]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/percpu.c
mm: memcg/percpu: account percpu memory to memory cgroups
[mirror_ubuntu-hirsute-kernel.git] / mm / percpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/percpu.c - percpu memory allocator
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
10 *
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
38 *
39 * The allocator organizes chunks into lists according to free size and
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
44 *
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
52 *
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
58 *
59 * To use this allocator, arch code should do the following:
60 *
61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
64 *
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
67 */
68
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70
71 #include <linux/bitmap.h>
72 #include <linux/memblock.h>
73 #include <linux/err.h>
74 #include <linux/lcm.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
77 #include <linux/mm.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
90
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
94 #include <asm/io.h>
95
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
98
99 #include "percpu-internal.h"
100
101 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
102 #define PCPU_SLOT_BASE_SHIFT 5
103 /* chunks in slots below this are subject to being sidelined on failed alloc */
104 #define PCPU_SLOT_FAIL_THRESHOLD 3
105
106 #define PCPU_EMPTY_POP_PAGES_LOW 2
107 #define PCPU_EMPTY_POP_PAGES_HIGH 4
108
109 #ifdef CONFIG_SMP
110 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
111 #ifndef __addr_to_pcpu_ptr
112 #define __addr_to_pcpu_ptr(addr) \
113 (void __percpu *)((unsigned long)(addr) - \
114 (unsigned long)pcpu_base_addr + \
115 (unsigned long)__per_cpu_start)
116 #endif
117 #ifndef __pcpu_ptr_to_addr
118 #define __pcpu_ptr_to_addr(ptr) \
119 (void __force *)((unsigned long)(ptr) + \
120 (unsigned long)pcpu_base_addr - \
121 (unsigned long)__per_cpu_start)
122 #endif
123 #else /* CONFIG_SMP */
124 /* on UP, it's always identity mapped */
125 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
126 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
127 #endif /* CONFIG_SMP */
128
129 static int pcpu_unit_pages __ro_after_init;
130 static int pcpu_unit_size __ro_after_init;
131 static int pcpu_nr_units __ro_after_init;
132 static int pcpu_atom_size __ro_after_init;
133 int pcpu_nr_slots __ro_after_init;
134 static size_t pcpu_chunk_struct_size __ro_after_init;
135
136 /* cpus with the lowest and highest unit addresses */
137 static unsigned int pcpu_low_unit_cpu __ro_after_init;
138 static unsigned int pcpu_high_unit_cpu __ro_after_init;
139
140 /* the address of the first chunk which starts with the kernel static area */
141 void *pcpu_base_addr __ro_after_init;
142 EXPORT_SYMBOL_GPL(pcpu_base_addr);
143
144 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
145 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
146
147 /* group information, used for vm allocation */
148 static int pcpu_nr_groups __ro_after_init;
149 static const unsigned long *pcpu_group_offsets __ro_after_init;
150 static const size_t *pcpu_group_sizes __ro_after_init;
151
152 /*
153 * The first chunk which always exists. Note that unlike other
154 * chunks, this one can be allocated and mapped in several different
155 * ways and thus often doesn't live in the vmalloc area.
156 */
157 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
158
159 /*
160 * Optional reserved chunk. This chunk reserves part of the first
161 * chunk and serves it for reserved allocations. When the reserved
162 * region doesn't exist, the following variable is NULL.
163 */
164 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
165
166 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
167 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
168
169 struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */
170
171 /* chunks which need their map areas extended, protected by pcpu_lock */
172 static LIST_HEAD(pcpu_map_extend_chunks);
173
174 /*
175 * The number of empty populated pages, protected by pcpu_lock. The
176 * reserved chunk doesn't contribute to the count.
177 */
178 int pcpu_nr_empty_pop_pages;
179
180 /*
181 * The number of populated pages in use by the allocator, protected by
182 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
183 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
184 * and increments/decrements this count by 1).
185 */
186 static unsigned long pcpu_nr_populated;
187
188 /*
189 * Balance work is used to populate or destroy chunks asynchronously. We
190 * try to keep the number of populated free pages between
191 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
192 * empty chunk.
193 */
194 static void pcpu_balance_workfn(struct work_struct *work);
195 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
196 static bool pcpu_async_enabled __read_mostly;
197 static bool pcpu_atomic_alloc_failed;
198
199 static void pcpu_schedule_balance_work(void)
200 {
201 if (pcpu_async_enabled)
202 schedule_work(&pcpu_balance_work);
203 }
204
205 /**
206 * pcpu_addr_in_chunk - check if the address is served from this chunk
207 * @chunk: chunk of interest
208 * @addr: percpu address
209 *
210 * RETURNS:
211 * True if the address is served from this chunk.
212 */
213 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
214 {
215 void *start_addr, *end_addr;
216
217 if (!chunk)
218 return false;
219
220 start_addr = chunk->base_addr + chunk->start_offset;
221 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
222 chunk->end_offset;
223
224 return addr >= start_addr && addr < end_addr;
225 }
226
227 static int __pcpu_size_to_slot(int size)
228 {
229 int highbit = fls(size); /* size is in bytes */
230 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
231 }
232
233 static int pcpu_size_to_slot(int size)
234 {
235 if (size == pcpu_unit_size)
236 return pcpu_nr_slots - 1;
237 return __pcpu_size_to_slot(size);
238 }
239
240 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
241 {
242 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
243
244 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
245 chunk_md->contig_hint == 0)
246 return 0;
247
248 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
249 }
250
251 /* set the pointer to a chunk in a page struct */
252 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
253 {
254 page->index = (unsigned long)pcpu;
255 }
256
257 /* obtain pointer to a chunk from a page struct */
258 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
259 {
260 return (struct pcpu_chunk *)page->index;
261 }
262
263 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
264 {
265 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
266 }
267
268 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
269 {
270 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
271 }
272
273 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
274 unsigned int cpu, int page_idx)
275 {
276 return (unsigned long)chunk->base_addr +
277 pcpu_unit_page_offset(cpu, page_idx);
278 }
279
280 /*
281 * The following are helper functions to help access bitmaps and convert
282 * between bitmap offsets to address offsets.
283 */
284 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
285 {
286 return chunk->alloc_map +
287 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
288 }
289
290 static unsigned long pcpu_off_to_block_index(int off)
291 {
292 return off / PCPU_BITMAP_BLOCK_BITS;
293 }
294
295 static unsigned long pcpu_off_to_block_off(int off)
296 {
297 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
298 }
299
300 static unsigned long pcpu_block_off_to_off(int index, int off)
301 {
302 return index * PCPU_BITMAP_BLOCK_BITS + off;
303 }
304
305 /*
306 * pcpu_next_hint - determine which hint to use
307 * @block: block of interest
308 * @alloc_bits: size of allocation
309 *
310 * This determines if we should scan based on the scan_hint or first_free.
311 * In general, we want to scan from first_free to fulfill allocations by
312 * first fit. However, if we know a scan_hint at position scan_hint_start
313 * cannot fulfill an allocation, we can begin scanning from there knowing
314 * the contig_hint will be our fallback.
315 */
316 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
317 {
318 /*
319 * The three conditions below determine if we can skip past the
320 * scan_hint. First, does the scan hint exist. Second, is the
321 * contig_hint after the scan_hint (possibly not true iff
322 * contig_hint == scan_hint). Third, is the allocation request
323 * larger than the scan_hint.
324 */
325 if (block->scan_hint &&
326 block->contig_hint_start > block->scan_hint_start &&
327 alloc_bits > block->scan_hint)
328 return block->scan_hint_start + block->scan_hint;
329
330 return block->first_free;
331 }
332
333 /**
334 * pcpu_next_md_free_region - finds the next hint free area
335 * @chunk: chunk of interest
336 * @bit_off: chunk offset
337 * @bits: size of free area
338 *
339 * Helper function for pcpu_for_each_md_free_region. It checks
340 * block->contig_hint and performs aggregation across blocks to find the
341 * next hint. It modifies bit_off and bits in-place to be consumed in the
342 * loop.
343 */
344 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
345 int *bits)
346 {
347 int i = pcpu_off_to_block_index(*bit_off);
348 int block_off = pcpu_off_to_block_off(*bit_off);
349 struct pcpu_block_md *block;
350
351 *bits = 0;
352 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
353 block++, i++) {
354 /* handles contig area across blocks */
355 if (*bits) {
356 *bits += block->left_free;
357 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
358 continue;
359 return;
360 }
361
362 /*
363 * This checks three things. First is there a contig_hint to
364 * check. Second, have we checked this hint before by
365 * comparing the block_off. Third, is this the same as the
366 * right contig hint. In the last case, it spills over into
367 * the next block and should be handled by the contig area
368 * across blocks code.
369 */
370 *bits = block->contig_hint;
371 if (*bits && block->contig_hint_start >= block_off &&
372 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
373 *bit_off = pcpu_block_off_to_off(i,
374 block->contig_hint_start);
375 return;
376 }
377 /* reset to satisfy the second predicate above */
378 block_off = 0;
379
380 *bits = block->right_free;
381 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
382 }
383 }
384
385 /**
386 * pcpu_next_fit_region - finds fit areas for a given allocation request
387 * @chunk: chunk of interest
388 * @alloc_bits: size of allocation
389 * @align: alignment of area (max PAGE_SIZE)
390 * @bit_off: chunk offset
391 * @bits: size of free area
392 *
393 * Finds the next free region that is viable for use with a given size and
394 * alignment. This only returns if there is a valid area to be used for this
395 * allocation. block->first_free is returned if the allocation request fits
396 * within the block to see if the request can be fulfilled prior to the contig
397 * hint.
398 */
399 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
400 int align, int *bit_off, int *bits)
401 {
402 int i = pcpu_off_to_block_index(*bit_off);
403 int block_off = pcpu_off_to_block_off(*bit_off);
404 struct pcpu_block_md *block;
405
406 *bits = 0;
407 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
408 block++, i++) {
409 /* handles contig area across blocks */
410 if (*bits) {
411 *bits += block->left_free;
412 if (*bits >= alloc_bits)
413 return;
414 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
415 continue;
416 }
417
418 /* check block->contig_hint */
419 *bits = ALIGN(block->contig_hint_start, align) -
420 block->contig_hint_start;
421 /*
422 * This uses the block offset to determine if this has been
423 * checked in the prior iteration.
424 */
425 if (block->contig_hint &&
426 block->contig_hint_start >= block_off &&
427 block->contig_hint >= *bits + alloc_bits) {
428 int start = pcpu_next_hint(block, alloc_bits);
429
430 *bits += alloc_bits + block->contig_hint_start -
431 start;
432 *bit_off = pcpu_block_off_to_off(i, start);
433 return;
434 }
435 /* reset to satisfy the second predicate above */
436 block_off = 0;
437
438 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
439 align);
440 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
441 *bit_off = pcpu_block_off_to_off(i, *bit_off);
442 if (*bits >= alloc_bits)
443 return;
444 }
445
446 /* no valid offsets were found - fail condition */
447 *bit_off = pcpu_chunk_map_bits(chunk);
448 }
449
450 /*
451 * Metadata free area iterators. These perform aggregation of free areas
452 * based on the metadata blocks and return the offset @bit_off and size in
453 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
454 * a fit is found for the allocation request.
455 */
456 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
457 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
458 (bit_off) < pcpu_chunk_map_bits((chunk)); \
459 (bit_off) += (bits) + 1, \
460 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
461
462 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
463 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
464 &(bits)); \
465 (bit_off) < pcpu_chunk_map_bits((chunk)); \
466 (bit_off) += (bits), \
467 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
468 &(bits)))
469
470 /**
471 * pcpu_mem_zalloc - allocate memory
472 * @size: bytes to allocate
473 * @gfp: allocation flags
474 *
475 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
476 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
477 * This is to facilitate passing through whitelisted flags. The
478 * returned memory is always zeroed.
479 *
480 * RETURNS:
481 * Pointer to the allocated area on success, NULL on failure.
482 */
483 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
484 {
485 if (WARN_ON_ONCE(!slab_is_available()))
486 return NULL;
487
488 if (size <= PAGE_SIZE)
489 return kzalloc(size, gfp);
490 else
491 return __vmalloc(size, gfp | __GFP_ZERO);
492 }
493
494 /**
495 * pcpu_mem_free - free memory
496 * @ptr: memory to free
497 *
498 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
499 */
500 static void pcpu_mem_free(void *ptr)
501 {
502 kvfree(ptr);
503 }
504
505 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
506 bool move_front)
507 {
508 if (chunk != pcpu_reserved_chunk) {
509 struct list_head *pcpu_slot;
510
511 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
512 if (move_front)
513 list_move(&chunk->list, &pcpu_slot[slot]);
514 else
515 list_move_tail(&chunk->list, &pcpu_slot[slot]);
516 }
517 }
518
519 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
520 {
521 __pcpu_chunk_move(chunk, slot, true);
522 }
523
524 /**
525 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
526 * @chunk: chunk of interest
527 * @oslot: the previous slot it was on
528 *
529 * This function is called after an allocation or free changed @chunk.
530 * New slot according to the changed state is determined and @chunk is
531 * moved to the slot. Note that the reserved chunk is never put on
532 * chunk slots.
533 *
534 * CONTEXT:
535 * pcpu_lock.
536 */
537 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
538 {
539 int nslot = pcpu_chunk_slot(chunk);
540
541 if (oslot != nslot)
542 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
543 }
544
545 /*
546 * pcpu_update_empty_pages - update empty page counters
547 * @chunk: chunk of interest
548 * @nr: nr of empty pages
549 *
550 * This is used to keep track of the empty pages now based on the premise
551 * a md_block covers a page. The hint update functions recognize if a block
552 * is made full or broken to calculate deltas for keeping track of free pages.
553 */
554 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
555 {
556 chunk->nr_empty_pop_pages += nr;
557 if (chunk != pcpu_reserved_chunk)
558 pcpu_nr_empty_pop_pages += nr;
559 }
560
561 /*
562 * pcpu_region_overlap - determines if two regions overlap
563 * @a: start of first region, inclusive
564 * @b: end of first region, exclusive
565 * @x: start of second region, inclusive
566 * @y: end of second region, exclusive
567 *
568 * This is used to determine if the hint region [a, b) overlaps with the
569 * allocated region [x, y).
570 */
571 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
572 {
573 return (a < y) && (x < b);
574 }
575
576 /**
577 * pcpu_block_update - updates a block given a free area
578 * @block: block of interest
579 * @start: start offset in block
580 * @end: end offset in block
581 *
582 * Updates a block given a known free area. The region [start, end) is
583 * expected to be the entirety of the free area within a block. Chooses
584 * the best starting offset if the contig hints are equal.
585 */
586 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
587 {
588 int contig = end - start;
589
590 block->first_free = min(block->first_free, start);
591 if (start == 0)
592 block->left_free = contig;
593
594 if (end == block->nr_bits)
595 block->right_free = contig;
596
597 if (contig > block->contig_hint) {
598 /* promote the old contig_hint to be the new scan_hint */
599 if (start > block->contig_hint_start) {
600 if (block->contig_hint > block->scan_hint) {
601 block->scan_hint_start =
602 block->contig_hint_start;
603 block->scan_hint = block->contig_hint;
604 } else if (start < block->scan_hint_start) {
605 /*
606 * The old contig_hint == scan_hint. But, the
607 * new contig is larger so hold the invariant
608 * scan_hint_start < contig_hint_start.
609 */
610 block->scan_hint = 0;
611 }
612 } else {
613 block->scan_hint = 0;
614 }
615 block->contig_hint_start = start;
616 block->contig_hint = contig;
617 } else if (contig == block->contig_hint) {
618 if (block->contig_hint_start &&
619 (!start ||
620 __ffs(start) > __ffs(block->contig_hint_start))) {
621 /* start has a better alignment so use it */
622 block->contig_hint_start = start;
623 if (start < block->scan_hint_start &&
624 block->contig_hint > block->scan_hint)
625 block->scan_hint = 0;
626 } else if (start > block->scan_hint_start ||
627 block->contig_hint > block->scan_hint) {
628 /*
629 * Knowing contig == contig_hint, update the scan_hint
630 * if it is farther than or larger than the current
631 * scan_hint.
632 */
633 block->scan_hint_start = start;
634 block->scan_hint = contig;
635 }
636 } else {
637 /*
638 * The region is smaller than the contig_hint. So only update
639 * the scan_hint if it is larger than or equal and farther than
640 * the current scan_hint.
641 */
642 if ((start < block->contig_hint_start &&
643 (contig > block->scan_hint ||
644 (contig == block->scan_hint &&
645 start > block->scan_hint_start)))) {
646 block->scan_hint_start = start;
647 block->scan_hint = contig;
648 }
649 }
650 }
651
652 /*
653 * pcpu_block_update_scan - update a block given a free area from a scan
654 * @chunk: chunk of interest
655 * @bit_off: chunk offset
656 * @bits: size of free area
657 *
658 * Finding the final allocation spot first goes through pcpu_find_block_fit()
659 * to find a block that can hold the allocation and then pcpu_alloc_area()
660 * where a scan is used. When allocations require specific alignments,
661 * we can inadvertently create holes which will not be seen in the alloc
662 * or free paths.
663 *
664 * This takes a given free area hole and updates a block as it may change the
665 * scan_hint. We need to scan backwards to ensure we don't miss free bits
666 * from alignment.
667 */
668 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
669 int bits)
670 {
671 int s_off = pcpu_off_to_block_off(bit_off);
672 int e_off = s_off + bits;
673 int s_index, l_bit;
674 struct pcpu_block_md *block;
675
676 if (e_off > PCPU_BITMAP_BLOCK_BITS)
677 return;
678
679 s_index = pcpu_off_to_block_index(bit_off);
680 block = chunk->md_blocks + s_index;
681
682 /* scan backwards in case of alignment skipping free bits */
683 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
684 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
685
686 pcpu_block_update(block, s_off, e_off);
687 }
688
689 /**
690 * pcpu_chunk_refresh_hint - updates metadata about a chunk
691 * @chunk: chunk of interest
692 * @full_scan: if we should scan from the beginning
693 *
694 * Iterates over the metadata blocks to find the largest contig area.
695 * A full scan can be avoided on the allocation path as this is triggered
696 * if we broke the contig_hint. In doing so, the scan_hint will be before
697 * the contig_hint or after if the scan_hint == contig_hint. This cannot
698 * be prevented on freeing as we want to find the largest area possibly
699 * spanning blocks.
700 */
701 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
702 {
703 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
704 int bit_off, bits;
705
706 /* promote scan_hint to contig_hint */
707 if (!full_scan && chunk_md->scan_hint) {
708 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
709 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
710 chunk_md->contig_hint = chunk_md->scan_hint;
711 chunk_md->scan_hint = 0;
712 } else {
713 bit_off = chunk_md->first_free;
714 chunk_md->contig_hint = 0;
715 }
716
717 bits = 0;
718 pcpu_for_each_md_free_region(chunk, bit_off, bits)
719 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
720 }
721
722 /**
723 * pcpu_block_refresh_hint
724 * @chunk: chunk of interest
725 * @index: index of the metadata block
726 *
727 * Scans over the block beginning at first_free and updates the block
728 * metadata accordingly.
729 */
730 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
731 {
732 struct pcpu_block_md *block = chunk->md_blocks + index;
733 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
734 unsigned int rs, re, start; /* region start, region end */
735
736 /* promote scan_hint to contig_hint */
737 if (block->scan_hint) {
738 start = block->scan_hint_start + block->scan_hint;
739 block->contig_hint_start = block->scan_hint_start;
740 block->contig_hint = block->scan_hint;
741 block->scan_hint = 0;
742 } else {
743 start = block->first_free;
744 block->contig_hint = 0;
745 }
746
747 block->right_free = 0;
748
749 /* iterate over free areas and update the contig hints */
750 bitmap_for_each_clear_region(alloc_map, rs, re, start,
751 PCPU_BITMAP_BLOCK_BITS)
752 pcpu_block_update(block, rs, re);
753 }
754
755 /**
756 * pcpu_block_update_hint_alloc - update hint on allocation path
757 * @chunk: chunk of interest
758 * @bit_off: chunk offset
759 * @bits: size of request
760 *
761 * Updates metadata for the allocation path. The metadata only has to be
762 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
763 * scans are required if the block's contig hint is broken.
764 */
765 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
766 int bits)
767 {
768 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
769 int nr_empty_pages = 0;
770 struct pcpu_block_md *s_block, *e_block, *block;
771 int s_index, e_index; /* block indexes of the freed allocation */
772 int s_off, e_off; /* block offsets of the freed allocation */
773
774 /*
775 * Calculate per block offsets.
776 * The calculation uses an inclusive range, but the resulting offsets
777 * are [start, end). e_index always points to the last block in the
778 * range.
779 */
780 s_index = pcpu_off_to_block_index(bit_off);
781 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
782 s_off = pcpu_off_to_block_off(bit_off);
783 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
784
785 s_block = chunk->md_blocks + s_index;
786 e_block = chunk->md_blocks + e_index;
787
788 /*
789 * Update s_block.
790 * block->first_free must be updated if the allocation takes its place.
791 * If the allocation breaks the contig_hint, a scan is required to
792 * restore this hint.
793 */
794 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
795 nr_empty_pages++;
796
797 if (s_off == s_block->first_free)
798 s_block->first_free = find_next_zero_bit(
799 pcpu_index_alloc_map(chunk, s_index),
800 PCPU_BITMAP_BLOCK_BITS,
801 s_off + bits);
802
803 if (pcpu_region_overlap(s_block->scan_hint_start,
804 s_block->scan_hint_start + s_block->scan_hint,
805 s_off,
806 s_off + bits))
807 s_block->scan_hint = 0;
808
809 if (pcpu_region_overlap(s_block->contig_hint_start,
810 s_block->contig_hint_start +
811 s_block->contig_hint,
812 s_off,
813 s_off + bits)) {
814 /* block contig hint is broken - scan to fix it */
815 if (!s_off)
816 s_block->left_free = 0;
817 pcpu_block_refresh_hint(chunk, s_index);
818 } else {
819 /* update left and right contig manually */
820 s_block->left_free = min(s_block->left_free, s_off);
821 if (s_index == e_index)
822 s_block->right_free = min_t(int, s_block->right_free,
823 PCPU_BITMAP_BLOCK_BITS - e_off);
824 else
825 s_block->right_free = 0;
826 }
827
828 /*
829 * Update e_block.
830 */
831 if (s_index != e_index) {
832 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
833 nr_empty_pages++;
834
835 /*
836 * When the allocation is across blocks, the end is along
837 * the left part of the e_block.
838 */
839 e_block->first_free = find_next_zero_bit(
840 pcpu_index_alloc_map(chunk, e_index),
841 PCPU_BITMAP_BLOCK_BITS, e_off);
842
843 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
844 /* reset the block */
845 e_block++;
846 } else {
847 if (e_off > e_block->scan_hint_start)
848 e_block->scan_hint = 0;
849
850 e_block->left_free = 0;
851 if (e_off > e_block->contig_hint_start) {
852 /* contig hint is broken - scan to fix it */
853 pcpu_block_refresh_hint(chunk, e_index);
854 } else {
855 e_block->right_free =
856 min_t(int, e_block->right_free,
857 PCPU_BITMAP_BLOCK_BITS - e_off);
858 }
859 }
860
861 /* update in-between md_blocks */
862 nr_empty_pages += (e_index - s_index - 1);
863 for (block = s_block + 1; block < e_block; block++) {
864 block->scan_hint = 0;
865 block->contig_hint = 0;
866 block->left_free = 0;
867 block->right_free = 0;
868 }
869 }
870
871 if (nr_empty_pages)
872 pcpu_update_empty_pages(chunk, -nr_empty_pages);
873
874 if (pcpu_region_overlap(chunk_md->scan_hint_start,
875 chunk_md->scan_hint_start +
876 chunk_md->scan_hint,
877 bit_off,
878 bit_off + bits))
879 chunk_md->scan_hint = 0;
880
881 /*
882 * The only time a full chunk scan is required is if the chunk
883 * contig hint is broken. Otherwise, it means a smaller space
884 * was used and therefore the chunk contig hint is still correct.
885 */
886 if (pcpu_region_overlap(chunk_md->contig_hint_start,
887 chunk_md->contig_hint_start +
888 chunk_md->contig_hint,
889 bit_off,
890 bit_off + bits))
891 pcpu_chunk_refresh_hint(chunk, false);
892 }
893
894 /**
895 * pcpu_block_update_hint_free - updates the block hints on the free path
896 * @chunk: chunk of interest
897 * @bit_off: chunk offset
898 * @bits: size of request
899 *
900 * Updates metadata for the allocation path. This avoids a blind block
901 * refresh by making use of the block contig hints. If this fails, it scans
902 * forward and backward to determine the extent of the free area. This is
903 * capped at the boundary of blocks.
904 *
905 * A chunk update is triggered if a page becomes free, a block becomes free,
906 * or the free spans across blocks. This tradeoff is to minimize iterating
907 * over the block metadata to update chunk_md->contig_hint.
908 * chunk_md->contig_hint may be off by up to a page, but it will never be more
909 * than the available space. If the contig hint is contained in one block, it
910 * will be accurate.
911 */
912 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
913 int bits)
914 {
915 int nr_empty_pages = 0;
916 struct pcpu_block_md *s_block, *e_block, *block;
917 int s_index, e_index; /* block indexes of the freed allocation */
918 int s_off, e_off; /* block offsets of the freed allocation */
919 int start, end; /* start and end of the whole free area */
920
921 /*
922 * Calculate per block offsets.
923 * The calculation uses an inclusive range, but the resulting offsets
924 * are [start, end). e_index always points to the last block in the
925 * range.
926 */
927 s_index = pcpu_off_to_block_index(bit_off);
928 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
929 s_off = pcpu_off_to_block_off(bit_off);
930 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
931
932 s_block = chunk->md_blocks + s_index;
933 e_block = chunk->md_blocks + e_index;
934
935 /*
936 * Check if the freed area aligns with the block->contig_hint.
937 * If it does, then the scan to find the beginning/end of the
938 * larger free area can be avoided.
939 *
940 * start and end refer to beginning and end of the free area
941 * within each their respective blocks. This is not necessarily
942 * the entire free area as it may span blocks past the beginning
943 * or end of the block.
944 */
945 start = s_off;
946 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
947 start = s_block->contig_hint_start;
948 } else {
949 /*
950 * Scan backwards to find the extent of the free area.
951 * find_last_bit returns the starting bit, so if the start bit
952 * is returned, that means there was no last bit and the
953 * remainder of the chunk is free.
954 */
955 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
956 start);
957 start = (start == l_bit) ? 0 : l_bit + 1;
958 }
959
960 end = e_off;
961 if (e_off == e_block->contig_hint_start)
962 end = e_block->contig_hint_start + e_block->contig_hint;
963 else
964 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
965 PCPU_BITMAP_BLOCK_BITS, end);
966
967 /* update s_block */
968 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
969 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
970 nr_empty_pages++;
971 pcpu_block_update(s_block, start, e_off);
972
973 /* freeing in the same block */
974 if (s_index != e_index) {
975 /* update e_block */
976 if (end == PCPU_BITMAP_BLOCK_BITS)
977 nr_empty_pages++;
978 pcpu_block_update(e_block, 0, end);
979
980 /* reset md_blocks in the middle */
981 nr_empty_pages += (e_index - s_index - 1);
982 for (block = s_block + 1; block < e_block; block++) {
983 block->first_free = 0;
984 block->scan_hint = 0;
985 block->contig_hint_start = 0;
986 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
987 block->left_free = PCPU_BITMAP_BLOCK_BITS;
988 block->right_free = PCPU_BITMAP_BLOCK_BITS;
989 }
990 }
991
992 if (nr_empty_pages)
993 pcpu_update_empty_pages(chunk, nr_empty_pages);
994
995 /*
996 * Refresh chunk metadata when the free makes a block free or spans
997 * across blocks. The contig_hint may be off by up to a page, but if
998 * the contig_hint is contained in a block, it will be accurate with
999 * the else condition below.
1000 */
1001 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
1002 pcpu_chunk_refresh_hint(chunk, true);
1003 else
1004 pcpu_block_update(&chunk->chunk_md,
1005 pcpu_block_off_to_off(s_index, start),
1006 end);
1007 }
1008
1009 /**
1010 * pcpu_is_populated - determines if the region is populated
1011 * @chunk: chunk of interest
1012 * @bit_off: chunk offset
1013 * @bits: size of area
1014 * @next_off: return value for the next offset to start searching
1015 *
1016 * For atomic allocations, check if the backing pages are populated.
1017 *
1018 * RETURNS:
1019 * Bool if the backing pages are populated.
1020 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1021 */
1022 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1023 int *next_off)
1024 {
1025 unsigned int page_start, page_end, rs, re;
1026
1027 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1028 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1029
1030 rs = page_start;
1031 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1032 if (rs >= page_end)
1033 return true;
1034
1035 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1036 return false;
1037 }
1038
1039 /**
1040 * pcpu_find_block_fit - finds the block index to start searching
1041 * @chunk: chunk of interest
1042 * @alloc_bits: size of request in allocation units
1043 * @align: alignment of area (max PAGE_SIZE bytes)
1044 * @pop_only: use populated regions only
1045 *
1046 * Given a chunk and an allocation spec, find the offset to begin searching
1047 * for a free region. This iterates over the bitmap metadata blocks to
1048 * find an offset that will be guaranteed to fit the requirements. It is
1049 * not quite first fit as if the allocation does not fit in the contig hint
1050 * of a block or chunk, it is skipped. This errs on the side of caution
1051 * to prevent excess iteration. Poor alignment can cause the allocator to
1052 * skip over blocks and chunks that have valid free areas.
1053 *
1054 * RETURNS:
1055 * The offset in the bitmap to begin searching.
1056 * -1 if no offset is found.
1057 */
1058 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1059 size_t align, bool pop_only)
1060 {
1061 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1062 int bit_off, bits, next_off;
1063
1064 /*
1065 * Check to see if the allocation can fit in the chunk's contig hint.
1066 * This is an optimization to prevent scanning by assuming if it
1067 * cannot fit in the global hint, there is memory pressure and creating
1068 * a new chunk would happen soon.
1069 */
1070 bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1071 chunk_md->contig_hint_start;
1072 if (bit_off + alloc_bits > chunk_md->contig_hint)
1073 return -1;
1074
1075 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1076 bits = 0;
1077 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1078 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1079 &next_off))
1080 break;
1081
1082 bit_off = next_off;
1083 bits = 0;
1084 }
1085
1086 if (bit_off == pcpu_chunk_map_bits(chunk))
1087 return -1;
1088
1089 return bit_off;
1090 }
1091
1092 /*
1093 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1094 * @map: the address to base the search on
1095 * @size: the bitmap size in bits
1096 * @start: the bitnumber to start searching at
1097 * @nr: the number of zeroed bits we're looking for
1098 * @align_mask: alignment mask for zero area
1099 * @largest_off: offset of the largest area skipped
1100 * @largest_bits: size of the largest area skipped
1101 *
1102 * The @align_mask should be one less than a power of 2.
1103 *
1104 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1105 * the largest area that was skipped. This is imperfect, but in general is
1106 * good enough. The largest remembered region is the largest failed region
1107 * seen. This does not include anything we possibly skipped due to alignment.
1108 * pcpu_block_update_scan() does scan backwards to try and recover what was
1109 * lost to alignment. While this can cause scanning to miss earlier possible
1110 * free areas, smaller allocations will eventually fill those holes.
1111 */
1112 static unsigned long pcpu_find_zero_area(unsigned long *map,
1113 unsigned long size,
1114 unsigned long start,
1115 unsigned long nr,
1116 unsigned long align_mask,
1117 unsigned long *largest_off,
1118 unsigned long *largest_bits)
1119 {
1120 unsigned long index, end, i, area_off, area_bits;
1121 again:
1122 index = find_next_zero_bit(map, size, start);
1123
1124 /* Align allocation */
1125 index = __ALIGN_MASK(index, align_mask);
1126 area_off = index;
1127
1128 end = index + nr;
1129 if (end > size)
1130 return end;
1131 i = find_next_bit(map, end, index);
1132 if (i < end) {
1133 area_bits = i - area_off;
1134 /* remember largest unused area with best alignment */
1135 if (area_bits > *largest_bits ||
1136 (area_bits == *largest_bits && *largest_off &&
1137 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1138 *largest_off = area_off;
1139 *largest_bits = area_bits;
1140 }
1141
1142 start = i + 1;
1143 goto again;
1144 }
1145 return index;
1146 }
1147
1148 /**
1149 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1150 * @chunk: chunk of interest
1151 * @alloc_bits: size of request in allocation units
1152 * @align: alignment of area (max PAGE_SIZE)
1153 * @start: bit_off to start searching
1154 *
1155 * This function takes in a @start offset to begin searching to fit an
1156 * allocation of @alloc_bits with alignment @align. It needs to scan
1157 * the allocation map because if it fits within the block's contig hint,
1158 * @start will be block->first_free. This is an attempt to fill the
1159 * allocation prior to breaking the contig hint. The allocation and
1160 * boundary maps are updated accordingly if it confirms a valid
1161 * free area.
1162 *
1163 * RETURNS:
1164 * Allocated addr offset in @chunk on success.
1165 * -1 if no matching area is found.
1166 */
1167 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1168 size_t align, int start)
1169 {
1170 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1171 size_t align_mask = (align) ? (align - 1) : 0;
1172 unsigned long area_off = 0, area_bits = 0;
1173 int bit_off, end, oslot;
1174
1175 lockdep_assert_held(&pcpu_lock);
1176
1177 oslot = pcpu_chunk_slot(chunk);
1178
1179 /*
1180 * Search to find a fit.
1181 */
1182 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1183 pcpu_chunk_map_bits(chunk));
1184 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1185 align_mask, &area_off, &area_bits);
1186 if (bit_off >= end)
1187 return -1;
1188
1189 if (area_bits)
1190 pcpu_block_update_scan(chunk, area_off, area_bits);
1191
1192 /* update alloc map */
1193 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1194
1195 /* update boundary map */
1196 set_bit(bit_off, chunk->bound_map);
1197 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1198 set_bit(bit_off + alloc_bits, chunk->bound_map);
1199
1200 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1201
1202 /* update first free bit */
1203 if (bit_off == chunk_md->first_free)
1204 chunk_md->first_free = find_next_zero_bit(
1205 chunk->alloc_map,
1206 pcpu_chunk_map_bits(chunk),
1207 bit_off + alloc_bits);
1208
1209 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1210
1211 pcpu_chunk_relocate(chunk, oslot);
1212
1213 return bit_off * PCPU_MIN_ALLOC_SIZE;
1214 }
1215
1216 /**
1217 * pcpu_free_area - frees the corresponding offset
1218 * @chunk: chunk of interest
1219 * @off: addr offset into chunk
1220 *
1221 * This function determines the size of an allocation to free using
1222 * the boundary bitmap and clears the allocation map.
1223 *
1224 * RETURNS:
1225 * Number of freed bytes.
1226 */
1227 static int pcpu_free_area(struct pcpu_chunk *chunk, int off)
1228 {
1229 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1230 int bit_off, bits, end, oslot, freed;
1231
1232 lockdep_assert_held(&pcpu_lock);
1233 pcpu_stats_area_dealloc(chunk);
1234
1235 oslot = pcpu_chunk_slot(chunk);
1236
1237 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1238
1239 /* find end index */
1240 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1241 bit_off + 1);
1242 bits = end - bit_off;
1243 bitmap_clear(chunk->alloc_map, bit_off, bits);
1244
1245 freed = bits * PCPU_MIN_ALLOC_SIZE;
1246
1247 /* update metadata */
1248 chunk->free_bytes += freed;
1249
1250 /* update first free bit */
1251 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1252
1253 pcpu_block_update_hint_free(chunk, bit_off, bits);
1254
1255 pcpu_chunk_relocate(chunk, oslot);
1256
1257 return freed;
1258 }
1259
1260 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1261 {
1262 block->scan_hint = 0;
1263 block->contig_hint = nr_bits;
1264 block->left_free = nr_bits;
1265 block->right_free = nr_bits;
1266 block->first_free = 0;
1267 block->nr_bits = nr_bits;
1268 }
1269
1270 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1271 {
1272 struct pcpu_block_md *md_block;
1273
1274 /* init the chunk's block */
1275 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1276
1277 for (md_block = chunk->md_blocks;
1278 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1279 md_block++)
1280 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1281 }
1282
1283 /**
1284 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1285 * @tmp_addr: the start of the region served
1286 * @map_size: size of the region served
1287 *
1288 * This is responsible for creating the chunks that serve the first chunk. The
1289 * base_addr is page aligned down of @tmp_addr while the region end is page
1290 * aligned up. Offsets are kept track of to determine the region served. All
1291 * this is done to appease the bitmap allocator in avoiding partial blocks.
1292 *
1293 * RETURNS:
1294 * Chunk serving the region at @tmp_addr of @map_size.
1295 */
1296 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1297 int map_size)
1298 {
1299 struct pcpu_chunk *chunk;
1300 unsigned long aligned_addr, lcm_align;
1301 int start_offset, offset_bits, region_size, region_bits;
1302 size_t alloc_size;
1303
1304 /* region calculations */
1305 aligned_addr = tmp_addr & PAGE_MASK;
1306
1307 start_offset = tmp_addr - aligned_addr;
1308
1309 /*
1310 * Align the end of the region with the LCM of PAGE_SIZE and
1311 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1312 * the other.
1313 */
1314 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1315 region_size = ALIGN(start_offset + map_size, lcm_align);
1316
1317 /* allocate chunk */
1318 alloc_size = sizeof(struct pcpu_chunk) +
1319 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1320 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1321 if (!chunk)
1322 panic("%s: Failed to allocate %zu bytes\n", __func__,
1323 alloc_size);
1324
1325 INIT_LIST_HEAD(&chunk->list);
1326
1327 chunk->base_addr = (void *)aligned_addr;
1328 chunk->start_offset = start_offset;
1329 chunk->end_offset = region_size - chunk->start_offset - map_size;
1330
1331 chunk->nr_pages = region_size >> PAGE_SHIFT;
1332 region_bits = pcpu_chunk_map_bits(chunk);
1333
1334 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1335 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1336 if (!chunk->alloc_map)
1337 panic("%s: Failed to allocate %zu bytes\n", __func__,
1338 alloc_size);
1339
1340 alloc_size =
1341 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1342 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1343 if (!chunk->bound_map)
1344 panic("%s: Failed to allocate %zu bytes\n", __func__,
1345 alloc_size);
1346
1347 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1348 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1349 if (!chunk->md_blocks)
1350 panic("%s: Failed to allocate %zu bytes\n", __func__,
1351 alloc_size);
1352
1353 #ifdef CONFIG_MEMCG_KMEM
1354 /* first chunk isn't memcg-aware */
1355 chunk->obj_cgroups = NULL;
1356 #endif
1357 pcpu_init_md_blocks(chunk);
1358
1359 /* manage populated page bitmap */
1360 chunk->immutable = true;
1361 bitmap_fill(chunk->populated, chunk->nr_pages);
1362 chunk->nr_populated = chunk->nr_pages;
1363 chunk->nr_empty_pop_pages = chunk->nr_pages;
1364
1365 chunk->free_bytes = map_size;
1366
1367 if (chunk->start_offset) {
1368 /* hide the beginning of the bitmap */
1369 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1370 bitmap_set(chunk->alloc_map, 0, offset_bits);
1371 set_bit(0, chunk->bound_map);
1372 set_bit(offset_bits, chunk->bound_map);
1373
1374 chunk->chunk_md.first_free = offset_bits;
1375
1376 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1377 }
1378
1379 if (chunk->end_offset) {
1380 /* hide the end of the bitmap */
1381 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1382 bitmap_set(chunk->alloc_map,
1383 pcpu_chunk_map_bits(chunk) - offset_bits,
1384 offset_bits);
1385 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1386 chunk->bound_map);
1387 set_bit(region_bits, chunk->bound_map);
1388
1389 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1390 - offset_bits, offset_bits);
1391 }
1392
1393 return chunk;
1394 }
1395
1396 static struct pcpu_chunk *pcpu_alloc_chunk(enum pcpu_chunk_type type, gfp_t gfp)
1397 {
1398 struct pcpu_chunk *chunk;
1399 int region_bits;
1400
1401 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1402 if (!chunk)
1403 return NULL;
1404
1405 INIT_LIST_HEAD(&chunk->list);
1406 chunk->nr_pages = pcpu_unit_pages;
1407 region_bits = pcpu_chunk_map_bits(chunk);
1408
1409 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1410 sizeof(chunk->alloc_map[0]), gfp);
1411 if (!chunk->alloc_map)
1412 goto alloc_map_fail;
1413
1414 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1415 sizeof(chunk->bound_map[0]), gfp);
1416 if (!chunk->bound_map)
1417 goto bound_map_fail;
1418
1419 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1420 sizeof(chunk->md_blocks[0]), gfp);
1421 if (!chunk->md_blocks)
1422 goto md_blocks_fail;
1423
1424 #ifdef CONFIG_MEMCG_KMEM
1425 if (pcpu_is_memcg_chunk(type)) {
1426 chunk->obj_cgroups =
1427 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) *
1428 sizeof(struct obj_cgroup *), gfp);
1429 if (!chunk->obj_cgroups)
1430 goto objcg_fail;
1431 }
1432 #endif
1433
1434 pcpu_init_md_blocks(chunk);
1435
1436 /* init metadata */
1437 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1438
1439 return chunk;
1440
1441 #ifdef CONFIG_MEMCG_KMEM
1442 objcg_fail:
1443 pcpu_mem_free(chunk->md_blocks);
1444 #endif
1445 md_blocks_fail:
1446 pcpu_mem_free(chunk->bound_map);
1447 bound_map_fail:
1448 pcpu_mem_free(chunk->alloc_map);
1449 alloc_map_fail:
1450 pcpu_mem_free(chunk);
1451
1452 return NULL;
1453 }
1454
1455 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1456 {
1457 if (!chunk)
1458 return;
1459 #ifdef CONFIG_MEMCG_KMEM
1460 pcpu_mem_free(chunk->obj_cgroups);
1461 #endif
1462 pcpu_mem_free(chunk->md_blocks);
1463 pcpu_mem_free(chunk->bound_map);
1464 pcpu_mem_free(chunk->alloc_map);
1465 pcpu_mem_free(chunk);
1466 }
1467
1468 /**
1469 * pcpu_chunk_populated - post-population bookkeeping
1470 * @chunk: pcpu_chunk which got populated
1471 * @page_start: the start page
1472 * @page_end: the end page
1473 *
1474 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1475 * the bookkeeping information accordingly. Must be called after each
1476 * successful population.
1477 *
1478 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1479 * is to serve an allocation in that area.
1480 */
1481 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1482 int page_end)
1483 {
1484 int nr = page_end - page_start;
1485
1486 lockdep_assert_held(&pcpu_lock);
1487
1488 bitmap_set(chunk->populated, page_start, nr);
1489 chunk->nr_populated += nr;
1490 pcpu_nr_populated += nr;
1491
1492 pcpu_update_empty_pages(chunk, nr);
1493 }
1494
1495 /**
1496 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1497 * @chunk: pcpu_chunk which got depopulated
1498 * @page_start: the start page
1499 * @page_end: the end page
1500 *
1501 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1502 * Update the bookkeeping information accordingly. Must be called after
1503 * each successful depopulation.
1504 */
1505 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1506 int page_start, int page_end)
1507 {
1508 int nr = page_end - page_start;
1509
1510 lockdep_assert_held(&pcpu_lock);
1511
1512 bitmap_clear(chunk->populated, page_start, nr);
1513 chunk->nr_populated -= nr;
1514 pcpu_nr_populated -= nr;
1515
1516 pcpu_update_empty_pages(chunk, -nr);
1517 }
1518
1519 /*
1520 * Chunk management implementation.
1521 *
1522 * To allow different implementations, chunk alloc/free and
1523 * [de]population are implemented in a separate file which is pulled
1524 * into this file and compiled together. The following functions
1525 * should be implemented.
1526 *
1527 * pcpu_populate_chunk - populate the specified range of a chunk
1528 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1529 * pcpu_create_chunk - create a new chunk
1530 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1531 * pcpu_addr_to_page - translate address to physical address
1532 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1533 */
1534 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1535 int page_start, int page_end, gfp_t gfp);
1536 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1537 int page_start, int page_end);
1538 static struct pcpu_chunk *pcpu_create_chunk(enum pcpu_chunk_type type,
1539 gfp_t gfp);
1540 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1541 static struct page *pcpu_addr_to_page(void *addr);
1542 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1543
1544 #ifdef CONFIG_NEED_PER_CPU_KM
1545 #include "percpu-km.c"
1546 #else
1547 #include "percpu-vm.c"
1548 #endif
1549
1550 /**
1551 * pcpu_chunk_addr_search - determine chunk containing specified address
1552 * @addr: address for which the chunk needs to be determined.
1553 *
1554 * This is an internal function that handles all but static allocations.
1555 * Static percpu address values should never be passed into the allocator.
1556 *
1557 * RETURNS:
1558 * The address of the found chunk.
1559 */
1560 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1561 {
1562 /* is it in the dynamic region (first chunk)? */
1563 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1564 return pcpu_first_chunk;
1565
1566 /* is it in the reserved region? */
1567 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1568 return pcpu_reserved_chunk;
1569
1570 /*
1571 * The address is relative to unit0 which might be unused and
1572 * thus unmapped. Offset the address to the unit space of the
1573 * current processor before looking it up in the vmalloc
1574 * space. Note that any possible cpu id can be used here, so
1575 * there's no need to worry about preemption or cpu hotplug.
1576 */
1577 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1578 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1579 }
1580
1581 #ifdef CONFIG_MEMCG_KMEM
1582 static enum pcpu_chunk_type pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp,
1583 struct obj_cgroup **objcgp)
1584 {
1585 struct obj_cgroup *objcg;
1586
1587 if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT) ||
1588 memcg_kmem_bypass())
1589 return PCPU_CHUNK_ROOT;
1590
1591 objcg = get_obj_cgroup_from_current();
1592 if (!objcg)
1593 return PCPU_CHUNK_ROOT;
1594
1595 if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) {
1596 obj_cgroup_put(objcg);
1597 return PCPU_FAIL_ALLOC;
1598 }
1599
1600 *objcgp = objcg;
1601 return PCPU_CHUNK_MEMCG;
1602 }
1603
1604 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1605 struct pcpu_chunk *chunk, int off,
1606 size_t size)
1607 {
1608 if (!objcg)
1609 return;
1610
1611 if (chunk) {
1612 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg;
1613 } else {
1614 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1615 obj_cgroup_put(objcg);
1616 }
1617 }
1618
1619 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1620 {
1621 struct obj_cgroup *objcg;
1622
1623 if (!pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)))
1624 return;
1625
1626 objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT];
1627 chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL;
1628
1629 obj_cgroup_uncharge(objcg, size * num_possible_cpus());
1630
1631 obj_cgroup_put(objcg);
1632 }
1633
1634 #else /* CONFIG_MEMCG_KMEM */
1635 static enum pcpu_chunk_type
1636 pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp)
1637 {
1638 return PCPU_CHUNK_ROOT;
1639 }
1640
1641 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg,
1642 struct pcpu_chunk *chunk, int off,
1643 size_t size)
1644 {
1645 }
1646
1647 static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size)
1648 {
1649 }
1650 #endif /* CONFIG_MEMCG_KMEM */
1651
1652 /**
1653 * pcpu_alloc - the percpu allocator
1654 * @size: size of area to allocate in bytes
1655 * @align: alignment of area (max PAGE_SIZE)
1656 * @reserved: allocate from the reserved chunk if available
1657 * @gfp: allocation flags
1658 *
1659 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1660 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1661 * then no warning will be triggered on invalid or failed allocation
1662 * requests.
1663 *
1664 * RETURNS:
1665 * Percpu pointer to the allocated area on success, NULL on failure.
1666 */
1667 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1668 gfp_t gfp)
1669 {
1670 gfp_t pcpu_gfp;
1671 bool is_atomic;
1672 bool do_warn;
1673 enum pcpu_chunk_type type;
1674 struct list_head *pcpu_slot;
1675 struct obj_cgroup *objcg = NULL;
1676 static int warn_limit = 10;
1677 struct pcpu_chunk *chunk, *next;
1678 const char *err;
1679 int slot, off, cpu, ret;
1680 unsigned long flags;
1681 void __percpu *ptr;
1682 size_t bits, bit_align;
1683
1684 gfp = current_gfp_context(gfp);
1685 /* whitelisted flags that can be passed to the backing allocators */
1686 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1687 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1688 do_warn = !(gfp & __GFP_NOWARN);
1689
1690 /*
1691 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1692 * therefore alignment must be a minimum of that many bytes.
1693 * An allocation may have internal fragmentation from rounding up
1694 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1695 */
1696 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1697 align = PCPU_MIN_ALLOC_SIZE;
1698
1699 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1700 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1701 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1702
1703 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1704 !is_power_of_2(align))) {
1705 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1706 size, align);
1707 return NULL;
1708 }
1709
1710 type = pcpu_memcg_pre_alloc_hook(size, gfp, &objcg);
1711 if (unlikely(type == PCPU_FAIL_ALLOC))
1712 return NULL;
1713 pcpu_slot = pcpu_chunk_list(type);
1714
1715 if (!is_atomic) {
1716 /*
1717 * pcpu_balance_workfn() allocates memory under this mutex,
1718 * and it may wait for memory reclaim. Allow current task
1719 * to become OOM victim, in case of memory pressure.
1720 */
1721 if (gfp & __GFP_NOFAIL) {
1722 mutex_lock(&pcpu_alloc_mutex);
1723 } else if (mutex_lock_killable(&pcpu_alloc_mutex)) {
1724 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1725 return NULL;
1726 }
1727 }
1728
1729 spin_lock_irqsave(&pcpu_lock, flags);
1730
1731 /* serve reserved allocations from the reserved chunk if available */
1732 if (reserved && pcpu_reserved_chunk) {
1733 chunk = pcpu_reserved_chunk;
1734
1735 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1736 if (off < 0) {
1737 err = "alloc from reserved chunk failed";
1738 goto fail_unlock;
1739 }
1740
1741 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1742 if (off >= 0)
1743 goto area_found;
1744
1745 err = "alloc from reserved chunk failed";
1746 goto fail_unlock;
1747 }
1748
1749 restart:
1750 /* search through normal chunks */
1751 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1752 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1753 off = pcpu_find_block_fit(chunk, bits, bit_align,
1754 is_atomic);
1755 if (off < 0) {
1756 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1757 pcpu_chunk_move(chunk, 0);
1758 continue;
1759 }
1760
1761 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1762 if (off >= 0)
1763 goto area_found;
1764
1765 }
1766 }
1767
1768 spin_unlock_irqrestore(&pcpu_lock, flags);
1769
1770 /*
1771 * No space left. Create a new chunk. We don't want multiple
1772 * tasks to create chunks simultaneously. Serialize and create iff
1773 * there's still no empty chunk after grabbing the mutex.
1774 */
1775 if (is_atomic) {
1776 err = "atomic alloc failed, no space left";
1777 goto fail;
1778 }
1779
1780 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1781 chunk = pcpu_create_chunk(type, pcpu_gfp);
1782 if (!chunk) {
1783 err = "failed to allocate new chunk";
1784 goto fail;
1785 }
1786
1787 spin_lock_irqsave(&pcpu_lock, flags);
1788 pcpu_chunk_relocate(chunk, -1);
1789 } else {
1790 spin_lock_irqsave(&pcpu_lock, flags);
1791 }
1792
1793 goto restart;
1794
1795 area_found:
1796 pcpu_stats_area_alloc(chunk, size);
1797 spin_unlock_irqrestore(&pcpu_lock, flags);
1798
1799 /* populate if not all pages are already there */
1800 if (!is_atomic) {
1801 unsigned int page_start, page_end, rs, re;
1802
1803 page_start = PFN_DOWN(off);
1804 page_end = PFN_UP(off + size);
1805
1806 bitmap_for_each_clear_region(chunk->populated, rs, re,
1807 page_start, page_end) {
1808 WARN_ON(chunk->immutable);
1809
1810 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1811
1812 spin_lock_irqsave(&pcpu_lock, flags);
1813 if (ret) {
1814 pcpu_free_area(chunk, off);
1815 err = "failed to populate";
1816 goto fail_unlock;
1817 }
1818 pcpu_chunk_populated(chunk, rs, re);
1819 spin_unlock_irqrestore(&pcpu_lock, flags);
1820 }
1821
1822 mutex_unlock(&pcpu_alloc_mutex);
1823 }
1824
1825 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1826 pcpu_schedule_balance_work();
1827
1828 /* clear the areas and return address relative to base address */
1829 for_each_possible_cpu(cpu)
1830 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1831
1832 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1833 kmemleak_alloc_percpu(ptr, size, gfp);
1834
1835 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1836 chunk->base_addr, off, ptr);
1837
1838 pcpu_memcg_post_alloc_hook(objcg, chunk, off, size);
1839
1840 return ptr;
1841
1842 fail_unlock:
1843 spin_unlock_irqrestore(&pcpu_lock, flags);
1844 fail:
1845 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1846
1847 if (!is_atomic && do_warn && warn_limit) {
1848 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1849 size, align, is_atomic, err);
1850 dump_stack();
1851 if (!--warn_limit)
1852 pr_info("limit reached, disable warning\n");
1853 }
1854 if (is_atomic) {
1855 /* see the flag handling in pcpu_blance_workfn() */
1856 pcpu_atomic_alloc_failed = true;
1857 pcpu_schedule_balance_work();
1858 } else {
1859 mutex_unlock(&pcpu_alloc_mutex);
1860 }
1861
1862 pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size);
1863
1864 return NULL;
1865 }
1866
1867 /**
1868 * __alloc_percpu_gfp - allocate dynamic percpu area
1869 * @size: size of area to allocate in bytes
1870 * @align: alignment of area (max PAGE_SIZE)
1871 * @gfp: allocation flags
1872 *
1873 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1874 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1875 * be called from any context but is a lot more likely to fail. If @gfp
1876 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1877 * allocation requests.
1878 *
1879 * RETURNS:
1880 * Percpu pointer to the allocated area on success, NULL on failure.
1881 */
1882 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1883 {
1884 return pcpu_alloc(size, align, false, gfp);
1885 }
1886 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1887
1888 /**
1889 * __alloc_percpu - allocate dynamic percpu area
1890 * @size: size of area to allocate in bytes
1891 * @align: alignment of area (max PAGE_SIZE)
1892 *
1893 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1894 */
1895 void __percpu *__alloc_percpu(size_t size, size_t align)
1896 {
1897 return pcpu_alloc(size, align, false, GFP_KERNEL);
1898 }
1899 EXPORT_SYMBOL_GPL(__alloc_percpu);
1900
1901 /**
1902 * __alloc_reserved_percpu - allocate reserved percpu area
1903 * @size: size of area to allocate in bytes
1904 * @align: alignment of area (max PAGE_SIZE)
1905 *
1906 * Allocate zero-filled percpu area of @size bytes aligned at @align
1907 * from reserved percpu area if arch has set it up; otherwise,
1908 * allocation is served from the same dynamic area. Might sleep.
1909 * Might trigger writeouts.
1910 *
1911 * CONTEXT:
1912 * Does GFP_KERNEL allocation.
1913 *
1914 * RETURNS:
1915 * Percpu pointer to the allocated area on success, NULL on failure.
1916 */
1917 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1918 {
1919 return pcpu_alloc(size, align, true, GFP_KERNEL);
1920 }
1921
1922 /**
1923 * __pcpu_balance_workfn - manage the amount of free chunks and populated pages
1924 * @type: chunk type
1925 *
1926 * Reclaim all fully free chunks except for the first one. This is also
1927 * responsible for maintaining the pool of empty populated pages. However,
1928 * it is possible that this is called when physical memory is scarce causing
1929 * OOM killer to be triggered. We should avoid doing so until an actual
1930 * allocation causes the failure as it is possible that requests can be
1931 * serviced from already backed regions.
1932 */
1933 static void __pcpu_balance_workfn(enum pcpu_chunk_type type)
1934 {
1935 /* gfp flags passed to underlying allocators */
1936 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1937 LIST_HEAD(to_free);
1938 struct list_head *pcpu_slot = pcpu_chunk_list(type);
1939 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1940 struct pcpu_chunk *chunk, *next;
1941 int slot, nr_to_pop, ret;
1942
1943 /*
1944 * There's no reason to keep around multiple unused chunks and VM
1945 * areas can be scarce. Destroy all free chunks except for one.
1946 */
1947 mutex_lock(&pcpu_alloc_mutex);
1948 spin_lock_irq(&pcpu_lock);
1949
1950 list_for_each_entry_safe(chunk, next, free_head, list) {
1951 WARN_ON(chunk->immutable);
1952
1953 /* spare the first one */
1954 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1955 continue;
1956
1957 list_move(&chunk->list, &to_free);
1958 }
1959
1960 spin_unlock_irq(&pcpu_lock);
1961
1962 list_for_each_entry_safe(chunk, next, &to_free, list) {
1963 unsigned int rs, re;
1964
1965 bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1966 chunk->nr_pages) {
1967 pcpu_depopulate_chunk(chunk, rs, re);
1968 spin_lock_irq(&pcpu_lock);
1969 pcpu_chunk_depopulated(chunk, rs, re);
1970 spin_unlock_irq(&pcpu_lock);
1971 }
1972 pcpu_destroy_chunk(chunk);
1973 cond_resched();
1974 }
1975
1976 /*
1977 * Ensure there are certain number of free populated pages for
1978 * atomic allocs. Fill up from the most packed so that atomic
1979 * allocs don't increase fragmentation. If atomic allocation
1980 * failed previously, always populate the maximum amount. This
1981 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1982 * failing indefinitely; however, large atomic allocs are not
1983 * something we support properly and can be highly unreliable and
1984 * inefficient.
1985 */
1986 retry_pop:
1987 if (pcpu_atomic_alloc_failed) {
1988 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1989 /* best effort anyway, don't worry about synchronization */
1990 pcpu_atomic_alloc_failed = false;
1991 } else {
1992 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1993 pcpu_nr_empty_pop_pages,
1994 0, PCPU_EMPTY_POP_PAGES_HIGH);
1995 }
1996
1997 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1998 unsigned int nr_unpop = 0, rs, re;
1999
2000 if (!nr_to_pop)
2001 break;
2002
2003 spin_lock_irq(&pcpu_lock);
2004 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
2005 nr_unpop = chunk->nr_pages - chunk->nr_populated;
2006 if (nr_unpop)
2007 break;
2008 }
2009 spin_unlock_irq(&pcpu_lock);
2010
2011 if (!nr_unpop)
2012 continue;
2013
2014 /* @chunk can't go away while pcpu_alloc_mutex is held */
2015 bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
2016 chunk->nr_pages) {
2017 int nr = min_t(int, re - rs, nr_to_pop);
2018
2019 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
2020 if (!ret) {
2021 nr_to_pop -= nr;
2022 spin_lock_irq(&pcpu_lock);
2023 pcpu_chunk_populated(chunk, rs, rs + nr);
2024 spin_unlock_irq(&pcpu_lock);
2025 } else {
2026 nr_to_pop = 0;
2027 }
2028
2029 if (!nr_to_pop)
2030 break;
2031 }
2032 }
2033
2034 if (nr_to_pop) {
2035 /* ran out of chunks to populate, create a new one and retry */
2036 chunk = pcpu_create_chunk(type, gfp);
2037 if (chunk) {
2038 spin_lock_irq(&pcpu_lock);
2039 pcpu_chunk_relocate(chunk, -1);
2040 spin_unlock_irq(&pcpu_lock);
2041 goto retry_pop;
2042 }
2043 }
2044
2045 mutex_unlock(&pcpu_alloc_mutex);
2046 }
2047
2048 /**
2049 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2050 * @work: unused
2051 *
2052 * Call __pcpu_balance_workfn() for each chunk type.
2053 */
2054 static void pcpu_balance_workfn(struct work_struct *work)
2055 {
2056 enum pcpu_chunk_type type;
2057
2058 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2059 __pcpu_balance_workfn(type);
2060 }
2061
2062 /**
2063 * free_percpu - free percpu area
2064 * @ptr: pointer to area to free
2065 *
2066 * Free percpu area @ptr.
2067 *
2068 * CONTEXT:
2069 * Can be called from atomic context.
2070 */
2071 void free_percpu(void __percpu *ptr)
2072 {
2073 void *addr;
2074 struct pcpu_chunk *chunk;
2075 unsigned long flags;
2076 int size, off;
2077 bool need_balance = false;
2078 struct list_head *pcpu_slot;
2079
2080 if (!ptr)
2081 return;
2082
2083 kmemleak_free_percpu(ptr);
2084
2085 addr = __pcpu_ptr_to_addr(ptr);
2086
2087 spin_lock_irqsave(&pcpu_lock, flags);
2088
2089 chunk = pcpu_chunk_addr_search(addr);
2090 off = addr - chunk->base_addr;
2091
2092 size = pcpu_free_area(chunk, off);
2093
2094 pcpu_slot = pcpu_chunk_list(pcpu_chunk_type(chunk));
2095
2096 pcpu_memcg_free_hook(chunk, off, size);
2097
2098 /* if there are more than one fully free chunks, wake up grim reaper */
2099 if (chunk->free_bytes == pcpu_unit_size) {
2100 struct pcpu_chunk *pos;
2101
2102 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
2103 if (pos != chunk) {
2104 need_balance = true;
2105 break;
2106 }
2107 }
2108
2109 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
2110
2111 spin_unlock_irqrestore(&pcpu_lock, flags);
2112
2113 if (need_balance)
2114 pcpu_schedule_balance_work();
2115 }
2116 EXPORT_SYMBOL_GPL(free_percpu);
2117
2118 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
2119 {
2120 #ifdef CONFIG_SMP
2121 const size_t static_size = __per_cpu_end - __per_cpu_start;
2122 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2123 unsigned int cpu;
2124
2125 for_each_possible_cpu(cpu) {
2126 void *start = per_cpu_ptr(base, cpu);
2127 void *va = (void *)addr;
2128
2129 if (va >= start && va < start + static_size) {
2130 if (can_addr) {
2131 *can_addr = (unsigned long) (va - start);
2132 *can_addr += (unsigned long)
2133 per_cpu_ptr(base, get_boot_cpu_id());
2134 }
2135 return true;
2136 }
2137 }
2138 #endif
2139 /* on UP, can't distinguish from other static vars, always false */
2140 return false;
2141 }
2142
2143 /**
2144 * is_kernel_percpu_address - test whether address is from static percpu area
2145 * @addr: address to test
2146 *
2147 * Test whether @addr belongs to in-kernel static percpu area. Module
2148 * static percpu areas are not considered. For those, use
2149 * is_module_percpu_address().
2150 *
2151 * RETURNS:
2152 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2153 */
2154 bool is_kernel_percpu_address(unsigned long addr)
2155 {
2156 return __is_kernel_percpu_address(addr, NULL);
2157 }
2158
2159 /**
2160 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2161 * @addr: the address to be converted to physical address
2162 *
2163 * Given @addr which is dereferenceable address obtained via one of
2164 * percpu access macros, this function translates it into its physical
2165 * address. The caller is responsible for ensuring @addr stays valid
2166 * until this function finishes.
2167 *
2168 * percpu allocator has special setup for the first chunk, which currently
2169 * supports either embedding in linear address space or vmalloc mapping,
2170 * and, from the second one, the backing allocator (currently either vm or
2171 * km) provides translation.
2172 *
2173 * The addr can be translated simply without checking if it falls into the
2174 * first chunk. But the current code reflects better how percpu allocator
2175 * actually works, and the verification can discover both bugs in percpu
2176 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2177 * code.
2178 *
2179 * RETURNS:
2180 * The physical address for @addr.
2181 */
2182 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2183 {
2184 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2185 bool in_first_chunk = false;
2186 unsigned long first_low, first_high;
2187 unsigned int cpu;
2188
2189 /*
2190 * The following test on unit_low/high isn't strictly
2191 * necessary but will speed up lookups of addresses which
2192 * aren't in the first chunk.
2193 *
2194 * The address check is against full chunk sizes. pcpu_base_addr
2195 * points to the beginning of the first chunk including the
2196 * static region. Assumes good intent as the first chunk may
2197 * not be full (ie. < pcpu_unit_pages in size).
2198 */
2199 first_low = (unsigned long)pcpu_base_addr +
2200 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2201 first_high = (unsigned long)pcpu_base_addr +
2202 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2203 if ((unsigned long)addr >= first_low &&
2204 (unsigned long)addr < first_high) {
2205 for_each_possible_cpu(cpu) {
2206 void *start = per_cpu_ptr(base, cpu);
2207
2208 if (addr >= start && addr < start + pcpu_unit_size) {
2209 in_first_chunk = true;
2210 break;
2211 }
2212 }
2213 }
2214
2215 if (in_first_chunk) {
2216 if (!is_vmalloc_addr(addr))
2217 return __pa(addr);
2218 else
2219 return page_to_phys(vmalloc_to_page(addr)) +
2220 offset_in_page(addr);
2221 } else
2222 return page_to_phys(pcpu_addr_to_page(addr)) +
2223 offset_in_page(addr);
2224 }
2225
2226 /**
2227 * pcpu_alloc_alloc_info - allocate percpu allocation info
2228 * @nr_groups: the number of groups
2229 * @nr_units: the number of units
2230 *
2231 * Allocate ai which is large enough for @nr_groups groups containing
2232 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2233 * cpu_map array which is long enough for @nr_units and filled with
2234 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2235 * pointer of other groups.
2236 *
2237 * RETURNS:
2238 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2239 * failure.
2240 */
2241 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2242 int nr_units)
2243 {
2244 struct pcpu_alloc_info *ai;
2245 size_t base_size, ai_size;
2246 void *ptr;
2247 int unit;
2248
2249 base_size = ALIGN(struct_size(ai, groups, nr_groups),
2250 __alignof__(ai->groups[0].cpu_map[0]));
2251 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2252
2253 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2254 if (!ptr)
2255 return NULL;
2256 ai = ptr;
2257 ptr += base_size;
2258
2259 ai->groups[0].cpu_map = ptr;
2260
2261 for (unit = 0; unit < nr_units; unit++)
2262 ai->groups[0].cpu_map[unit] = NR_CPUS;
2263
2264 ai->nr_groups = nr_groups;
2265 ai->__ai_size = PFN_ALIGN(ai_size);
2266
2267 return ai;
2268 }
2269
2270 /**
2271 * pcpu_free_alloc_info - free percpu allocation info
2272 * @ai: pcpu_alloc_info to free
2273 *
2274 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2275 */
2276 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2277 {
2278 memblock_free_early(__pa(ai), ai->__ai_size);
2279 }
2280
2281 /**
2282 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2283 * @lvl: loglevel
2284 * @ai: allocation info to dump
2285 *
2286 * Print out information about @ai using loglevel @lvl.
2287 */
2288 static void pcpu_dump_alloc_info(const char *lvl,
2289 const struct pcpu_alloc_info *ai)
2290 {
2291 int group_width = 1, cpu_width = 1, width;
2292 char empty_str[] = "--------";
2293 int alloc = 0, alloc_end = 0;
2294 int group, v;
2295 int upa, apl; /* units per alloc, allocs per line */
2296
2297 v = ai->nr_groups;
2298 while (v /= 10)
2299 group_width++;
2300
2301 v = num_possible_cpus();
2302 while (v /= 10)
2303 cpu_width++;
2304 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2305
2306 upa = ai->alloc_size / ai->unit_size;
2307 width = upa * (cpu_width + 1) + group_width + 3;
2308 apl = rounddown_pow_of_two(max(60 / width, 1));
2309
2310 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2311 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2312 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2313
2314 for (group = 0; group < ai->nr_groups; group++) {
2315 const struct pcpu_group_info *gi = &ai->groups[group];
2316 int unit = 0, unit_end = 0;
2317
2318 BUG_ON(gi->nr_units % upa);
2319 for (alloc_end += gi->nr_units / upa;
2320 alloc < alloc_end; alloc++) {
2321 if (!(alloc % apl)) {
2322 pr_cont("\n");
2323 printk("%spcpu-alloc: ", lvl);
2324 }
2325 pr_cont("[%0*d] ", group_width, group);
2326
2327 for (unit_end += upa; unit < unit_end; unit++)
2328 if (gi->cpu_map[unit] != NR_CPUS)
2329 pr_cont("%0*d ",
2330 cpu_width, gi->cpu_map[unit]);
2331 else
2332 pr_cont("%s ", empty_str);
2333 }
2334 }
2335 pr_cont("\n");
2336 }
2337
2338 /**
2339 * pcpu_setup_first_chunk - initialize the first percpu chunk
2340 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2341 * @base_addr: mapped address
2342 *
2343 * Initialize the first percpu chunk which contains the kernel static
2344 * percpu area. This function is to be called from arch percpu area
2345 * setup path.
2346 *
2347 * @ai contains all information necessary to initialize the first
2348 * chunk and prime the dynamic percpu allocator.
2349 *
2350 * @ai->static_size is the size of static percpu area.
2351 *
2352 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2353 * reserve after the static area in the first chunk. This reserves
2354 * the first chunk such that it's available only through reserved
2355 * percpu allocation. This is primarily used to serve module percpu
2356 * static areas on architectures where the addressing model has
2357 * limited offset range for symbol relocations to guarantee module
2358 * percpu symbols fall inside the relocatable range.
2359 *
2360 * @ai->dyn_size determines the number of bytes available for dynamic
2361 * allocation in the first chunk. The area between @ai->static_size +
2362 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2363 *
2364 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2365 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2366 * @ai->dyn_size.
2367 *
2368 * @ai->atom_size is the allocation atom size and used as alignment
2369 * for vm areas.
2370 *
2371 * @ai->alloc_size is the allocation size and always multiple of
2372 * @ai->atom_size. This is larger than @ai->atom_size if
2373 * @ai->unit_size is larger than @ai->atom_size.
2374 *
2375 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2376 * percpu areas. Units which should be colocated are put into the
2377 * same group. Dynamic VM areas will be allocated according to these
2378 * groupings. If @ai->nr_groups is zero, a single group containing
2379 * all units is assumed.
2380 *
2381 * The caller should have mapped the first chunk at @base_addr and
2382 * copied static data to each unit.
2383 *
2384 * The first chunk will always contain a static and a dynamic region.
2385 * However, the static region is not managed by any chunk. If the first
2386 * chunk also contains a reserved region, it is served by two chunks -
2387 * one for the reserved region and one for the dynamic region. They
2388 * share the same vm, but use offset regions in the area allocation map.
2389 * The chunk serving the dynamic region is circulated in the chunk slots
2390 * and available for dynamic allocation like any other chunk.
2391 */
2392 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2393 void *base_addr)
2394 {
2395 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2396 size_t static_size, dyn_size;
2397 struct pcpu_chunk *chunk;
2398 unsigned long *group_offsets;
2399 size_t *group_sizes;
2400 unsigned long *unit_off;
2401 unsigned int cpu;
2402 int *unit_map;
2403 int group, unit, i;
2404 int map_size;
2405 unsigned long tmp_addr;
2406 size_t alloc_size;
2407 enum pcpu_chunk_type type;
2408
2409 #define PCPU_SETUP_BUG_ON(cond) do { \
2410 if (unlikely(cond)) { \
2411 pr_emerg("failed to initialize, %s\n", #cond); \
2412 pr_emerg("cpu_possible_mask=%*pb\n", \
2413 cpumask_pr_args(cpu_possible_mask)); \
2414 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2415 BUG(); \
2416 } \
2417 } while (0)
2418
2419 /* sanity checks */
2420 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2421 #ifdef CONFIG_SMP
2422 PCPU_SETUP_BUG_ON(!ai->static_size);
2423 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2424 #endif
2425 PCPU_SETUP_BUG_ON(!base_addr);
2426 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2427 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2428 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2429 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2430 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2431 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2432 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2433 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2434 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2435 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2436 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2437
2438 /* process group information and build config tables accordingly */
2439 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2440 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2441 if (!group_offsets)
2442 panic("%s: Failed to allocate %zu bytes\n", __func__,
2443 alloc_size);
2444
2445 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2446 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2447 if (!group_sizes)
2448 panic("%s: Failed to allocate %zu bytes\n", __func__,
2449 alloc_size);
2450
2451 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2452 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2453 if (!unit_map)
2454 panic("%s: Failed to allocate %zu bytes\n", __func__,
2455 alloc_size);
2456
2457 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2458 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2459 if (!unit_off)
2460 panic("%s: Failed to allocate %zu bytes\n", __func__,
2461 alloc_size);
2462
2463 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2464 unit_map[cpu] = UINT_MAX;
2465
2466 pcpu_low_unit_cpu = NR_CPUS;
2467 pcpu_high_unit_cpu = NR_CPUS;
2468
2469 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2470 const struct pcpu_group_info *gi = &ai->groups[group];
2471
2472 group_offsets[group] = gi->base_offset;
2473 group_sizes[group] = gi->nr_units * ai->unit_size;
2474
2475 for (i = 0; i < gi->nr_units; i++) {
2476 cpu = gi->cpu_map[i];
2477 if (cpu == NR_CPUS)
2478 continue;
2479
2480 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2481 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2482 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2483
2484 unit_map[cpu] = unit + i;
2485 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2486
2487 /* determine low/high unit_cpu */
2488 if (pcpu_low_unit_cpu == NR_CPUS ||
2489 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2490 pcpu_low_unit_cpu = cpu;
2491 if (pcpu_high_unit_cpu == NR_CPUS ||
2492 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2493 pcpu_high_unit_cpu = cpu;
2494 }
2495 }
2496 pcpu_nr_units = unit;
2497
2498 for_each_possible_cpu(cpu)
2499 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2500
2501 /* we're done parsing the input, undefine BUG macro and dump config */
2502 #undef PCPU_SETUP_BUG_ON
2503 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2504
2505 pcpu_nr_groups = ai->nr_groups;
2506 pcpu_group_offsets = group_offsets;
2507 pcpu_group_sizes = group_sizes;
2508 pcpu_unit_map = unit_map;
2509 pcpu_unit_offsets = unit_off;
2510
2511 /* determine basic parameters */
2512 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2513 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2514 pcpu_atom_size = ai->atom_size;
2515 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2516 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2517
2518 pcpu_stats_save_ai(ai);
2519
2520 /*
2521 * Allocate chunk slots. The additional last slot is for
2522 * empty chunks.
2523 */
2524 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2525 pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots *
2526 sizeof(pcpu_chunk_lists[0]) *
2527 PCPU_NR_CHUNK_TYPES,
2528 SMP_CACHE_BYTES);
2529 if (!pcpu_chunk_lists)
2530 panic("%s: Failed to allocate %zu bytes\n", __func__,
2531 pcpu_nr_slots * sizeof(pcpu_chunk_lists[0]) *
2532 PCPU_NR_CHUNK_TYPES);
2533
2534 for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
2535 for (i = 0; i < pcpu_nr_slots; i++)
2536 INIT_LIST_HEAD(&pcpu_chunk_list(type)[i]);
2537
2538 /*
2539 * The end of the static region needs to be aligned with the
2540 * minimum allocation size as this offsets the reserved and
2541 * dynamic region. The first chunk ends page aligned by
2542 * expanding the dynamic region, therefore the dynamic region
2543 * can be shrunk to compensate while still staying above the
2544 * configured sizes.
2545 */
2546 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2547 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2548
2549 /*
2550 * Initialize first chunk.
2551 * If the reserved_size is non-zero, this initializes the reserved
2552 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2553 * and the dynamic region is initialized here. The first chunk,
2554 * pcpu_first_chunk, will always point to the chunk that serves
2555 * the dynamic region.
2556 */
2557 tmp_addr = (unsigned long)base_addr + static_size;
2558 map_size = ai->reserved_size ?: dyn_size;
2559 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2560
2561 /* init dynamic chunk if necessary */
2562 if (ai->reserved_size) {
2563 pcpu_reserved_chunk = chunk;
2564
2565 tmp_addr = (unsigned long)base_addr + static_size +
2566 ai->reserved_size;
2567 map_size = dyn_size;
2568 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2569 }
2570
2571 /* link the first chunk in */
2572 pcpu_first_chunk = chunk;
2573 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2574 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2575
2576 /* include all regions of the first chunk */
2577 pcpu_nr_populated += PFN_DOWN(size_sum);
2578
2579 pcpu_stats_chunk_alloc();
2580 trace_percpu_create_chunk(base_addr);
2581
2582 /* we're done */
2583 pcpu_base_addr = base_addr;
2584 }
2585
2586 #ifdef CONFIG_SMP
2587
2588 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2589 [PCPU_FC_AUTO] = "auto",
2590 [PCPU_FC_EMBED] = "embed",
2591 [PCPU_FC_PAGE] = "page",
2592 };
2593
2594 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2595
2596 static int __init percpu_alloc_setup(char *str)
2597 {
2598 if (!str)
2599 return -EINVAL;
2600
2601 if (0)
2602 /* nada */;
2603 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2604 else if (!strcmp(str, "embed"))
2605 pcpu_chosen_fc = PCPU_FC_EMBED;
2606 #endif
2607 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2608 else if (!strcmp(str, "page"))
2609 pcpu_chosen_fc = PCPU_FC_PAGE;
2610 #endif
2611 else
2612 pr_warn("unknown allocator %s specified\n", str);
2613
2614 return 0;
2615 }
2616 early_param("percpu_alloc", percpu_alloc_setup);
2617
2618 /*
2619 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2620 * Build it if needed by the arch config or the generic setup is going
2621 * to be used.
2622 */
2623 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2624 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2625 #define BUILD_EMBED_FIRST_CHUNK
2626 #endif
2627
2628 /* build pcpu_page_first_chunk() iff needed by the arch config */
2629 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2630 #define BUILD_PAGE_FIRST_CHUNK
2631 #endif
2632
2633 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2634 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2635 /**
2636 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2637 * @reserved_size: the size of reserved percpu area in bytes
2638 * @dyn_size: minimum free size for dynamic allocation in bytes
2639 * @atom_size: allocation atom size
2640 * @cpu_distance_fn: callback to determine distance between cpus, optional
2641 *
2642 * This function determines grouping of units, their mappings to cpus
2643 * and other parameters considering needed percpu size, allocation
2644 * atom size and distances between CPUs.
2645 *
2646 * Groups are always multiples of atom size and CPUs which are of
2647 * LOCAL_DISTANCE both ways are grouped together and share space for
2648 * units in the same group. The returned configuration is guaranteed
2649 * to have CPUs on different nodes on different groups and >=75% usage
2650 * of allocated virtual address space.
2651 *
2652 * RETURNS:
2653 * On success, pointer to the new allocation_info is returned. On
2654 * failure, ERR_PTR value is returned.
2655 */
2656 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2657 size_t reserved_size, size_t dyn_size,
2658 size_t atom_size,
2659 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2660 {
2661 static int group_map[NR_CPUS] __initdata;
2662 static int group_cnt[NR_CPUS] __initdata;
2663 const size_t static_size = __per_cpu_end - __per_cpu_start;
2664 int nr_groups = 1, nr_units = 0;
2665 size_t size_sum, min_unit_size, alloc_size;
2666 int upa, max_upa, best_upa; /* units_per_alloc */
2667 int last_allocs, group, unit;
2668 unsigned int cpu, tcpu;
2669 struct pcpu_alloc_info *ai;
2670 unsigned int *cpu_map;
2671
2672 /* this function may be called multiple times */
2673 memset(group_map, 0, sizeof(group_map));
2674 memset(group_cnt, 0, sizeof(group_cnt));
2675
2676 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2677 size_sum = PFN_ALIGN(static_size + reserved_size +
2678 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2679 dyn_size = size_sum - static_size - reserved_size;
2680
2681 /*
2682 * Determine min_unit_size, alloc_size and max_upa such that
2683 * alloc_size is multiple of atom_size and is the smallest
2684 * which can accommodate 4k aligned segments which are equal to
2685 * or larger than min_unit_size.
2686 */
2687 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2688
2689 /* determine the maximum # of units that can fit in an allocation */
2690 alloc_size = roundup(min_unit_size, atom_size);
2691 upa = alloc_size / min_unit_size;
2692 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2693 upa--;
2694 max_upa = upa;
2695
2696 /* group cpus according to their proximity */
2697 for_each_possible_cpu(cpu) {
2698 group = 0;
2699 next_group:
2700 for_each_possible_cpu(tcpu) {
2701 if (cpu == tcpu)
2702 break;
2703 if (group_map[tcpu] == group && cpu_distance_fn &&
2704 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2705 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2706 group++;
2707 nr_groups = max(nr_groups, group + 1);
2708 goto next_group;
2709 }
2710 }
2711 group_map[cpu] = group;
2712 group_cnt[group]++;
2713 }
2714
2715 /*
2716 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2717 * Expand the unit_size until we use >= 75% of the units allocated.
2718 * Related to atom_size, which could be much larger than the unit_size.
2719 */
2720 last_allocs = INT_MAX;
2721 for (upa = max_upa; upa; upa--) {
2722 int allocs = 0, wasted = 0;
2723
2724 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2725 continue;
2726
2727 for (group = 0; group < nr_groups; group++) {
2728 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2729 allocs += this_allocs;
2730 wasted += this_allocs * upa - group_cnt[group];
2731 }
2732
2733 /*
2734 * Don't accept if wastage is over 1/3. The
2735 * greater-than comparison ensures upa==1 always
2736 * passes the following check.
2737 */
2738 if (wasted > num_possible_cpus() / 3)
2739 continue;
2740
2741 /* and then don't consume more memory */
2742 if (allocs > last_allocs)
2743 break;
2744 last_allocs = allocs;
2745 best_upa = upa;
2746 }
2747 upa = best_upa;
2748
2749 /* allocate and fill alloc_info */
2750 for (group = 0; group < nr_groups; group++)
2751 nr_units += roundup(group_cnt[group], upa);
2752
2753 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2754 if (!ai)
2755 return ERR_PTR(-ENOMEM);
2756 cpu_map = ai->groups[0].cpu_map;
2757
2758 for (group = 0; group < nr_groups; group++) {
2759 ai->groups[group].cpu_map = cpu_map;
2760 cpu_map += roundup(group_cnt[group], upa);
2761 }
2762
2763 ai->static_size = static_size;
2764 ai->reserved_size = reserved_size;
2765 ai->dyn_size = dyn_size;
2766 ai->unit_size = alloc_size / upa;
2767 ai->atom_size = atom_size;
2768 ai->alloc_size = alloc_size;
2769
2770 for (group = 0, unit = 0; group < nr_groups; group++) {
2771 struct pcpu_group_info *gi = &ai->groups[group];
2772
2773 /*
2774 * Initialize base_offset as if all groups are located
2775 * back-to-back. The caller should update this to
2776 * reflect actual allocation.
2777 */
2778 gi->base_offset = unit * ai->unit_size;
2779
2780 for_each_possible_cpu(cpu)
2781 if (group_map[cpu] == group)
2782 gi->cpu_map[gi->nr_units++] = cpu;
2783 gi->nr_units = roundup(gi->nr_units, upa);
2784 unit += gi->nr_units;
2785 }
2786 BUG_ON(unit != nr_units);
2787
2788 return ai;
2789 }
2790 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2791
2792 #if defined(BUILD_EMBED_FIRST_CHUNK)
2793 /**
2794 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2795 * @reserved_size: the size of reserved percpu area in bytes
2796 * @dyn_size: minimum free size for dynamic allocation in bytes
2797 * @atom_size: allocation atom size
2798 * @cpu_distance_fn: callback to determine distance between cpus, optional
2799 * @alloc_fn: function to allocate percpu page
2800 * @free_fn: function to free percpu page
2801 *
2802 * This is a helper to ease setting up embedded first percpu chunk and
2803 * can be called where pcpu_setup_first_chunk() is expected.
2804 *
2805 * If this function is used to setup the first chunk, it is allocated
2806 * by calling @alloc_fn and used as-is without being mapped into
2807 * vmalloc area. Allocations are always whole multiples of @atom_size
2808 * aligned to @atom_size.
2809 *
2810 * This enables the first chunk to piggy back on the linear physical
2811 * mapping which often uses larger page size. Please note that this
2812 * can result in very sparse cpu->unit mapping on NUMA machines thus
2813 * requiring large vmalloc address space. Don't use this allocator if
2814 * vmalloc space is not orders of magnitude larger than distances
2815 * between node memory addresses (ie. 32bit NUMA machines).
2816 *
2817 * @dyn_size specifies the minimum dynamic area size.
2818 *
2819 * If the needed size is smaller than the minimum or specified unit
2820 * size, the leftover is returned using @free_fn.
2821 *
2822 * RETURNS:
2823 * 0 on success, -errno on failure.
2824 */
2825 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2826 size_t atom_size,
2827 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2828 pcpu_fc_alloc_fn_t alloc_fn,
2829 pcpu_fc_free_fn_t free_fn)
2830 {
2831 void *base = (void *)ULONG_MAX;
2832 void **areas = NULL;
2833 struct pcpu_alloc_info *ai;
2834 size_t size_sum, areas_size;
2835 unsigned long max_distance;
2836 int group, i, highest_group, rc = 0;
2837
2838 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2839 cpu_distance_fn);
2840 if (IS_ERR(ai))
2841 return PTR_ERR(ai);
2842
2843 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2844 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2845
2846 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2847 if (!areas) {
2848 rc = -ENOMEM;
2849 goto out_free;
2850 }
2851
2852 /* allocate, copy and determine base address & max_distance */
2853 highest_group = 0;
2854 for (group = 0; group < ai->nr_groups; group++) {
2855 struct pcpu_group_info *gi = &ai->groups[group];
2856 unsigned int cpu = NR_CPUS;
2857 void *ptr;
2858
2859 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2860 cpu = gi->cpu_map[i];
2861 BUG_ON(cpu == NR_CPUS);
2862
2863 /* allocate space for the whole group */
2864 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2865 if (!ptr) {
2866 rc = -ENOMEM;
2867 goto out_free_areas;
2868 }
2869 /* kmemleak tracks the percpu allocations separately */
2870 kmemleak_free(ptr);
2871 areas[group] = ptr;
2872
2873 base = min(ptr, base);
2874 if (ptr > areas[highest_group])
2875 highest_group = group;
2876 }
2877 max_distance = areas[highest_group] - base;
2878 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2879
2880 /* warn if maximum distance is further than 75% of vmalloc space */
2881 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2882 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2883 max_distance, VMALLOC_TOTAL);
2884 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2885 /* and fail if we have fallback */
2886 rc = -EINVAL;
2887 goto out_free_areas;
2888 #endif
2889 }
2890
2891 /*
2892 * Copy data and free unused parts. This should happen after all
2893 * allocations are complete; otherwise, we may end up with
2894 * overlapping groups.
2895 */
2896 for (group = 0; group < ai->nr_groups; group++) {
2897 struct pcpu_group_info *gi = &ai->groups[group];
2898 void *ptr = areas[group];
2899
2900 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2901 if (gi->cpu_map[i] == NR_CPUS) {
2902 /* unused unit, free whole */
2903 free_fn(ptr, ai->unit_size);
2904 continue;
2905 }
2906 /* copy and return the unused part */
2907 memcpy(ptr, __per_cpu_load, ai->static_size);
2908 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2909 }
2910 }
2911
2912 /* base address is now known, determine group base offsets */
2913 for (group = 0; group < ai->nr_groups; group++) {
2914 ai->groups[group].base_offset = areas[group] - base;
2915 }
2916
2917 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2918 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2919 ai->dyn_size, ai->unit_size);
2920
2921 pcpu_setup_first_chunk(ai, base);
2922 goto out_free;
2923
2924 out_free_areas:
2925 for (group = 0; group < ai->nr_groups; group++)
2926 if (areas[group])
2927 free_fn(areas[group],
2928 ai->groups[group].nr_units * ai->unit_size);
2929 out_free:
2930 pcpu_free_alloc_info(ai);
2931 if (areas)
2932 memblock_free_early(__pa(areas), areas_size);
2933 return rc;
2934 }
2935 #endif /* BUILD_EMBED_FIRST_CHUNK */
2936
2937 #ifdef BUILD_PAGE_FIRST_CHUNK
2938 /**
2939 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2940 * @reserved_size: the size of reserved percpu area in bytes
2941 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2942 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2943 * @populate_pte_fn: function to populate pte
2944 *
2945 * This is a helper to ease setting up page-remapped first percpu
2946 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2947 *
2948 * This is the basic allocator. Static percpu area is allocated
2949 * page-by-page into vmalloc area.
2950 *
2951 * RETURNS:
2952 * 0 on success, -errno on failure.
2953 */
2954 int __init pcpu_page_first_chunk(size_t reserved_size,
2955 pcpu_fc_alloc_fn_t alloc_fn,
2956 pcpu_fc_free_fn_t free_fn,
2957 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2958 {
2959 static struct vm_struct vm;
2960 struct pcpu_alloc_info *ai;
2961 char psize_str[16];
2962 int unit_pages;
2963 size_t pages_size;
2964 struct page **pages;
2965 int unit, i, j, rc = 0;
2966 int upa;
2967 int nr_g0_units;
2968
2969 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2970
2971 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2972 if (IS_ERR(ai))
2973 return PTR_ERR(ai);
2974 BUG_ON(ai->nr_groups != 1);
2975 upa = ai->alloc_size/ai->unit_size;
2976 nr_g0_units = roundup(num_possible_cpus(), upa);
2977 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2978 pcpu_free_alloc_info(ai);
2979 return -EINVAL;
2980 }
2981
2982 unit_pages = ai->unit_size >> PAGE_SHIFT;
2983
2984 /* unaligned allocations can't be freed, round up to page size */
2985 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2986 sizeof(pages[0]));
2987 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2988 if (!pages)
2989 panic("%s: Failed to allocate %zu bytes\n", __func__,
2990 pages_size);
2991
2992 /* allocate pages */
2993 j = 0;
2994 for (unit = 0; unit < num_possible_cpus(); unit++) {
2995 unsigned int cpu = ai->groups[0].cpu_map[unit];
2996 for (i = 0; i < unit_pages; i++) {
2997 void *ptr;
2998
2999 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
3000 if (!ptr) {
3001 pr_warn("failed to allocate %s page for cpu%u\n",
3002 psize_str, cpu);
3003 goto enomem;
3004 }
3005 /* kmemleak tracks the percpu allocations separately */
3006 kmemleak_free(ptr);
3007 pages[j++] = virt_to_page(ptr);
3008 }
3009 }
3010
3011 /* allocate vm area, map the pages and copy static data */
3012 vm.flags = VM_ALLOC;
3013 vm.size = num_possible_cpus() * ai->unit_size;
3014 vm_area_register_early(&vm, PAGE_SIZE);
3015
3016 for (unit = 0; unit < num_possible_cpus(); unit++) {
3017 unsigned long unit_addr =
3018 (unsigned long)vm.addr + unit * ai->unit_size;
3019
3020 for (i = 0; i < unit_pages; i++)
3021 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
3022
3023 /* pte already populated, the following shouldn't fail */
3024 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
3025 unit_pages);
3026 if (rc < 0)
3027 panic("failed to map percpu area, err=%d\n", rc);
3028
3029 /*
3030 * FIXME: Archs with virtual cache should flush local
3031 * cache for the linear mapping here - something
3032 * equivalent to flush_cache_vmap() on the local cpu.
3033 * flush_cache_vmap() can't be used as most supporting
3034 * data structures are not set up yet.
3035 */
3036
3037 /* copy static data */
3038 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
3039 }
3040
3041 /* we're ready, commit */
3042 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3043 unit_pages, psize_str, ai->static_size,
3044 ai->reserved_size, ai->dyn_size);
3045
3046 pcpu_setup_first_chunk(ai, vm.addr);
3047 goto out_free_ar;
3048
3049 enomem:
3050 while (--j >= 0)
3051 free_fn(page_address(pages[j]), PAGE_SIZE);
3052 rc = -ENOMEM;
3053 out_free_ar:
3054 memblock_free_early(__pa(pages), pages_size);
3055 pcpu_free_alloc_info(ai);
3056 return rc;
3057 }
3058 #endif /* BUILD_PAGE_FIRST_CHUNK */
3059
3060 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3061 /*
3062 * Generic SMP percpu area setup.
3063 *
3064 * The embedding helper is used because its behavior closely resembles
3065 * the original non-dynamic generic percpu area setup. This is
3066 * important because many archs have addressing restrictions and might
3067 * fail if the percpu area is located far away from the previous
3068 * location. As an added bonus, in non-NUMA cases, embedding is
3069 * generally a good idea TLB-wise because percpu area can piggy back
3070 * on the physical linear memory mapping which uses large page
3071 * mappings on applicable archs.
3072 */
3073 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
3074 EXPORT_SYMBOL(__per_cpu_offset);
3075
3076 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
3077 size_t align)
3078 {
3079 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
3080 }
3081
3082 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
3083 {
3084 memblock_free_early(__pa(ptr), size);
3085 }
3086
3087 void __init setup_per_cpu_areas(void)
3088 {
3089 unsigned long delta;
3090 unsigned int cpu;
3091 int rc;
3092
3093 /*
3094 * Always reserve area for module percpu variables. That's
3095 * what the legacy allocator did.
3096 */
3097 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
3098 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
3099 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
3100 if (rc < 0)
3101 panic("Failed to initialize percpu areas.");
3102
3103 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
3104 for_each_possible_cpu(cpu)
3105 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
3106 }
3107 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3108
3109 #else /* CONFIG_SMP */
3110
3111 /*
3112 * UP percpu area setup.
3113 *
3114 * UP always uses km-based percpu allocator with identity mapping.
3115 * Static percpu variables are indistinguishable from the usual static
3116 * variables and don't require any special preparation.
3117 */
3118 void __init setup_per_cpu_areas(void)
3119 {
3120 const size_t unit_size =
3121 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
3122 PERCPU_DYNAMIC_RESERVE));
3123 struct pcpu_alloc_info *ai;
3124 void *fc;
3125
3126 ai = pcpu_alloc_alloc_info(1, 1);
3127 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
3128 if (!ai || !fc)
3129 panic("Failed to allocate memory for percpu areas.");
3130 /* kmemleak tracks the percpu allocations separately */
3131 kmemleak_free(fc);
3132
3133 ai->dyn_size = unit_size;
3134 ai->unit_size = unit_size;
3135 ai->atom_size = unit_size;
3136 ai->alloc_size = unit_size;
3137 ai->groups[0].nr_units = 1;
3138 ai->groups[0].cpu_map[0] = 0;
3139
3140 pcpu_setup_first_chunk(ai, fc);
3141 pcpu_free_alloc_info(ai);
3142 }
3143
3144 #endif /* CONFIG_SMP */
3145
3146 /*
3147 * pcpu_nr_pages - calculate total number of populated backing pages
3148 *
3149 * This reflects the number of pages populated to back chunks. Metadata is
3150 * excluded in the number exposed in meminfo as the number of backing pages
3151 * scales with the number of cpus and can quickly outweigh the memory used for
3152 * metadata. It also keeps this calculation nice and simple.
3153 *
3154 * RETURNS:
3155 * Total number of populated backing pages in use by the allocator.
3156 */
3157 unsigned long pcpu_nr_pages(void)
3158 {
3159 return pcpu_nr_populated * pcpu_nr_units;
3160 }
3161
3162 /*
3163 * Percpu allocator is initialized early during boot when neither slab or
3164 * workqueue is available. Plug async management until everything is up
3165 * and running.
3166 */
3167 static int __init percpu_enable_async(void)
3168 {
3169 pcpu_async_enabled = true;
3170 return 0;
3171 }
3172 subsys_initcall(percpu_enable_async);