]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/rmap.c
Merge tag 'usb-5.3-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-hirsute-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * i_pages lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * i_pages lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
67 #include <linux/userfaultfd_k.h>
68
69 #include <asm/tlbflush.h>
70
71 #include <trace/events/tlb.h>
72
73 #include "internal.h"
74
75 static struct kmem_cache *anon_vma_cachep;
76 static struct kmem_cache *anon_vma_chain_cachep;
77
78 static inline struct anon_vma *anon_vma_alloc(void)
79 {
80 struct anon_vma *anon_vma;
81
82 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
83 if (anon_vma) {
84 atomic_set(&anon_vma->refcount, 1);
85 anon_vma->degree = 1; /* Reference for first vma */
86 anon_vma->parent = anon_vma;
87 /*
88 * Initialise the anon_vma root to point to itself. If called
89 * from fork, the root will be reset to the parents anon_vma.
90 */
91 anon_vma->root = anon_vma;
92 }
93
94 return anon_vma;
95 }
96
97 static inline void anon_vma_free(struct anon_vma *anon_vma)
98 {
99 VM_BUG_ON(atomic_read(&anon_vma->refcount));
100
101 /*
102 * Synchronize against page_lock_anon_vma_read() such that
103 * we can safely hold the lock without the anon_vma getting
104 * freed.
105 *
106 * Relies on the full mb implied by the atomic_dec_and_test() from
107 * put_anon_vma() against the acquire barrier implied by
108 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
109 *
110 * page_lock_anon_vma_read() VS put_anon_vma()
111 * down_read_trylock() atomic_dec_and_test()
112 * LOCK MB
113 * atomic_read() rwsem_is_locked()
114 *
115 * LOCK should suffice since the actual taking of the lock must
116 * happen _before_ what follows.
117 */
118 might_sleep();
119 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
120 anon_vma_lock_write(anon_vma);
121 anon_vma_unlock_write(anon_vma);
122 }
123
124 kmem_cache_free(anon_vma_cachep, anon_vma);
125 }
126
127 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
128 {
129 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
130 }
131
132 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
133 {
134 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
135 }
136
137 static void anon_vma_chain_link(struct vm_area_struct *vma,
138 struct anon_vma_chain *avc,
139 struct anon_vma *anon_vma)
140 {
141 avc->vma = vma;
142 avc->anon_vma = anon_vma;
143 list_add(&avc->same_vma, &vma->anon_vma_chain);
144 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
145 }
146
147 /**
148 * __anon_vma_prepare - attach an anon_vma to a memory region
149 * @vma: the memory region in question
150 *
151 * This makes sure the memory mapping described by 'vma' has
152 * an 'anon_vma' attached to it, so that we can associate the
153 * anonymous pages mapped into it with that anon_vma.
154 *
155 * The common case will be that we already have one, which
156 * is handled inline by anon_vma_prepare(). But if
157 * not we either need to find an adjacent mapping that we
158 * can re-use the anon_vma from (very common when the only
159 * reason for splitting a vma has been mprotect()), or we
160 * allocate a new one.
161 *
162 * Anon-vma allocations are very subtle, because we may have
163 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
164 * and that may actually touch the spinlock even in the newly
165 * allocated vma (it depends on RCU to make sure that the
166 * anon_vma isn't actually destroyed).
167 *
168 * As a result, we need to do proper anon_vma locking even
169 * for the new allocation. At the same time, we do not want
170 * to do any locking for the common case of already having
171 * an anon_vma.
172 *
173 * This must be called with the mmap_sem held for reading.
174 */
175 int __anon_vma_prepare(struct vm_area_struct *vma)
176 {
177 struct mm_struct *mm = vma->vm_mm;
178 struct anon_vma *anon_vma, *allocated;
179 struct anon_vma_chain *avc;
180
181 might_sleep();
182
183 avc = anon_vma_chain_alloc(GFP_KERNEL);
184 if (!avc)
185 goto out_enomem;
186
187 anon_vma = find_mergeable_anon_vma(vma);
188 allocated = NULL;
189 if (!anon_vma) {
190 anon_vma = anon_vma_alloc();
191 if (unlikely(!anon_vma))
192 goto out_enomem_free_avc;
193 allocated = anon_vma;
194 }
195
196 anon_vma_lock_write(anon_vma);
197 /* page_table_lock to protect against threads */
198 spin_lock(&mm->page_table_lock);
199 if (likely(!vma->anon_vma)) {
200 vma->anon_vma = anon_vma;
201 anon_vma_chain_link(vma, avc, anon_vma);
202 /* vma reference or self-parent link for new root */
203 anon_vma->degree++;
204 allocated = NULL;
205 avc = NULL;
206 }
207 spin_unlock(&mm->page_table_lock);
208 anon_vma_unlock_write(anon_vma);
209
210 if (unlikely(allocated))
211 put_anon_vma(allocated);
212 if (unlikely(avc))
213 anon_vma_chain_free(avc);
214
215 return 0;
216
217 out_enomem_free_avc:
218 anon_vma_chain_free(avc);
219 out_enomem:
220 return -ENOMEM;
221 }
222
223 /*
224 * This is a useful helper function for locking the anon_vma root as
225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
226 * have the same vma.
227 *
228 * Such anon_vma's should have the same root, so you'd expect to see
229 * just a single mutex_lock for the whole traversal.
230 */
231 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
232 {
233 struct anon_vma *new_root = anon_vma->root;
234 if (new_root != root) {
235 if (WARN_ON_ONCE(root))
236 up_write(&root->rwsem);
237 root = new_root;
238 down_write(&root->rwsem);
239 }
240 return root;
241 }
242
243 static inline void unlock_anon_vma_root(struct anon_vma *root)
244 {
245 if (root)
246 up_write(&root->rwsem);
247 }
248
249 /*
250 * Attach the anon_vmas from src to dst.
251 * Returns 0 on success, -ENOMEM on failure.
252 *
253 * If dst->anon_vma is NULL this function tries to find and reuse existing
254 * anon_vma which has no vmas and only one child anon_vma. This prevents
255 * degradation of anon_vma hierarchy to endless linear chain in case of
256 * constantly forking task. On the other hand, an anon_vma with more than one
257 * child isn't reused even if there was no alive vma, thus rmap walker has a
258 * good chance of avoiding scanning the whole hierarchy when it searches where
259 * page is mapped.
260 */
261 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
262 {
263 struct anon_vma_chain *avc, *pavc;
264 struct anon_vma *root = NULL;
265
266 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
267 struct anon_vma *anon_vma;
268
269 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
270 if (unlikely(!avc)) {
271 unlock_anon_vma_root(root);
272 root = NULL;
273 avc = anon_vma_chain_alloc(GFP_KERNEL);
274 if (!avc)
275 goto enomem_failure;
276 }
277 anon_vma = pavc->anon_vma;
278 root = lock_anon_vma_root(root, anon_vma);
279 anon_vma_chain_link(dst, avc, anon_vma);
280
281 /*
282 * Reuse existing anon_vma if its degree lower than two,
283 * that means it has no vma and only one anon_vma child.
284 *
285 * Do not chose parent anon_vma, otherwise first child
286 * will always reuse it. Root anon_vma is never reused:
287 * it has self-parent reference and at least one child.
288 */
289 if (!dst->anon_vma && anon_vma != src->anon_vma &&
290 anon_vma->degree < 2)
291 dst->anon_vma = anon_vma;
292 }
293 if (dst->anon_vma)
294 dst->anon_vma->degree++;
295 unlock_anon_vma_root(root);
296 return 0;
297
298 enomem_failure:
299 /*
300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
301 * decremented in unlink_anon_vmas().
302 * We can safely do this because callers of anon_vma_clone() don't care
303 * about dst->anon_vma if anon_vma_clone() failed.
304 */
305 dst->anon_vma = NULL;
306 unlink_anon_vmas(dst);
307 return -ENOMEM;
308 }
309
310 /*
311 * Attach vma to its own anon_vma, as well as to the anon_vmas that
312 * the corresponding VMA in the parent process is attached to.
313 * Returns 0 on success, non-zero on failure.
314 */
315 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
316 {
317 struct anon_vma_chain *avc;
318 struct anon_vma *anon_vma;
319 int error;
320
321 /* Don't bother if the parent process has no anon_vma here. */
322 if (!pvma->anon_vma)
323 return 0;
324
325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
326 vma->anon_vma = NULL;
327
328 /*
329 * First, attach the new VMA to the parent VMA's anon_vmas,
330 * so rmap can find non-COWed pages in child processes.
331 */
332 error = anon_vma_clone(vma, pvma);
333 if (error)
334 return error;
335
336 /* An existing anon_vma has been reused, all done then. */
337 if (vma->anon_vma)
338 return 0;
339
340 /* Then add our own anon_vma. */
341 anon_vma = anon_vma_alloc();
342 if (!anon_vma)
343 goto out_error;
344 avc = anon_vma_chain_alloc(GFP_KERNEL);
345 if (!avc)
346 goto out_error_free_anon_vma;
347
348 /*
349 * The root anon_vma's spinlock is the lock actually used when we
350 * lock any of the anon_vmas in this anon_vma tree.
351 */
352 anon_vma->root = pvma->anon_vma->root;
353 anon_vma->parent = pvma->anon_vma;
354 /*
355 * With refcounts, an anon_vma can stay around longer than the
356 * process it belongs to. The root anon_vma needs to be pinned until
357 * this anon_vma is freed, because the lock lives in the root.
358 */
359 get_anon_vma(anon_vma->root);
360 /* Mark this anon_vma as the one where our new (COWed) pages go. */
361 vma->anon_vma = anon_vma;
362 anon_vma_lock_write(anon_vma);
363 anon_vma_chain_link(vma, avc, anon_vma);
364 anon_vma->parent->degree++;
365 anon_vma_unlock_write(anon_vma);
366
367 return 0;
368
369 out_error_free_anon_vma:
370 put_anon_vma(anon_vma);
371 out_error:
372 unlink_anon_vmas(vma);
373 return -ENOMEM;
374 }
375
376 void unlink_anon_vmas(struct vm_area_struct *vma)
377 {
378 struct anon_vma_chain *avc, *next;
379 struct anon_vma *root = NULL;
380
381 /*
382 * Unlink each anon_vma chained to the VMA. This list is ordered
383 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 */
385 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
386 struct anon_vma *anon_vma = avc->anon_vma;
387
388 root = lock_anon_vma_root(root, anon_vma);
389 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
390
391 /*
392 * Leave empty anon_vmas on the list - we'll need
393 * to free them outside the lock.
394 */
395 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
396 anon_vma->parent->degree--;
397 continue;
398 }
399
400 list_del(&avc->same_vma);
401 anon_vma_chain_free(avc);
402 }
403 if (vma->anon_vma)
404 vma->anon_vma->degree--;
405 unlock_anon_vma_root(root);
406
407 /*
408 * Iterate the list once more, it now only contains empty and unlinked
409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
410 * needing to write-acquire the anon_vma->root->rwsem.
411 */
412 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
413 struct anon_vma *anon_vma = avc->anon_vma;
414
415 VM_WARN_ON(anon_vma->degree);
416 put_anon_vma(anon_vma);
417
418 list_del(&avc->same_vma);
419 anon_vma_chain_free(avc);
420 }
421 }
422
423 static void anon_vma_ctor(void *data)
424 {
425 struct anon_vma *anon_vma = data;
426
427 init_rwsem(&anon_vma->rwsem);
428 atomic_set(&anon_vma->refcount, 0);
429 anon_vma->rb_root = RB_ROOT_CACHED;
430 }
431
432 void __init anon_vma_init(void)
433 {
434 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
435 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
436 anon_vma_ctor);
437 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
438 SLAB_PANIC|SLAB_ACCOUNT);
439 }
440
441 /*
442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443 *
444 * Since there is no serialization what so ever against page_remove_rmap()
445 * the best this function can do is return a locked anon_vma that might
446 * have been relevant to this page.
447 *
448 * The page might have been remapped to a different anon_vma or the anon_vma
449 * returned may already be freed (and even reused).
450 *
451 * In case it was remapped to a different anon_vma, the new anon_vma will be a
452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
453 * ensure that any anon_vma obtained from the page will still be valid for as
454 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455 *
456 * All users of this function must be very careful when walking the anon_vma
457 * chain and verify that the page in question is indeed mapped in it
458 * [ something equivalent to page_mapped_in_vma() ].
459 *
460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
461 * that the anon_vma pointer from page->mapping is valid if there is a
462 * mapcount, we can dereference the anon_vma after observing those.
463 */
464 struct anon_vma *page_get_anon_vma(struct page *page)
465 {
466 struct anon_vma *anon_vma = NULL;
467 unsigned long anon_mapping;
468
469 rcu_read_lock();
470 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
471 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
472 goto out;
473 if (!page_mapped(page))
474 goto out;
475
476 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
477 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
478 anon_vma = NULL;
479 goto out;
480 }
481
482 /*
483 * If this page is still mapped, then its anon_vma cannot have been
484 * freed. But if it has been unmapped, we have no security against the
485 * anon_vma structure being freed and reused (for another anon_vma:
486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
487 * above cannot corrupt).
488 */
489 if (!page_mapped(page)) {
490 rcu_read_unlock();
491 put_anon_vma(anon_vma);
492 return NULL;
493 }
494 out:
495 rcu_read_unlock();
496
497 return anon_vma;
498 }
499
500 /*
501 * Similar to page_get_anon_vma() except it locks the anon_vma.
502 *
503 * Its a little more complex as it tries to keep the fast path to a single
504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
505 * reference like with page_get_anon_vma() and then block on the mutex.
506 */
507 struct anon_vma *page_lock_anon_vma_read(struct page *page)
508 {
509 struct anon_vma *anon_vma = NULL;
510 struct anon_vma *root_anon_vma;
511 unsigned long anon_mapping;
512
513 rcu_read_lock();
514 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
515 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
516 goto out;
517 if (!page_mapped(page))
518 goto out;
519
520 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
521 root_anon_vma = READ_ONCE(anon_vma->root);
522 if (down_read_trylock(&root_anon_vma->rwsem)) {
523 /*
524 * If the page is still mapped, then this anon_vma is still
525 * its anon_vma, and holding the mutex ensures that it will
526 * not go away, see anon_vma_free().
527 */
528 if (!page_mapped(page)) {
529 up_read(&root_anon_vma->rwsem);
530 anon_vma = NULL;
531 }
532 goto out;
533 }
534
535 /* trylock failed, we got to sleep */
536 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
537 anon_vma = NULL;
538 goto out;
539 }
540
541 if (!page_mapped(page)) {
542 rcu_read_unlock();
543 put_anon_vma(anon_vma);
544 return NULL;
545 }
546
547 /* we pinned the anon_vma, its safe to sleep */
548 rcu_read_unlock();
549 anon_vma_lock_read(anon_vma);
550
551 if (atomic_dec_and_test(&anon_vma->refcount)) {
552 /*
553 * Oops, we held the last refcount, release the lock
554 * and bail -- can't simply use put_anon_vma() because
555 * we'll deadlock on the anon_vma_lock_write() recursion.
556 */
557 anon_vma_unlock_read(anon_vma);
558 __put_anon_vma(anon_vma);
559 anon_vma = NULL;
560 }
561
562 return anon_vma;
563
564 out:
565 rcu_read_unlock();
566 return anon_vma;
567 }
568
569 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
570 {
571 anon_vma_unlock_read(anon_vma);
572 }
573
574 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
575 /*
576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
577 * important if a PTE was dirty when it was unmapped that it's flushed
578 * before any IO is initiated on the page to prevent lost writes. Similarly,
579 * it must be flushed before freeing to prevent data leakage.
580 */
581 void try_to_unmap_flush(void)
582 {
583 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
584
585 if (!tlb_ubc->flush_required)
586 return;
587
588 arch_tlbbatch_flush(&tlb_ubc->arch);
589 tlb_ubc->flush_required = false;
590 tlb_ubc->writable = false;
591 }
592
593 /* Flush iff there are potentially writable TLB entries that can race with IO */
594 void try_to_unmap_flush_dirty(void)
595 {
596 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
597
598 if (tlb_ubc->writable)
599 try_to_unmap_flush();
600 }
601
602 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
603 {
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
606 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
607 tlb_ubc->flush_required = true;
608
609 /*
610 * Ensure compiler does not re-order the setting of tlb_flush_batched
611 * before the PTE is cleared.
612 */
613 barrier();
614 mm->tlb_flush_batched = true;
615
616 /*
617 * If the PTE was dirty then it's best to assume it's writable. The
618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
619 * before the page is queued for IO.
620 */
621 if (writable)
622 tlb_ubc->writable = true;
623 }
624
625 /*
626 * Returns true if the TLB flush should be deferred to the end of a batch of
627 * unmap operations to reduce IPIs.
628 */
629 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
630 {
631 bool should_defer = false;
632
633 if (!(flags & TTU_BATCH_FLUSH))
634 return false;
635
636 /* If remote CPUs need to be flushed then defer batch the flush */
637 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
638 should_defer = true;
639 put_cpu();
640
641 return should_defer;
642 }
643
644 /*
645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
647 * operation such as mprotect or munmap to race between reclaim unmapping
648 * the page and flushing the page. If this race occurs, it potentially allows
649 * access to data via a stale TLB entry. Tracking all mm's that have TLB
650 * batching in flight would be expensive during reclaim so instead track
651 * whether TLB batching occurred in the past and if so then do a flush here
652 * if required. This will cost one additional flush per reclaim cycle paid
653 * by the first operation at risk such as mprotect and mumap.
654 *
655 * This must be called under the PTL so that an access to tlb_flush_batched
656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
657 * via the PTL.
658 */
659 void flush_tlb_batched_pending(struct mm_struct *mm)
660 {
661 if (mm->tlb_flush_batched) {
662 flush_tlb_mm(mm);
663
664 /*
665 * Do not allow the compiler to re-order the clearing of
666 * tlb_flush_batched before the tlb is flushed.
667 */
668 barrier();
669 mm->tlb_flush_batched = false;
670 }
671 }
672 #else
673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
674 {
675 }
676
677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678 {
679 return false;
680 }
681 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
682
683 /*
684 * At what user virtual address is page expected in vma?
685 * Caller should check the page is actually part of the vma.
686 */
687 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
688 {
689 unsigned long address;
690 if (PageAnon(page)) {
691 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 /*
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
695 */
696 if (!vma->anon_vma || !page__anon_vma ||
697 vma->anon_vma->root != page__anon_vma->root)
698 return -EFAULT;
699 } else if (page->mapping) {
700 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
701 return -EFAULT;
702 } else
703 return -EFAULT;
704 address = __vma_address(page, vma);
705 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
706 return -EFAULT;
707 return address;
708 }
709
710 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
711 {
712 pgd_t *pgd;
713 p4d_t *p4d;
714 pud_t *pud;
715 pmd_t *pmd = NULL;
716 pmd_t pmde;
717
718 pgd = pgd_offset(mm, address);
719 if (!pgd_present(*pgd))
720 goto out;
721
722 p4d = p4d_offset(pgd, address);
723 if (!p4d_present(*p4d))
724 goto out;
725
726 pud = pud_offset(p4d, address);
727 if (!pud_present(*pud))
728 goto out;
729
730 pmd = pmd_offset(pud, address);
731 /*
732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
733 * without holding anon_vma lock for write. So when looking for a
734 * genuine pmde (in which to find pte), test present and !THP together.
735 */
736 pmde = *pmd;
737 barrier();
738 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
739 pmd = NULL;
740 out:
741 return pmd;
742 }
743
744 struct page_referenced_arg {
745 int mapcount;
746 int referenced;
747 unsigned long vm_flags;
748 struct mem_cgroup *memcg;
749 };
750 /*
751 * arg: page_referenced_arg will be passed
752 */
753 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
754 unsigned long address, void *arg)
755 {
756 struct page_referenced_arg *pra = arg;
757 struct page_vma_mapped_walk pvmw = {
758 .page = page,
759 .vma = vma,
760 .address = address,
761 };
762 int referenced = 0;
763
764 while (page_vma_mapped_walk(&pvmw)) {
765 address = pvmw.address;
766
767 if (vma->vm_flags & VM_LOCKED) {
768 page_vma_mapped_walk_done(&pvmw);
769 pra->vm_flags |= VM_LOCKED;
770 return false; /* To break the loop */
771 }
772
773 if (pvmw.pte) {
774 if (ptep_clear_flush_young_notify(vma, address,
775 pvmw.pte)) {
776 /*
777 * Don't treat a reference through
778 * a sequentially read mapping as such.
779 * If the page has been used in another mapping,
780 * we will catch it; if this other mapping is
781 * already gone, the unmap path will have set
782 * PG_referenced or activated the page.
783 */
784 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
785 referenced++;
786 }
787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
788 if (pmdp_clear_flush_young_notify(vma, address,
789 pvmw.pmd))
790 referenced++;
791 } else {
792 /* unexpected pmd-mapped page? */
793 WARN_ON_ONCE(1);
794 }
795
796 pra->mapcount--;
797 }
798
799 if (referenced)
800 clear_page_idle(page);
801 if (test_and_clear_page_young(page))
802 referenced++;
803
804 if (referenced) {
805 pra->referenced++;
806 pra->vm_flags |= vma->vm_flags;
807 }
808
809 if (!pra->mapcount)
810 return false; /* To break the loop */
811
812 return true;
813 }
814
815 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
816 {
817 struct page_referenced_arg *pra = arg;
818 struct mem_cgroup *memcg = pra->memcg;
819
820 if (!mm_match_cgroup(vma->vm_mm, memcg))
821 return true;
822
823 return false;
824 }
825
826 /**
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
830 * @memcg: target memory cgroup
831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832 *
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
835 */
836 int page_referenced(struct page *page,
837 int is_locked,
838 struct mem_cgroup *memcg,
839 unsigned long *vm_flags)
840 {
841 int we_locked = 0;
842 struct page_referenced_arg pra = {
843 .mapcount = total_mapcount(page),
844 .memcg = memcg,
845 };
846 struct rmap_walk_control rwc = {
847 .rmap_one = page_referenced_one,
848 .arg = (void *)&pra,
849 .anon_lock = page_lock_anon_vma_read,
850 };
851
852 *vm_flags = 0;
853 if (!pra.mapcount)
854 return 0;
855
856 if (!page_rmapping(page))
857 return 0;
858
859 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
860 we_locked = trylock_page(page);
861 if (!we_locked)
862 return 1;
863 }
864
865 /*
866 * If we are reclaiming on behalf of a cgroup, skip
867 * counting on behalf of references from different
868 * cgroups
869 */
870 if (memcg) {
871 rwc.invalid_vma = invalid_page_referenced_vma;
872 }
873
874 rmap_walk(page, &rwc);
875 *vm_flags = pra.vm_flags;
876
877 if (we_locked)
878 unlock_page(page);
879
880 return pra.referenced;
881 }
882
883 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
884 unsigned long address, void *arg)
885 {
886 struct page_vma_mapped_walk pvmw = {
887 .page = page,
888 .vma = vma,
889 .address = address,
890 .flags = PVMW_SYNC,
891 };
892 struct mmu_notifier_range range;
893 int *cleaned = arg;
894
895 /*
896 * We have to assume the worse case ie pmd for invalidation. Note that
897 * the page can not be free from this function.
898 */
899 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
900 0, vma, vma->vm_mm, address,
901 min(vma->vm_end, address +
902 (PAGE_SIZE << compound_order(page))));
903 mmu_notifier_invalidate_range_start(&range);
904
905 while (page_vma_mapped_walk(&pvmw)) {
906 unsigned long cstart;
907 int ret = 0;
908
909 cstart = address = pvmw.address;
910 if (pvmw.pte) {
911 pte_t entry;
912 pte_t *pte = pvmw.pte;
913
914 if (!pte_dirty(*pte) && !pte_write(*pte))
915 continue;
916
917 flush_cache_page(vma, address, pte_pfn(*pte));
918 entry = ptep_clear_flush(vma, address, pte);
919 entry = pte_wrprotect(entry);
920 entry = pte_mkclean(entry);
921 set_pte_at(vma->vm_mm, address, pte, entry);
922 ret = 1;
923 } else {
924 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
925 pmd_t *pmd = pvmw.pmd;
926 pmd_t entry;
927
928 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
929 continue;
930
931 flush_cache_page(vma, address, page_to_pfn(page));
932 entry = pmdp_invalidate(vma, address, pmd);
933 entry = pmd_wrprotect(entry);
934 entry = pmd_mkclean(entry);
935 set_pmd_at(vma->vm_mm, address, pmd, entry);
936 cstart &= PMD_MASK;
937 ret = 1;
938 #else
939 /* unexpected pmd-mapped page? */
940 WARN_ON_ONCE(1);
941 #endif
942 }
943
944 /*
945 * No need to call mmu_notifier_invalidate_range() as we are
946 * downgrading page table protection not changing it to point
947 * to a new page.
948 *
949 * See Documentation/vm/mmu_notifier.rst
950 */
951 if (ret)
952 (*cleaned)++;
953 }
954
955 mmu_notifier_invalidate_range_end(&range);
956
957 return true;
958 }
959
960 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
961 {
962 if (vma->vm_flags & VM_SHARED)
963 return false;
964
965 return true;
966 }
967
968 int page_mkclean(struct page *page)
969 {
970 int cleaned = 0;
971 struct address_space *mapping;
972 struct rmap_walk_control rwc = {
973 .arg = (void *)&cleaned,
974 .rmap_one = page_mkclean_one,
975 .invalid_vma = invalid_mkclean_vma,
976 };
977
978 BUG_ON(!PageLocked(page));
979
980 if (!page_mapped(page))
981 return 0;
982
983 mapping = page_mapping(page);
984 if (!mapping)
985 return 0;
986
987 rmap_walk(page, &rwc);
988
989 return cleaned;
990 }
991 EXPORT_SYMBOL_GPL(page_mkclean);
992
993 /**
994 * page_move_anon_rmap - move a page to our anon_vma
995 * @page: the page to move to our anon_vma
996 * @vma: the vma the page belongs to
997 *
998 * When a page belongs exclusively to one process after a COW event,
999 * that page can be moved into the anon_vma that belongs to just that
1000 * process, so the rmap code will not search the parent or sibling
1001 * processes.
1002 */
1003 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1004 {
1005 struct anon_vma *anon_vma = vma->anon_vma;
1006
1007 page = compound_head(page);
1008
1009 VM_BUG_ON_PAGE(!PageLocked(page), page);
1010 VM_BUG_ON_VMA(!anon_vma, vma);
1011
1012 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1013 /*
1014 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1015 * simultaneously, so a concurrent reader (eg page_referenced()'s
1016 * PageAnon()) will not see one without the other.
1017 */
1018 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1019 }
1020
1021 /**
1022 * __page_set_anon_rmap - set up new anonymous rmap
1023 * @page: Page or Hugepage to add to rmap
1024 * @vma: VM area to add page to.
1025 * @address: User virtual address of the mapping
1026 * @exclusive: the page is exclusively owned by the current process
1027 */
1028 static void __page_set_anon_rmap(struct page *page,
1029 struct vm_area_struct *vma, unsigned long address, int exclusive)
1030 {
1031 struct anon_vma *anon_vma = vma->anon_vma;
1032
1033 BUG_ON(!anon_vma);
1034
1035 if (PageAnon(page))
1036 return;
1037
1038 /*
1039 * If the page isn't exclusively mapped into this vma,
1040 * we must use the _oldest_ possible anon_vma for the
1041 * page mapping!
1042 */
1043 if (!exclusive)
1044 anon_vma = anon_vma->root;
1045
1046 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1047 page->mapping = (struct address_space *) anon_vma;
1048 page->index = linear_page_index(vma, address);
1049 }
1050
1051 /**
1052 * __page_check_anon_rmap - sanity check anonymous rmap addition
1053 * @page: the page to add the mapping to
1054 * @vma: the vm area in which the mapping is added
1055 * @address: the user virtual address mapped
1056 */
1057 static void __page_check_anon_rmap(struct page *page,
1058 struct vm_area_struct *vma, unsigned long address)
1059 {
1060 #ifdef CONFIG_DEBUG_VM
1061 /*
1062 * The page's anon-rmap details (mapping and index) are guaranteed to
1063 * be set up correctly at this point.
1064 *
1065 * We have exclusion against page_add_anon_rmap because the caller
1066 * always holds the page locked, except if called from page_dup_rmap,
1067 * in which case the page is already known to be setup.
1068 *
1069 * We have exclusion against page_add_new_anon_rmap because those pages
1070 * are initially only visible via the pagetables, and the pte is locked
1071 * over the call to page_add_new_anon_rmap.
1072 */
1073 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1074 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1075 #endif
1076 }
1077
1078 /**
1079 * page_add_anon_rmap - add pte mapping to an anonymous page
1080 * @page: the page to add the mapping to
1081 * @vma: the vm area in which the mapping is added
1082 * @address: the user virtual address mapped
1083 * @compound: charge the page as compound or small page
1084 *
1085 * The caller needs to hold the pte lock, and the page must be locked in
1086 * the anon_vma case: to serialize mapping,index checking after setting,
1087 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1088 * (but PageKsm is never downgraded to PageAnon).
1089 */
1090 void page_add_anon_rmap(struct page *page,
1091 struct vm_area_struct *vma, unsigned long address, bool compound)
1092 {
1093 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1094 }
1095
1096 /*
1097 * Special version of the above for do_swap_page, which often runs
1098 * into pages that are exclusively owned by the current process.
1099 * Everybody else should continue to use page_add_anon_rmap above.
1100 */
1101 void do_page_add_anon_rmap(struct page *page,
1102 struct vm_area_struct *vma, unsigned long address, int flags)
1103 {
1104 bool compound = flags & RMAP_COMPOUND;
1105 bool first;
1106
1107 if (compound) {
1108 atomic_t *mapcount;
1109 VM_BUG_ON_PAGE(!PageLocked(page), page);
1110 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1111 mapcount = compound_mapcount_ptr(page);
1112 first = atomic_inc_and_test(mapcount);
1113 } else {
1114 first = atomic_inc_and_test(&page->_mapcount);
1115 }
1116
1117 if (first) {
1118 int nr = compound ? hpage_nr_pages(page) : 1;
1119 /*
1120 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1121 * these counters are not modified in interrupt context, and
1122 * pte lock(a spinlock) is held, which implies preemption
1123 * disabled.
1124 */
1125 if (compound)
1126 __inc_node_page_state(page, NR_ANON_THPS);
1127 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1128 }
1129 if (unlikely(PageKsm(page)))
1130 return;
1131
1132 VM_BUG_ON_PAGE(!PageLocked(page), page);
1133
1134 /* address might be in next vma when migration races vma_adjust */
1135 if (first)
1136 __page_set_anon_rmap(page, vma, address,
1137 flags & RMAP_EXCLUSIVE);
1138 else
1139 __page_check_anon_rmap(page, vma, address);
1140 }
1141
1142 /**
1143 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1144 * @page: the page to add the mapping to
1145 * @vma: the vm area in which the mapping is added
1146 * @address: the user virtual address mapped
1147 * @compound: charge the page as compound or small page
1148 *
1149 * Same as page_add_anon_rmap but must only be called on *new* pages.
1150 * This means the inc-and-test can be bypassed.
1151 * Page does not have to be locked.
1152 */
1153 void page_add_new_anon_rmap(struct page *page,
1154 struct vm_area_struct *vma, unsigned long address, bool compound)
1155 {
1156 int nr = compound ? hpage_nr_pages(page) : 1;
1157
1158 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1159 __SetPageSwapBacked(page);
1160 if (compound) {
1161 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1162 /* increment count (starts at -1) */
1163 atomic_set(compound_mapcount_ptr(page), 0);
1164 __inc_node_page_state(page, NR_ANON_THPS);
1165 } else {
1166 /* Anon THP always mapped first with PMD */
1167 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1168 /* increment count (starts at -1) */
1169 atomic_set(&page->_mapcount, 0);
1170 }
1171 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1172 __page_set_anon_rmap(page, vma, address, 1);
1173 }
1174
1175 /**
1176 * page_add_file_rmap - add pte mapping to a file page
1177 * @page: the page to add the mapping to
1178 * @compound: charge the page as compound or small page
1179 *
1180 * The caller needs to hold the pte lock.
1181 */
1182 void page_add_file_rmap(struct page *page, bool compound)
1183 {
1184 int i, nr = 1;
1185
1186 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1187 lock_page_memcg(page);
1188 if (compound && PageTransHuge(page)) {
1189 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1190 if (atomic_inc_and_test(&page[i]._mapcount))
1191 nr++;
1192 }
1193 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1194 goto out;
1195 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1196 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1197 } else {
1198 if (PageTransCompound(page) && page_mapping(page)) {
1199 VM_WARN_ON_ONCE(!PageLocked(page));
1200
1201 SetPageDoubleMap(compound_head(page));
1202 if (PageMlocked(page))
1203 clear_page_mlock(compound_head(page));
1204 }
1205 if (!atomic_inc_and_test(&page->_mapcount))
1206 goto out;
1207 }
1208 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1209 out:
1210 unlock_page_memcg(page);
1211 }
1212
1213 static void page_remove_file_rmap(struct page *page, bool compound)
1214 {
1215 int i, nr = 1;
1216
1217 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1218 lock_page_memcg(page);
1219
1220 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1221 if (unlikely(PageHuge(page))) {
1222 /* hugetlb pages are always mapped with pmds */
1223 atomic_dec(compound_mapcount_ptr(page));
1224 goto out;
1225 }
1226
1227 /* page still mapped by someone else? */
1228 if (compound && PageTransHuge(page)) {
1229 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1230 if (atomic_add_negative(-1, &page[i]._mapcount))
1231 nr++;
1232 }
1233 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1234 goto out;
1235 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1236 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1237 } else {
1238 if (!atomic_add_negative(-1, &page->_mapcount))
1239 goto out;
1240 }
1241
1242 /*
1243 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1244 * these counters are not modified in interrupt context, and
1245 * pte lock(a spinlock) is held, which implies preemption disabled.
1246 */
1247 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1248
1249 if (unlikely(PageMlocked(page)))
1250 clear_page_mlock(page);
1251 out:
1252 unlock_page_memcg(page);
1253 }
1254
1255 static void page_remove_anon_compound_rmap(struct page *page)
1256 {
1257 int i, nr;
1258
1259 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1260 return;
1261
1262 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1263 if (unlikely(PageHuge(page)))
1264 return;
1265
1266 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1267 return;
1268
1269 __dec_node_page_state(page, NR_ANON_THPS);
1270
1271 if (TestClearPageDoubleMap(page)) {
1272 /*
1273 * Subpages can be mapped with PTEs too. Check how many of
1274 * themi are still mapped.
1275 */
1276 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1277 if (atomic_add_negative(-1, &page[i]._mapcount))
1278 nr++;
1279 }
1280 } else {
1281 nr = HPAGE_PMD_NR;
1282 }
1283
1284 if (unlikely(PageMlocked(page)))
1285 clear_page_mlock(page);
1286
1287 if (nr) {
1288 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1289 deferred_split_huge_page(page);
1290 }
1291 }
1292
1293 /**
1294 * page_remove_rmap - take down pte mapping from a page
1295 * @page: page to remove mapping from
1296 * @compound: uncharge the page as compound or small page
1297 *
1298 * The caller needs to hold the pte lock.
1299 */
1300 void page_remove_rmap(struct page *page, bool compound)
1301 {
1302 if (!PageAnon(page))
1303 return page_remove_file_rmap(page, compound);
1304
1305 if (compound)
1306 return page_remove_anon_compound_rmap(page);
1307
1308 /* page still mapped by someone else? */
1309 if (!atomic_add_negative(-1, &page->_mapcount))
1310 return;
1311
1312 /*
1313 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1314 * these counters are not modified in interrupt context, and
1315 * pte lock(a spinlock) is held, which implies preemption disabled.
1316 */
1317 __dec_node_page_state(page, NR_ANON_MAPPED);
1318
1319 if (unlikely(PageMlocked(page)))
1320 clear_page_mlock(page);
1321
1322 if (PageTransCompound(page))
1323 deferred_split_huge_page(compound_head(page));
1324
1325 /*
1326 * It would be tidy to reset the PageAnon mapping here,
1327 * but that might overwrite a racing page_add_anon_rmap
1328 * which increments mapcount after us but sets mapping
1329 * before us: so leave the reset to free_unref_page,
1330 * and remember that it's only reliable while mapped.
1331 * Leaving it set also helps swapoff to reinstate ptes
1332 * faster for those pages still in swapcache.
1333 */
1334 }
1335
1336 /*
1337 * @arg: enum ttu_flags will be passed to this argument
1338 */
1339 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1340 unsigned long address, void *arg)
1341 {
1342 struct mm_struct *mm = vma->vm_mm;
1343 struct page_vma_mapped_walk pvmw = {
1344 .page = page,
1345 .vma = vma,
1346 .address = address,
1347 };
1348 pte_t pteval;
1349 struct page *subpage;
1350 bool ret = true;
1351 struct mmu_notifier_range range;
1352 enum ttu_flags flags = (enum ttu_flags)arg;
1353
1354 /* munlock has nothing to gain from examining un-locked vmas */
1355 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1356 return true;
1357
1358 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1359 is_zone_device_page(page) && !is_device_private_page(page))
1360 return true;
1361
1362 if (flags & TTU_SPLIT_HUGE_PMD) {
1363 split_huge_pmd_address(vma, address,
1364 flags & TTU_SPLIT_FREEZE, page);
1365 }
1366
1367 /*
1368 * For THP, we have to assume the worse case ie pmd for invalidation.
1369 * For hugetlb, it could be much worse if we need to do pud
1370 * invalidation in the case of pmd sharing.
1371 *
1372 * Note that the page can not be free in this function as call of
1373 * try_to_unmap() must hold a reference on the page.
1374 */
1375 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1376 address,
1377 min(vma->vm_end, address +
1378 (PAGE_SIZE << compound_order(page))));
1379 if (PageHuge(page)) {
1380 /*
1381 * If sharing is possible, start and end will be adjusted
1382 * accordingly.
1383 */
1384 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1385 &range.end);
1386 }
1387 mmu_notifier_invalidate_range_start(&range);
1388
1389 while (page_vma_mapped_walk(&pvmw)) {
1390 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1391 /* PMD-mapped THP migration entry */
1392 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1393 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1394
1395 set_pmd_migration_entry(&pvmw, page);
1396 continue;
1397 }
1398 #endif
1399
1400 /*
1401 * If the page is mlock()d, we cannot swap it out.
1402 * If it's recently referenced (perhaps page_referenced
1403 * skipped over this mm) then we should reactivate it.
1404 */
1405 if (!(flags & TTU_IGNORE_MLOCK)) {
1406 if (vma->vm_flags & VM_LOCKED) {
1407 /* PTE-mapped THP are never mlocked */
1408 if (!PageTransCompound(page)) {
1409 /*
1410 * Holding pte lock, we do *not* need
1411 * mmap_sem here
1412 */
1413 mlock_vma_page(page);
1414 }
1415 ret = false;
1416 page_vma_mapped_walk_done(&pvmw);
1417 break;
1418 }
1419 if (flags & TTU_MUNLOCK)
1420 continue;
1421 }
1422
1423 /* Unexpected PMD-mapped THP? */
1424 VM_BUG_ON_PAGE(!pvmw.pte, page);
1425
1426 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1427 address = pvmw.address;
1428
1429 if (PageHuge(page)) {
1430 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1431 /*
1432 * huge_pmd_unshare unmapped an entire PMD
1433 * page. There is no way of knowing exactly
1434 * which PMDs may be cached for this mm, so
1435 * we must flush them all. start/end were
1436 * already adjusted above to cover this range.
1437 */
1438 flush_cache_range(vma, range.start, range.end);
1439 flush_tlb_range(vma, range.start, range.end);
1440 mmu_notifier_invalidate_range(mm, range.start,
1441 range.end);
1442
1443 /*
1444 * The ref count of the PMD page was dropped
1445 * which is part of the way map counting
1446 * is done for shared PMDs. Return 'true'
1447 * here. When there is no other sharing,
1448 * huge_pmd_unshare returns false and we will
1449 * unmap the actual page and drop map count
1450 * to zero.
1451 */
1452 page_vma_mapped_walk_done(&pvmw);
1453 break;
1454 }
1455 }
1456
1457 if (IS_ENABLED(CONFIG_MIGRATION) &&
1458 (flags & TTU_MIGRATION) &&
1459 is_zone_device_page(page)) {
1460 swp_entry_t entry;
1461 pte_t swp_pte;
1462
1463 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1464
1465 /*
1466 * Store the pfn of the page in a special migration
1467 * pte. do_swap_page() will wait until the migration
1468 * pte is removed and then restart fault handling.
1469 */
1470 entry = make_migration_entry(page, 0);
1471 swp_pte = swp_entry_to_pte(entry);
1472 if (pte_soft_dirty(pteval))
1473 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1474 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1475 /*
1476 * No need to invalidate here it will synchronize on
1477 * against the special swap migration pte.
1478 *
1479 * The assignment to subpage above was computed from a
1480 * swap PTE which results in an invalid pointer.
1481 * Since only PAGE_SIZE pages can currently be
1482 * migrated, just set it to page. This will need to be
1483 * changed when hugepage migrations to device private
1484 * memory are supported.
1485 */
1486 subpage = page;
1487 goto discard;
1488 }
1489
1490 if (!(flags & TTU_IGNORE_ACCESS)) {
1491 if (ptep_clear_flush_young_notify(vma, address,
1492 pvmw.pte)) {
1493 ret = false;
1494 page_vma_mapped_walk_done(&pvmw);
1495 break;
1496 }
1497 }
1498
1499 /* Nuke the page table entry. */
1500 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1501 if (should_defer_flush(mm, flags)) {
1502 /*
1503 * We clear the PTE but do not flush so potentially
1504 * a remote CPU could still be writing to the page.
1505 * If the entry was previously clean then the
1506 * architecture must guarantee that a clear->dirty
1507 * transition on a cached TLB entry is written through
1508 * and traps if the PTE is unmapped.
1509 */
1510 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1511
1512 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1513 } else {
1514 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1515 }
1516
1517 /* Move the dirty bit to the page. Now the pte is gone. */
1518 if (pte_dirty(pteval))
1519 set_page_dirty(page);
1520
1521 /* Update high watermark before we lower rss */
1522 update_hiwater_rss(mm);
1523
1524 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1525 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1526 if (PageHuge(page)) {
1527 int nr = 1 << compound_order(page);
1528 hugetlb_count_sub(nr, mm);
1529 set_huge_swap_pte_at(mm, address,
1530 pvmw.pte, pteval,
1531 vma_mmu_pagesize(vma));
1532 } else {
1533 dec_mm_counter(mm, mm_counter(page));
1534 set_pte_at(mm, address, pvmw.pte, pteval);
1535 }
1536
1537 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1538 /*
1539 * The guest indicated that the page content is of no
1540 * interest anymore. Simply discard the pte, vmscan
1541 * will take care of the rest.
1542 * A future reference will then fault in a new zero
1543 * page. When userfaultfd is active, we must not drop
1544 * this page though, as its main user (postcopy
1545 * migration) will not expect userfaults on already
1546 * copied pages.
1547 */
1548 dec_mm_counter(mm, mm_counter(page));
1549 /* We have to invalidate as we cleared the pte */
1550 mmu_notifier_invalidate_range(mm, address,
1551 address + PAGE_SIZE);
1552 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1553 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1554 swp_entry_t entry;
1555 pte_t swp_pte;
1556
1557 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1558 set_pte_at(mm, address, pvmw.pte, pteval);
1559 ret = false;
1560 page_vma_mapped_walk_done(&pvmw);
1561 break;
1562 }
1563
1564 /*
1565 * Store the pfn of the page in a special migration
1566 * pte. do_swap_page() will wait until the migration
1567 * pte is removed and then restart fault handling.
1568 */
1569 entry = make_migration_entry(subpage,
1570 pte_write(pteval));
1571 swp_pte = swp_entry_to_pte(entry);
1572 if (pte_soft_dirty(pteval))
1573 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1574 set_pte_at(mm, address, pvmw.pte, swp_pte);
1575 /*
1576 * No need to invalidate here it will synchronize on
1577 * against the special swap migration pte.
1578 */
1579 } else if (PageAnon(page)) {
1580 swp_entry_t entry = { .val = page_private(subpage) };
1581 pte_t swp_pte;
1582 /*
1583 * Store the swap location in the pte.
1584 * See handle_pte_fault() ...
1585 */
1586 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1587 WARN_ON_ONCE(1);
1588 ret = false;
1589 /* We have to invalidate as we cleared the pte */
1590 mmu_notifier_invalidate_range(mm, address,
1591 address + PAGE_SIZE);
1592 page_vma_mapped_walk_done(&pvmw);
1593 break;
1594 }
1595
1596 /* MADV_FREE page check */
1597 if (!PageSwapBacked(page)) {
1598 if (!PageDirty(page)) {
1599 /* Invalidate as we cleared the pte */
1600 mmu_notifier_invalidate_range(mm,
1601 address, address + PAGE_SIZE);
1602 dec_mm_counter(mm, MM_ANONPAGES);
1603 goto discard;
1604 }
1605
1606 /*
1607 * If the page was redirtied, it cannot be
1608 * discarded. Remap the page to page table.
1609 */
1610 set_pte_at(mm, address, pvmw.pte, pteval);
1611 SetPageSwapBacked(page);
1612 ret = false;
1613 page_vma_mapped_walk_done(&pvmw);
1614 break;
1615 }
1616
1617 if (swap_duplicate(entry) < 0) {
1618 set_pte_at(mm, address, pvmw.pte, pteval);
1619 ret = false;
1620 page_vma_mapped_walk_done(&pvmw);
1621 break;
1622 }
1623 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1624 set_pte_at(mm, address, pvmw.pte, pteval);
1625 ret = false;
1626 page_vma_mapped_walk_done(&pvmw);
1627 break;
1628 }
1629 if (list_empty(&mm->mmlist)) {
1630 spin_lock(&mmlist_lock);
1631 if (list_empty(&mm->mmlist))
1632 list_add(&mm->mmlist, &init_mm.mmlist);
1633 spin_unlock(&mmlist_lock);
1634 }
1635 dec_mm_counter(mm, MM_ANONPAGES);
1636 inc_mm_counter(mm, MM_SWAPENTS);
1637 swp_pte = swp_entry_to_pte(entry);
1638 if (pte_soft_dirty(pteval))
1639 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1640 set_pte_at(mm, address, pvmw.pte, swp_pte);
1641 /* Invalidate as we cleared the pte */
1642 mmu_notifier_invalidate_range(mm, address,
1643 address + PAGE_SIZE);
1644 } else {
1645 /*
1646 * This is a locked file-backed page, thus it cannot
1647 * be removed from the page cache and replaced by a new
1648 * page before mmu_notifier_invalidate_range_end, so no
1649 * concurrent thread might update its page table to
1650 * point at new page while a device still is using this
1651 * page.
1652 *
1653 * See Documentation/vm/mmu_notifier.rst
1654 */
1655 dec_mm_counter(mm, mm_counter_file(page));
1656 }
1657 discard:
1658 /*
1659 * No need to call mmu_notifier_invalidate_range() it has be
1660 * done above for all cases requiring it to happen under page
1661 * table lock before mmu_notifier_invalidate_range_end()
1662 *
1663 * See Documentation/vm/mmu_notifier.rst
1664 */
1665 page_remove_rmap(subpage, PageHuge(page));
1666 put_page(page);
1667 }
1668
1669 mmu_notifier_invalidate_range_end(&range);
1670
1671 return ret;
1672 }
1673
1674 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1675 {
1676 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1677
1678 if (!maybe_stack)
1679 return false;
1680
1681 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1682 VM_STACK_INCOMPLETE_SETUP)
1683 return true;
1684
1685 return false;
1686 }
1687
1688 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1689 {
1690 return is_vma_temporary_stack(vma);
1691 }
1692
1693 static int page_mapcount_is_zero(struct page *page)
1694 {
1695 return !total_mapcount(page);
1696 }
1697
1698 /**
1699 * try_to_unmap - try to remove all page table mappings to a page
1700 * @page: the page to get unmapped
1701 * @flags: action and flags
1702 *
1703 * Tries to remove all the page table entries which are mapping this
1704 * page, used in the pageout path. Caller must hold the page lock.
1705 *
1706 * If unmap is successful, return true. Otherwise, false.
1707 */
1708 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1709 {
1710 struct rmap_walk_control rwc = {
1711 .rmap_one = try_to_unmap_one,
1712 .arg = (void *)flags,
1713 .done = page_mapcount_is_zero,
1714 .anon_lock = page_lock_anon_vma_read,
1715 };
1716
1717 /*
1718 * During exec, a temporary VMA is setup and later moved.
1719 * The VMA is moved under the anon_vma lock but not the
1720 * page tables leading to a race where migration cannot
1721 * find the migration ptes. Rather than increasing the
1722 * locking requirements of exec(), migration skips
1723 * temporary VMAs until after exec() completes.
1724 */
1725 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1726 && !PageKsm(page) && PageAnon(page))
1727 rwc.invalid_vma = invalid_migration_vma;
1728
1729 if (flags & TTU_RMAP_LOCKED)
1730 rmap_walk_locked(page, &rwc);
1731 else
1732 rmap_walk(page, &rwc);
1733
1734 return !page_mapcount(page) ? true : false;
1735 }
1736
1737 static int page_not_mapped(struct page *page)
1738 {
1739 return !page_mapped(page);
1740 };
1741
1742 /**
1743 * try_to_munlock - try to munlock a page
1744 * @page: the page to be munlocked
1745 *
1746 * Called from munlock code. Checks all of the VMAs mapping the page
1747 * to make sure nobody else has this page mlocked. The page will be
1748 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1749 */
1750
1751 void try_to_munlock(struct page *page)
1752 {
1753 struct rmap_walk_control rwc = {
1754 .rmap_one = try_to_unmap_one,
1755 .arg = (void *)TTU_MUNLOCK,
1756 .done = page_not_mapped,
1757 .anon_lock = page_lock_anon_vma_read,
1758
1759 };
1760
1761 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1762 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1763
1764 rmap_walk(page, &rwc);
1765 }
1766
1767 void __put_anon_vma(struct anon_vma *anon_vma)
1768 {
1769 struct anon_vma *root = anon_vma->root;
1770
1771 anon_vma_free(anon_vma);
1772 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1773 anon_vma_free(root);
1774 }
1775
1776 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1777 struct rmap_walk_control *rwc)
1778 {
1779 struct anon_vma *anon_vma;
1780
1781 if (rwc->anon_lock)
1782 return rwc->anon_lock(page);
1783
1784 /*
1785 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1786 * because that depends on page_mapped(); but not all its usages
1787 * are holding mmap_sem. Users without mmap_sem are required to
1788 * take a reference count to prevent the anon_vma disappearing
1789 */
1790 anon_vma = page_anon_vma(page);
1791 if (!anon_vma)
1792 return NULL;
1793
1794 anon_vma_lock_read(anon_vma);
1795 return anon_vma;
1796 }
1797
1798 /*
1799 * rmap_walk_anon - do something to anonymous page using the object-based
1800 * rmap method
1801 * @page: the page to be handled
1802 * @rwc: control variable according to each walk type
1803 *
1804 * Find all the mappings of a page using the mapping pointer and the vma chains
1805 * contained in the anon_vma struct it points to.
1806 *
1807 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1808 * where the page was found will be held for write. So, we won't recheck
1809 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1810 * LOCKED.
1811 */
1812 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1813 bool locked)
1814 {
1815 struct anon_vma *anon_vma;
1816 pgoff_t pgoff_start, pgoff_end;
1817 struct anon_vma_chain *avc;
1818
1819 if (locked) {
1820 anon_vma = page_anon_vma(page);
1821 /* anon_vma disappear under us? */
1822 VM_BUG_ON_PAGE(!anon_vma, page);
1823 } else {
1824 anon_vma = rmap_walk_anon_lock(page, rwc);
1825 }
1826 if (!anon_vma)
1827 return;
1828
1829 pgoff_start = page_to_pgoff(page);
1830 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1831 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1832 pgoff_start, pgoff_end) {
1833 struct vm_area_struct *vma = avc->vma;
1834 unsigned long address = vma_address(page, vma);
1835
1836 cond_resched();
1837
1838 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1839 continue;
1840
1841 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1842 break;
1843 if (rwc->done && rwc->done(page))
1844 break;
1845 }
1846
1847 if (!locked)
1848 anon_vma_unlock_read(anon_vma);
1849 }
1850
1851 /*
1852 * rmap_walk_file - do something to file page using the object-based rmap method
1853 * @page: the page to be handled
1854 * @rwc: control variable according to each walk type
1855 *
1856 * Find all the mappings of a page using the mapping pointer and the vma chains
1857 * contained in the address_space struct it points to.
1858 *
1859 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1860 * where the page was found will be held for write. So, we won't recheck
1861 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1862 * LOCKED.
1863 */
1864 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1865 bool locked)
1866 {
1867 struct address_space *mapping = page_mapping(page);
1868 pgoff_t pgoff_start, pgoff_end;
1869 struct vm_area_struct *vma;
1870
1871 /*
1872 * The page lock not only makes sure that page->mapping cannot
1873 * suddenly be NULLified by truncation, it makes sure that the
1874 * structure at mapping cannot be freed and reused yet,
1875 * so we can safely take mapping->i_mmap_rwsem.
1876 */
1877 VM_BUG_ON_PAGE(!PageLocked(page), page);
1878
1879 if (!mapping)
1880 return;
1881
1882 pgoff_start = page_to_pgoff(page);
1883 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1884 if (!locked)
1885 i_mmap_lock_read(mapping);
1886 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1887 pgoff_start, pgoff_end) {
1888 unsigned long address = vma_address(page, vma);
1889
1890 cond_resched();
1891
1892 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1893 continue;
1894
1895 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1896 goto done;
1897 if (rwc->done && rwc->done(page))
1898 goto done;
1899 }
1900
1901 done:
1902 if (!locked)
1903 i_mmap_unlock_read(mapping);
1904 }
1905
1906 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1907 {
1908 if (unlikely(PageKsm(page)))
1909 rmap_walk_ksm(page, rwc);
1910 else if (PageAnon(page))
1911 rmap_walk_anon(page, rwc, false);
1912 else
1913 rmap_walk_file(page, rwc, false);
1914 }
1915
1916 /* Like rmap_walk, but caller holds relevant rmap lock */
1917 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1918 {
1919 /* no ksm support for now */
1920 VM_BUG_ON_PAGE(PageKsm(page), page);
1921 if (PageAnon(page))
1922 rmap_walk_anon(page, rwc, true);
1923 else
1924 rmap_walk_file(page, rwc, true);
1925 }
1926
1927 #ifdef CONFIG_HUGETLB_PAGE
1928 /*
1929 * The following two functions are for anonymous (private mapped) hugepages.
1930 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1931 * and no lru code, because we handle hugepages differently from common pages.
1932 */
1933 void hugepage_add_anon_rmap(struct page *page,
1934 struct vm_area_struct *vma, unsigned long address)
1935 {
1936 struct anon_vma *anon_vma = vma->anon_vma;
1937 int first;
1938
1939 BUG_ON(!PageLocked(page));
1940 BUG_ON(!anon_vma);
1941 /* address might be in next vma when migration races vma_adjust */
1942 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1943 if (first)
1944 __page_set_anon_rmap(page, vma, address, 0);
1945 }
1946
1947 void hugepage_add_new_anon_rmap(struct page *page,
1948 struct vm_area_struct *vma, unsigned long address)
1949 {
1950 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1951 atomic_set(compound_mapcount_ptr(page), 0);
1952 __page_set_anon_rmap(page, vma, address, 1);
1953 }
1954 #endif /* CONFIG_HUGETLB_PAGE */