu_start;
2132 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2133 unsigned int cpu;
2134
2135 for_each_possible_cpu(cpu) {
2136 void *start = per_cpu_ptr(base, cpu);
2137 void *va = (void *)addr;
2138
2139 if (va >= start && va < start + static_size) {
2140 if (can_addr) {
2141 *can_addr = (unsigned long) (va - start);
2142 *can_addr += (unsigned long)
2143 per_cpu_ptr(base, get_boot_cpu_id());
2144 }
2145 return true;
2146 }
2147 }
2148 #endif
2149 /* on UP, can't distinguish from other static vars, always false */
2150 return false;
2151 }
2152
2153 /**
2154 * is_kernel_percpu_address - test whether address is from static percpu area
2155 * @addr: address to test
2156 *
2157 * Test whether @addr belongs to in-kernel static percpu area. Module
2158 * static percpu areas are not considered. For those, use
2159 * is_module_percpu_address().
2160 *
2161 * RETURNS:
2162 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2163 */
2164 bool is_kernel_percpu_address(unsigned long addr)
2165 {
2166 return __is_kernel_percpu_address(addr, NULL);
2167 }
2168
2169 /**
2170 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2171 * @addr: the address to be converted to physical address
2172 *
2173 * Given @addr which is dereferenceable address obtained via one of
2174 * percpu access macros, this function translates it into its physical
2175 * address. The caller is responsible for ensuring @addr stays valid
2176 * until this function finishes.
2177 *
2178 * percpu allocator has special setup for the first chunk, which currently
2179 * supports either embedding in linear address space or vmalloc mapping,
2180 * and, from the second one, the backing allocator (currently either vm or
2181 * km) provides translation.
2182 *
2183 * The addr can be translated simply without checking if it falls into the
2184 * first chunk. But the current code reflects better how percpu allocator
2185 * actually works, and the verification can discover both bugs in percpu
2186 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2187 * code.
2188 *
2189 * RETURNS:
2190 * The physical address for @addr.
2191 */
2192 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2193 {
2194 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2195 bool in_first_chunk = false;
2196 unsigned long first_low, first_high;
2197 unsigned int cpu;
2198
2199 /*
2200 * The following test on unit_low/high isn't strictly
2201 * necessary but will speed up lookups of addresses which
2202 * aren't in the first chunk.
2203 *
2204 * The address check is against full chunk sizes. pcpu_base_addr
2205 * points to the beginning of the first chunk including the
2206 * static region. Assumes good intent as the first chunk may
2207 * not be full (ie. < pcpu_unit_pages in size).
2208 */
2209 first_low = (unsigned long)pcpu_base_addr +
2210 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2211 first_high = (unsigned long)pcpu_base_addr +
2212 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2213 if ((unsigned long)addr >= first_low &&
2214 (unsigned long)addr < first_high) {
2215 for_each_possible_cpu(cpu) {
2216 void *start = per_cpu_ptr(base, cpu);
2217
2218 if (addr >= start && addr < start + pcpu_unit_size) {
2219 in_first_chunk = true;
2220 break;
2221 }
2222 }
2223 }
2224
2225 if (in_first_chunk) {
2226 if (!is_vmalloc_addr(addr))
2227 return __pa(addr);
2228 else
2229 return page_to_phys(vmalloc_to_page(addr)) +
2230 offset_in_page(addr);
2231 } else
2232 return page_to_phys(pcpu_addr_to_page(addr)) +
2233 offset_in_page(addr);
2234 }
2235
2236 /**
2237 * pcpu_alloc_alloc_info - allocate percpu allocation info
2238 * @nr_groups: the number of groups
2239 * @nr_units: the number of units
2240 *
2241 * Allocate ai which is large enough for @nr_groups groups containing
2242 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2243 * cpu_map array which is long enough for @nr_units and filled with
2244 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2245 * pointer of other groups.
2246 *
2247 * RETURNS:
2248 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2249 * failure.
2250 */
2251 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2252 int nr_units)
2253 {
2254 struct pcpu_alloc_info *ai;
2255 size_t base_size, ai_size;
2256 void *ptr;
2257 int unit;
2258
2259 base_size = ALIGN(struct_size(ai, groups, nr_groups),
2260 __alignof__(ai->groups[0].cpu_map[0]));
2261 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2262
2263 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2264 if (!ptr)
2265 return NULL;
2266 ai = ptr;
2267 ptr += base_size;
2268
2269 ai->groups[0].cpu_map = ptr;
2270
2271 for (unit = 0; unit < nr_units; unit++)
2272 ai->groups[0].cpu_map[unit] = NR_CPUS;
2273
2274 ai->nr_groups = nr_groups;
2275 ai->__ai_size = PFN_ALIGN(ai_size);
2276
2277 return ai;
2278 }
2279
2280 /**
2281 * pcpu_free_alloc_info - free percpu allocation info
2282 * @ai: pcpu_alloc_info to free
2283 *
2284 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2285 */
2286 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2287 {
2288 memblock_free_early(__pa(ai), ai->__ai_size);
2289 }
2290
2291 /**
2292 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2293 * @lvl: loglevel
2294 * @ai: allocation info to dump
2295 *
2296 * Print out information about @ai using loglevel @lvl.
2297 */
2298 static void pcpu_dump_alloc_info(const char *lvl,
2299 const struct pcpu_alloc_info *ai)
2300 {
2301 int group_width = 1, cpu_width = 1, width;
2302 char empty_str[] = "--------";
2303 int alloc = 0, alloc_end = 0;
2304 int group, v;
2305 int upa, apl; /* units per alloc, allocs per line */
2306
2307 v = ai->nr_groups;
2308 while (v /= 10)
2309 group_width++;
2310
2311 v = num_possible_cpus();
2312 while (v /= 10)
2313 cpu_width++;
2314 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2315
2316 upa = ai->alloc_size / ai->unit_size;
2317 width = upa * (cpu_width + 1) + group_width + 3;
2318 apl = rounddown_pow_of_two(max(60 / width, 1));
2319
2320 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2321 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2322 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2323
2324 for (group = 0; group < ai->nr_groups; group++) {
2325 const struct pcpu_group_info *gi = &ai->groups[group];
2326 int unit = 0, unit_end = 0;
2327
2328 BUG_ON(gi->nr_units % upa);
2329 for (alloc_end += gi->nr_units / upa;
2330 alloc < alloc_end; alloc++) {
2331 if (!(alloc % apl)) {
2332 pr_cont("\n");
2333 printk("%spcpu-alloc: ", lvl);
2334 }
2335 pr_cont("[%0*d] ", group_width, group);
2336
2337 for (unit_end += upa; unit < unit_end; unit++)
2338 if (gi->cpu_map[unit] != NR_CPUS)
2339 pr_cont("%0*d ",
2340 cpu_width, gi->cpu_map[unit]);
2341 else
2342 pr_cont("%s ", empty_str);
2343 }
2344 }
2345 pr_cont("\n");
2346 }
2347
2348 /**
2349 * pcpu_setup_first_chunk - initialize the first percpu chunk
2350 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2351 * @base_addr: mapped address
2352 *
2353 * Initialize the first percpu chunk which contains the kernel static
2354 * percpu area. This function is to be called from arch percpu area
2355 * setup path.
2356 *
2357 * @ai contains all information necessary to initialize the first
2358 * chunk and prime the dynamic percpu allocator.
2359 *
2360 * @ai->static_size is the size of static percpu area.
2361 *
2362 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2363 * reserve after the static area in the first chunk. This reserves
2364 * the first chunk such that it's available only through reserved
2365 * percpu allocation. This is primarily used to serve module percpu
2366 * static areas on architectures where the addressing model has
2367 * limited offset range for symbol relocations to guarantee module
2368 * percpu symbols fall inside the relocatable range.
2369 *
2370 * @ai->dyn_size determines the number of bytes available for dynamic
2371 * allocation in the first chunk. The area between @ai->static_size +
2372 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2373 *
2374 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2375 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2376 * @ai->dyn_size.
2377 *
2378 * @ai->atom_size is the allocation atom size and used as alignment
2379 * for vm areas.
2380 *
2381 * @ai->alloc_size is the allocation size and always multiple of
2382 * @ai->atom_size. This is larger than @ai->atom_size if
2383 * @ai->unit_size is larger than @ai->atom_size.
2384 *
2385 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2386 * percpu areas. Units which should be colocated are put into the
2387 * same group. Dynamic VM areas will be allocated according to these
2388 * groupings. If @ai->nr_groups is zero, a single group containing
2389 * all units is assumed.
2390 *
2391 * The caller should have mapped the first chunk at @base_addr and
2392 * copied static data to each unit.
2393 *
2394 * The first chunk will always contain a static and a dynamic region.
2395 * However, the static region is not managed by any chunk. If the first
2396 * chunk also contains a reserved region, it is served by two chunks -
2397 * one for the reserved region and one for the dynamic region. They
2398 * share the same vm, but use offset regions in the area allocation map.
2399 * The chunk serving the dynamic region is circulated in the chunk slots
2400 * and available for dynamic allocation like any other chunk.
2401 */
2402 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2403 void *base_addr)
2404 {
2405 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2406 size_t static_size, dyn_size;
2407 struct pcpu_chunk *chunk;
2408 unsigned long *group_offsets;
2409 size_t *group_sizes;
2410 unsigned long *unit_off;
2411 unsigned int cpu;
2412 int *unit_map;
2413 int group, unit, i;
2414 int map_size;
2415 unsigned long tmp_addr;
2416 size_t alloc_size;
2417 enum pcpu_chunk_type type;
2418
2419 #define PCPU_SETUP_BUG_ON(cond) do { \
2420 if (unlikely(cond)) { \
2421 pr_emerg("failed to initialize, %s\n", #cond); \
2422 pr_emerg("cpu_possible_mask=%*pb\n", \
2423 cpumask_pr_args(cpu_possible_mask)); \
2424 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2425 BUG(); \
2426 } \
2427 } while (0)
2428
2429 /* sanity checks */
2430 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2431 #ifdef CONFIG_SMP
2432 PCPU_SETUP_BUG_ON(!ai->static_size);
2433 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2434 #endif
2435 PCPU_SETUP_BUG_ON(!base_addr);
2436 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2437 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2438 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2439 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2440 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2441 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2442 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2443 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2444 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2445 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2446 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2447
2448 /* process group information and build config tables accordingly */
2449 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2450 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2451 if (!group_offsets)
2452 panic("%s: Failed to allocate %zu bytes\n", __func__,
2453 alloc_size);
2454
2455 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2456 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2457 if (!group_sizes)
2458 panic("%s: Failed to allocate %zu bytes\n", __func__,
2459 alloc_size);
2460
2461 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2462 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2463 if (!unit_map)
2464 panic("%s: Failed to allocate %zu bytes\n", __func__,
2465 alloc_size);
2466
2467 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2468 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2469 if (!unit_off)
2470 panic("%s: Failed to allocate %zu bytes\n", __func__,
2471 alloc_size);
2472
2473 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2474 unit_map[cpu] = UINT_MAX;
2475
2476 pcpu_low_unit_cpu = NR_CPUS;
2477 pcpu_high_unit_cpu = NR_CPUS;
2478
2479 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2480 const struct pcpu_group_info *gi = &ai->groups[group];
2481
2482 group_offsets[group] = gi->base_offset;
2483 group_sizes[group] = gi->nr_units * ai->unit_size;
2484
2485 for (i = 0; i < gi->nr_units; i++) {
2486 cpu = gi->cpu_map[i];
2487 if (cpu == NR_CPUS)
2488 continue;
2489
2490 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2491 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2492 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2493
2494 unit_map[cpu] = unit + i;
2495 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2496
2497 /* determine low/high unit_cpu */
2498 if (pcpu_low_unit_cpu == NR_CPUS ||
2499 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2500 pcpu_low_unit_cpu = cpu;
2501 if (pcpu_high_unit_cpu == NR_CPUS ||
2502 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2503 pcpu_high_unit_cpu = cpu;
2504 }
2505 }
2506 pcpu_nr_units = unit;
2507
2508 for_each_possible_cpu(cpu)
2509 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2510
2511 /* we're done parsing the input, undefine BUG macro and dump config */
2512 #undef PCPU_SETUP_BUG_ON
2513 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2514
2515 pcpu_nr_groups = ai->nr_groups;
2516 pcpu_group_offsets = group_offsets;
2517 pcpu_group_sizes = group_sizes;
2518 pcpu_unit_map = unit_map;
2519 pcpu_unit_offsets = unit_off;
2520
2521 /* determine basic parameters */
2522 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2523 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2524 pcpu_atom_size = ai->atom_size;
2525 pcpu_chunk_struct_size = struct_size(chunk, populated,
2526 BITS_TO_LONGS(pcpu_unit_pages));
2527
2528 pcpu_stats_save_ai(ai);
2529
2530 /*
2531 * Allocate chunk slots. The additional last slot is for
2532 * empty chunks.
2533 */
2534 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2535 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2536 sizeof(pcpu_chunk_lists[0]) *
2537 PCPU_NR_CHUNK_TYPES,
2538 SMP_CACHE_BYTES);
2539 if (!pcpu_chunk_lists)
2540 panic("%s: Failed to allocate %zu bytes\n", __func__,
2541 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
2542 PCPU_NR_CHUNK_TYPES);
2543
2544 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2545 for (i = 0; i < pcpu_nr_slots; i++)
2546 INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
2547
2548 /*
2549 * The end of the static region needs to be aligned with the
2550 * minimum allocation size as this offsets the reserved and
2551 * dynamic region. The first chunk ends page aligned by
2552 * expanding the dynamic region, therefore the dynamic region
2553 * can be shrunk to compensate while still staying above the
2554 * configured sizes.
2555 */
2556 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2557 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2558
2559 /*
2560 * Initialize first chunk.
2561 * If the reserved_size is non-zero, this initializes the reserved
2562 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2563 * and the dynamic region is initialized here. The first chunk,
2564 * pcpu_first_chunk, will always point to the chunk that serves
2565 * the dynamic region.
2566 */
2567 tmp_addr = (unsigned long)base_addr + static_size;
2568 map_size = ai->reserved_size ?: dyn_size;
2569 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2570
2571 /* init dynamic chunk if necessary */
2572 if (ai->reserved_size) {
2573 pcpu_reserved_chunk = chunk;
2574
2575 tmp_addr = (unsigned long)base_addr + static_size +
2576 ai->reserved_size;
2577 map_size = dyn_size;
2578 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2579 }
2580
2581 /* link the first chunk in */
2582 pcpu_first_chunk = chunk;
2583 pcpu_nr_empty_pop_pages[PCPU_CHUNK_ROOT] = pcpu_first_chunk->nr_empty_pop_pages;
2584 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2585
2586 /* include all regions of the first chunk */
2587 pcpu_nr_populated += PFN_DOWN(size_sum);
2588
2589 pcpu_stats_chunk_alloc();
2590 trace_percpu_create_chunk(base_addr);
2591
2592 /* we're done */
2593 pcpu_base_addr = base_addr;
2594 }
2595
2596 #ifdef CONFIG_SMP
2597
2598 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2599 [PCPU_FC_AUTO] = "auto",
2600 [PCPU_FC_EMBED] = "embed",
2601 [PCPU_FC_PAGE] = "page",
2602 };
2603
2604 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2605
2606 static int __init percpu_alloc_setup(char *str)
2607 {
2608 if (!str)
2609 return -EINVAL;
2610
2611 if (0)
2612 /* nada */;
2613 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2614 else if (!strcmp(str, "embed"))
2615 pcpu_chosen_fc = PCPU_FC_EMBED;
2616 #endif
2617 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2618 else if (!strcmp(str, "page"))
2619 pcpu_chosen_fc = PCPU_FC_PAGE;
2620 #endif
2621 else
2622 pr_warn("unknown allocator %s specified\n", str);
2623
2624 return 0;
2625 }
2626 early_param("percpu_alloc", percpu_alloc_setup);
2627
2628 /*
2629 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2630 * Build it if needed by the arch config or the generic setup is going
2631 * to be used.
2632 */
2633 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2634 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2635 #define BUILD_EMBED_FIRST_CHUNK
2636 #endif
2637
2638 /* build pcpu_page_first_chunk() iff needed by the arch config */
2639 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2640 #define BUILD_PAGE_FIRST_CHUNK
2641 #endif
2642
2643 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2644 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2645 /**
2646 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2647 * @reserved_size: the size of reserved percpu area in bytes
2648 * @dyn_size: minimum free size for dynamic allocation in bytes
2649 * @atom_size: allocation atom size
2650 * @cpu_distance_fn: callback to determine distance between cpus, optional
2651 *
2652 * This function determines grouping of units, their mappings to cpus
2653 * and other parameters considering needed percpu size, allocation
2654 * atom size and distances between CPUs.
2655 *
2656 * Groups are always multiples of atom size and CPUs which are of
2657 * LOCAL_DISTANCE both ways are grouped together and share space for
2658 * units in the same group. The returned configuration is guaranteed
2659 * to have CPUs on different nodes on different groups and >=75% usage
2660 * of allocated virtual address space.
2661 *
2662 * RETURNS:
2663 * On success, pointer to the new allocation_info is returned. On
2664 * failure, ERR_PTR value is returned.
2665 */
2666 static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info(
2667 size_t reserved_size, size_t dyn_size,
2668 size_t atom_size,
2669 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2670 {
2671 static int group_map[NR_CPUS] __initdata;
2672 static int group_cnt[NR_CPUS] __initdata;
2673 static struct cpumask mask __initdata;
2674 const size_t static_size = __per_cpu_end - __per_cpu_start;
2675 int nr_groups = 1, nr_units = 0;
2676 size_t size_sum, min_unit_size, alloc_size;
2677 int upa, max_upa, best_upa; /* units_per_alloc */
2678 int last_allocs, group, unit;
2679 unsigned int cpu, tcpu;
2680 struct pcpu_alloc_info *ai;
2681 unsigned int *cpu_map;
2682
2683 /* this function may be called multiple times */
2684 memset(group_map, 0, sizeof(group_map));
2685 memset(group_cnt, 0, sizeof(group_cnt));
2686 cpumask_clear(&mask);
2687
2688 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2689 size_sum = PFN_ALIGN(static_size + reserved_size +
2690 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2691 dyn_size = size_sum - static_size - reserved_size;
2692
2693 /*
2694 * Determine min_unit_size, alloc_size and max_upa such that
2695 * alloc_size is multiple of atom_size and is the smallest
2696 * which can accommodate 4k aligned segments which are equal to
2697 * or larger than min_unit_size.
2698 */
2699 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2700
2701 /* determine the maximum # of units that can fit in an allocation */
2702 alloc_size = roundup(min_unit_size, atom_size);
2703 upa = alloc_size / min_unit_size;
2704 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2705 upa--;
2706 max_upa = upa;
2707
2708 cpumask_copy(&mask, cpu_possible_mask);
2709
2710 /* group cpus according to their proximity */
2711 for (group = 0; !cpumask_empty(&mask); group++) {
2712 /* pop the group's first cpu */
2713 cpu = cpumask_first(&mask);
2714 group_map[cpu] = group;
2715 group_cnt[group]++;
2716 cpumask_clear_cpu(cpu, &mask);
2717
2718 for_each_cpu(tcpu, &mask) {
2719 if (!cpu_distance_fn ||
2720 (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE &&
2721 cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) {
2722 group_map[tcpu] = group;
2723 group_cnt[group]++;
2724 cpumask_clear_cpu(tcpu, &mask);
2725 }
2726 }
2727 }
2728 nr_groups = group;
2729
2730 /*
2731 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2732 * Expand the unit_size until we use >= 75% of the units allocated.
2733 * Related to atom_size, which could be much larger than the unit_size.
2734 */
2735 last_allocs = INT_MAX;
2736 for (upa = max_upa; upa; upa--) {
2737 int allocs = 0, wasted = 0;
2738
2739 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2740 continue;
2741
2742 for (group = 0; group < nr_groups; group++) {
2743 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2744 allocs += this_allocs;
2745 wasted += this_allocs * upa - group_cnt[group];
2746 }
2747
2748 /*
2749 * Don't accept if wastage is over 1/3. The
2750 * greater-than comparison ensures upa==1 always
2751 * passes the following check.
2752 */
2753 if (wasted > num_possible_cpus() / 3)
2754 continue;
2755
2756 /* and then don't consume more memory */
2757 if (allocs > last_allocs)
2758 break;
2759 last_allocs = allocs;
2760 best_upa = upa;
2761 }
2762 upa = best_upa;
2763
2764 /* allocate and fill alloc_info */
2765 for (group = 0; group < nr_groups; group++)
2766 nr_units += roundup(group_cnt[group], upa);
2767
2768 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2769 if (!ai)
2770 return ERR_PTR(-ENOMEM);
2771 cpu_map = ai->groups[0].cpu_map;
2772
2773 for (group = 0; group < nr_groups; group++) {
2774 ai->groups[group].cpu_map = cpu_map;
2775 cpu_map += roundup(group_cnt[group], upa);
2776 }
2777
2778 ai->static_size = static_size;
2779 ai->reserved_size = reserved_size;
2780 ai->dyn_size = dyn_size;
2781 ai->unit_size = alloc_size / upa;
2782 ai->atom_size = atom_size;
2783 ai->alloc_size = alloc_size;
2784
2785 for (group = 0, unit = 0; group < nr_groups; group++) {
2786 struct pcpu_group_info *gi = &ai->groups[group];
2787
2788 /*
2789 * Initialize base_offset as if all groups are located
2790 * back-to-back. The caller should update this to
2791 * reflect actual allocation.
2792 */
2793 gi->base_offset = unit * ai->unit_size;
2794
2795 for_each_possible_cpu(cpu)
2796 if (group_map[cpu] == group)
2797 gi->cpu_map[gi->nr_units++] = cpu;
2798 gi->nr_units = roundup(gi->nr_units, upa);
2799 unit += gi->nr_units;
2800 }
2801 BUG_ON(unit != nr_units);
2802
2803 return ai;
2804 }
2805 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2806
2807 #if defined(BUILD_EMBED_FIRST_CHUNK)
2808 /**
2809 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2810 * @reserved_size: the size of reserved percpu area in bytes
2811 * @dyn_size: minimum free size for dynamic allocation in bytes
2812 * @atom_size: allocation atom size
2813 * @cpu_distance_fn: callback to determine distance between cpus, optional
2814 * @alloc_fn: function to allocate percpu page
2815 * @free_fn: function to free percpu page
2816 *
2817 * This is a helper to ease setting up embedded first percpu chunk and
2818 * can be called where pcpu_setup_first_chunk() is expected.
2819 *
2820 * If this function is used to setup the first chunk, it is allocated
2821 * by calling @alloc_fn and used as-is without being mapped into
2822 * vmalloc area. Allocations are always whole multiples of @atom_size
2823 * aligned to @atom_size.
2824 *
2825 * This enables the first chunk to piggy back on the linear physical
2826 * mapping which often uses larger page size. Please note that this
2827 * can result in very sparse cpu->unit mapping on NUMA machines thus
2828 * requiring large vmalloc address space. Don't use this allocator if
2829 * vmalloc space is not orders of magnitude larger than distances
2830 * between node memory addresses (ie. 32bit NUMA machines).
2831 *
2832 * @dyn_size specifies the minimum dynamic area size.
2833 *
2834 * If the needed size is smaller than the minimum or specified unit
2835 * size, the leftover is returned using @free_fn.
2836 *
2837 * RETURNS:
2838 * 0 on success, -errno on failure.
2839 */
2840 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2841 size_t atom_size,
2842 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2843 pcpu_fc_alloc_fn_t alloc_fn,
2844 pcpu_fc_free_fn_t free_fn)
2845 {
2846 void *base = (void *)ULONG_MAX;
2847 void **areas = NULL;
2848 struct pcpu_alloc_info *ai;
2849 size_t size_sum, areas_size;
2850 unsigned long max_distance;
2851 int group, i, highest_group, rc = 0;
2852
2853 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2854 cpu_distance_fn);
2855 if (IS_ERR(ai))
2856 return PTR_ERR(ai);
2857
2858 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2859 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2860
2861 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2862 if (!areas) {
2863 rc = -ENOMEM;
2864 goto out_free;
2865 }
2866
2867 /* allocate, copy and determine base address & max_distance */
2868 highest_group = 0;
2869 for (group = 0; group < ai->nr_groups; group++) {
2870 struct pcpu_group_info *gi = &ai->groups[group];
2871 unsigned int cpu = NR_CPUS;
2872 void *ptr;
2873
2874 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2875 cpu = gi->cpu_map[i];
2876 BUG_ON(cpu == NR_CPUS);
2877
2878 /* allocate space for the whole group */
2879 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2880 if (!ptr) {
2881 rc = -ENOMEM;
2882 goto out_free_areas;
2883 }
2884 /* kmemleak tracks the percpu allocations separately */
2885 kmemleak_free(ptr);
2886 areas[group] = ptr;
2887
2888 base = min(ptr, base);
2889 if (ptr > areas[highest_group])
2890 highest_group = group;
2891 }
2892 max_distance = areas[highest_group] - base;
2893 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2894
2895 /* warn if maximum distance is further than 75% of vmalloc space */
2896 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2897 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2898 max_distance, VMALLOC_TOTAL);
2899 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2900 /* and fail if we have fallback */
2901 rc = -EINVAL;
2902 goto out_free_areas;
2903 #endif
2904 }
2905
2906 /*
2907 * Copy data and free unused parts. This should happen after all
2908 * allocations are complete; otherwise, we may end up with
2909 * overlapping groups.
2910 */
2911 for (group = 0; group < ai->nr_groups; group++) {
2912 struct pcpu_group_info *gi = &ai->groups[group];
2913 void *ptr = areas[group];
2914
2915 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2916 if (gi->cpu_map[i] == NR_CPUS) {
2917 /* unused unit, free whole */
2918 free_fn(ptr, ai->unit_size);
2919 continue;
2920 }
2921 /* copy and return the unused part */
2922 memcpy(ptr, __per_cpu_load, ai->static_size);
2923 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2924 }
2925 }
2926
2927 /* base address is now known, determine group base offsets */
2928 for (group = 0; group < ai->nr_groups; group++) {
2929 ai->groups[group].base_offset = areas[group] - base;
2930 }
2931
2932 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2933 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2934 ai->dyn_size, ai->unit_size);
2935
2936 pcpu_setup_first_chunk(ai, base);
2937 goto out_free;
2938
2939 out_free_areas:
2940 for (group = 0; group < ai->nr_groups; group++)
2941 if (areas[group])
2942 free_fn(areas[group],
2943 ai->groups[group].nr_units * ai->unit_size);
2944 out_free:
2945 pcpu_free_alloc_info(ai);
2946 if (areas)
2947 memblock_free_early(__pa(areas), areas_size);
2948 return rc;
2949 }
2950 #endif /* BUILD_EMBED_FIRST_CHUNK */
2951
2952 #ifdef BUILD_PAGE_FIRST_CHUNK
2953 /**
2954 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2955 * @reserved_size: the size of reserved percpu area in bytes
2956 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2957 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2958 * @populate_pte_fn: function to populate pte
2959 *
2960 * This is a helper to ease setting up page-remapped first percpu
2961 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2962 *
2963 * This is the basic allocator. Static percpu area is allocated
2964 * page-by-page into vmalloc area.
2965 *
2966 * RETURNS:
2967 * 0 on success, -errno on failure.
2968 */
2969 int __init pcpu_page_first_chunk(size_t reserved_size,
2970 pcpu_fc_alloc_fn_t alloc_fn,
2971 pcpu_fc_free_fn_t free_fn,
2972 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2973 {
2974 static struct vm_struct vm;
2975 struct pcpu_alloc_info *ai;
2976 char psize_str[16];
2977 int unit_pages;
2978 size_t pages_size;
2979 struct page **pages;
2980 int unit, i, j, rc = 0;
2981 int upa;
2982 int nr_g0_units;
2983
2984 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2985
2986 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2987 if (IS_ERR(ai))
2988 return PTR_ERR(ai);
2989 BUG_ON(ai->nr_groups != 1);
2990 upa = ai->alloc_size/ai->unit_size;
2991 nr_g0_units = roundup(num_possible_cpus(), upa);
2992 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2993 pcpu_free_alloc_info(ai);
2994 return -EINVAL;
2995 }
2996
2997 unit_pages = ai->unit_size >> PAGE_SHIFT;
2998
2999 /* unaligned allocations can't be freed, round up to page size */
3000 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
3001 sizeof(pages[0]));
3002 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
3003 if (!pages)
3004 panic("%s: Failed to allocate %zu bytes\n", __func__,
3005 pages_size);
3006
3007 /* allocate pages */
3008 j = 0;
3009 for (unit = 0; unit < num_possible_cpus(); unit++) {
3010 unsigned int cpu = ai->groups[0].cpu_map[unit];
3011 for (i = 0; i < unit_pages; i++) {
3012 void *ptr;
3013
3014 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3015 if (!ptr) {
3016 pr_warn("failed to allocate %s page for cpu%u\n",
3017 psize_str, cpu);
3018 goto enomem;
3019 }
3020 /* kmemleak tracks the percpu allocations separately */
3021 kmemleak_free(ptr);
3022 pages[j++] = virt_to_page(ptr);
3023 }
3024 }
3025
3026 /* allocate vm area, map the pages and copy static data */
3027 vm.flags = VM_ALLOC;
3028 vm.size = num_possible_cpus() * ai->unit_size;
3029 vm_area_register_early(&vm, PAGE_SIZE);
3030
3031 for (unit = 0; unit < num_possible_cpus(); unit++) {
3032 unsigned long unit_addr =
3033 (unsigned long)vm.addr + unit * ai->unit_size;
3034
3035 for (i = 0; i < unit_pages; i++)
3036 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3037
3038 /* pte already populated, the following shouldn't fail */
3039 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3040 unit_pages);
3041 if (rc < 0)
3042 panic("failed to map percpu area, err=%d\n", rc);
3043
3044 /*
3045 * FIXME: Archs with virtual cache should flush local
3046 * cache for the linear mapping here - something
3047 * equivalent to flush_cache_vmap() on the local cpu.
3048 * flush_cache_vmap() can't be used as most supporting
3049 * data structures are not set up yet.
3050 */
3051
3052 /* copy static data */
3053 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3054 }
3055
3056 /* we're ready, commit */
3057 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3058 unit_pages, psize_str, ai->static_size,
3059 ai->reserved_size, ai->dyn_size);
3060
3061 pcpu_setup_first_chunk(ai, vm.addr);
3062 goto out_free_ar;
3063
3064 enomem:
3065 while (--j >= 0)
3066 free_fn(page_address(pages[j]), PAGE_SIZE);
3067 rc = -ENOMEM;
3068 out_free_ar:
3069 memblock_free_early(__pa(pages), pages_size);
3070 pcpu_free_alloc_info(ai);
3071 return rc;
3072 }
3073 #endif /* BUILD_PAGE_FIRST_CHUNK */
3074
3075 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3076 /*
3077 * Generic SMP percpu area setup.
3078 *
3079 * The embedding helper is used because its behavior closely resembles
3080 * the original non-dynamic generic percpu area setup. This is
3081 * important because many archs have addressing restrictions and might
3082 * fail if the percpu area is located far away from the previous
3083 * location. As an added bonus, in non-NUMA cases, embedding is
3084 * generally a good idea TLB-wise because percpu area can piggy back
3085 * on the physical linear memory mapping which uses large page
3086 * mappings on applicable archs.
3087 */
3088 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3089 EXPORT_SYMBOL(__per_cpu_offset);
3090
3091 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3092 size_t align)
3093 {
3094 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
3095 }
3096
3097 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3098 {
3099 memblock_free_early(__pa(ptr), size);
3100 }
3101
3102 void __init setup_per_cpu_areas(void)
3103 {
3104 unsigned long delta;
3105 unsigned int cpu;
3106 int rc;
3107
3108 /*
3109 * Always reserve area for module percpu variables. That's
3110 * what the legacy allocator did.
3111 */
3112 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3113 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3114 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3115 if (rc < 0)
3116 panic("Failed to initialize percpu areas.");
3117
3118 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3119 for_each_possible_cpu(cpu)
3120 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3121 }
3122 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3123
3124 #else /* CONFIG_SMP */
3125
3126 /*
3127 * UP percpu area setup.
3128 *
3129 * UP always uses km-based percpu allocator with identity mapping.
3130 * Static percpu variables are indistinguishable from the usual static
3131 * variables and don't require any special preparation.
3132 */
3133 void __init setup_per_cpu_areas(void)
3134 {
3135 const size_t unit_size =
3136 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3137 PERCPU_DYNAMIC_RESERVE));
3138 struct pcpu_alloc_info *ai;
3139 void *fc;
3140
3141 ai = pcpu_alloc_alloc_info(1, 1);
3142 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3143 if (!ai || !fc)
3144 panic("Failed to allocate memory for percpu areas.");
3145 /* kmemleak tracks the percpu allocations separately */
3146 kmemleak_free(fc);
3147
3148 ai->dyn_size = unit_size;
3149 ai->unit_size = unit_size;
3150 ai->atom_size = unit_size;
3151 ai->alloc_size = unit_size;
3152 ai->groups[0].nr_units = 1;
3153 ai->groups[0].cpu_map[0] = 0;
3154
3155 pcpu_setup_first_chunk(ai, fc);
3156 pcpu_free_alloc_info(ai);
3157 }
3158
3159 #endif /* CONFIG_SMP */
3160
3161 /*
3162 * pcpu_nr_pages - calculate total number of populated backing pages
3163 *
3164 * This reflects the number of pages populated to back chunks. Metadata is
3165 * excluded in the number exposed in meminfo as the number of backing pages
3166 * scales with the number of cpus and can quickly outweigh the memory used for
3167 * metadata. It also keeps this calculation nice and simple.
3168 *
3169 * RETURNS:
3170 * Total number of populated backing pages in use by the allocator.
3171 */
3172 unsigned long pcpu_nr_pages(void)
3173 {
3174 return pcpu_nr_populated * pcpu_nr_units;
3175 }
3176
3177 /*
3178 * Percpu allocator is initialized early during boot when neither slab or
3179 * workqueue is available. Plug async management until everything is up
3180 * and running.
3181 */
3182 static int __init percpu_enable_async(void)
3183 {
3184 pcpu_async_enabled = true;
3185 return 0;
3186 }
3187 subsys_initcall(percpu_enable_async);