]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/percpu.c
percpu: add tracepoint support for percpu memory
[mirror_ubuntu-artful-kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the following:
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
73
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/io.h>
78
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/percpu.h>
81
82 #include "percpu-internal.h"
83
84 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
85 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
86 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
87 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
88 #define PCPU_EMPTY_POP_PAGES_LOW 2
89 #define PCPU_EMPTY_POP_PAGES_HIGH 4
90
91 #ifdef CONFIG_SMP
92 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
93 #ifndef __addr_to_pcpu_ptr
94 #define __addr_to_pcpu_ptr(addr) \
95 (void __percpu *)((unsigned long)(addr) - \
96 (unsigned long)pcpu_base_addr + \
97 (unsigned long)__per_cpu_start)
98 #endif
99 #ifndef __pcpu_ptr_to_addr
100 #define __pcpu_ptr_to_addr(ptr) \
101 (void __force *)((unsigned long)(ptr) + \
102 (unsigned long)pcpu_base_addr - \
103 (unsigned long)__per_cpu_start)
104 #endif
105 #else /* CONFIG_SMP */
106 /* on UP, it's always identity mapped */
107 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
108 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
109 #endif /* CONFIG_SMP */
110
111 static int pcpu_unit_pages __ro_after_init;
112 static int pcpu_unit_size __ro_after_init;
113 static int pcpu_nr_units __ro_after_init;
114 static int pcpu_atom_size __ro_after_init;
115 int pcpu_nr_slots __ro_after_init;
116 static size_t pcpu_chunk_struct_size __ro_after_init;
117
118 /* cpus with the lowest and highest unit addresses */
119 static unsigned int pcpu_low_unit_cpu __ro_after_init;
120 static unsigned int pcpu_high_unit_cpu __ro_after_init;
121
122 /* the address of the first chunk which starts with the kernel static area */
123 void *pcpu_base_addr __ro_after_init;
124 EXPORT_SYMBOL_GPL(pcpu_base_addr);
125
126 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
127 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
128
129 /* group information, used for vm allocation */
130 static int pcpu_nr_groups __ro_after_init;
131 static const unsigned long *pcpu_group_offsets __ro_after_init;
132 static const size_t *pcpu_group_sizes __ro_after_init;
133
134 /*
135 * The first chunk which always exists. Note that unlike other
136 * chunks, this one can be allocated and mapped in several different
137 * ways and thus often doesn't live in the vmalloc area.
138 */
139 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
140
141 /*
142 * Optional reserved chunk. This chunk reserves part of the first
143 * chunk and serves it for reserved allocations. The amount of
144 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
145 * area doesn't exist, the following variables contain NULL and 0
146 * respectively.
147 */
148 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
149 static int pcpu_reserved_chunk_limit __ro_after_init;
150
151 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
152 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
153
154 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
155
156 /* chunks which need their map areas extended, protected by pcpu_lock */
157 static LIST_HEAD(pcpu_map_extend_chunks);
158
159 /*
160 * The number of empty populated pages, protected by pcpu_lock. The
161 * reserved chunk doesn't contribute to the count.
162 */
163 static int pcpu_nr_empty_pop_pages;
164
165 /*
166 * Balance work is used to populate or destroy chunks asynchronously. We
167 * try to keep the number of populated free pages between
168 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
169 * empty chunk.
170 */
171 static void pcpu_balance_workfn(struct work_struct *work);
172 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
173 static bool pcpu_async_enabled __read_mostly;
174 static bool pcpu_atomic_alloc_failed;
175
176 static void pcpu_schedule_balance_work(void)
177 {
178 if (pcpu_async_enabled)
179 schedule_work(&pcpu_balance_work);
180 }
181
182 static bool pcpu_addr_in_first_chunk(void *addr)
183 {
184 void *first_start = pcpu_first_chunk->base_addr;
185
186 return addr >= first_start && addr < first_start + pcpu_unit_size;
187 }
188
189 static bool pcpu_addr_in_reserved_chunk(void *addr)
190 {
191 void *first_start = pcpu_first_chunk->base_addr;
192
193 return addr >= first_start &&
194 addr < first_start + pcpu_reserved_chunk_limit;
195 }
196
197 static int __pcpu_size_to_slot(int size)
198 {
199 int highbit = fls(size); /* size is in bytes */
200 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
201 }
202
203 static int pcpu_size_to_slot(int size)
204 {
205 if (size == pcpu_unit_size)
206 return pcpu_nr_slots - 1;
207 return __pcpu_size_to_slot(size);
208 }
209
210 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
211 {
212 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
213 return 0;
214
215 return pcpu_size_to_slot(chunk->free_size);
216 }
217
218 /* set the pointer to a chunk in a page struct */
219 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
220 {
221 page->index = (unsigned long)pcpu;
222 }
223
224 /* obtain pointer to a chunk from a page struct */
225 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
226 {
227 return (struct pcpu_chunk *)page->index;
228 }
229
230 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
231 {
232 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
233 }
234
235 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
236 unsigned int cpu, int page_idx)
237 {
238 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
239 (page_idx << PAGE_SHIFT);
240 }
241
242 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
243 int *rs, int *re, int end)
244 {
245 *rs = find_next_zero_bit(chunk->populated, end, *rs);
246 *re = find_next_bit(chunk->populated, end, *rs + 1);
247 }
248
249 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
250 int *rs, int *re, int end)
251 {
252 *rs = find_next_bit(chunk->populated, end, *rs);
253 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
254 }
255
256 /*
257 * (Un)populated page region iterators. Iterate over (un)populated
258 * page regions between @start and @end in @chunk. @rs and @re should
259 * be integer variables and will be set to start and end page index of
260 * the current region.
261 */
262 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
263 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
264 (rs) < (re); \
265 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
266
267 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
271
272 /**
273 * pcpu_mem_zalloc - allocate memory
274 * @size: bytes to allocate
275 *
276 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
277 * kzalloc() is used; otherwise, vzalloc() is used. The returned
278 * memory is always zeroed.
279 *
280 * CONTEXT:
281 * Does GFP_KERNEL allocation.
282 *
283 * RETURNS:
284 * Pointer to the allocated area on success, NULL on failure.
285 */
286 static void *pcpu_mem_zalloc(size_t size)
287 {
288 if (WARN_ON_ONCE(!slab_is_available()))
289 return NULL;
290
291 if (size <= PAGE_SIZE)
292 return kzalloc(size, GFP_KERNEL);
293 else
294 return vzalloc(size);
295 }
296
297 /**
298 * pcpu_mem_free - free memory
299 * @ptr: memory to free
300 *
301 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
302 */
303 static void pcpu_mem_free(void *ptr)
304 {
305 kvfree(ptr);
306 }
307
308 /**
309 * pcpu_count_occupied_pages - count the number of pages an area occupies
310 * @chunk: chunk of interest
311 * @i: index of the area in question
312 *
313 * Count the number of pages chunk's @i'th area occupies. When the area's
314 * start and/or end address isn't aligned to page boundary, the straddled
315 * page is included in the count iff the rest of the page is free.
316 */
317 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
318 {
319 int off = chunk->map[i] & ~1;
320 int end = chunk->map[i + 1] & ~1;
321
322 if (!PAGE_ALIGNED(off) && i > 0) {
323 int prev = chunk->map[i - 1];
324
325 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
326 off = round_down(off, PAGE_SIZE);
327 }
328
329 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
330 int next = chunk->map[i + 1];
331 int nend = chunk->map[i + 2] & ~1;
332
333 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
334 end = round_up(end, PAGE_SIZE);
335 }
336
337 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
338 }
339
340 /**
341 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
342 * @chunk: chunk of interest
343 * @oslot: the previous slot it was on
344 *
345 * This function is called after an allocation or free changed @chunk.
346 * New slot according to the changed state is determined and @chunk is
347 * moved to the slot. Note that the reserved chunk is never put on
348 * chunk slots.
349 *
350 * CONTEXT:
351 * pcpu_lock.
352 */
353 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
354 {
355 int nslot = pcpu_chunk_slot(chunk);
356
357 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
358 if (oslot < nslot)
359 list_move(&chunk->list, &pcpu_slot[nslot]);
360 else
361 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
362 }
363 }
364
365 /**
366 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
367 * @chunk: chunk of interest
368 * @is_atomic: the allocation context
369 *
370 * Determine whether area map of @chunk needs to be extended. If
371 * @is_atomic, only the amount necessary for a new allocation is
372 * considered; however, async extension is scheduled if the left amount is
373 * low. If !@is_atomic, it aims for more empty space. Combined, this
374 * ensures that the map is likely to have enough available space to
375 * accomodate atomic allocations which can't extend maps directly.
376 *
377 * CONTEXT:
378 * pcpu_lock.
379 *
380 * RETURNS:
381 * New target map allocation length if extension is necessary, 0
382 * otherwise.
383 */
384 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
385 {
386 int margin, new_alloc;
387
388 lockdep_assert_held(&pcpu_lock);
389
390 if (is_atomic) {
391 margin = 3;
392
393 if (chunk->map_alloc <
394 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
395 if (list_empty(&chunk->map_extend_list)) {
396 list_add_tail(&chunk->map_extend_list,
397 &pcpu_map_extend_chunks);
398 pcpu_schedule_balance_work();
399 }
400 }
401 } else {
402 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
403 }
404
405 if (chunk->map_alloc >= chunk->map_used + margin)
406 return 0;
407
408 new_alloc = PCPU_DFL_MAP_ALLOC;
409 while (new_alloc < chunk->map_used + margin)
410 new_alloc *= 2;
411
412 return new_alloc;
413 }
414
415 /**
416 * pcpu_extend_area_map - extend area map of a chunk
417 * @chunk: chunk of interest
418 * @new_alloc: new target allocation length of the area map
419 *
420 * Extend area map of @chunk to have @new_alloc entries.
421 *
422 * CONTEXT:
423 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
424 *
425 * RETURNS:
426 * 0 on success, -errno on failure.
427 */
428 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
429 {
430 int *old = NULL, *new = NULL;
431 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
432 unsigned long flags;
433
434 lockdep_assert_held(&pcpu_alloc_mutex);
435
436 new = pcpu_mem_zalloc(new_size);
437 if (!new)
438 return -ENOMEM;
439
440 /* acquire pcpu_lock and switch to new area map */
441 spin_lock_irqsave(&pcpu_lock, flags);
442
443 if (new_alloc <= chunk->map_alloc)
444 goto out_unlock;
445
446 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
447 old = chunk->map;
448
449 memcpy(new, old, old_size);
450
451 chunk->map_alloc = new_alloc;
452 chunk->map = new;
453 new = NULL;
454
455 out_unlock:
456 spin_unlock_irqrestore(&pcpu_lock, flags);
457
458 /*
459 * pcpu_mem_free() might end up calling vfree() which uses
460 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
461 */
462 pcpu_mem_free(old);
463 pcpu_mem_free(new);
464
465 return 0;
466 }
467
468 /**
469 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
470 * @chunk: chunk the candidate area belongs to
471 * @off: the offset to the start of the candidate area
472 * @this_size: the size of the candidate area
473 * @size: the size of the target allocation
474 * @align: the alignment of the target allocation
475 * @pop_only: only allocate from already populated region
476 *
477 * We're trying to allocate @size bytes aligned at @align. @chunk's area
478 * at @off sized @this_size is a candidate. This function determines
479 * whether the target allocation fits in the candidate area and returns the
480 * number of bytes to pad after @off. If the target area doesn't fit, -1
481 * is returned.
482 *
483 * If @pop_only is %true, this function only considers the already
484 * populated part of the candidate area.
485 */
486 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
487 int size, int align, bool pop_only)
488 {
489 int cand_off = off;
490
491 while (true) {
492 int head = ALIGN(cand_off, align) - off;
493 int page_start, page_end, rs, re;
494
495 if (this_size < head + size)
496 return -1;
497
498 if (!pop_only)
499 return head;
500
501 /*
502 * If the first unpopulated page is beyond the end of the
503 * allocation, the whole allocation is populated;
504 * otherwise, retry from the end of the unpopulated area.
505 */
506 page_start = PFN_DOWN(head + off);
507 page_end = PFN_UP(head + off + size);
508
509 rs = page_start;
510 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
511 if (rs >= page_end)
512 return head;
513 cand_off = re * PAGE_SIZE;
514 }
515 }
516
517 /**
518 * pcpu_alloc_area - allocate area from a pcpu_chunk
519 * @chunk: chunk of interest
520 * @size: wanted size in bytes
521 * @align: wanted align
522 * @pop_only: allocate only from the populated area
523 * @occ_pages_p: out param for the number of pages the area occupies
524 *
525 * Try to allocate @size bytes area aligned at @align from @chunk.
526 * Note that this function only allocates the offset. It doesn't
527 * populate or map the area.
528 *
529 * @chunk->map must have at least two free slots.
530 *
531 * CONTEXT:
532 * pcpu_lock.
533 *
534 * RETURNS:
535 * Allocated offset in @chunk on success, -1 if no matching area is
536 * found.
537 */
538 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
539 bool pop_only, int *occ_pages_p)
540 {
541 int oslot = pcpu_chunk_slot(chunk);
542 int max_contig = 0;
543 int i, off;
544 bool seen_free = false;
545 int *p;
546
547 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
548 int head, tail;
549 int this_size;
550
551 off = *p;
552 if (off & 1)
553 continue;
554
555 this_size = (p[1] & ~1) - off;
556
557 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
558 pop_only);
559 if (head < 0) {
560 if (!seen_free) {
561 chunk->first_free = i;
562 seen_free = true;
563 }
564 max_contig = max(this_size, max_contig);
565 continue;
566 }
567
568 /*
569 * If head is small or the previous block is free,
570 * merge'em. Note that 'small' is defined as smaller
571 * than sizeof(int), which is very small but isn't too
572 * uncommon for percpu allocations.
573 */
574 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
575 *p = off += head;
576 if (p[-1] & 1)
577 chunk->free_size -= head;
578 else
579 max_contig = max(*p - p[-1], max_contig);
580 this_size -= head;
581 head = 0;
582 }
583
584 /* if tail is small, just keep it around */
585 tail = this_size - head - size;
586 if (tail < sizeof(int)) {
587 tail = 0;
588 size = this_size - head;
589 }
590
591 /* split if warranted */
592 if (head || tail) {
593 int nr_extra = !!head + !!tail;
594
595 /* insert new subblocks */
596 memmove(p + nr_extra + 1, p + 1,
597 sizeof(chunk->map[0]) * (chunk->map_used - i));
598 chunk->map_used += nr_extra;
599
600 if (head) {
601 if (!seen_free) {
602 chunk->first_free = i;
603 seen_free = true;
604 }
605 *++p = off += head;
606 ++i;
607 max_contig = max(head, max_contig);
608 }
609 if (tail) {
610 p[1] = off + size;
611 max_contig = max(tail, max_contig);
612 }
613 }
614
615 if (!seen_free)
616 chunk->first_free = i + 1;
617
618 /* update hint and mark allocated */
619 if (i + 1 == chunk->map_used)
620 chunk->contig_hint = max_contig; /* fully scanned */
621 else
622 chunk->contig_hint = max(chunk->contig_hint,
623 max_contig);
624
625 chunk->free_size -= size;
626 *p |= 1;
627
628 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
629 pcpu_chunk_relocate(chunk, oslot);
630 return off;
631 }
632
633 chunk->contig_hint = max_contig; /* fully scanned */
634 pcpu_chunk_relocate(chunk, oslot);
635
636 /* tell the upper layer that this chunk has no matching area */
637 return -1;
638 }
639
640 /**
641 * pcpu_free_area - free area to a pcpu_chunk
642 * @chunk: chunk of interest
643 * @freeme: offset of area to free
644 * @occ_pages_p: out param for the number of pages the area occupies
645 *
646 * Free area starting from @freeme to @chunk. Note that this function
647 * only modifies the allocation map. It doesn't depopulate or unmap
648 * the area.
649 *
650 * CONTEXT:
651 * pcpu_lock.
652 */
653 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
654 int *occ_pages_p)
655 {
656 int oslot = pcpu_chunk_slot(chunk);
657 int off = 0;
658 unsigned i, j;
659 int to_free = 0;
660 int *p;
661
662 lockdep_assert_held(&pcpu_lock);
663 pcpu_stats_area_dealloc(chunk);
664
665 freeme |= 1; /* we are searching for <given offset, in use> pair */
666
667 i = 0;
668 j = chunk->map_used;
669 while (i != j) {
670 unsigned k = (i + j) / 2;
671 off = chunk->map[k];
672 if (off < freeme)
673 i = k + 1;
674 else if (off > freeme)
675 j = k;
676 else
677 i = j = k;
678 }
679 BUG_ON(off != freeme);
680
681 if (i < chunk->first_free)
682 chunk->first_free = i;
683
684 p = chunk->map + i;
685 *p = off &= ~1;
686 chunk->free_size += (p[1] & ~1) - off;
687
688 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
689
690 /* merge with next? */
691 if (!(p[1] & 1))
692 to_free++;
693 /* merge with previous? */
694 if (i > 0 && !(p[-1] & 1)) {
695 to_free++;
696 i--;
697 p--;
698 }
699 if (to_free) {
700 chunk->map_used -= to_free;
701 memmove(p + 1, p + 1 + to_free,
702 (chunk->map_used - i) * sizeof(chunk->map[0]));
703 }
704
705 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
706 pcpu_chunk_relocate(chunk, oslot);
707 }
708
709 static struct pcpu_chunk *pcpu_alloc_chunk(void)
710 {
711 struct pcpu_chunk *chunk;
712
713 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
714 if (!chunk)
715 return NULL;
716
717 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
718 sizeof(chunk->map[0]));
719 if (!chunk->map) {
720 pcpu_mem_free(chunk);
721 return NULL;
722 }
723
724 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
725 chunk->map[0] = 0;
726 chunk->map[1] = pcpu_unit_size | 1;
727 chunk->map_used = 1;
728 chunk->has_reserved = false;
729
730 INIT_LIST_HEAD(&chunk->list);
731 INIT_LIST_HEAD(&chunk->map_extend_list);
732 chunk->free_size = pcpu_unit_size;
733 chunk->contig_hint = pcpu_unit_size;
734
735 return chunk;
736 }
737
738 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
739 {
740 if (!chunk)
741 return;
742 pcpu_mem_free(chunk->map);
743 pcpu_mem_free(chunk);
744 }
745
746 /**
747 * pcpu_chunk_populated - post-population bookkeeping
748 * @chunk: pcpu_chunk which got populated
749 * @page_start: the start page
750 * @page_end: the end page
751 *
752 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
753 * the bookkeeping information accordingly. Must be called after each
754 * successful population.
755 */
756 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
757 int page_start, int page_end)
758 {
759 int nr = page_end - page_start;
760
761 lockdep_assert_held(&pcpu_lock);
762
763 bitmap_set(chunk->populated, page_start, nr);
764 chunk->nr_populated += nr;
765 pcpu_nr_empty_pop_pages += nr;
766 }
767
768 /**
769 * pcpu_chunk_depopulated - post-depopulation bookkeeping
770 * @chunk: pcpu_chunk which got depopulated
771 * @page_start: the start page
772 * @page_end: the end page
773 *
774 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
775 * Update the bookkeeping information accordingly. Must be called after
776 * each successful depopulation.
777 */
778 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
779 int page_start, int page_end)
780 {
781 int nr = page_end - page_start;
782
783 lockdep_assert_held(&pcpu_lock);
784
785 bitmap_clear(chunk->populated, page_start, nr);
786 chunk->nr_populated -= nr;
787 pcpu_nr_empty_pop_pages -= nr;
788 }
789
790 /*
791 * Chunk management implementation.
792 *
793 * To allow different implementations, chunk alloc/free and
794 * [de]population are implemented in a separate file which is pulled
795 * into this file and compiled together. The following functions
796 * should be implemented.
797 *
798 * pcpu_populate_chunk - populate the specified range of a chunk
799 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
800 * pcpu_create_chunk - create a new chunk
801 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
802 * pcpu_addr_to_page - translate address to physical address
803 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
804 */
805 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
806 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
807 static struct pcpu_chunk *pcpu_create_chunk(void);
808 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
809 static struct page *pcpu_addr_to_page(void *addr);
810 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
811
812 #ifdef CONFIG_NEED_PER_CPU_KM
813 #include "percpu-km.c"
814 #else
815 #include "percpu-vm.c"
816 #endif
817
818 /**
819 * pcpu_chunk_addr_search - determine chunk containing specified address
820 * @addr: address for which the chunk needs to be determined.
821 *
822 * RETURNS:
823 * The address of the found chunk.
824 */
825 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
826 {
827 /* is it in the first chunk? */
828 if (pcpu_addr_in_first_chunk(addr)) {
829 /* is it in the reserved area? */
830 if (pcpu_addr_in_reserved_chunk(addr))
831 return pcpu_reserved_chunk;
832 return pcpu_first_chunk;
833 }
834
835 /*
836 * The address is relative to unit0 which might be unused and
837 * thus unmapped. Offset the address to the unit space of the
838 * current processor before looking it up in the vmalloc
839 * space. Note that any possible cpu id can be used here, so
840 * there's no need to worry about preemption or cpu hotplug.
841 */
842 addr += pcpu_unit_offsets[raw_smp_processor_id()];
843 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
844 }
845
846 /**
847 * pcpu_alloc - the percpu allocator
848 * @size: size of area to allocate in bytes
849 * @align: alignment of area (max PAGE_SIZE)
850 * @reserved: allocate from the reserved chunk if available
851 * @gfp: allocation flags
852 *
853 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
854 * contain %GFP_KERNEL, the allocation is atomic.
855 *
856 * RETURNS:
857 * Percpu pointer to the allocated area on success, NULL on failure.
858 */
859 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
860 gfp_t gfp)
861 {
862 static int warn_limit = 10;
863 struct pcpu_chunk *chunk;
864 const char *err;
865 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
866 int occ_pages = 0;
867 int slot, off, new_alloc, cpu, ret;
868 unsigned long flags;
869 void __percpu *ptr;
870
871 /*
872 * We want the lowest bit of offset available for in-use/free
873 * indicator, so force >= 16bit alignment and make size even.
874 */
875 if (unlikely(align < 2))
876 align = 2;
877
878 size = ALIGN(size, 2);
879
880 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
881 !is_power_of_2(align))) {
882 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
883 size, align);
884 return NULL;
885 }
886
887 if (!is_atomic)
888 mutex_lock(&pcpu_alloc_mutex);
889
890 spin_lock_irqsave(&pcpu_lock, flags);
891
892 /* serve reserved allocations from the reserved chunk if available */
893 if (reserved && pcpu_reserved_chunk) {
894 chunk = pcpu_reserved_chunk;
895
896 if (size > chunk->contig_hint) {
897 err = "alloc from reserved chunk failed";
898 goto fail_unlock;
899 }
900
901 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
902 spin_unlock_irqrestore(&pcpu_lock, flags);
903 if (is_atomic ||
904 pcpu_extend_area_map(chunk, new_alloc) < 0) {
905 err = "failed to extend area map of reserved chunk";
906 goto fail;
907 }
908 spin_lock_irqsave(&pcpu_lock, flags);
909 }
910
911 off = pcpu_alloc_area(chunk, size, align, is_atomic,
912 &occ_pages);
913 if (off >= 0)
914 goto area_found;
915
916 err = "alloc from reserved chunk failed";
917 goto fail_unlock;
918 }
919
920 restart:
921 /* search through normal chunks */
922 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
923 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
924 if (size > chunk->contig_hint)
925 continue;
926
927 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
928 if (new_alloc) {
929 if (is_atomic)
930 continue;
931 spin_unlock_irqrestore(&pcpu_lock, flags);
932 if (pcpu_extend_area_map(chunk,
933 new_alloc) < 0) {
934 err = "failed to extend area map";
935 goto fail;
936 }
937 spin_lock_irqsave(&pcpu_lock, flags);
938 /*
939 * pcpu_lock has been dropped, need to
940 * restart cpu_slot list walking.
941 */
942 goto restart;
943 }
944
945 off = pcpu_alloc_area(chunk, size, align, is_atomic,
946 &occ_pages);
947 if (off >= 0)
948 goto area_found;
949 }
950 }
951
952 spin_unlock_irqrestore(&pcpu_lock, flags);
953
954 /*
955 * No space left. Create a new chunk. We don't want multiple
956 * tasks to create chunks simultaneously. Serialize and create iff
957 * there's still no empty chunk after grabbing the mutex.
958 */
959 if (is_atomic)
960 goto fail;
961
962 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
963 chunk = pcpu_create_chunk();
964 if (!chunk) {
965 err = "failed to allocate new chunk";
966 goto fail;
967 }
968
969 spin_lock_irqsave(&pcpu_lock, flags);
970 pcpu_chunk_relocate(chunk, -1);
971 } else {
972 spin_lock_irqsave(&pcpu_lock, flags);
973 }
974
975 goto restart;
976
977 area_found:
978 pcpu_stats_area_alloc(chunk, size);
979 spin_unlock_irqrestore(&pcpu_lock, flags);
980
981 /* populate if not all pages are already there */
982 if (!is_atomic) {
983 int page_start, page_end, rs, re;
984
985 page_start = PFN_DOWN(off);
986 page_end = PFN_UP(off + size);
987
988 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
989 WARN_ON(chunk->immutable);
990
991 ret = pcpu_populate_chunk(chunk, rs, re);
992
993 spin_lock_irqsave(&pcpu_lock, flags);
994 if (ret) {
995 pcpu_free_area(chunk, off, &occ_pages);
996 err = "failed to populate";
997 goto fail_unlock;
998 }
999 pcpu_chunk_populated(chunk, rs, re);
1000 spin_unlock_irqrestore(&pcpu_lock, flags);
1001 }
1002
1003 mutex_unlock(&pcpu_alloc_mutex);
1004 }
1005
1006 if (chunk != pcpu_reserved_chunk) {
1007 spin_lock_irqsave(&pcpu_lock, flags);
1008 pcpu_nr_empty_pop_pages -= occ_pages;
1009 spin_unlock_irqrestore(&pcpu_lock, flags);
1010 }
1011
1012 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1013 pcpu_schedule_balance_work();
1014
1015 /* clear the areas and return address relative to base address */
1016 for_each_possible_cpu(cpu)
1017 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1018
1019 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1020 kmemleak_alloc_percpu(ptr, size, gfp);
1021
1022 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1023 chunk->base_addr, off, ptr);
1024
1025 return ptr;
1026
1027 fail_unlock:
1028 spin_unlock_irqrestore(&pcpu_lock, flags);
1029 fail:
1030 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1031
1032 if (!is_atomic && warn_limit) {
1033 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1034 size, align, is_atomic, err);
1035 dump_stack();
1036 if (!--warn_limit)
1037 pr_info("limit reached, disable warning\n");
1038 }
1039 if (is_atomic) {
1040 /* see the flag handling in pcpu_blance_workfn() */
1041 pcpu_atomic_alloc_failed = true;
1042 pcpu_schedule_balance_work();
1043 } else {
1044 mutex_unlock(&pcpu_alloc_mutex);
1045 }
1046 return NULL;
1047 }
1048
1049 /**
1050 * __alloc_percpu_gfp - allocate dynamic percpu area
1051 * @size: size of area to allocate in bytes
1052 * @align: alignment of area (max PAGE_SIZE)
1053 * @gfp: allocation flags
1054 *
1055 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1056 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1057 * be called from any context but is a lot more likely to fail.
1058 *
1059 * RETURNS:
1060 * Percpu pointer to the allocated area on success, NULL on failure.
1061 */
1062 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1063 {
1064 return pcpu_alloc(size, align, false, gfp);
1065 }
1066 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1067
1068 /**
1069 * __alloc_percpu - allocate dynamic percpu area
1070 * @size: size of area to allocate in bytes
1071 * @align: alignment of area (max PAGE_SIZE)
1072 *
1073 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1074 */
1075 void __percpu *__alloc_percpu(size_t size, size_t align)
1076 {
1077 return pcpu_alloc(size, align, false, GFP_KERNEL);
1078 }
1079 EXPORT_SYMBOL_GPL(__alloc_percpu);
1080
1081 /**
1082 * __alloc_reserved_percpu - allocate reserved percpu area
1083 * @size: size of area to allocate in bytes
1084 * @align: alignment of area (max PAGE_SIZE)
1085 *
1086 * Allocate zero-filled percpu area of @size bytes aligned at @align
1087 * from reserved percpu area if arch has set it up; otherwise,
1088 * allocation is served from the same dynamic area. Might sleep.
1089 * Might trigger writeouts.
1090 *
1091 * CONTEXT:
1092 * Does GFP_KERNEL allocation.
1093 *
1094 * RETURNS:
1095 * Percpu pointer to the allocated area on success, NULL on failure.
1096 */
1097 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1098 {
1099 return pcpu_alloc(size, align, true, GFP_KERNEL);
1100 }
1101
1102 /**
1103 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1104 * @work: unused
1105 *
1106 * Reclaim all fully free chunks except for the first one.
1107 */
1108 static void pcpu_balance_workfn(struct work_struct *work)
1109 {
1110 LIST_HEAD(to_free);
1111 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1112 struct pcpu_chunk *chunk, *next;
1113 int slot, nr_to_pop, ret;
1114
1115 /*
1116 * There's no reason to keep around multiple unused chunks and VM
1117 * areas can be scarce. Destroy all free chunks except for one.
1118 */
1119 mutex_lock(&pcpu_alloc_mutex);
1120 spin_lock_irq(&pcpu_lock);
1121
1122 list_for_each_entry_safe(chunk, next, free_head, list) {
1123 WARN_ON(chunk->immutable);
1124
1125 /* spare the first one */
1126 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1127 continue;
1128
1129 list_del_init(&chunk->map_extend_list);
1130 list_move(&chunk->list, &to_free);
1131 }
1132
1133 spin_unlock_irq(&pcpu_lock);
1134
1135 list_for_each_entry_safe(chunk, next, &to_free, list) {
1136 int rs, re;
1137
1138 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1139 pcpu_depopulate_chunk(chunk, rs, re);
1140 spin_lock_irq(&pcpu_lock);
1141 pcpu_chunk_depopulated(chunk, rs, re);
1142 spin_unlock_irq(&pcpu_lock);
1143 }
1144 pcpu_destroy_chunk(chunk);
1145 }
1146
1147 /* service chunks which requested async area map extension */
1148 do {
1149 int new_alloc = 0;
1150
1151 spin_lock_irq(&pcpu_lock);
1152
1153 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1154 struct pcpu_chunk, map_extend_list);
1155 if (chunk) {
1156 list_del_init(&chunk->map_extend_list);
1157 new_alloc = pcpu_need_to_extend(chunk, false);
1158 }
1159
1160 spin_unlock_irq(&pcpu_lock);
1161
1162 if (new_alloc)
1163 pcpu_extend_area_map(chunk, new_alloc);
1164 } while (chunk);
1165
1166 /*
1167 * Ensure there are certain number of free populated pages for
1168 * atomic allocs. Fill up from the most packed so that atomic
1169 * allocs don't increase fragmentation. If atomic allocation
1170 * failed previously, always populate the maximum amount. This
1171 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1172 * failing indefinitely; however, large atomic allocs are not
1173 * something we support properly and can be highly unreliable and
1174 * inefficient.
1175 */
1176 retry_pop:
1177 if (pcpu_atomic_alloc_failed) {
1178 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1179 /* best effort anyway, don't worry about synchronization */
1180 pcpu_atomic_alloc_failed = false;
1181 } else {
1182 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1183 pcpu_nr_empty_pop_pages,
1184 0, PCPU_EMPTY_POP_PAGES_HIGH);
1185 }
1186
1187 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1188 int nr_unpop = 0, rs, re;
1189
1190 if (!nr_to_pop)
1191 break;
1192
1193 spin_lock_irq(&pcpu_lock);
1194 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1195 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1196 if (nr_unpop)
1197 break;
1198 }
1199 spin_unlock_irq(&pcpu_lock);
1200
1201 if (!nr_unpop)
1202 continue;
1203
1204 /* @chunk can't go away while pcpu_alloc_mutex is held */
1205 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1206 int nr = min(re - rs, nr_to_pop);
1207
1208 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1209 if (!ret) {
1210 nr_to_pop -= nr;
1211 spin_lock_irq(&pcpu_lock);
1212 pcpu_chunk_populated(chunk, rs, rs + nr);
1213 spin_unlock_irq(&pcpu_lock);
1214 } else {
1215 nr_to_pop = 0;
1216 }
1217
1218 if (!nr_to_pop)
1219 break;
1220 }
1221 }
1222
1223 if (nr_to_pop) {
1224 /* ran out of chunks to populate, create a new one and retry */
1225 chunk = pcpu_create_chunk();
1226 if (chunk) {
1227 spin_lock_irq(&pcpu_lock);
1228 pcpu_chunk_relocate(chunk, -1);
1229 spin_unlock_irq(&pcpu_lock);
1230 goto retry_pop;
1231 }
1232 }
1233
1234 mutex_unlock(&pcpu_alloc_mutex);
1235 }
1236
1237 /**
1238 * free_percpu - free percpu area
1239 * @ptr: pointer to area to free
1240 *
1241 * Free percpu area @ptr.
1242 *
1243 * CONTEXT:
1244 * Can be called from atomic context.
1245 */
1246 void free_percpu(void __percpu *ptr)
1247 {
1248 void *addr;
1249 struct pcpu_chunk *chunk;
1250 unsigned long flags;
1251 int off, occ_pages;
1252
1253 if (!ptr)
1254 return;
1255
1256 kmemleak_free_percpu(ptr);
1257
1258 addr = __pcpu_ptr_to_addr(ptr);
1259
1260 spin_lock_irqsave(&pcpu_lock, flags);
1261
1262 chunk = pcpu_chunk_addr_search(addr);
1263 off = addr - chunk->base_addr;
1264
1265 pcpu_free_area(chunk, off, &occ_pages);
1266
1267 if (chunk != pcpu_reserved_chunk)
1268 pcpu_nr_empty_pop_pages += occ_pages;
1269
1270 /* if there are more than one fully free chunks, wake up grim reaper */
1271 if (chunk->free_size == pcpu_unit_size) {
1272 struct pcpu_chunk *pos;
1273
1274 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1275 if (pos != chunk) {
1276 pcpu_schedule_balance_work();
1277 break;
1278 }
1279 }
1280
1281 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1282
1283 spin_unlock_irqrestore(&pcpu_lock, flags);
1284 }
1285 EXPORT_SYMBOL_GPL(free_percpu);
1286
1287 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1288 {
1289 #ifdef CONFIG_SMP
1290 const size_t static_size = __per_cpu_end - __per_cpu_start;
1291 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1292 unsigned int cpu;
1293
1294 for_each_possible_cpu(cpu) {
1295 void *start = per_cpu_ptr(base, cpu);
1296 void *va = (void *)addr;
1297
1298 if (va >= start && va < start + static_size) {
1299 if (can_addr) {
1300 *can_addr = (unsigned long) (va - start);
1301 *can_addr += (unsigned long)
1302 per_cpu_ptr(base, get_boot_cpu_id());
1303 }
1304 return true;
1305 }
1306 }
1307 #endif
1308 /* on UP, can't distinguish from other static vars, always false */
1309 return false;
1310 }
1311
1312 /**
1313 * is_kernel_percpu_address - test whether address is from static percpu area
1314 * @addr: address to test
1315 *
1316 * Test whether @addr belongs to in-kernel static percpu area. Module
1317 * static percpu areas are not considered. For those, use
1318 * is_module_percpu_address().
1319 *
1320 * RETURNS:
1321 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1322 */
1323 bool is_kernel_percpu_address(unsigned long addr)
1324 {
1325 return __is_kernel_percpu_address(addr, NULL);
1326 }
1327
1328 /**
1329 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1330 * @addr: the address to be converted to physical address
1331 *
1332 * Given @addr which is dereferenceable address obtained via one of
1333 * percpu access macros, this function translates it into its physical
1334 * address. The caller is responsible for ensuring @addr stays valid
1335 * until this function finishes.
1336 *
1337 * percpu allocator has special setup for the first chunk, which currently
1338 * supports either embedding in linear address space or vmalloc mapping,
1339 * and, from the second one, the backing allocator (currently either vm or
1340 * km) provides translation.
1341 *
1342 * The addr can be translated simply without checking if it falls into the
1343 * first chunk. But the current code reflects better how percpu allocator
1344 * actually works, and the verification can discover both bugs in percpu
1345 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1346 * code.
1347 *
1348 * RETURNS:
1349 * The physical address for @addr.
1350 */
1351 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1352 {
1353 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1354 bool in_first_chunk = false;
1355 unsigned long first_low, first_high;
1356 unsigned int cpu;
1357
1358 /*
1359 * The following test on unit_low/high isn't strictly
1360 * necessary but will speed up lookups of addresses which
1361 * aren't in the first chunk.
1362 */
1363 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1364 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1365 pcpu_unit_pages);
1366 if ((unsigned long)addr >= first_low &&
1367 (unsigned long)addr < first_high) {
1368 for_each_possible_cpu(cpu) {
1369 void *start = per_cpu_ptr(base, cpu);
1370
1371 if (addr >= start && addr < start + pcpu_unit_size) {
1372 in_first_chunk = true;
1373 break;
1374 }
1375 }
1376 }
1377
1378 if (in_first_chunk) {
1379 if (!is_vmalloc_addr(addr))
1380 return __pa(addr);
1381 else
1382 return page_to_phys(vmalloc_to_page(addr)) +
1383 offset_in_page(addr);
1384 } else
1385 return page_to_phys(pcpu_addr_to_page(addr)) +
1386 offset_in_page(addr);
1387 }
1388
1389 /**
1390 * pcpu_alloc_alloc_info - allocate percpu allocation info
1391 * @nr_groups: the number of groups
1392 * @nr_units: the number of units
1393 *
1394 * Allocate ai which is large enough for @nr_groups groups containing
1395 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1396 * cpu_map array which is long enough for @nr_units and filled with
1397 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1398 * pointer of other groups.
1399 *
1400 * RETURNS:
1401 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1402 * failure.
1403 */
1404 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1405 int nr_units)
1406 {
1407 struct pcpu_alloc_info *ai;
1408 size_t base_size, ai_size;
1409 void *ptr;
1410 int unit;
1411
1412 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1413 __alignof__(ai->groups[0].cpu_map[0]));
1414 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1415
1416 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1417 if (!ptr)
1418 return NULL;
1419 ai = ptr;
1420 ptr += base_size;
1421
1422 ai->groups[0].cpu_map = ptr;
1423
1424 for (unit = 0; unit < nr_units; unit++)
1425 ai->groups[0].cpu_map[unit] = NR_CPUS;
1426
1427 ai->nr_groups = nr_groups;
1428 ai->__ai_size = PFN_ALIGN(ai_size);
1429
1430 return ai;
1431 }
1432
1433 /**
1434 * pcpu_free_alloc_info - free percpu allocation info
1435 * @ai: pcpu_alloc_info to free
1436 *
1437 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1438 */
1439 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1440 {
1441 memblock_free_early(__pa(ai), ai->__ai_size);
1442 }
1443
1444 /**
1445 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1446 * @lvl: loglevel
1447 * @ai: allocation info to dump
1448 *
1449 * Print out information about @ai using loglevel @lvl.
1450 */
1451 static void pcpu_dump_alloc_info(const char *lvl,
1452 const struct pcpu_alloc_info *ai)
1453 {
1454 int group_width = 1, cpu_width = 1, width;
1455 char empty_str[] = "--------";
1456 int alloc = 0, alloc_end = 0;
1457 int group, v;
1458 int upa, apl; /* units per alloc, allocs per line */
1459
1460 v = ai->nr_groups;
1461 while (v /= 10)
1462 group_width++;
1463
1464 v = num_possible_cpus();
1465 while (v /= 10)
1466 cpu_width++;
1467 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1468
1469 upa = ai->alloc_size / ai->unit_size;
1470 width = upa * (cpu_width + 1) + group_width + 3;
1471 apl = rounddown_pow_of_two(max(60 / width, 1));
1472
1473 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1474 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1475 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1476
1477 for (group = 0; group < ai->nr_groups; group++) {
1478 const struct pcpu_group_info *gi = &ai->groups[group];
1479 int unit = 0, unit_end = 0;
1480
1481 BUG_ON(gi->nr_units % upa);
1482 for (alloc_end += gi->nr_units / upa;
1483 alloc < alloc_end; alloc++) {
1484 if (!(alloc % apl)) {
1485 pr_cont("\n");
1486 printk("%spcpu-alloc: ", lvl);
1487 }
1488 pr_cont("[%0*d] ", group_width, group);
1489
1490 for (unit_end += upa; unit < unit_end; unit++)
1491 if (gi->cpu_map[unit] != NR_CPUS)
1492 pr_cont("%0*d ",
1493 cpu_width, gi->cpu_map[unit]);
1494 else
1495 pr_cont("%s ", empty_str);
1496 }
1497 }
1498 pr_cont("\n");
1499 }
1500
1501 /**
1502 * pcpu_setup_first_chunk - initialize the first percpu chunk
1503 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1504 * @base_addr: mapped address
1505 *
1506 * Initialize the first percpu chunk which contains the kernel static
1507 * perpcu area. This function is to be called from arch percpu area
1508 * setup path.
1509 *
1510 * @ai contains all information necessary to initialize the first
1511 * chunk and prime the dynamic percpu allocator.
1512 *
1513 * @ai->static_size is the size of static percpu area.
1514 *
1515 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1516 * reserve after the static area in the first chunk. This reserves
1517 * the first chunk such that it's available only through reserved
1518 * percpu allocation. This is primarily used to serve module percpu
1519 * static areas on architectures where the addressing model has
1520 * limited offset range for symbol relocations to guarantee module
1521 * percpu symbols fall inside the relocatable range.
1522 *
1523 * @ai->dyn_size determines the number of bytes available for dynamic
1524 * allocation in the first chunk. The area between @ai->static_size +
1525 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1526 *
1527 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1528 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1529 * @ai->dyn_size.
1530 *
1531 * @ai->atom_size is the allocation atom size and used as alignment
1532 * for vm areas.
1533 *
1534 * @ai->alloc_size is the allocation size and always multiple of
1535 * @ai->atom_size. This is larger than @ai->atom_size if
1536 * @ai->unit_size is larger than @ai->atom_size.
1537 *
1538 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1539 * percpu areas. Units which should be colocated are put into the
1540 * same group. Dynamic VM areas will be allocated according to these
1541 * groupings. If @ai->nr_groups is zero, a single group containing
1542 * all units is assumed.
1543 *
1544 * The caller should have mapped the first chunk at @base_addr and
1545 * copied static data to each unit.
1546 *
1547 * If the first chunk ends up with both reserved and dynamic areas, it
1548 * is served by two chunks - one to serve the core static and reserved
1549 * areas and the other for the dynamic area. They share the same vm
1550 * and page map but uses different area allocation map to stay away
1551 * from each other. The latter chunk is circulated in the chunk slots
1552 * and available for dynamic allocation like any other chunks.
1553 *
1554 * RETURNS:
1555 * 0 on success, -errno on failure.
1556 */
1557 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1558 void *base_addr)
1559 {
1560 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1561 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1562 size_t dyn_size = ai->dyn_size;
1563 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1564 struct pcpu_chunk *schunk, *dchunk = NULL;
1565 unsigned long *group_offsets;
1566 size_t *group_sizes;
1567 unsigned long *unit_off;
1568 unsigned int cpu;
1569 int *unit_map;
1570 int group, unit, i;
1571
1572 #define PCPU_SETUP_BUG_ON(cond) do { \
1573 if (unlikely(cond)) { \
1574 pr_emerg("failed to initialize, %s\n", #cond); \
1575 pr_emerg("cpu_possible_mask=%*pb\n", \
1576 cpumask_pr_args(cpu_possible_mask)); \
1577 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1578 BUG(); \
1579 } \
1580 } while (0)
1581
1582 /* sanity checks */
1583 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1584 #ifdef CONFIG_SMP
1585 PCPU_SETUP_BUG_ON(!ai->static_size);
1586 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1587 #endif
1588 PCPU_SETUP_BUG_ON(!base_addr);
1589 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1590 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1591 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1592 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1593 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1594 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1595
1596 /* process group information and build config tables accordingly */
1597 group_offsets = memblock_virt_alloc(ai->nr_groups *
1598 sizeof(group_offsets[0]), 0);
1599 group_sizes = memblock_virt_alloc(ai->nr_groups *
1600 sizeof(group_sizes[0]), 0);
1601 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1602 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1603
1604 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1605 unit_map[cpu] = UINT_MAX;
1606
1607 pcpu_low_unit_cpu = NR_CPUS;
1608 pcpu_high_unit_cpu = NR_CPUS;
1609
1610 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1611 const struct pcpu_group_info *gi = &ai->groups[group];
1612
1613 group_offsets[group] = gi->base_offset;
1614 group_sizes[group] = gi->nr_units * ai->unit_size;
1615
1616 for (i = 0; i < gi->nr_units; i++) {
1617 cpu = gi->cpu_map[i];
1618 if (cpu == NR_CPUS)
1619 continue;
1620
1621 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1622 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1623 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1624
1625 unit_map[cpu] = unit + i;
1626 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1627
1628 /* determine low/high unit_cpu */
1629 if (pcpu_low_unit_cpu == NR_CPUS ||
1630 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1631 pcpu_low_unit_cpu = cpu;
1632 if (pcpu_high_unit_cpu == NR_CPUS ||
1633 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1634 pcpu_high_unit_cpu = cpu;
1635 }
1636 }
1637 pcpu_nr_units = unit;
1638
1639 for_each_possible_cpu(cpu)
1640 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1641
1642 /* we're done parsing the input, undefine BUG macro and dump config */
1643 #undef PCPU_SETUP_BUG_ON
1644 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1645
1646 pcpu_nr_groups = ai->nr_groups;
1647 pcpu_group_offsets = group_offsets;
1648 pcpu_group_sizes = group_sizes;
1649 pcpu_unit_map = unit_map;
1650 pcpu_unit_offsets = unit_off;
1651
1652 /* determine basic parameters */
1653 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1654 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1655 pcpu_atom_size = ai->atom_size;
1656 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1657 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1658
1659 pcpu_stats_save_ai(ai);
1660
1661 /*
1662 * Allocate chunk slots. The additional last slot is for
1663 * empty chunks.
1664 */
1665 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1666 pcpu_slot = memblock_virt_alloc(
1667 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1668 for (i = 0; i < pcpu_nr_slots; i++)
1669 INIT_LIST_HEAD(&pcpu_slot[i]);
1670
1671 /*
1672 * Initialize static chunk. If reserved_size is zero, the
1673 * static chunk covers static area + dynamic allocation area
1674 * in the first chunk. If reserved_size is not zero, it
1675 * covers static area + reserved area (mostly used for module
1676 * static percpu allocation).
1677 */
1678 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1679 INIT_LIST_HEAD(&schunk->list);
1680 INIT_LIST_HEAD(&schunk->map_extend_list);
1681 schunk->base_addr = base_addr;
1682 schunk->map = smap;
1683 schunk->map_alloc = ARRAY_SIZE(smap);
1684 schunk->immutable = true;
1685 bitmap_fill(schunk->populated, pcpu_unit_pages);
1686 schunk->nr_populated = pcpu_unit_pages;
1687
1688 if (ai->reserved_size) {
1689 schunk->free_size = ai->reserved_size;
1690 pcpu_reserved_chunk = schunk;
1691 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1692 } else {
1693 schunk->free_size = dyn_size;
1694 dyn_size = 0; /* dynamic area covered */
1695 }
1696 schunk->contig_hint = schunk->free_size;
1697
1698 schunk->map[0] = 1;
1699 schunk->map[1] = ai->static_size;
1700 schunk->map_used = 1;
1701 if (schunk->free_size)
1702 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1703 schunk->map[schunk->map_used] |= 1;
1704 schunk->has_reserved = true;
1705
1706 /* init dynamic chunk if necessary */
1707 if (dyn_size) {
1708 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1709 INIT_LIST_HEAD(&dchunk->list);
1710 INIT_LIST_HEAD(&dchunk->map_extend_list);
1711 dchunk->base_addr = base_addr;
1712 dchunk->map = dmap;
1713 dchunk->map_alloc = ARRAY_SIZE(dmap);
1714 dchunk->immutable = true;
1715 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1716 dchunk->nr_populated = pcpu_unit_pages;
1717
1718 dchunk->contig_hint = dchunk->free_size = dyn_size;
1719 dchunk->map[0] = 1;
1720 dchunk->map[1] = pcpu_reserved_chunk_limit;
1721 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1722 dchunk->map_used = 2;
1723 dchunk->has_reserved = true;
1724 }
1725
1726 /* link the first chunk in */
1727 pcpu_first_chunk = dchunk ?: schunk;
1728 pcpu_nr_empty_pop_pages +=
1729 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1730 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1731
1732 pcpu_stats_chunk_alloc();
1733 trace_percpu_create_chunk(base_addr);
1734
1735 /* we're done */
1736 pcpu_base_addr = base_addr;
1737 return 0;
1738 }
1739
1740 #ifdef CONFIG_SMP
1741
1742 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1743 [PCPU_FC_AUTO] = "auto",
1744 [PCPU_FC_EMBED] = "embed",
1745 [PCPU_FC_PAGE] = "page",
1746 };
1747
1748 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1749
1750 static int __init percpu_alloc_setup(char *str)
1751 {
1752 if (!str)
1753 return -EINVAL;
1754
1755 if (0)
1756 /* nada */;
1757 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1758 else if (!strcmp(str, "embed"))
1759 pcpu_chosen_fc = PCPU_FC_EMBED;
1760 #endif
1761 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1762 else if (!strcmp(str, "page"))
1763 pcpu_chosen_fc = PCPU_FC_PAGE;
1764 #endif
1765 else
1766 pr_warn("unknown allocator %s specified\n", str);
1767
1768 return 0;
1769 }
1770 early_param("percpu_alloc", percpu_alloc_setup);
1771
1772 /*
1773 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1774 * Build it if needed by the arch config or the generic setup is going
1775 * to be used.
1776 */
1777 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1778 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1779 #define BUILD_EMBED_FIRST_CHUNK
1780 #endif
1781
1782 /* build pcpu_page_first_chunk() iff needed by the arch config */
1783 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1784 #define BUILD_PAGE_FIRST_CHUNK
1785 #endif
1786
1787 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1788 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1789 /**
1790 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1791 * @reserved_size: the size of reserved percpu area in bytes
1792 * @dyn_size: minimum free size for dynamic allocation in bytes
1793 * @atom_size: allocation atom size
1794 * @cpu_distance_fn: callback to determine distance between cpus, optional
1795 *
1796 * This function determines grouping of units, their mappings to cpus
1797 * and other parameters considering needed percpu size, allocation
1798 * atom size and distances between CPUs.
1799 *
1800 * Groups are always multiples of atom size and CPUs which are of
1801 * LOCAL_DISTANCE both ways are grouped together and share space for
1802 * units in the same group. The returned configuration is guaranteed
1803 * to have CPUs on different nodes on different groups and >=75% usage
1804 * of allocated virtual address space.
1805 *
1806 * RETURNS:
1807 * On success, pointer to the new allocation_info is returned. On
1808 * failure, ERR_PTR value is returned.
1809 */
1810 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1811 size_t reserved_size, size_t dyn_size,
1812 size_t atom_size,
1813 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1814 {
1815 static int group_map[NR_CPUS] __initdata;
1816 static int group_cnt[NR_CPUS] __initdata;
1817 const size_t static_size = __per_cpu_end - __per_cpu_start;
1818 int nr_groups = 1, nr_units = 0;
1819 size_t size_sum, min_unit_size, alloc_size;
1820 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1821 int last_allocs, group, unit;
1822 unsigned int cpu, tcpu;
1823 struct pcpu_alloc_info *ai;
1824 unsigned int *cpu_map;
1825
1826 /* this function may be called multiple times */
1827 memset(group_map, 0, sizeof(group_map));
1828 memset(group_cnt, 0, sizeof(group_cnt));
1829
1830 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1831 size_sum = PFN_ALIGN(static_size + reserved_size +
1832 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1833 dyn_size = size_sum - static_size - reserved_size;
1834
1835 /*
1836 * Determine min_unit_size, alloc_size and max_upa such that
1837 * alloc_size is multiple of atom_size and is the smallest
1838 * which can accommodate 4k aligned segments which are equal to
1839 * or larger than min_unit_size.
1840 */
1841 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1842
1843 alloc_size = roundup(min_unit_size, atom_size);
1844 upa = alloc_size / min_unit_size;
1845 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1846 upa--;
1847 max_upa = upa;
1848
1849 /* group cpus according to their proximity */
1850 for_each_possible_cpu(cpu) {
1851 group = 0;
1852 next_group:
1853 for_each_possible_cpu(tcpu) {
1854 if (cpu == tcpu)
1855 break;
1856 if (group_map[tcpu] == group && cpu_distance_fn &&
1857 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1858 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1859 group++;
1860 nr_groups = max(nr_groups, group + 1);
1861 goto next_group;
1862 }
1863 }
1864 group_map[cpu] = group;
1865 group_cnt[group]++;
1866 }
1867
1868 /*
1869 * Expand unit size until address space usage goes over 75%
1870 * and then as much as possible without using more address
1871 * space.
1872 */
1873 last_allocs = INT_MAX;
1874 for (upa = max_upa; upa; upa--) {
1875 int allocs = 0, wasted = 0;
1876
1877 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1878 continue;
1879
1880 for (group = 0; group < nr_groups; group++) {
1881 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1882 allocs += this_allocs;
1883 wasted += this_allocs * upa - group_cnt[group];
1884 }
1885
1886 /*
1887 * Don't accept if wastage is over 1/3. The
1888 * greater-than comparison ensures upa==1 always
1889 * passes the following check.
1890 */
1891 if (wasted > num_possible_cpus() / 3)
1892 continue;
1893
1894 /* and then don't consume more memory */
1895 if (allocs > last_allocs)
1896 break;
1897 last_allocs = allocs;
1898 best_upa = upa;
1899 }
1900 upa = best_upa;
1901
1902 /* allocate and fill alloc_info */
1903 for (group = 0; group < nr_groups; group++)
1904 nr_units += roundup(group_cnt[group], upa);
1905
1906 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1907 if (!ai)
1908 return ERR_PTR(-ENOMEM);
1909 cpu_map = ai->groups[0].cpu_map;
1910
1911 for (group = 0; group < nr_groups; group++) {
1912 ai->groups[group].cpu_map = cpu_map;
1913 cpu_map += roundup(group_cnt[group], upa);
1914 }
1915
1916 ai->static_size = static_size;
1917 ai->reserved_size = reserved_size;
1918 ai->dyn_size = dyn_size;
1919 ai->unit_size = alloc_size / upa;
1920 ai->atom_size = atom_size;
1921 ai->alloc_size = alloc_size;
1922
1923 for (group = 0, unit = 0; group_cnt[group]; group++) {
1924 struct pcpu_group_info *gi = &ai->groups[group];
1925
1926 /*
1927 * Initialize base_offset as if all groups are located
1928 * back-to-back. The caller should update this to
1929 * reflect actual allocation.
1930 */
1931 gi->base_offset = unit * ai->unit_size;
1932
1933 for_each_possible_cpu(cpu)
1934 if (group_map[cpu] == group)
1935 gi->cpu_map[gi->nr_units++] = cpu;
1936 gi->nr_units = roundup(gi->nr_units, upa);
1937 unit += gi->nr_units;
1938 }
1939 BUG_ON(unit != nr_units);
1940
1941 return ai;
1942 }
1943 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1944
1945 #if defined(BUILD_EMBED_FIRST_CHUNK)
1946 /**
1947 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1948 * @reserved_size: the size of reserved percpu area in bytes
1949 * @dyn_size: minimum free size for dynamic allocation in bytes
1950 * @atom_size: allocation atom size
1951 * @cpu_distance_fn: callback to determine distance between cpus, optional
1952 * @alloc_fn: function to allocate percpu page
1953 * @free_fn: function to free percpu page
1954 *
1955 * This is a helper to ease setting up embedded first percpu chunk and
1956 * can be called where pcpu_setup_first_chunk() is expected.
1957 *
1958 * If this function is used to setup the first chunk, it is allocated
1959 * by calling @alloc_fn and used as-is without being mapped into
1960 * vmalloc area. Allocations are always whole multiples of @atom_size
1961 * aligned to @atom_size.
1962 *
1963 * This enables the first chunk to piggy back on the linear physical
1964 * mapping which often uses larger page size. Please note that this
1965 * can result in very sparse cpu->unit mapping on NUMA machines thus
1966 * requiring large vmalloc address space. Don't use this allocator if
1967 * vmalloc space is not orders of magnitude larger than distances
1968 * between node memory addresses (ie. 32bit NUMA machines).
1969 *
1970 * @dyn_size specifies the minimum dynamic area size.
1971 *
1972 * If the needed size is smaller than the minimum or specified unit
1973 * size, the leftover is returned using @free_fn.
1974 *
1975 * RETURNS:
1976 * 0 on success, -errno on failure.
1977 */
1978 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1979 size_t atom_size,
1980 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1981 pcpu_fc_alloc_fn_t alloc_fn,
1982 pcpu_fc_free_fn_t free_fn)
1983 {
1984 void *base = (void *)ULONG_MAX;
1985 void **areas = NULL;
1986 struct pcpu_alloc_info *ai;
1987 size_t size_sum, areas_size;
1988 unsigned long max_distance;
1989 int group, i, highest_group, rc;
1990
1991 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1992 cpu_distance_fn);
1993 if (IS_ERR(ai))
1994 return PTR_ERR(ai);
1995
1996 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1997 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1998
1999 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2000 if (!areas) {
2001 rc = -ENOMEM;
2002 goto out_free;
2003 }
2004
2005 /* allocate, copy and determine base address & max_distance */
2006 highest_group = 0;
2007 for (group = 0; group < ai->nr_groups; group++) {
2008 struct pcpu_group_info *gi = &ai->groups[group];
2009 unsigned int cpu = NR_CPUS;
2010 void *ptr;
2011
2012 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2013 cpu = gi->cpu_map[i];
2014 BUG_ON(cpu == NR_CPUS);
2015
2016 /* allocate space for the whole group */
2017 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2018 if (!ptr) {
2019 rc = -ENOMEM;
2020 goto out_free_areas;
2021 }
2022 /* kmemleak tracks the percpu allocations separately */
2023 kmemleak_free(ptr);
2024 areas[group] = ptr;
2025
2026 base = min(ptr, base);
2027 if (ptr > areas[highest_group])
2028 highest_group = group;
2029 }
2030 max_distance = areas[highest_group] - base;
2031 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2032
2033 /* warn if maximum distance is further than 75% of vmalloc space */
2034 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2035 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2036 max_distance, VMALLOC_TOTAL);
2037 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2038 /* and fail if we have fallback */
2039 rc = -EINVAL;
2040 goto out_free_areas;
2041 #endif
2042 }
2043
2044 /*
2045 * Copy data and free unused parts. This should happen after all
2046 * allocations are complete; otherwise, we may end up with
2047 * overlapping groups.
2048 */
2049 for (group = 0; group < ai->nr_groups; group++) {
2050 struct pcpu_group_info *gi = &ai->groups[group];
2051 void *ptr = areas[group];
2052
2053 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2054 if (gi->cpu_map[i] == NR_CPUS) {
2055 /* unused unit, free whole */
2056 free_fn(ptr, ai->unit_size);
2057 continue;
2058 }
2059 /* copy and return the unused part */
2060 memcpy(ptr, __per_cpu_load, ai->static_size);
2061 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2062 }
2063 }
2064
2065 /* base address is now known, determine group base offsets */
2066 for (group = 0; group < ai->nr_groups; group++) {
2067 ai->groups[group].base_offset = areas[group] - base;
2068 }
2069
2070 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2071 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2072 ai->dyn_size, ai->unit_size);
2073
2074 rc = pcpu_setup_first_chunk(ai, base);
2075 goto out_free;
2076
2077 out_free_areas:
2078 for (group = 0; group < ai->nr_groups; group++)
2079 if (areas[group])
2080 free_fn(areas[group],
2081 ai->groups[group].nr_units * ai->unit_size);
2082 out_free:
2083 pcpu_free_alloc_info(ai);
2084 if (areas)
2085 memblock_free_early(__pa(areas), areas_size);
2086 return rc;
2087 }
2088 #endif /* BUILD_EMBED_FIRST_CHUNK */
2089
2090 #ifdef BUILD_PAGE_FIRST_CHUNK
2091 /**
2092 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2093 * @reserved_size: the size of reserved percpu area in bytes
2094 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2095 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2096 * @populate_pte_fn: function to populate pte
2097 *
2098 * This is a helper to ease setting up page-remapped first percpu
2099 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2100 *
2101 * This is the basic allocator. Static percpu area is allocated
2102 * page-by-page into vmalloc area.
2103 *
2104 * RETURNS:
2105 * 0 on success, -errno on failure.
2106 */
2107 int __init pcpu_page_first_chunk(size_t reserved_size,
2108 pcpu_fc_alloc_fn_t alloc_fn,
2109 pcpu_fc_free_fn_t free_fn,
2110 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2111 {
2112 static struct vm_struct vm;
2113 struct pcpu_alloc_info *ai;
2114 char psize_str[16];
2115 int unit_pages;
2116 size_t pages_size;
2117 struct page **pages;
2118 int unit, i, j, rc;
2119 int upa;
2120 int nr_g0_units;
2121
2122 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2123
2124 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2125 if (IS_ERR(ai))
2126 return PTR_ERR(ai);
2127 BUG_ON(ai->nr_groups != 1);
2128 upa = ai->alloc_size/ai->unit_size;
2129 nr_g0_units = roundup(num_possible_cpus(), upa);
2130 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2131 pcpu_free_alloc_info(ai);
2132 return -EINVAL;
2133 }
2134
2135 unit_pages = ai->unit_size >> PAGE_SHIFT;
2136
2137 /* unaligned allocations can't be freed, round up to page size */
2138 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2139 sizeof(pages[0]));
2140 pages = memblock_virt_alloc(pages_size, 0);
2141
2142 /* allocate pages */
2143 j = 0;
2144 for (unit = 0; unit < num_possible_cpus(); unit++) {
2145 unsigned int cpu = ai->groups[0].cpu_map[unit];
2146 for (i = 0; i < unit_pages; i++) {
2147 void *ptr;
2148
2149 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2150 if (!ptr) {
2151 pr_warn("failed to allocate %s page for cpu%u\n",
2152 psize_str, cpu);
2153 goto enomem;
2154 }
2155 /* kmemleak tracks the percpu allocations separately */
2156 kmemleak_free(ptr);
2157 pages[j++] = virt_to_page(ptr);
2158 }
2159 }
2160
2161 /* allocate vm area, map the pages and copy static data */
2162 vm.flags = VM_ALLOC;
2163 vm.size = num_possible_cpus() * ai->unit_size;
2164 vm_area_register_early(&vm, PAGE_SIZE);
2165
2166 for (unit = 0; unit < num_possible_cpus(); unit++) {
2167 unsigned long unit_addr =
2168 (unsigned long)vm.addr + unit * ai->unit_size;
2169
2170 for (i = 0; i < unit_pages; i++)
2171 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2172
2173 /* pte already populated, the following shouldn't fail */
2174 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2175 unit_pages);
2176 if (rc < 0)
2177 panic("failed to map percpu area, err=%d\n", rc);
2178
2179 /*
2180 * FIXME: Archs with virtual cache should flush local
2181 * cache for the linear mapping here - something
2182 * equivalent to flush_cache_vmap() on the local cpu.
2183 * flush_cache_vmap() can't be used as most supporting
2184 * data structures are not set up yet.
2185 */
2186
2187 /* copy static data */
2188 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2189 }
2190
2191 /* we're ready, commit */
2192 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2193 unit_pages, psize_str, vm.addr, ai->static_size,
2194 ai->reserved_size, ai->dyn_size);
2195
2196 rc = pcpu_setup_first_chunk(ai, vm.addr);
2197 goto out_free_ar;
2198
2199 enomem:
2200 while (--j >= 0)
2201 free_fn(page_address(pages[j]), PAGE_SIZE);
2202 rc = -ENOMEM;
2203 out_free_ar:
2204 memblock_free_early(__pa(pages), pages_size);
2205 pcpu_free_alloc_info(ai);
2206 return rc;
2207 }
2208 #endif /* BUILD_PAGE_FIRST_CHUNK */
2209
2210 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2211 /*
2212 * Generic SMP percpu area setup.
2213 *
2214 * The embedding helper is used because its behavior closely resembles
2215 * the original non-dynamic generic percpu area setup. This is
2216 * important because many archs have addressing restrictions and might
2217 * fail if the percpu area is located far away from the previous
2218 * location. As an added bonus, in non-NUMA cases, embedding is
2219 * generally a good idea TLB-wise because percpu area can piggy back
2220 * on the physical linear memory mapping which uses large page
2221 * mappings on applicable archs.
2222 */
2223 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2224 EXPORT_SYMBOL(__per_cpu_offset);
2225
2226 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2227 size_t align)
2228 {
2229 return memblock_virt_alloc_from_nopanic(
2230 size, align, __pa(MAX_DMA_ADDRESS));
2231 }
2232
2233 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2234 {
2235 memblock_free_early(__pa(ptr), size);
2236 }
2237
2238 void __init setup_per_cpu_areas(void)
2239 {
2240 unsigned long delta;
2241 unsigned int cpu;
2242 int rc;
2243
2244 /*
2245 * Always reserve area for module percpu variables. That's
2246 * what the legacy allocator did.
2247 */
2248 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2249 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2250 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2251 if (rc < 0)
2252 panic("Failed to initialize percpu areas.");
2253
2254 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2255 for_each_possible_cpu(cpu)
2256 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2257 }
2258 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2259
2260 #else /* CONFIG_SMP */
2261
2262 /*
2263 * UP percpu area setup.
2264 *
2265 * UP always uses km-based percpu allocator with identity mapping.
2266 * Static percpu variables are indistinguishable from the usual static
2267 * variables and don't require any special preparation.
2268 */
2269 void __init setup_per_cpu_areas(void)
2270 {
2271 const size_t unit_size =
2272 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2273 PERCPU_DYNAMIC_RESERVE));
2274 struct pcpu_alloc_info *ai;
2275 void *fc;
2276
2277 ai = pcpu_alloc_alloc_info(1, 1);
2278 fc = memblock_virt_alloc_from_nopanic(unit_size,
2279 PAGE_SIZE,
2280 __pa(MAX_DMA_ADDRESS));
2281 if (!ai || !fc)
2282 panic("Failed to allocate memory for percpu areas.");
2283 /* kmemleak tracks the percpu allocations separately */
2284 kmemleak_free(fc);
2285
2286 ai->dyn_size = unit_size;
2287 ai->unit_size = unit_size;
2288 ai->atom_size = unit_size;
2289 ai->alloc_size = unit_size;
2290 ai->groups[0].nr_units = 1;
2291 ai->groups[0].cpu_map[0] = 0;
2292
2293 if (pcpu_setup_first_chunk(ai, fc) < 0)
2294 panic("Failed to initialize percpu areas.");
2295 }
2296
2297 #endif /* CONFIG_SMP */
2298
2299 /*
2300 * First and reserved chunks are initialized with temporary allocation
2301 * map in initdata so that they can be used before slab is online.
2302 * This function is called after slab is brought up and replaces those
2303 * with properly allocated maps.
2304 */
2305 void __init percpu_init_late(void)
2306 {
2307 struct pcpu_chunk *target_chunks[] =
2308 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2309 struct pcpu_chunk *chunk;
2310 unsigned long flags;
2311 int i;
2312
2313 for (i = 0; (chunk = target_chunks[i]); i++) {
2314 int *map;
2315 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2316
2317 BUILD_BUG_ON(size > PAGE_SIZE);
2318
2319 map = pcpu_mem_zalloc(size);
2320 BUG_ON(!map);
2321
2322 spin_lock_irqsave(&pcpu_lock, flags);
2323 memcpy(map, chunk->map, size);
2324 chunk->map = map;
2325 spin_unlock_irqrestore(&pcpu_lock, flags);
2326 }
2327 }
2328
2329 /*
2330 * Percpu allocator is initialized early during boot when neither slab or
2331 * workqueue is available. Plug async management until everything is up
2332 * and running.
2333 */
2334 static int __init percpu_enable_async(void)
2335 {
2336 pcpu_async_enabled = true;
2337 return 0;
2338 }
2339 subsys_initcall(percpu_enable_async);