]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/percpu.c
percpu: fix synchronization between synchronous map extension and chunk destruction
[mirror_ubuntu-artful-kernel.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
80 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
81 #define PCPU_EMPTY_POP_PAGES_LOW 2
82 #define PCPU_EMPTY_POP_PAGES_HIGH 4
83
84 #ifdef CONFIG_SMP
85 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
86 #ifndef __addr_to_pcpu_ptr
87 #define __addr_to_pcpu_ptr(addr) \
88 (void __percpu *)((unsigned long)(addr) - \
89 (unsigned long)pcpu_base_addr + \
90 (unsigned long)__per_cpu_start)
91 #endif
92 #ifndef __pcpu_ptr_to_addr
93 #define __pcpu_ptr_to_addr(ptr) \
94 (void __force *)((unsigned long)(ptr) + \
95 (unsigned long)pcpu_base_addr - \
96 (unsigned long)__per_cpu_start)
97 #endif
98 #else /* CONFIG_SMP */
99 /* on UP, it's always identity mapped */
100 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
101 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
102 #endif /* CONFIG_SMP */
103
104 struct pcpu_chunk {
105 struct list_head list; /* linked to pcpu_slot lists */
106 int free_size; /* free bytes in the chunk */
107 int contig_hint; /* max contiguous size hint */
108 void *base_addr; /* base address of this chunk */
109
110 int map_used; /* # of map entries used before the sentry */
111 int map_alloc; /* # of map entries allocated */
112 int *map; /* allocation map */
113 struct list_head map_extend_list;/* on pcpu_map_extend_chunks */
114
115 void *data; /* chunk data */
116 int first_free; /* no free below this */
117 bool immutable; /* no [de]population allowed */
118 int nr_populated; /* # of populated pages */
119 unsigned long populated[]; /* populated bitmap */
120 };
121
122 static int pcpu_unit_pages __read_mostly;
123 static int pcpu_unit_size __read_mostly;
124 static int pcpu_nr_units __read_mostly;
125 static int pcpu_atom_size __read_mostly;
126 static int pcpu_nr_slots __read_mostly;
127 static size_t pcpu_chunk_struct_size __read_mostly;
128
129 /* cpus with the lowest and highest unit addresses */
130 static unsigned int pcpu_low_unit_cpu __read_mostly;
131 static unsigned int pcpu_high_unit_cpu __read_mostly;
132
133 /* the address of the first chunk which starts with the kernel static area */
134 void *pcpu_base_addr __read_mostly;
135 EXPORT_SYMBOL_GPL(pcpu_base_addr);
136
137 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
138 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
139
140 /* group information, used for vm allocation */
141 static int pcpu_nr_groups __read_mostly;
142 static const unsigned long *pcpu_group_offsets __read_mostly;
143 static const size_t *pcpu_group_sizes __read_mostly;
144
145 /*
146 * The first chunk which always exists. Note that unlike other
147 * chunks, this one can be allocated and mapped in several different
148 * ways and thus often doesn't live in the vmalloc area.
149 */
150 static struct pcpu_chunk *pcpu_first_chunk;
151
152 /*
153 * Optional reserved chunk. This chunk reserves part of the first
154 * chunk and serves it for reserved allocations. The amount of
155 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
156 * area doesn't exist, the following variables contain NULL and 0
157 * respectively.
158 */
159 static struct pcpu_chunk *pcpu_reserved_chunk;
160 static int pcpu_reserved_chunk_limit;
161
162 static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
163 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
164
165 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166
167 /* chunks which need their map areas extended, protected by pcpu_lock */
168 static LIST_HEAD(pcpu_map_extend_chunks);
169
170 /*
171 * The number of empty populated pages, protected by pcpu_lock. The
172 * reserved chunk doesn't contribute to the count.
173 */
174 static int pcpu_nr_empty_pop_pages;
175
176 /*
177 * Balance work is used to populate or destroy chunks asynchronously. We
178 * try to keep the number of populated free pages between
179 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
180 * empty chunk.
181 */
182 static void pcpu_balance_workfn(struct work_struct *work);
183 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
184 static bool pcpu_async_enabled __read_mostly;
185 static bool pcpu_atomic_alloc_failed;
186
187 static void pcpu_schedule_balance_work(void)
188 {
189 if (pcpu_async_enabled)
190 schedule_work(&pcpu_balance_work);
191 }
192
193 static bool pcpu_addr_in_first_chunk(void *addr)
194 {
195 void *first_start = pcpu_first_chunk->base_addr;
196
197 return addr >= first_start && addr < first_start + pcpu_unit_size;
198 }
199
200 static bool pcpu_addr_in_reserved_chunk(void *addr)
201 {
202 void *first_start = pcpu_first_chunk->base_addr;
203
204 return addr >= first_start &&
205 addr < first_start + pcpu_reserved_chunk_limit;
206 }
207
208 static int __pcpu_size_to_slot(int size)
209 {
210 int highbit = fls(size); /* size is in bytes */
211 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
212 }
213
214 static int pcpu_size_to_slot(int size)
215 {
216 if (size == pcpu_unit_size)
217 return pcpu_nr_slots - 1;
218 return __pcpu_size_to_slot(size);
219 }
220
221 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
222 {
223 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
224 return 0;
225
226 return pcpu_size_to_slot(chunk->free_size);
227 }
228
229 /* set the pointer to a chunk in a page struct */
230 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
231 {
232 page->index = (unsigned long)pcpu;
233 }
234
235 /* obtain pointer to a chunk from a page struct */
236 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
237 {
238 return (struct pcpu_chunk *)page->index;
239 }
240
241 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
242 {
243 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
244 }
245
246 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
247 unsigned int cpu, int page_idx)
248 {
249 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
250 (page_idx << PAGE_SHIFT);
251 }
252
253 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
254 int *rs, int *re, int end)
255 {
256 *rs = find_next_zero_bit(chunk->populated, end, *rs);
257 *re = find_next_bit(chunk->populated, end, *rs + 1);
258 }
259
260 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
261 int *rs, int *re, int end)
262 {
263 *rs = find_next_bit(chunk->populated, end, *rs);
264 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
265 }
266
267 /*
268 * (Un)populated page region iterators. Iterate over (un)populated
269 * page regions between @start and @end in @chunk. @rs and @re should
270 * be integer variables and will be set to start and end page index of
271 * the current region.
272 */
273 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
274 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
275 (rs) < (re); \
276 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
277
278 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
280 (rs) < (re); \
281 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
282
283 /**
284 * pcpu_mem_zalloc - allocate memory
285 * @size: bytes to allocate
286 *
287 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
288 * kzalloc() is used; otherwise, vzalloc() is used. The returned
289 * memory is always zeroed.
290 *
291 * CONTEXT:
292 * Does GFP_KERNEL allocation.
293 *
294 * RETURNS:
295 * Pointer to the allocated area on success, NULL on failure.
296 */
297 static void *pcpu_mem_zalloc(size_t size)
298 {
299 if (WARN_ON_ONCE(!slab_is_available()))
300 return NULL;
301
302 if (size <= PAGE_SIZE)
303 return kzalloc(size, GFP_KERNEL);
304 else
305 return vzalloc(size);
306 }
307
308 /**
309 * pcpu_mem_free - free memory
310 * @ptr: memory to free
311 * @size: size of the area
312 *
313 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
314 */
315 static void pcpu_mem_free(void *ptr, size_t size)
316 {
317 if (size <= PAGE_SIZE)
318 kfree(ptr);
319 else
320 vfree(ptr);
321 }
322
323 /**
324 * pcpu_count_occupied_pages - count the number of pages an area occupies
325 * @chunk: chunk of interest
326 * @i: index of the area in question
327 *
328 * Count the number of pages chunk's @i'th area occupies. When the area's
329 * start and/or end address isn't aligned to page boundary, the straddled
330 * page is included in the count iff the rest of the page is free.
331 */
332 static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
333 {
334 int off = chunk->map[i] & ~1;
335 int end = chunk->map[i + 1] & ~1;
336
337 if (!PAGE_ALIGNED(off) && i > 0) {
338 int prev = chunk->map[i - 1];
339
340 if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
341 off = round_down(off, PAGE_SIZE);
342 }
343
344 if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
345 int next = chunk->map[i + 1];
346 int nend = chunk->map[i + 2] & ~1;
347
348 if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
349 end = round_up(end, PAGE_SIZE);
350 }
351
352 return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
353 }
354
355 /**
356 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
357 * @chunk: chunk of interest
358 * @oslot: the previous slot it was on
359 *
360 * This function is called after an allocation or free changed @chunk.
361 * New slot according to the changed state is determined and @chunk is
362 * moved to the slot. Note that the reserved chunk is never put on
363 * chunk slots.
364 *
365 * CONTEXT:
366 * pcpu_lock.
367 */
368 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
369 {
370 int nslot = pcpu_chunk_slot(chunk);
371
372 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
373 if (oslot < nslot)
374 list_move(&chunk->list, &pcpu_slot[nslot]);
375 else
376 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
377 }
378 }
379
380 /**
381 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
382 * @chunk: chunk of interest
383 * @is_atomic: the allocation context
384 *
385 * Determine whether area map of @chunk needs to be extended. If
386 * @is_atomic, only the amount necessary for a new allocation is
387 * considered; however, async extension is scheduled if the left amount is
388 * low. If !@is_atomic, it aims for more empty space. Combined, this
389 * ensures that the map is likely to have enough available space to
390 * accomodate atomic allocations which can't extend maps directly.
391 *
392 * CONTEXT:
393 * pcpu_lock.
394 *
395 * RETURNS:
396 * New target map allocation length if extension is necessary, 0
397 * otherwise.
398 */
399 static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
400 {
401 int margin, new_alloc;
402
403 lockdep_assert_held(&pcpu_lock);
404
405 if (is_atomic) {
406 margin = 3;
407
408 if (chunk->map_alloc <
409 chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW) {
410 if (list_empty(&chunk->map_extend_list)) {
411 list_add_tail(&chunk->map_extend_list,
412 &pcpu_map_extend_chunks);
413 pcpu_schedule_balance_work();
414 }
415 }
416 } else {
417 margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
418 }
419
420 if (chunk->map_alloc >= chunk->map_used + margin)
421 return 0;
422
423 new_alloc = PCPU_DFL_MAP_ALLOC;
424 while (new_alloc < chunk->map_used + margin)
425 new_alloc *= 2;
426
427 return new_alloc;
428 }
429
430 /**
431 * pcpu_extend_area_map - extend area map of a chunk
432 * @chunk: chunk of interest
433 * @new_alloc: new target allocation length of the area map
434 *
435 * Extend area map of @chunk to have @new_alloc entries.
436 *
437 * CONTEXT:
438 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
439 *
440 * RETURNS:
441 * 0 on success, -errno on failure.
442 */
443 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
444 {
445 int *old = NULL, *new = NULL;
446 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
447 unsigned long flags;
448
449 lockdep_assert_held(&pcpu_alloc_mutex);
450
451 new = pcpu_mem_zalloc(new_size);
452 if (!new)
453 return -ENOMEM;
454
455 /* acquire pcpu_lock and switch to new area map */
456 spin_lock_irqsave(&pcpu_lock, flags);
457
458 if (new_alloc <= chunk->map_alloc)
459 goto out_unlock;
460
461 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
462 old = chunk->map;
463
464 memcpy(new, old, old_size);
465
466 chunk->map_alloc = new_alloc;
467 chunk->map = new;
468 new = NULL;
469
470 out_unlock:
471 spin_unlock_irqrestore(&pcpu_lock, flags);
472
473 /*
474 * pcpu_mem_free() might end up calling vfree() which uses
475 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
476 */
477 pcpu_mem_free(old, old_size);
478 pcpu_mem_free(new, new_size);
479
480 return 0;
481 }
482
483 /**
484 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
485 * @chunk: chunk the candidate area belongs to
486 * @off: the offset to the start of the candidate area
487 * @this_size: the size of the candidate area
488 * @size: the size of the target allocation
489 * @align: the alignment of the target allocation
490 * @pop_only: only allocate from already populated region
491 *
492 * We're trying to allocate @size bytes aligned at @align. @chunk's area
493 * at @off sized @this_size is a candidate. This function determines
494 * whether the target allocation fits in the candidate area and returns the
495 * number of bytes to pad after @off. If the target area doesn't fit, -1
496 * is returned.
497 *
498 * If @pop_only is %true, this function only considers the already
499 * populated part of the candidate area.
500 */
501 static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
502 int size, int align, bool pop_only)
503 {
504 int cand_off = off;
505
506 while (true) {
507 int head = ALIGN(cand_off, align) - off;
508 int page_start, page_end, rs, re;
509
510 if (this_size < head + size)
511 return -1;
512
513 if (!pop_only)
514 return head;
515
516 /*
517 * If the first unpopulated page is beyond the end of the
518 * allocation, the whole allocation is populated;
519 * otherwise, retry from the end of the unpopulated area.
520 */
521 page_start = PFN_DOWN(head + off);
522 page_end = PFN_UP(head + off + size);
523
524 rs = page_start;
525 pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
526 if (rs >= page_end)
527 return head;
528 cand_off = re * PAGE_SIZE;
529 }
530 }
531
532 /**
533 * pcpu_alloc_area - allocate area from a pcpu_chunk
534 * @chunk: chunk of interest
535 * @size: wanted size in bytes
536 * @align: wanted align
537 * @pop_only: allocate only from the populated area
538 * @occ_pages_p: out param for the number of pages the area occupies
539 *
540 * Try to allocate @size bytes area aligned at @align from @chunk.
541 * Note that this function only allocates the offset. It doesn't
542 * populate or map the area.
543 *
544 * @chunk->map must have at least two free slots.
545 *
546 * CONTEXT:
547 * pcpu_lock.
548 *
549 * RETURNS:
550 * Allocated offset in @chunk on success, -1 if no matching area is
551 * found.
552 */
553 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
554 bool pop_only, int *occ_pages_p)
555 {
556 int oslot = pcpu_chunk_slot(chunk);
557 int max_contig = 0;
558 int i, off;
559 bool seen_free = false;
560 int *p;
561
562 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
563 int head, tail;
564 int this_size;
565
566 off = *p;
567 if (off & 1)
568 continue;
569
570 this_size = (p[1] & ~1) - off;
571
572 head = pcpu_fit_in_area(chunk, off, this_size, size, align,
573 pop_only);
574 if (head < 0) {
575 if (!seen_free) {
576 chunk->first_free = i;
577 seen_free = true;
578 }
579 max_contig = max(this_size, max_contig);
580 continue;
581 }
582
583 /*
584 * If head is small or the previous block is free,
585 * merge'em. Note that 'small' is defined as smaller
586 * than sizeof(int), which is very small but isn't too
587 * uncommon for percpu allocations.
588 */
589 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
590 *p = off += head;
591 if (p[-1] & 1)
592 chunk->free_size -= head;
593 else
594 max_contig = max(*p - p[-1], max_contig);
595 this_size -= head;
596 head = 0;
597 }
598
599 /* if tail is small, just keep it around */
600 tail = this_size - head - size;
601 if (tail < sizeof(int)) {
602 tail = 0;
603 size = this_size - head;
604 }
605
606 /* split if warranted */
607 if (head || tail) {
608 int nr_extra = !!head + !!tail;
609
610 /* insert new subblocks */
611 memmove(p + nr_extra + 1, p + 1,
612 sizeof(chunk->map[0]) * (chunk->map_used - i));
613 chunk->map_used += nr_extra;
614
615 if (head) {
616 if (!seen_free) {
617 chunk->first_free = i;
618 seen_free = true;
619 }
620 *++p = off += head;
621 ++i;
622 max_contig = max(head, max_contig);
623 }
624 if (tail) {
625 p[1] = off + size;
626 max_contig = max(tail, max_contig);
627 }
628 }
629
630 if (!seen_free)
631 chunk->first_free = i + 1;
632
633 /* update hint and mark allocated */
634 if (i + 1 == chunk->map_used)
635 chunk->contig_hint = max_contig; /* fully scanned */
636 else
637 chunk->contig_hint = max(chunk->contig_hint,
638 max_contig);
639
640 chunk->free_size -= size;
641 *p |= 1;
642
643 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
644 pcpu_chunk_relocate(chunk, oslot);
645 return off;
646 }
647
648 chunk->contig_hint = max_contig; /* fully scanned */
649 pcpu_chunk_relocate(chunk, oslot);
650
651 /* tell the upper layer that this chunk has no matching area */
652 return -1;
653 }
654
655 /**
656 * pcpu_free_area - free area to a pcpu_chunk
657 * @chunk: chunk of interest
658 * @freeme: offset of area to free
659 * @occ_pages_p: out param for the number of pages the area occupies
660 *
661 * Free area starting from @freeme to @chunk. Note that this function
662 * only modifies the allocation map. It doesn't depopulate or unmap
663 * the area.
664 *
665 * CONTEXT:
666 * pcpu_lock.
667 */
668 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
669 int *occ_pages_p)
670 {
671 int oslot = pcpu_chunk_slot(chunk);
672 int off = 0;
673 unsigned i, j;
674 int to_free = 0;
675 int *p;
676
677 freeme |= 1; /* we are searching for <given offset, in use> pair */
678
679 i = 0;
680 j = chunk->map_used;
681 while (i != j) {
682 unsigned k = (i + j) / 2;
683 off = chunk->map[k];
684 if (off < freeme)
685 i = k + 1;
686 else if (off > freeme)
687 j = k;
688 else
689 i = j = k;
690 }
691 BUG_ON(off != freeme);
692
693 if (i < chunk->first_free)
694 chunk->first_free = i;
695
696 p = chunk->map + i;
697 *p = off &= ~1;
698 chunk->free_size += (p[1] & ~1) - off;
699
700 *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
701
702 /* merge with next? */
703 if (!(p[1] & 1))
704 to_free++;
705 /* merge with previous? */
706 if (i > 0 && !(p[-1] & 1)) {
707 to_free++;
708 i--;
709 p--;
710 }
711 if (to_free) {
712 chunk->map_used -= to_free;
713 memmove(p + 1, p + 1 + to_free,
714 (chunk->map_used - i) * sizeof(chunk->map[0]));
715 }
716
717 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
718 pcpu_chunk_relocate(chunk, oslot);
719 }
720
721 static struct pcpu_chunk *pcpu_alloc_chunk(void)
722 {
723 struct pcpu_chunk *chunk;
724
725 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
726 if (!chunk)
727 return NULL;
728
729 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
730 sizeof(chunk->map[0]));
731 if (!chunk->map) {
732 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
733 return NULL;
734 }
735
736 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
737 chunk->map[0] = 0;
738 chunk->map[1] = pcpu_unit_size | 1;
739 chunk->map_used = 1;
740
741 INIT_LIST_HEAD(&chunk->list);
742 INIT_LIST_HEAD(&chunk->map_extend_list);
743 chunk->free_size = pcpu_unit_size;
744 chunk->contig_hint = pcpu_unit_size;
745
746 return chunk;
747 }
748
749 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
750 {
751 if (!chunk)
752 return;
753 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
754 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
755 }
756
757 /**
758 * pcpu_chunk_populated - post-population bookkeeping
759 * @chunk: pcpu_chunk which got populated
760 * @page_start: the start page
761 * @page_end: the end page
762 *
763 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
764 * the bookkeeping information accordingly. Must be called after each
765 * successful population.
766 */
767 static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
768 int page_start, int page_end)
769 {
770 int nr = page_end - page_start;
771
772 lockdep_assert_held(&pcpu_lock);
773
774 bitmap_set(chunk->populated, page_start, nr);
775 chunk->nr_populated += nr;
776 pcpu_nr_empty_pop_pages += nr;
777 }
778
779 /**
780 * pcpu_chunk_depopulated - post-depopulation bookkeeping
781 * @chunk: pcpu_chunk which got depopulated
782 * @page_start: the start page
783 * @page_end: the end page
784 *
785 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
786 * Update the bookkeeping information accordingly. Must be called after
787 * each successful depopulation.
788 */
789 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
790 int page_start, int page_end)
791 {
792 int nr = page_end - page_start;
793
794 lockdep_assert_held(&pcpu_lock);
795
796 bitmap_clear(chunk->populated, page_start, nr);
797 chunk->nr_populated -= nr;
798 pcpu_nr_empty_pop_pages -= nr;
799 }
800
801 /*
802 * Chunk management implementation.
803 *
804 * To allow different implementations, chunk alloc/free and
805 * [de]population are implemented in a separate file which is pulled
806 * into this file and compiled together. The following functions
807 * should be implemented.
808 *
809 * pcpu_populate_chunk - populate the specified range of a chunk
810 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
811 * pcpu_create_chunk - create a new chunk
812 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
813 * pcpu_addr_to_page - translate address to physical address
814 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
815 */
816 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
817 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
818 static struct pcpu_chunk *pcpu_create_chunk(void);
819 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
820 static struct page *pcpu_addr_to_page(void *addr);
821 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
822
823 #ifdef CONFIG_NEED_PER_CPU_KM
824 #include "percpu-km.c"
825 #else
826 #include "percpu-vm.c"
827 #endif
828
829 /**
830 * pcpu_chunk_addr_search - determine chunk containing specified address
831 * @addr: address for which the chunk needs to be determined.
832 *
833 * RETURNS:
834 * The address of the found chunk.
835 */
836 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
837 {
838 /* is it in the first chunk? */
839 if (pcpu_addr_in_first_chunk(addr)) {
840 /* is it in the reserved area? */
841 if (pcpu_addr_in_reserved_chunk(addr))
842 return pcpu_reserved_chunk;
843 return pcpu_first_chunk;
844 }
845
846 /*
847 * The address is relative to unit0 which might be unused and
848 * thus unmapped. Offset the address to the unit space of the
849 * current processor before looking it up in the vmalloc
850 * space. Note that any possible cpu id can be used here, so
851 * there's no need to worry about preemption or cpu hotplug.
852 */
853 addr += pcpu_unit_offsets[raw_smp_processor_id()];
854 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
855 }
856
857 /**
858 * pcpu_alloc - the percpu allocator
859 * @size: size of area to allocate in bytes
860 * @align: alignment of area (max PAGE_SIZE)
861 * @reserved: allocate from the reserved chunk if available
862 * @gfp: allocation flags
863 *
864 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
865 * contain %GFP_KERNEL, the allocation is atomic.
866 *
867 * RETURNS:
868 * Percpu pointer to the allocated area on success, NULL on failure.
869 */
870 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
871 gfp_t gfp)
872 {
873 static int warn_limit = 10;
874 struct pcpu_chunk *chunk;
875 const char *err;
876 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
877 int occ_pages = 0;
878 int slot, off, new_alloc, cpu, ret;
879 unsigned long flags;
880 void __percpu *ptr;
881
882 /*
883 * We want the lowest bit of offset available for in-use/free
884 * indicator, so force >= 16bit alignment and make size even.
885 */
886 if (unlikely(align < 2))
887 align = 2;
888
889 size = ALIGN(size, 2);
890
891 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
892 WARN(true, "illegal size (%zu) or align (%zu) for "
893 "percpu allocation\n", size, align);
894 return NULL;
895 }
896
897 if (!is_atomic)
898 mutex_lock(&pcpu_alloc_mutex);
899
900 spin_lock_irqsave(&pcpu_lock, flags);
901
902 /* serve reserved allocations from the reserved chunk if available */
903 if (reserved && pcpu_reserved_chunk) {
904 chunk = pcpu_reserved_chunk;
905
906 if (size > chunk->contig_hint) {
907 err = "alloc from reserved chunk failed";
908 goto fail_unlock;
909 }
910
911 while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
912 spin_unlock_irqrestore(&pcpu_lock, flags);
913 if (is_atomic ||
914 pcpu_extend_area_map(chunk, new_alloc) < 0) {
915 err = "failed to extend area map of reserved chunk";
916 goto fail;
917 }
918 spin_lock_irqsave(&pcpu_lock, flags);
919 }
920
921 off = pcpu_alloc_area(chunk, size, align, is_atomic,
922 &occ_pages);
923 if (off >= 0)
924 goto area_found;
925
926 err = "alloc from reserved chunk failed";
927 goto fail_unlock;
928 }
929
930 restart:
931 /* search through normal chunks */
932 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
933 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
934 if (size > chunk->contig_hint)
935 continue;
936
937 new_alloc = pcpu_need_to_extend(chunk, is_atomic);
938 if (new_alloc) {
939 if (is_atomic)
940 continue;
941 spin_unlock_irqrestore(&pcpu_lock, flags);
942 if (pcpu_extend_area_map(chunk,
943 new_alloc) < 0) {
944 err = "failed to extend area map";
945 goto fail;
946 }
947 spin_lock_irqsave(&pcpu_lock, flags);
948 /*
949 * pcpu_lock has been dropped, need to
950 * restart cpu_slot list walking.
951 */
952 goto restart;
953 }
954
955 off = pcpu_alloc_area(chunk, size, align, is_atomic,
956 &occ_pages);
957 if (off >= 0)
958 goto area_found;
959 }
960 }
961
962 spin_unlock_irqrestore(&pcpu_lock, flags);
963
964 /*
965 * No space left. Create a new chunk. We don't want multiple
966 * tasks to create chunks simultaneously. Serialize and create iff
967 * there's still no empty chunk after grabbing the mutex.
968 */
969 if (is_atomic)
970 goto fail;
971
972 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
973 chunk = pcpu_create_chunk();
974 if (!chunk) {
975 err = "failed to allocate new chunk";
976 goto fail;
977 }
978
979 spin_lock_irqsave(&pcpu_lock, flags);
980 pcpu_chunk_relocate(chunk, -1);
981 } else {
982 spin_lock_irqsave(&pcpu_lock, flags);
983 }
984
985 goto restart;
986
987 area_found:
988 spin_unlock_irqrestore(&pcpu_lock, flags);
989
990 /* populate if not all pages are already there */
991 if (!is_atomic) {
992 int page_start, page_end, rs, re;
993
994 page_start = PFN_DOWN(off);
995 page_end = PFN_UP(off + size);
996
997 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
998 WARN_ON(chunk->immutable);
999
1000 ret = pcpu_populate_chunk(chunk, rs, re);
1001
1002 spin_lock_irqsave(&pcpu_lock, flags);
1003 if (ret) {
1004 pcpu_free_area(chunk, off, &occ_pages);
1005 err = "failed to populate";
1006 goto fail_unlock;
1007 }
1008 pcpu_chunk_populated(chunk, rs, re);
1009 spin_unlock_irqrestore(&pcpu_lock, flags);
1010 }
1011
1012 mutex_unlock(&pcpu_alloc_mutex);
1013 }
1014
1015 if (chunk != pcpu_reserved_chunk)
1016 pcpu_nr_empty_pop_pages -= occ_pages;
1017
1018 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1019 pcpu_schedule_balance_work();
1020
1021 /* clear the areas and return address relative to base address */
1022 for_each_possible_cpu(cpu)
1023 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1024
1025 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1026 kmemleak_alloc_percpu(ptr, size, gfp);
1027 return ptr;
1028
1029 fail_unlock:
1030 spin_unlock_irqrestore(&pcpu_lock, flags);
1031 fail:
1032 if (!is_atomic && warn_limit) {
1033 pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1034 size, align, is_atomic, err);
1035 dump_stack();
1036 if (!--warn_limit)
1037 pr_info("PERCPU: limit reached, disable warning\n");
1038 }
1039 if (is_atomic) {
1040 /* see the flag handling in pcpu_blance_workfn() */
1041 pcpu_atomic_alloc_failed = true;
1042 pcpu_schedule_balance_work();
1043 } else {
1044 mutex_unlock(&pcpu_alloc_mutex);
1045 }
1046 return NULL;
1047 }
1048
1049 /**
1050 * __alloc_percpu_gfp - allocate dynamic percpu area
1051 * @size: size of area to allocate in bytes
1052 * @align: alignment of area (max PAGE_SIZE)
1053 * @gfp: allocation flags
1054 *
1055 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1056 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1057 * be called from any context but is a lot more likely to fail.
1058 *
1059 * RETURNS:
1060 * Percpu pointer to the allocated area on success, NULL on failure.
1061 */
1062 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1063 {
1064 return pcpu_alloc(size, align, false, gfp);
1065 }
1066 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1067
1068 /**
1069 * __alloc_percpu - allocate dynamic percpu area
1070 * @size: size of area to allocate in bytes
1071 * @align: alignment of area (max PAGE_SIZE)
1072 *
1073 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1074 */
1075 void __percpu *__alloc_percpu(size_t size, size_t align)
1076 {
1077 return pcpu_alloc(size, align, false, GFP_KERNEL);
1078 }
1079 EXPORT_SYMBOL_GPL(__alloc_percpu);
1080
1081 /**
1082 * __alloc_reserved_percpu - allocate reserved percpu area
1083 * @size: size of area to allocate in bytes
1084 * @align: alignment of area (max PAGE_SIZE)
1085 *
1086 * Allocate zero-filled percpu area of @size bytes aligned at @align
1087 * from reserved percpu area if arch has set it up; otherwise,
1088 * allocation is served from the same dynamic area. Might sleep.
1089 * Might trigger writeouts.
1090 *
1091 * CONTEXT:
1092 * Does GFP_KERNEL allocation.
1093 *
1094 * RETURNS:
1095 * Percpu pointer to the allocated area on success, NULL on failure.
1096 */
1097 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1098 {
1099 return pcpu_alloc(size, align, true, GFP_KERNEL);
1100 }
1101
1102 /**
1103 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1104 * @work: unused
1105 *
1106 * Reclaim all fully free chunks except for the first one.
1107 */
1108 static void pcpu_balance_workfn(struct work_struct *work)
1109 {
1110 LIST_HEAD(to_free);
1111 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1112 struct pcpu_chunk *chunk, *next;
1113 int slot, nr_to_pop, ret;
1114
1115 /*
1116 * There's no reason to keep around multiple unused chunks and VM
1117 * areas can be scarce. Destroy all free chunks except for one.
1118 */
1119 mutex_lock(&pcpu_alloc_mutex);
1120 spin_lock_irq(&pcpu_lock);
1121
1122 list_for_each_entry_safe(chunk, next, free_head, list) {
1123 WARN_ON(chunk->immutable);
1124
1125 /* spare the first one */
1126 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1127 continue;
1128
1129 list_del_init(&chunk->map_extend_list);
1130 list_move(&chunk->list, &to_free);
1131 }
1132
1133 spin_unlock_irq(&pcpu_lock);
1134
1135 list_for_each_entry_safe(chunk, next, &to_free, list) {
1136 int rs, re;
1137
1138 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1139 pcpu_depopulate_chunk(chunk, rs, re);
1140 spin_lock_irq(&pcpu_lock);
1141 pcpu_chunk_depopulated(chunk, rs, re);
1142 spin_unlock_irq(&pcpu_lock);
1143 }
1144 pcpu_destroy_chunk(chunk);
1145 }
1146
1147 /* service chunks which requested async area map extension */
1148 do {
1149 int new_alloc = 0;
1150
1151 spin_lock_irq(&pcpu_lock);
1152
1153 chunk = list_first_entry_or_null(&pcpu_map_extend_chunks,
1154 struct pcpu_chunk, map_extend_list);
1155 if (chunk) {
1156 list_del_init(&chunk->map_extend_list);
1157 new_alloc = pcpu_need_to_extend(chunk, false);
1158 }
1159
1160 spin_unlock_irq(&pcpu_lock);
1161
1162 if (new_alloc)
1163 pcpu_extend_area_map(chunk, new_alloc);
1164 } while (chunk);
1165
1166 /*
1167 * Ensure there are certain number of free populated pages for
1168 * atomic allocs. Fill up from the most packed so that atomic
1169 * allocs don't increase fragmentation. If atomic allocation
1170 * failed previously, always populate the maximum amount. This
1171 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1172 * failing indefinitely; however, large atomic allocs are not
1173 * something we support properly and can be highly unreliable and
1174 * inefficient.
1175 */
1176 retry_pop:
1177 if (pcpu_atomic_alloc_failed) {
1178 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1179 /* best effort anyway, don't worry about synchronization */
1180 pcpu_atomic_alloc_failed = false;
1181 } else {
1182 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1183 pcpu_nr_empty_pop_pages,
1184 0, PCPU_EMPTY_POP_PAGES_HIGH);
1185 }
1186
1187 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1188 int nr_unpop = 0, rs, re;
1189
1190 if (!nr_to_pop)
1191 break;
1192
1193 spin_lock_irq(&pcpu_lock);
1194 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1195 nr_unpop = pcpu_unit_pages - chunk->nr_populated;
1196 if (nr_unpop)
1197 break;
1198 }
1199 spin_unlock_irq(&pcpu_lock);
1200
1201 if (!nr_unpop)
1202 continue;
1203
1204 /* @chunk can't go away while pcpu_alloc_mutex is held */
1205 pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
1206 int nr = min(re - rs, nr_to_pop);
1207
1208 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1209 if (!ret) {
1210 nr_to_pop -= nr;
1211 spin_lock_irq(&pcpu_lock);
1212 pcpu_chunk_populated(chunk, rs, rs + nr);
1213 spin_unlock_irq(&pcpu_lock);
1214 } else {
1215 nr_to_pop = 0;
1216 }
1217
1218 if (!nr_to_pop)
1219 break;
1220 }
1221 }
1222
1223 if (nr_to_pop) {
1224 /* ran out of chunks to populate, create a new one and retry */
1225 chunk = pcpu_create_chunk();
1226 if (chunk) {
1227 spin_lock_irq(&pcpu_lock);
1228 pcpu_chunk_relocate(chunk, -1);
1229 spin_unlock_irq(&pcpu_lock);
1230 goto retry_pop;
1231 }
1232 }
1233
1234 mutex_unlock(&pcpu_alloc_mutex);
1235 }
1236
1237 /**
1238 * free_percpu - free percpu area
1239 * @ptr: pointer to area to free
1240 *
1241 * Free percpu area @ptr.
1242 *
1243 * CONTEXT:
1244 * Can be called from atomic context.
1245 */
1246 void free_percpu(void __percpu *ptr)
1247 {
1248 void *addr;
1249 struct pcpu_chunk *chunk;
1250 unsigned long flags;
1251 int off, occ_pages;
1252
1253 if (!ptr)
1254 return;
1255
1256 kmemleak_free_percpu(ptr);
1257
1258 addr = __pcpu_ptr_to_addr(ptr);
1259
1260 spin_lock_irqsave(&pcpu_lock, flags);
1261
1262 chunk = pcpu_chunk_addr_search(addr);
1263 off = addr - chunk->base_addr;
1264
1265 pcpu_free_area(chunk, off, &occ_pages);
1266
1267 if (chunk != pcpu_reserved_chunk)
1268 pcpu_nr_empty_pop_pages += occ_pages;
1269
1270 /* if there are more than one fully free chunks, wake up grim reaper */
1271 if (chunk->free_size == pcpu_unit_size) {
1272 struct pcpu_chunk *pos;
1273
1274 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1275 if (pos != chunk) {
1276 pcpu_schedule_balance_work();
1277 break;
1278 }
1279 }
1280
1281 spin_unlock_irqrestore(&pcpu_lock, flags);
1282 }
1283 EXPORT_SYMBOL_GPL(free_percpu);
1284
1285 /**
1286 * is_kernel_percpu_address - test whether address is from static percpu area
1287 * @addr: address to test
1288 *
1289 * Test whether @addr belongs to in-kernel static percpu area. Module
1290 * static percpu areas are not considered. For those, use
1291 * is_module_percpu_address().
1292 *
1293 * RETURNS:
1294 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1295 */
1296 bool is_kernel_percpu_address(unsigned long addr)
1297 {
1298 #ifdef CONFIG_SMP
1299 const size_t static_size = __per_cpu_end - __per_cpu_start;
1300 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1301 unsigned int cpu;
1302
1303 for_each_possible_cpu(cpu) {
1304 void *start = per_cpu_ptr(base, cpu);
1305
1306 if ((void *)addr >= start && (void *)addr < start + static_size)
1307 return true;
1308 }
1309 #endif
1310 /* on UP, can't distinguish from other static vars, always false */
1311 return false;
1312 }
1313
1314 /**
1315 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1316 * @addr: the address to be converted to physical address
1317 *
1318 * Given @addr which is dereferenceable address obtained via one of
1319 * percpu access macros, this function translates it into its physical
1320 * address. The caller is responsible for ensuring @addr stays valid
1321 * until this function finishes.
1322 *
1323 * percpu allocator has special setup for the first chunk, which currently
1324 * supports either embedding in linear address space or vmalloc mapping,
1325 * and, from the second one, the backing allocator (currently either vm or
1326 * km) provides translation.
1327 *
1328 * The addr can be translated simply without checking if it falls into the
1329 * first chunk. But the current code reflects better how percpu allocator
1330 * actually works, and the verification can discover both bugs in percpu
1331 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1332 * code.
1333 *
1334 * RETURNS:
1335 * The physical address for @addr.
1336 */
1337 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1338 {
1339 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1340 bool in_first_chunk = false;
1341 unsigned long first_low, first_high;
1342 unsigned int cpu;
1343
1344 /*
1345 * The following test on unit_low/high isn't strictly
1346 * necessary but will speed up lookups of addresses which
1347 * aren't in the first chunk.
1348 */
1349 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1350 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1351 pcpu_unit_pages);
1352 if ((unsigned long)addr >= first_low &&
1353 (unsigned long)addr < first_high) {
1354 for_each_possible_cpu(cpu) {
1355 void *start = per_cpu_ptr(base, cpu);
1356
1357 if (addr >= start && addr < start + pcpu_unit_size) {
1358 in_first_chunk = true;
1359 break;
1360 }
1361 }
1362 }
1363
1364 if (in_first_chunk) {
1365 if (!is_vmalloc_addr(addr))
1366 return __pa(addr);
1367 else
1368 return page_to_phys(vmalloc_to_page(addr)) +
1369 offset_in_page(addr);
1370 } else
1371 return page_to_phys(pcpu_addr_to_page(addr)) +
1372 offset_in_page(addr);
1373 }
1374
1375 /**
1376 * pcpu_alloc_alloc_info - allocate percpu allocation info
1377 * @nr_groups: the number of groups
1378 * @nr_units: the number of units
1379 *
1380 * Allocate ai which is large enough for @nr_groups groups containing
1381 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1382 * cpu_map array which is long enough for @nr_units and filled with
1383 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1384 * pointer of other groups.
1385 *
1386 * RETURNS:
1387 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1388 * failure.
1389 */
1390 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1391 int nr_units)
1392 {
1393 struct pcpu_alloc_info *ai;
1394 size_t base_size, ai_size;
1395 void *ptr;
1396 int unit;
1397
1398 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1399 __alignof__(ai->groups[0].cpu_map[0]));
1400 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1401
1402 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1403 if (!ptr)
1404 return NULL;
1405 ai = ptr;
1406 ptr += base_size;
1407
1408 ai->groups[0].cpu_map = ptr;
1409
1410 for (unit = 0; unit < nr_units; unit++)
1411 ai->groups[0].cpu_map[unit] = NR_CPUS;
1412
1413 ai->nr_groups = nr_groups;
1414 ai->__ai_size = PFN_ALIGN(ai_size);
1415
1416 return ai;
1417 }
1418
1419 /**
1420 * pcpu_free_alloc_info - free percpu allocation info
1421 * @ai: pcpu_alloc_info to free
1422 *
1423 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1424 */
1425 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1426 {
1427 memblock_free_early(__pa(ai), ai->__ai_size);
1428 }
1429
1430 /**
1431 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1432 * @lvl: loglevel
1433 * @ai: allocation info to dump
1434 *
1435 * Print out information about @ai using loglevel @lvl.
1436 */
1437 static void pcpu_dump_alloc_info(const char *lvl,
1438 const struct pcpu_alloc_info *ai)
1439 {
1440 int group_width = 1, cpu_width = 1, width;
1441 char empty_str[] = "--------";
1442 int alloc = 0, alloc_end = 0;
1443 int group, v;
1444 int upa, apl; /* units per alloc, allocs per line */
1445
1446 v = ai->nr_groups;
1447 while (v /= 10)
1448 group_width++;
1449
1450 v = num_possible_cpus();
1451 while (v /= 10)
1452 cpu_width++;
1453 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1454
1455 upa = ai->alloc_size / ai->unit_size;
1456 width = upa * (cpu_width + 1) + group_width + 3;
1457 apl = rounddown_pow_of_two(max(60 / width, 1));
1458
1459 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1460 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1461 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1462
1463 for (group = 0; group < ai->nr_groups; group++) {
1464 const struct pcpu_group_info *gi = &ai->groups[group];
1465 int unit = 0, unit_end = 0;
1466
1467 BUG_ON(gi->nr_units % upa);
1468 for (alloc_end += gi->nr_units / upa;
1469 alloc < alloc_end; alloc++) {
1470 if (!(alloc % apl)) {
1471 printk(KERN_CONT "\n");
1472 printk("%spcpu-alloc: ", lvl);
1473 }
1474 printk(KERN_CONT "[%0*d] ", group_width, group);
1475
1476 for (unit_end += upa; unit < unit_end; unit++)
1477 if (gi->cpu_map[unit] != NR_CPUS)
1478 printk(KERN_CONT "%0*d ", cpu_width,
1479 gi->cpu_map[unit]);
1480 else
1481 printk(KERN_CONT "%s ", empty_str);
1482 }
1483 }
1484 printk(KERN_CONT "\n");
1485 }
1486
1487 /**
1488 * pcpu_setup_first_chunk - initialize the first percpu chunk
1489 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1490 * @base_addr: mapped address
1491 *
1492 * Initialize the first percpu chunk which contains the kernel static
1493 * perpcu area. This function is to be called from arch percpu area
1494 * setup path.
1495 *
1496 * @ai contains all information necessary to initialize the first
1497 * chunk and prime the dynamic percpu allocator.
1498 *
1499 * @ai->static_size is the size of static percpu area.
1500 *
1501 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1502 * reserve after the static area in the first chunk. This reserves
1503 * the first chunk such that it's available only through reserved
1504 * percpu allocation. This is primarily used to serve module percpu
1505 * static areas on architectures where the addressing model has
1506 * limited offset range for symbol relocations to guarantee module
1507 * percpu symbols fall inside the relocatable range.
1508 *
1509 * @ai->dyn_size determines the number of bytes available for dynamic
1510 * allocation in the first chunk. The area between @ai->static_size +
1511 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1512 *
1513 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1514 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1515 * @ai->dyn_size.
1516 *
1517 * @ai->atom_size is the allocation atom size and used as alignment
1518 * for vm areas.
1519 *
1520 * @ai->alloc_size is the allocation size and always multiple of
1521 * @ai->atom_size. This is larger than @ai->atom_size if
1522 * @ai->unit_size is larger than @ai->atom_size.
1523 *
1524 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1525 * percpu areas. Units which should be colocated are put into the
1526 * same group. Dynamic VM areas will be allocated according to these
1527 * groupings. If @ai->nr_groups is zero, a single group containing
1528 * all units is assumed.
1529 *
1530 * The caller should have mapped the first chunk at @base_addr and
1531 * copied static data to each unit.
1532 *
1533 * If the first chunk ends up with both reserved and dynamic areas, it
1534 * is served by two chunks - one to serve the core static and reserved
1535 * areas and the other for the dynamic area. They share the same vm
1536 * and page map but uses different area allocation map to stay away
1537 * from each other. The latter chunk is circulated in the chunk slots
1538 * and available for dynamic allocation like any other chunks.
1539 *
1540 * RETURNS:
1541 * 0 on success, -errno on failure.
1542 */
1543 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1544 void *base_addr)
1545 {
1546 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1547 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1548 size_t dyn_size = ai->dyn_size;
1549 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1550 struct pcpu_chunk *schunk, *dchunk = NULL;
1551 unsigned long *group_offsets;
1552 size_t *group_sizes;
1553 unsigned long *unit_off;
1554 unsigned int cpu;
1555 int *unit_map;
1556 int group, unit, i;
1557
1558 #define PCPU_SETUP_BUG_ON(cond) do { \
1559 if (unlikely(cond)) { \
1560 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1561 pr_emerg("PERCPU: cpu_possible_mask=%*pb\n", \
1562 cpumask_pr_args(cpu_possible_mask)); \
1563 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1564 BUG(); \
1565 } \
1566 } while (0)
1567
1568 /* sanity checks */
1569 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1570 #ifdef CONFIG_SMP
1571 PCPU_SETUP_BUG_ON(!ai->static_size);
1572 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1573 #endif
1574 PCPU_SETUP_BUG_ON(!base_addr);
1575 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1576 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1577 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1578 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1579 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1580 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1581
1582 /* process group information and build config tables accordingly */
1583 group_offsets = memblock_virt_alloc(ai->nr_groups *
1584 sizeof(group_offsets[0]), 0);
1585 group_sizes = memblock_virt_alloc(ai->nr_groups *
1586 sizeof(group_sizes[0]), 0);
1587 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1588 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1589
1590 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1591 unit_map[cpu] = UINT_MAX;
1592
1593 pcpu_low_unit_cpu = NR_CPUS;
1594 pcpu_high_unit_cpu = NR_CPUS;
1595
1596 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1597 const struct pcpu_group_info *gi = &ai->groups[group];
1598
1599 group_offsets[group] = gi->base_offset;
1600 group_sizes[group] = gi->nr_units * ai->unit_size;
1601
1602 for (i = 0; i < gi->nr_units; i++) {
1603 cpu = gi->cpu_map[i];
1604 if (cpu == NR_CPUS)
1605 continue;
1606
1607 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1608 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1609 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1610
1611 unit_map[cpu] = unit + i;
1612 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1613
1614 /* determine low/high unit_cpu */
1615 if (pcpu_low_unit_cpu == NR_CPUS ||
1616 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1617 pcpu_low_unit_cpu = cpu;
1618 if (pcpu_high_unit_cpu == NR_CPUS ||
1619 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1620 pcpu_high_unit_cpu = cpu;
1621 }
1622 }
1623 pcpu_nr_units = unit;
1624
1625 for_each_possible_cpu(cpu)
1626 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1627
1628 /* we're done parsing the input, undefine BUG macro and dump config */
1629 #undef PCPU_SETUP_BUG_ON
1630 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1631
1632 pcpu_nr_groups = ai->nr_groups;
1633 pcpu_group_offsets = group_offsets;
1634 pcpu_group_sizes = group_sizes;
1635 pcpu_unit_map = unit_map;
1636 pcpu_unit_offsets = unit_off;
1637
1638 /* determine basic parameters */
1639 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1640 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1641 pcpu_atom_size = ai->atom_size;
1642 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1643 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1644
1645 /*
1646 * Allocate chunk slots. The additional last slot is for
1647 * empty chunks.
1648 */
1649 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1650 pcpu_slot = memblock_virt_alloc(
1651 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1652 for (i = 0; i < pcpu_nr_slots; i++)
1653 INIT_LIST_HEAD(&pcpu_slot[i]);
1654
1655 /*
1656 * Initialize static chunk. If reserved_size is zero, the
1657 * static chunk covers static area + dynamic allocation area
1658 * in the first chunk. If reserved_size is not zero, it
1659 * covers static area + reserved area (mostly used for module
1660 * static percpu allocation).
1661 */
1662 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1663 INIT_LIST_HEAD(&schunk->list);
1664 INIT_LIST_HEAD(&schunk->map_extend_list);
1665 schunk->base_addr = base_addr;
1666 schunk->map = smap;
1667 schunk->map_alloc = ARRAY_SIZE(smap);
1668 schunk->immutable = true;
1669 bitmap_fill(schunk->populated, pcpu_unit_pages);
1670 schunk->nr_populated = pcpu_unit_pages;
1671
1672 if (ai->reserved_size) {
1673 schunk->free_size = ai->reserved_size;
1674 pcpu_reserved_chunk = schunk;
1675 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1676 } else {
1677 schunk->free_size = dyn_size;
1678 dyn_size = 0; /* dynamic area covered */
1679 }
1680 schunk->contig_hint = schunk->free_size;
1681
1682 schunk->map[0] = 1;
1683 schunk->map[1] = ai->static_size;
1684 schunk->map_used = 1;
1685 if (schunk->free_size)
1686 schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
1687 schunk->map[schunk->map_used] |= 1;
1688
1689 /* init dynamic chunk if necessary */
1690 if (dyn_size) {
1691 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1692 INIT_LIST_HEAD(&dchunk->list);
1693 INIT_LIST_HEAD(&dchunk->map_extend_list);
1694 dchunk->base_addr = base_addr;
1695 dchunk->map = dmap;
1696 dchunk->map_alloc = ARRAY_SIZE(dmap);
1697 dchunk->immutable = true;
1698 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1699 dchunk->nr_populated = pcpu_unit_pages;
1700
1701 dchunk->contig_hint = dchunk->free_size = dyn_size;
1702 dchunk->map[0] = 1;
1703 dchunk->map[1] = pcpu_reserved_chunk_limit;
1704 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1705 dchunk->map_used = 2;
1706 }
1707
1708 /* link the first chunk in */
1709 pcpu_first_chunk = dchunk ?: schunk;
1710 pcpu_nr_empty_pop_pages +=
1711 pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1712 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1713
1714 /* we're done */
1715 pcpu_base_addr = base_addr;
1716 return 0;
1717 }
1718
1719 #ifdef CONFIG_SMP
1720
1721 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1722 [PCPU_FC_AUTO] = "auto",
1723 [PCPU_FC_EMBED] = "embed",
1724 [PCPU_FC_PAGE] = "page",
1725 };
1726
1727 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1728
1729 static int __init percpu_alloc_setup(char *str)
1730 {
1731 if (!str)
1732 return -EINVAL;
1733
1734 if (0)
1735 /* nada */;
1736 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1737 else if (!strcmp(str, "embed"))
1738 pcpu_chosen_fc = PCPU_FC_EMBED;
1739 #endif
1740 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1741 else if (!strcmp(str, "page"))
1742 pcpu_chosen_fc = PCPU_FC_PAGE;
1743 #endif
1744 else
1745 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1746
1747 return 0;
1748 }
1749 early_param("percpu_alloc", percpu_alloc_setup);
1750
1751 /*
1752 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1753 * Build it if needed by the arch config or the generic setup is going
1754 * to be used.
1755 */
1756 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1757 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1758 #define BUILD_EMBED_FIRST_CHUNK
1759 #endif
1760
1761 /* build pcpu_page_first_chunk() iff needed by the arch config */
1762 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1763 #define BUILD_PAGE_FIRST_CHUNK
1764 #endif
1765
1766 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1767 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1768 /**
1769 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1770 * @reserved_size: the size of reserved percpu area in bytes
1771 * @dyn_size: minimum free size for dynamic allocation in bytes
1772 * @atom_size: allocation atom size
1773 * @cpu_distance_fn: callback to determine distance between cpus, optional
1774 *
1775 * This function determines grouping of units, their mappings to cpus
1776 * and other parameters considering needed percpu size, allocation
1777 * atom size and distances between CPUs.
1778 *
1779 * Groups are always multiples of atom size and CPUs which are of
1780 * LOCAL_DISTANCE both ways are grouped together and share space for
1781 * units in the same group. The returned configuration is guaranteed
1782 * to have CPUs on different nodes on different groups and >=75% usage
1783 * of allocated virtual address space.
1784 *
1785 * RETURNS:
1786 * On success, pointer to the new allocation_info is returned. On
1787 * failure, ERR_PTR value is returned.
1788 */
1789 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1790 size_t reserved_size, size_t dyn_size,
1791 size_t atom_size,
1792 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1793 {
1794 static int group_map[NR_CPUS] __initdata;
1795 static int group_cnt[NR_CPUS] __initdata;
1796 const size_t static_size = __per_cpu_end - __per_cpu_start;
1797 int nr_groups = 1, nr_units = 0;
1798 size_t size_sum, min_unit_size, alloc_size;
1799 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1800 int last_allocs, group, unit;
1801 unsigned int cpu, tcpu;
1802 struct pcpu_alloc_info *ai;
1803 unsigned int *cpu_map;
1804
1805 /* this function may be called multiple times */
1806 memset(group_map, 0, sizeof(group_map));
1807 memset(group_cnt, 0, sizeof(group_cnt));
1808
1809 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1810 size_sum = PFN_ALIGN(static_size + reserved_size +
1811 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1812 dyn_size = size_sum - static_size - reserved_size;
1813
1814 /*
1815 * Determine min_unit_size, alloc_size and max_upa such that
1816 * alloc_size is multiple of atom_size and is the smallest
1817 * which can accommodate 4k aligned segments which are equal to
1818 * or larger than min_unit_size.
1819 */
1820 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1821
1822 alloc_size = roundup(min_unit_size, atom_size);
1823 upa = alloc_size / min_unit_size;
1824 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1825 upa--;
1826 max_upa = upa;
1827
1828 /* group cpus according to their proximity */
1829 for_each_possible_cpu(cpu) {
1830 group = 0;
1831 next_group:
1832 for_each_possible_cpu(tcpu) {
1833 if (cpu == tcpu)
1834 break;
1835 if (group_map[tcpu] == group && cpu_distance_fn &&
1836 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1837 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1838 group++;
1839 nr_groups = max(nr_groups, group + 1);
1840 goto next_group;
1841 }
1842 }
1843 group_map[cpu] = group;
1844 group_cnt[group]++;
1845 }
1846
1847 /*
1848 * Expand unit size until address space usage goes over 75%
1849 * and then as much as possible without using more address
1850 * space.
1851 */
1852 last_allocs = INT_MAX;
1853 for (upa = max_upa; upa; upa--) {
1854 int allocs = 0, wasted = 0;
1855
1856 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1857 continue;
1858
1859 for (group = 0; group < nr_groups; group++) {
1860 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1861 allocs += this_allocs;
1862 wasted += this_allocs * upa - group_cnt[group];
1863 }
1864
1865 /*
1866 * Don't accept if wastage is over 1/3. The
1867 * greater-than comparison ensures upa==1 always
1868 * passes the following check.
1869 */
1870 if (wasted > num_possible_cpus() / 3)
1871 continue;
1872
1873 /* and then don't consume more memory */
1874 if (allocs > last_allocs)
1875 break;
1876 last_allocs = allocs;
1877 best_upa = upa;
1878 }
1879 upa = best_upa;
1880
1881 /* allocate and fill alloc_info */
1882 for (group = 0; group < nr_groups; group++)
1883 nr_units += roundup(group_cnt[group], upa);
1884
1885 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1886 if (!ai)
1887 return ERR_PTR(-ENOMEM);
1888 cpu_map = ai->groups[0].cpu_map;
1889
1890 for (group = 0; group < nr_groups; group++) {
1891 ai->groups[group].cpu_map = cpu_map;
1892 cpu_map += roundup(group_cnt[group], upa);
1893 }
1894
1895 ai->static_size = static_size;
1896 ai->reserved_size = reserved_size;
1897 ai->dyn_size = dyn_size;
1898 ai->unit_size = alloc_size / upa;
1899 ai->atom_size = atom_size;
1900 ai->alloc_size = alloc_size;
1901
1902 for (group = 0, unit = 0; group_cnt[group]; group++) {
1903 struct pcpu_group_info *gi = &ai->groups[group];
1904
1905 /*
1906 * Initialize base_offset as if all groups are located
1907 * back-to-back. The caller should update this to
1908 * reflect actual allocation.
1909 */
1910 gi->base_offset = unit * ai->unit_size;
1911
1912 for_each_possible_cpu(cpu)
1913 if (group_map[cpu] == group)
1914 gi->cpu_map[gi->nr_units++] = cpu;
1915 gi->nr_units = roundup(gi->nr_units, upa);
1916 unit += gi->nr_units;
1917 }
1918 BUG_ON(unit != nr_units);
1919
1920 return ai;
1921 }
1922 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1923
1924 #if defined(BUILD_EMBED_FIRST_CHUNK)
1925 /**
1926 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1927 * @reserved_size: the size of reserved percpu area in bytes
1928 * @dyn_size: minimum free size for dynamic allocation in bytes
1929 * @atom_size: allocation atom size
1930 * @cpu_distance_fn: callback to determine distance between cpus, optional
1931 * @alloc_fn: function to allocate percpu page
1932 * @free_fn: function to free percpu page
1933 *
1934 * This is a helper to ease setting up embedded first percpu chunk and
1935 * can be called where pcpu_setup_first_chunk() is expected.
1936 *
1937 * If this function is used to setup the first chunk, it is allocated
1938 * by calling @alloc_fn and used as-is without being mapped into
1939 * vmalloc area. Allocations are always whole multiples of @atom_size
1940 * aligned to @atom_size.
1941 *
1942 * This enables the first chunk to piggy back on the linear physical
1943 * mapping which often uses larger page size. Please note that this
1944 * can result in very sparse cpu->unit mapping on NUMA machines thus
1945 * requiring large vmalloc address space. Don't use this allocator if
1946 * vmalloc space is not orders of magnitude larger than distances
1947 * between node memory addresses (ie. 32bit NUMA machines).
1948 *
1949 * @dyn_size specifies the minimum dynamic area size.
1950 *
1951 * If the needed size is smaller than the minimum or specified unit
1952 * size, the leftover is returned using @free_fn.
1953 *
1954 * RETURNS:
1955 * 0 on success, -errno on failure.
1956 */
1957 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1958 size_t atom_size,
1959 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1960 pcpu_fc_alloc_fn_t alloc_fn,
1961 pcpu_fc_free_fn_t free_fn)
1962 {
1963 void *base = (void *)ULONG_MAX;
1964 void **areas = NULL;
1965 struct pcpu_alloc_info *ai;
1966 size_t size_sum, areas_size, max_distance;
1967 int group, i, rc;
1968
1969 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1970 cpu_distance_fn);
1971 if (IS_ERR(ai))
1972 return PTR_ERR(ai);
1973
1974 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1975 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1976
1977 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1978 if (!areas) {
1979 rc = -ENOMEM;
1980 goto out_free;
1981 }
1982
1983 /* allocate, copy and determine base address */
1984 for (group = 0; group < ai->nr_groups; group++) {
1985 struct pcpu_group_info *gi = &ai->groups[group];
1986 unsigned int cpu = NR_CPUS;
1987 void *ptr;
1988
1989 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1990 cpu = gi->cpu_map[i];
1991 BUG_ON(cpu == NR_CPUS);
1992
1993 /* allocate space for the whole group */
1994 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1995 if (!ptr) {
1996 rc = -ENOMEM;
1997 goto out_free_areas;
1998 }
1999 /* kmemleak tracks the percpu allocations separately */
2000 kmemleak_free(ptr);
2001 areas[group] = ptr;
2002
2003 base = min(ptr, base);
2004 }
2005
2006 /*
2007 * Copy data and free unused parts. This should happen after all
2008 * allocations are complete; otherwise, we may end up with
2009 * overlapping groups.
2010 */
2011 for (group = 0; group < ai->nr_groups; group++) {
2012 struct pcpu_group_info *gi = &ai->groups[group];
2013 void *ptr = areas[group];
2014
2015 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2016 if (gi->cpu_map[i] == NR_CPUS) {
2017 /* unused unit, free whole */
2018 free_fn(ptr, ai->unit_size);
2019 continue;
2020 }
2021 /* copy and return the unused part */
2022 memcpy(ptr, __per_cpu_load, ai->static_size);
2023 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2024 }
2025 }
2026
2027 /* base address is now known, determine group base offsets */
2028 max_distance = 0;
2029 for (group = 0; group < ai->nr_groups; group++) {
2030 ai->groups[group].base_offset = areas[group] - base;
2031 max_distance = max_t(size_t, max_distance,
2032 ai->groups[group].base_offset);
2033 }
2034 max_distance += ai->unit_size;
2035
2036 /* warn if maximum distance is further than 75% of vmalloc space */
2037 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2038 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
2039 "space 0x%lx\n", max_distance,
2040 VMALLOC_TOTAL);
2041 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2042 /* and fail if we have fallback */
2043 rc = -EINVAL;
2044 goto out_free;
2045 #endif
2046 }
2047
2048 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2049 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2050 ai->dyn_size, ai->unit_size);
2051
2052 rc = pcpu_setup_first_chunk(ai, base);
2053 goto out_free;
2054
2055 out_free_areas:
2056 for (group = 0; group < ai->nr_groups; group++)
2057 if (areas[group])
2058 free_fn(areas[group],
2059 ai->groups[group].nr_units * ai->unit_size);
2060 out_free:
2061 pcpu_free_alloc_info(ai);
2062 if (areas)
2063 memblock_free_early(__pa(areas), areas_size);
2064 return rc;
2065 }
2066 #endif /* BUILD_EMBED_FIRST_CHUNK */
2067
2068 #ifdef BUILD_PAGE_FIRST_CHUNK
2069 /**
2070 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2071 * @reserved_size: the size of reserved percpu area in bytes
2072 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2073 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2074 * @populate_pte_fn: function to populate pte
2075 *
2076 * This is a helper to ease setting up page-remapped first percpu
2077 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2078 *
2079 * This is the basic allocator. Static percpu area is allocated
2080 * page-by-page into vmalloc area.
2081 *
2082 * RETURNS:
2083 * 0 on success, -errno on failure.
2084 */
2085 int __init pcpu_page_first_chunk(size_t reserved_size,
2086 pcpu_fc_alloc_fn_t alloc_fn,
2087 pcpu_fc_free_fn_t free_fn,
2088 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2089 {
2090 static struct vm_struct vm;
2091 struct pcpu_alloc_info *ai;
2092 char psize_str[16];
2093 int unit_pages;
2094 size_t pages_size;
2095 struct page **pages;
2096 int unit, i, j, rc;
2097
2098 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2099
2100 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2101 if (IS_ERR(ai))
2102 return PTR_ERR(ai);
2103 BUG_ON(ai->nr_groups != 1);
2104 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2105
2106 unit_pages = ai->unit_size >> PAGE_SHIFT;
2107
2108 /* unaligned allocations can't be freed, round up to page size */
2109 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2110 sizeof(pages[0]));
2111 pages = memblock_virt_alloc(pages_size, 0);
2112
2113 /* allocate pages */
2114 j = 0;
2115 for (unit = 0; unit < num_possible_cpus(); unit++)
2116 for (i = 0; i < unit_pages; i++) {
2117 unsigned int cpu = ai->groups[0].cpu_map[unit];
2118 void *ptr;
2119
2120 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2121 if (!ptr) {
2122 pr_warning("PERCPU: failed to allocate %s page "
2123 "for cpu%u\n", psize_str, cpu);
2124 goto enomem;
2125 }
2126 /* kmemleak tracks the percpu allocations separately */
2127 kmemleak_free(ptr);
2128 pages[j++] = virt_to_page(ptr);
2129 }
2130
2131 /* allocate vm area, map the pages and copy static data */
2132 vm.flags = VM_ALLOC;
2133 vm.size = num_possible_cpus() * ai->unit_size;
2134 vm_area_register_early(&vm, PAGE_SIZE);
2135
2136 for (unit = 0; unit < num_possible_cpus(); unit++) {
2137 unsigned long unit_addr =
2138 (unsigned long)vm.addr + unit * ai->unit_size;
2139
2140 for (i = 0; i < unit_pages; i++)
2141 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2142
2143 /* pte already populated, the following shouldn't fail */
2144 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2145 unit_pages);
2146 if (rc < 0)
2147 panic("failed to map percpu area, err=%d\n", rc);
2148
2149 /*
2150 * FIXME: Archs with virtual cache should flush local
2151 * cache for the linear mapping here - something
2152 * equivalent to flush_cache_vmap() on the local cpu.
2153 * flush_cache_vmap() can't be used as most supporting
2154 * data structures are not set up yet.
2155 */
2156
2157 /* copy static data */
2158 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2159 }
2160
2161 /* we're ready, commit */
2162 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2163 unit_pages, psize_str, vm.addr, ai->static_size,
2164 ai->reserved_size, ai->dyn_size);
2165
2166 rc = pcpu_setup_first_chunk(ai, vm.addr);
2167 goto out_free_ar;
2168
2169 enomem:
2170 while (--j >= 0)
2171 free_fn(page_address(pages[j]), PAGE_SIZE);
2172 rc = -ENOMEM;
2173 out_free_ar:
2174 memblock_free_early(__pa(pages), pages_size);
2175 pcpu_free_alloc_info(ai);
2176 return rc;
2177 }
2178 #endif /* BUILD_PAGE_FIRST_CHUNK */
2179
2180 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2181 /*
2182 * Generic SMP percpu area setup.
2183 *
2184 * The embedding helper is used because its behavior closely resembles
2185 * the original non-dynamic generic percpu area setup. This is
2186 * important because many archs have addressing restrictions and might
2187 * fail if the percpu area is located far away from the previous
2188 * location. As an added bonus, in non-NUMA cases, embedding is
2189 * generally a good idea TLB-wise because percpu area can piggy back
2190 * on the physical linear memory mapping which uses large page
2191 * mappings on applicable archs.
2192 */
2193 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2194 EXPORT_SYMBOL(__per_cpu_offset);
2195
2196 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2197 size_t align)
2198 {
2199 return memblock_virt_alloc_from_nopanic(
2200 size, align, __pa(MAX_DMA_ADDRESS));
2201 }
2202
2203 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2204 {
2205 memblock_free_early(__pa(ptr), size);
2206 }
2207
2208 void __init setup_per_cpu_areas(void)
2209 {
2210 unsigned long delta;
2211 unsigned int cpu;
2212 int rc;
2213
2214 /*
2215 * Always reserve area for module percpu variables. That's
2216 * what the legacy allocator did.
2217 */
2218 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2219 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2220 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2221 if (rc < 0)
2222 panic("Failed to initialize percpu areas.");
2223
2224 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2225 for_each_possible_cpu(cpu)
2226 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2227 }
2228 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2229
2230 #else /* CONFIG_SMP */
2231
2232 /*
2233 * UP percpu area setup.
2234 *
2235 * UP always uses km-based percpu allocator with identity mapping.
2236 * Static percpu variables are indistinguishable from the usual static
2237 * variables and don't require any special preparation.
2238 */
2239 void __init setup_per_cpu_areas(void)
2240 {
2241 const size_t unit_size =
2242 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2243 PERCPU_DYNAMIC_RESERVE));
2244 struct pcpu_alloc_info *ai;
2245 void *fc;
2246
2247 ai = pcpu_alloc_alloc_info(1, 1);
2248 fc = memblock_virt_alloc_from_nopanic(unit_size,
2249 PAGE_SIZE,
2250 __pa(MAX_DMA_ADDRESS));
2251 if (!ai || !fc)
2252 panic("Failed to allocate memory for percpu areas.");
2253 /* kmemleak tracks the percpu allocations separately */
2254 kmemleak_free(fc);
2255
2256 ai->dyn_size = unit_size;
2257 ai->unit_size = unit_size;
2258 ai->atom_size = unit_size;
2259 ai->alloc_size = unit_size;
2260 ai->groups[0].nr_units = 1;
2261 ai->groups[0].cpu_map[0] = 0;
2262
2263 if (pcpu_setup_first_chunk(ai, fc) < 0)
2264 panic("Failed to initialize percpu areas.");
2265 }
2266
2267 #endif /* CONFIG_SMP */
2268
2269 /*
2270 * First and reserved chunks are initialized with temporary allocation
2271 * map in initdata so that they can be used before slab is online.
2272 * This function is called after slab is brought up and replaces those
2273 * with properly allocated maps.
2274 */
2275 void __init percpu_init_late(void)
2276 {
2277 struct pcpu_chunk *target_chunks[] =
2278 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
2279 struct pcpu_chunk *chunk;
2280 unsigned long flags;
2281 int i;
2282
2283 for (i = 0; (chunk = target_chunks[i]); i++) {
2284 int *map;
2285 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
2286
2287 BUILD_BUG_ON(size > PAGE_SIZE);
2288
2289 map = pcpu_mem_zalloc(size);
2290 BUG_ON(!map);
2291
2292 spin_lock_irqsave(&pcpu_lock, flags);
2293 memcpy(map, chunk->map, size);
2294 chunk->map = map;
2295 spin_unlock_irqrestore(&pcpu_lock, flags);
2296 }
2297 }
2298
2299 /*
2300 * Percpu allocator is initialized early during boot when neither slab or
2301 * workqueue is available. Plug async management until everything is up
2302 * and running.
2303 */
2304 static int __init percpu_enable_async(void)
2305 {
2306 pcpu_async_enabled = true;
2307 return 0;
2308 }
2309 subsys_initcall(percpu_enable_async);