2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
40 * within bdi.wb->list_lock in __sync_single_inode)
42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
63 #include <asm/tlbflush.h>
67 static struct kmem_cache
*anon_vma_cachep
;
68 static struct kmem_cache
*anon_vma_chain_cachep
;
70 static inline struct anon_vma
*anon_vma_alloc(void)
72 struct anon_vma
*anon_vma
;
74 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
76 atomic_set(&anon_vma
->refcount
, 1);
77 anon_vma
->degree
= 1; /* Reference for first vma */
78 anon_vma
->parent
= anon_vma
;
80 * Initialise the anon_vma root to point to itself. If called
81 * from fork, the root will be reset to the parents anon_vma.
83 anon_vma
->root
= anon_vma
;
89 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
91 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
94 * Synchronize against page_lock_anon_vma_read() such that
95 * we can safely hold the lock without the anon_vma getting
98 * Relies on the full mb implied by the atomic_dec_and_test() from
99 * put_anon_vma() against the acquire barrier implied by
100 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
102 * page_lock_anon_vma_read() VS put_anon_vma()
103 * down_read_trylock() atomic_dec_and_test()
105 * atomic_read() rwsem_is_locked()
107 * LOCK should suffice since the actual taking of the lock must
108 * happen _before_ what follows.
111 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
112 anon_vma_lock_write(anon_vma
);
113 anon_vma_unlock_write(anon_vma
);
116 kmem_cache_free(anon_vma_cachep
, anon_vma
);
119 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
121 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
124 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
126 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
129 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
130 struct anon_vma_chain
*avc
,
131 struct anon_vma
*anon_vma
)
134 avc
->anon_vma
= anon_vma
;
135 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
136 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
140 * anon_vma_prepare - attach an anon_vma to a memory region
141 * @vma: the memory region in question
143 * This makes sure the memory mapping described by 'vma' has
144 * an 'anon_vma' attached to it, so that we can associate the
145 * anonymous pages mapped into it with that anon_vma.
147 * The common case will be that we already have one, but if
148 * not we either need to find an adjacent mapping that we
149 * can re-use the anon_vma from (very common when the only
150 * reason for splitting a vma has been mprotect()), or we
151 * allocate a new one.
153 * Anon-vma allocations are very subtle, because we may have
154 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
155 * and that may actually touch the spinlock even in the newly
156 * allocated vma (it depends on RCU to make sure that the
157 * anon_vma isn't actually destroyed).
159 * As a result, we need to do proper anon_vma locking even
160 * for the new allocation. At the same time, we do not want
161 * to do any locking for the common case of already having
164 * This must be called with the mmap_sem held for reading.
166 int anon_vma_prepare(struct vm_area_struct
*vma
)
168 struct anon_vma
*anon_vma
= vma
->anon_vma
;
169 struct anon_vma_chain
*avc
;
172 if (unlikely(!anon_vma
)) {
173 struct mm_struct
*mm
= vma
->vm_mm
;
174 struct anon_vma
*allocated
;
176 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
180 anon_vma
= find_mergeable_anon_vma(vma
);
183 anon_vma
= anon_vma_alloc();
184 if (unlikely(!anon_vma
))
185 goto out_enomem_free_avc
;
186 allocated
= anon_vma
;
189 anon_vma_lock_write(anon_vma
);
190 /* page_table_lock to protect against threads */
191 spin_lock(&mm
->page_table_lock
);
192 if (likely(!vma
->anon_vma
)) {
193 vma
->anon_vma
= anon_vma
;
194 anon_vma_chain_link(vma
, avc
, anon_vma
);
195 /* vma reference or self-parent link for new root */
200 spin_unlock(&mm
->page_table_lock
);
201 anon_vma_unlock_write(anon_vma
);
203 if (unlikely(allocated
))
204 put_anon_vma(allocated
);
206 anon_vma_chain_free(avc
);
211 anon_vma_chain_free(avc
);
217 * This is a useful helper function for locking the anon_vma root as
218 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
221 * Such anon_vma's should have the same root, so you'd expect to see
222 * just a single mutex_lock for the whole traversal.
224 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
226 struct anon_vma
*new_root
= anon_vma
->root
;
227 if (new_root
!= root
) {
228 if (WARN_ON_ONCE(root
))
229 up_write(&root
->rwsem
);
231 down_write(&root
->rwsem
);
236 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
239 up_write(&root
->rwsem
);
243 * Attach the anon_vmas from src to dst.
244 * Returns 0 on success, -ENOMEM on failure.
246 * If dst->anon_vma is NULL this function tries to find and reuse existing
247 * anon_vma which has no vmas and only one child anon_vma. This prevents
248 * degradation of anon_vma hierarchy to endless linear chain in case of
249 * constantly forking task. On the other hand, an anon_vma with more than one
250 * child isn't reused even if there was no alive vma, thus rmap walker has a
251 * good chance of avoiding scanning the whole hierarchy when it searches where
254 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
256 struct anon_vma_chain
*avc
, *pavc
;
257 struct anon_vma
*root
= NULL
;
259 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
260 struct anon_vma
*anon_vma
;
262 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
263 if (unlikely(!avc
)) {
264 unlock_anon_vma_root(root
);
266 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
270 anon_vma
= pavc
->anon_vma
;
271 root
= lock_anon_vma_root(root
, anon_vma
);
272 anon_vma_chain_link(dst
, avc
, anon_vma
);
275 * Reuse existing anon_vma if its degree lower than two,
276 * that means it has no vma and only one anon_vma child.
278 * Do not chose parent anon_vma, otherwise first child
279 * will always reuse it. Root anon_vma is never reused:
280 * it has self-parent reference and at least one child.
282 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
283 anon_vma
->degree
< 2)
284 dst
->anon_vma
= anon_vma
;
287 dst
->anon_vma
->degree
++;
288 unlock_anon_vma_root(root
);
293 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
294 * decremented in unlink_anon_vmas().
295 * We can safely do this because callers of anon_vma_clone() don't care
296 * about dst->anon_vma if anon_vma_clone() failed.
298 dst
->anon_vma
= NULL
;
299 unlink_anon_vmas(dst
);
304 * Attach vma to its own anon_vma, as well as to the anon_vmas that
305 * the corresponding VMA in the parent process is attached to.
306 * Returns 0 on success, non-zero on failure.
308 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
310 struct anon_vma_chain
*avc
;
311 struct anon_vma
*anon_vma
;
314 /* Don't bother if the parent process has no anon_vma here. */
318 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
319 vma
->anon_vma
= NULL
;
322 * First, attach the new VMA to the parent VMA's anon_vmas,
323 * so rmap can find non-COWed pages in child processes.
325 error
= anon_vma_clone(vma
, pvma
);
329 /* An existing anon_vma has been reused, all done then. */
333 /* Then add our own anon_vma. */
334 anon_vma
= anon_vma_alloc();
337 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
339 goto out_error_free_anon_vma
;
342 * The root anon_vma's spinlock is the lock actually used when we
343 * lock any of the anon_vmas in this anon_vma tree.
345 anon_vma
->root
= pvma
->anon_vma
->root
;
346 anon_vma
->parent
= pvma
->anon_vma
;
348 * With refcounts, an anon_vma can stay around longer than the
349 * process it belongs to. The root anon_vma needs to be pinned until
350 * this anon_vma is freed, because the lock lives in the root.
352 get_anon_vma(anon_vma
->root
);
353 /* Mark this anon_vma as the one where our new (COWed) pages go. */
354 vma
->anon_vma
= anon_vma
;
355 anon_vma_lock_write(anon_vma
);
356 anon_vma_chain_link(vma
, avc
, anon_vma
);
357 anon_vma
->parent
->degree
++;
358 anon_vma_unlock_write(anon_vma
);
362 out_error_free_anon_vma
:
363 put_anon_vma(anon_vma
);
365 unlink_anon_vmas(vma
);
369 void unlink_anon_vmas(struct vm_area_struct
*vma
)
371 struct anon_vma_chain
*avc
, *next
;
372 struct anon_vma
*root
= NULL
;
375 * Unlink each anon_vma chained to the VMA. This list is ordered
376 * from newest to oldest, ensuring the root anon_vma gets freed last.
378 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
379 struct anon_vma
*anon_vma
= avc
->anon_vma
;
381 root
= lock_anon_vma_root(root
, anon_vma
);
382 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
385 * Leave empty anon_vmas on the list - we'll need
386 * to free them outside the lock.
388 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
)) {
389 anon_vma
->parent
->degree
--;
393 list_del(&avc
->same_vma
);
394 anon_vma_chain_free(avc
);
397 vma
->anon_vma
->degree
--;
398 unlock_anon_vma_root(root
);
401 * Iterate the list once more, it now only contains empty and unlinked
402 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
403 * needing to write-acquire the anon_vma->root->rwsem.
405 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
406 struct anon_vma
*anon_vma
= avc
->anon_vma
;
408 BUG_ON(anon_vma
->degree
);
409 put_anon_vma(anon_vma
);
411 list_del(&avc
->same_vma
);
412 anon_vma_chain_free(avc
);
416 static void anon_vma_ctor(void *data
)
418 struct anon_vma
*anon_vma
= data
;
420 init_rwsem(&anon_vma
->rwsem
);
421 atomic_set(&anon_vma
->refcount
, 0);
422 anon_vma
->rb_root
= RB_ROOT
;
425 void __init
anon_vma_init(void)
427 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
428 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
429 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
433 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
435 * Since there is no serialization what so ever against page_remove_rmap()
436 * the best this function can do is return a locked anon_vma that might
437 * have been relevant to this page.
439 * The page might have been remapped to a different anon_vma or the anon_vma
440 * returned may already be freed (and even reused).
442 * In case it was remapped to a different anon_vma, the new anon_vma will be a
443 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
444 * ensure that any anon_vma obtained from the page will still be valid for as
445 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
447 * All users of this function must be very careful when walking the anon_vma
448 * chain and verify that the page in question is indeed mapped in it
449 * [ something equivalent to page_mapped_in_vma() ].
451 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
452 * that the anon_vma pointer from page->mapping is valid if there is a
453 * mapcount, we can dereference the anon_vma after observing those.
455 struct anon_vma
*page_get_anon_vma(struct page
*page
)
457 struct anon_vma
*anon_vma
= NULL
;
458 unsigned long anon_mapping
;
461 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
462 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
464 if (!page_mapped(page
))
467 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
468 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
474 * If this page is still mapped, then its anon_vma cannot have been
475 * freed. But if it has been unmapped, we have no security against the
476 * anon_vma structure being freed and reused (for another anon_vma:
477 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
478 * above cannot corrupt).
480 if (!page_mapped(page
)) {
482 put_anon_vma(anon_vma
);
492 * Similar to page_get_anon_vma() except it locks the anon_vma.
494 * Its a little more complex as it tries to keep the fast path to a single
495 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
496 * reference like with page_get_anon_vma() and then block on the mutex.
498 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
500 struct anon_vma
*anon_vma
= NULL
;
501 struct anon_vma
*root_anon_vma
;
502 unsigned long anon_mapping
;
505 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
506 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
508 if (!page_mapped(page
))
511 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
512 root_anon_vma
= READ_ONCE(anon_vma
->root
);
513 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
515 * If the page is still mapped, then this anon_vma is still
516 * its anon_vma, and holding the mutex ensures that it will
517 * not go away, see anon_vma_free().
519 if (!page_mapped(page
)) {
520 up_read(&root_anon_vma
->rwsem
);
526 /* trylock failed, we got to sleep */
527 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
532 if (!page_mapped(page
)) {
534 put_anon_vma(anon_vma
);
538 /* we pinned the anon_vma, its safe to sleep */
540 anon_vma_lock_read(anon_vma
);
542 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
544 * Oops, we held the last refcount, release the lock
545 * and bail -- can't simply use put_anon_vma() because
546 * we'll deadlock on the anon_vma_lock_write() recursion.
548 anon_vma_unlock_read(anon_vma
);
549 __put_anon_vma(anon_vma
);
560 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
562 anon_vma_unlock_read(anon_vma
);
566 * At what user virtual address is page expected in @vma?
568 static inline unsigned long
569 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
571 pgoff_t pgoff
= page_to_pgoff(page
);
572 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
576 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
578 unsigned long address
= __vma_address(page
, vma
);
580 /* page should be within @vma mapping range */
581 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
587 * At what user virtual address is page expected in vma?
588 * Caller should check the page is actually part of the vma.
590 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
592 unsigned long address
;
593 if (PageAnon(page
)) {
594 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
596 * Note: swapoff's unuse_vma() is more efficient with this
597 * check, and needs it to match anon_vma when KSM is active.
599 if (!vma
->anon_vma
|| !page__anon_vma
||
600 vma
->anon_vma
->root
!= page__anon_vma
->root
)
602 } else if (page
->mapping
) {
603 if (!vma
->vm_file
|| vma
->vm_file
->f_mapping
!= page
->mapping
)
607 address
= __vma_address(page
, vma
);
608 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
613 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
620 pgd
= pgd_offset(mm
, address
);
621 if (!pgd_present(*pgd
))
624 pud
= pud_offset(pgd
, address
);
625 if (!pud_present(*pud
))
628 pmd
= pmd_offset(pud
, address
);
630 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
631 * without holding anon_vma lock for write. So when looking for a
632 * genuine pmde (in which to find pte), test present and !THP together.
636 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
643 * Check that @page is mapped at @address into @mm.
645 * If @sync is false, page_check_address may perform a racy check to avoid
646 * the page table lock when the pte is not present (helpful when reclaiming
647 * highly shared pages).
649 * On success returns with pte mapped and locked.
651 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
652 unsigned long address
, spinlock_t
**ptlp
, int sync
)
658 if (unlikely(PageHuge(page
))) {
659 /* when pud is not present, pte will be NULL */
660 pte
= huge_pte_offset(mm
, address
);
664 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
668 pmd
= mm_find_pmd(mm
, address
);
672 pte
= pte_offset_map(pmd
, address
);
673 /* Make a quick check before getting the lock */
674 if (!sync
&& !pte_present(*pte
)) {
679 ptl
= pte_lockptr(mm
, pmd
);
682 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
686 pte_unmap_unlock(pte
, ptl
);
691 * page_mapped_in_vma - check whether a page is really mapped in a VMA
692 * @page: the page to test
693 * @vma: the VMA to test
695 * Returns 1 if the page is mapped into the page tables of the VMA, 0
696 * if the page is not mapped into the page tables of this VMA. Only
697 * valid for normal file or anonymous VMAs.
699 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
701 unsigned long address
;
705 address
= __vma_address(page
, vma
);
706 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
708 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
709 if (!pte
) /* the page is not in this mm */
711 pte_unmap_unlock(pte
, ptl
);
716 struct page_referenced_arg
{
719 unsigned long vm_flags
;
720 struct mem_cgroup
*memcg
;
723 * arg: page_referenced_arg will be passed
725 static int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
726 unsigned long address
, void *arg
)
728 struct mm_struct
*mm
= vma
->vm_mm
;
731 struct page_referenced_arg
*pra
= arg
;
733 if (unlikely(PageTransHuge(page
))) {
737 * rmap might return false positives; we must filter
738 * these out using page_check_address_pmd().
740 pmd
= page_check_address_pmd(page
, mm
, address
,
741 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
745 if (vma
->vm_flags
& VM_LOCKED
) {
747 pra
->vm_flags
|= VM_LOCKED
;
748 return SWAP_FAIL
; /* To break the loop */
751 /* go ahead even if the pmd is pmd_trans_splitting() */
752 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
759 * rmap might return false positives; we must filter
760 * these out using page_check_address().
762 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
766 if (vma
->vm_flags
& VM_LOCKED
) {
767 pte_unmap_unlock(pte
, ptl
);
768 pra
->vm_flags
|= VM_LOCKED
;
769 return SWAP_FAIL
; /* To break the loop */
772 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
774 * Don't treat a reference through a sequentially read
775 * mapping as such. If the page has been used in
776 * another mapping, we will catch it; if this other
777 * mapping is already gone, the unmap path will have
778 * set PG_referenced or activated the page.
780 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
783 pte_unmap_unlock(pte
, ptl
);
788 pra
->vm_flags
|= vma
->vm_flags
;
793 return SWAP_SUCCESS
; /* To break the loop */
798 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
800 struct page_referenced_arg
*pra
= arg
;
801 struct mem_cgroup
*memcg
= pra
->memcg
;
803 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
810 * page_referenced - test if the page was referenced
811 * @page: the page to test
812 * @is_locked: caller holds lock on the page
813 * @memcg: target memory cgroup
814 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
816 * Quick test_and_clear_referenced for all mappings to a page,
817 * returns the number of ptes which referenced the page.
819 int page_referenced(struct page
*page
,
821 struct mem_cgroup
*memcg
,
822 unsigned long *vm_flags
)
826 struct page_referenced_arg pra
= {
827 .mapcount
= page_mapcount(page
),
830 struct rmap_walk_control rwc
= {
831 .rmap_one
= page_referenced_one
,
833 .anon_lock
= page_lock_anon_vma_read
,
837 if (!page_mapped(page
))
840 if (!page_rmapping(page
))
843 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
844 we_locked
= trylock_page(page
);
850 * If we are reclaiming on behalf of a cgroup, skip
851 * counting on behalf of references from different
855 rwc
.invalid_vma
= invalid_page_referenced_vma
;
858 ret
= rmap_walk(page
, &rwc
);
859 *vm_flags
= pra
.vm_flags
;
864 return pra
.referenced
;
867 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
868 unsigned long address
, void *arg
)
870 struct mm_struct
*mm
= vma
->vm_mm
;
876 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
880 if (pte_dirty(*pte
) || pte_write(*pte
)) {
883 flush_cache_page(vma
, address
, pte_pfn(*pte
));
884 entry
= ptep_clear_flush(vma
, address
, pte
);
885 entry
= pte_wrprotect(entry
);
886 entry
= pte_mkclean(entry
);
887 set_pte_at(mm
, address
, pte
, entry
);
891 pte_unmap_unlock(pte
, ptl
);
894 mmu_notifier_invalidate_page(mm
, address
);
901 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
903 if (vma
->vm_flags
& VM_SHARED
)
909 int page_mkclean(struct page
*page
)
912 struct address_space
*mapping
;
913 struct rmap_walk_control rwc
= {
914 .arg
= (void *)&cleaned
,
915 .rmap_one
= page_mkclean_one
,
916 .invalid_vma
= invalid_mkclean_vma
,
919 BUG_ON(!PageLocked(page
));
921 if (!page_mapped(page
))
924 mapping
= page_mapping(page
);
928 rmap_walk(page
, &rwc
);
932 EXPORT_SYMBOL_GPL(page_mkclean
);
935 * page_move_anon_rmap - move a page to our anon_vma
936 * @page: the page to move to our anon_vma
937 * @vma: the vma the page belongs to
938 * @address: the user virtual address mapped
940 * When a page belongs exclusively to one process after a COW event,
941 * that page can be moved into the anon_vma that belongs to just that
942 * process, so the rmap code will not search the parent or sibling
945 void page_move_anon_rmap(struct page
*page
,
946 struct vm_area_struct
*vma
, unsigned long address
)
948 struct anon_vma
*anon_vma
= vma
->anon_vma
;
950 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
951 VM_BUG_ON_VMA(!anon_vma
, vma
);
952 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
954 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
956 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
957 * simultaneously, so a concurrent reader (eg page_referenced()'s
958 * PageAnon()) will not see one without the other.
960 WRITE_ONCE(page
->mapping
, (struct address_space
*) anon_vma
);
964 * __page_set_anon_rmap - set up new anonymous rmap
965 * @page: Page to add to rmap
966 * @vma: VM area to add page to.
967 * @address: User virtual address of the mapping
968 * @exclusive: the page is exclusively owned by the current process
970 static void __page_set_anon_rmap(struct page
*page
,
971 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
973 struct anon_vma
*anon_vma
= vma
->anon_vma
;
981 * If the page isn't exclusively mapped into this vma,
982 * we must use the _oldest_ possible anon_vma for the
986 anon_vma
= anon_vma
->root
;
988 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
989 page
->mapping
= (struct address_space
*) anon_vma
;
990 page
->index
= linear_page_index(vma
, address
);
994 * __page_check_anon_rmap - sanity check anonymous rmap addition
995 * @page: the page to add the mapping to
996 * @vma: the vm area in which the mapping is added
997 * @address: the user virtual address mapped
999 static void __page_check_anon_rmap(struct page
*page
,
1000 struct vm_area_struct
*vma
, unsigned long address
)
1002 #ifdef CONFIG_DEBUG_VM
1004 * The page's anon-rmap details (mapping and index) are guaranteed to
1005 * be set up correctly at this point.
1007 * We have exclusion against page_add_anon_rmap because the caller
1008 * always holds the page locked, except if called from page_dup_rmap,
1009 * in which case the page is already known to be setup.
1011 * We have exclusion against page_add_new_anon_rmap because those pages
1012 * are initially only visible via the pagetables, and the pte is locked
1013 * over the call to page_add_new_anon_rmap.
1015 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1016 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1021 * page_add_anon_rmap - add pte mapping to an anonymous page
1022 * @page: the page to add the mapping to
1023 * @vma: the vm area in which the mapping is added
1024 * @address: the user virtual address mapped
1026 * The caller needs to hold the pte lock, and the page must be locked in
1027 * the anon_vma case: to serialize mapping,index checking after setting,
1028 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1029 * (but PageKsm is never downgraded to PageAnon).
1031 void page_add_anon_rmap(struct page
*page
,
1032 struct vm_area_struct
*vma
, unsigned long address
)
1034 do_page_add_anon_rmap(page
, vma
, address
, 0);
1038 * Special version of the above for do_swap_page, which often runs
1039 * into pages that are exclusively owned by the current process.
1040 * Everybody else should continue to use page_add_anon_rmap above.
1042 void do_page_add_anon_rmap(struct page
*page
,
1043 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1045 int first
= atomic_inc_and_test(&page
->_mapcount
);
1048 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1049 * these counters are not modified in interrupt context, and
1050 * pte lock(a spinlock) is held, which implies preemption
1053 if (PageTransHuge(page
))
1054 __inc_zone_page_state(page
,
1055 NR_ANON_TRANSPARENT_HUGEPAGES
);
1056 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1057 hpage_nr_pages(page
));
1059 if (unlikely(PageKsm(page
)))
1062 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1063 /* address might be in next vma when migration races vma_adjust */
1065 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1067 __page_check_anon_rmap(page
, vma
, address
);
1071 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1072 * @page: the page to add the mapping to
1073 * @vma: the vm area in which the mapping is added
1074 * @address: the user virtual address mapped
1076 * Same as page_add_anon_rmap but must only be called on *new* pages.
1077 * This means the inc-and-test can be bypassed.
1078 * Page does not have to be locked.
1080 void page_add_new_anon_rmap(struct page
*page
,
1081 struct vm_area_struct
*vma
, unsigned long address
)
1083 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
1084 SetPageSwapBacked(page
);
1085 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1086 if (PageTransHuge(page
))
1087 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1088 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1089 hpage_nr_pages(page
));
1090 __page_set_anon_rmap(page
, vma
, address
, 1);
1094 * page_add_file_rmap - add pte mapping to a file page
1095 * @page: the page to add the mapping to
1097 * The caller needs to hold the pte lock.
1099 void page_add_file_rmap(struct page
*page
)
1101 struct mem_cgroup
*memcg
;
1103 memcg
= mem_cgroup_begin_page_stat(page
);
1104 if (atomic_inc_and_test(&page
->_mapcount
)) {
1105 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1106 mem_cgroup_inc_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1108 mem_cgroup_end_page_stat(memcg
);
1111 static void page_remove_file_rmap(struct page
*page
)
1113 struct mem_cgroup
*memcg
;
1115 memcg
= mem_cgroup_begin_page_stat(page
);
1117 /* page still mapped by someone else? */
1118 if (!atomic_add_negative(-1, &page
->_mapcount
))
1121 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1122 if (unlikely(PageHuge(page
)))
1126 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1127 * these counters are not modified in interrupt context, and
1128 * pte lock(a spinlock) is held, which implies preemption disabled.
1130 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1131 mem_cgroup_dec_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1133 if (unlikely(PageMlocked(page
)))
1134 clear_page_mlock(page
);
1136 mem_cgroup_end_page_stat(memcg
);
1140 * page_remove_rmap - take down pte mapping from a page
1141 * @page: page to remove mapping from
1143 * The caller needs to hold the pte lock.
1145 void page_remove_rmap(struct page
*page
)
1147 if (!PageAnon(page
)) {
1148 page_remove_file_rmap(page
);
1152 /* page still mapped by someone else? */
1153 if (!atomic_add_negative(-1, &page
->_mapcount
))
1156 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1157 if (unlikely(PageHuge(page
)))
1161 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1162 * these counters are not modified in interrupt context, and
1163 * pte lock(a spinlock) is held, which implies preemption disabled.
1165 if (PageTransHuge(page
))
1166 __dec_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1168 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1169 -hpage_nr_pages(page
));
1171 if (unlikely(PageMlocked(page
)))
1172 clear_page_mlock(page
);
1175 * It would be tidy to reset the PageAnon mapping here,
1176 * but that might overwrite a racing page_add_anon_rmap
1177 * which increments mapcount after us but sets mapping
1178 * before us: so leave the reset to free_hot_cold_page,
1179 * and remember that it's only reliable while mapped.
1180 * Leaving it set also helps swapoff to reinstate ptes
1181 * faster for those pages still in swapcache.
1186 * @arg: enum ttu_flags will be passed to this argument
1188 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1189 unsigned long address
, void *arg
)
1191 struct mm_struct
*mm
= vma
->vm_mm
;
1195 int ret
= SWAP_AGAIN
;
1196 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1198 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1203 * If the page is mlock()d, we cannot swap it out.
1204 * If it's recently referenced (perhaps page_referenced
1205 * skipped over this mm) then we should reactivate it.
1207 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1208 if (vma
->vm_flags
& VM_LOCKED
)
1211 if (flags
& TTU_MUNLOCK
)
1214 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1215 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1221 /* Nuke the page table entry. */
1222 flush_cache_page(vma
, address
, page_to_pfn(page
));
1223 pteval
= ptep_clear_flush(vma
, address
, pte
);
1225 /* Move the dirty bit to the physical page now the pte is gone. */
1226 if (pte_dirty(pteval
))
1227 set_page_dirty(page
);
1229 /* Update high watermark before we lower rss */
1230 update_hiwater_rss(mm
);
1232 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1233 if (!PageHuge(page
)) {
1235 dec_mm_counter(mm
, MM_ANONPAGES
);
1237 dec_mm_counter(mm
, MM_FILEPAGES
);
1239 set_pte_at(mm
, address
, pte
,
1240 swp_entry_to_pte(make_hwpoison_entry(page
)));
1241 } else if (pte_unused(pteval
)) {
1243 * The guest indicated that the page content is of no
1244 * interest anymore. Simply discard the pte, vmscan
1245 * will take care of the rest.
1248 dec_mm_counter(mm
, MM_ANONPAGES
);
1250 dec_mm_counter(mm
, MM_FILEPAGES
);
1251 } else if (PageAnon(page
)) {
1252 swp_entry_t entry
= { .val
= page_private(page
) };
1255 if (PageSwapCache(page
)) {
1257 * Store the swap location in the pte.
1258 * See handle_pte_fault() ...
1260 if (swap_duplicate(entry
) < 0) {
1261 set_pte_at(mm
, address
, pte
, pteval
);
1265 if (list_empty(&mm
->mmlist
)) {
1266 spin_lock(&mmlist_lock
);
1267 if (list_empty(&mm
->mmlist
))
1268 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1269 spin_unlock(&mmlist_lock
);
1271 dec_mm_counter(mm
, MM_ANONPAGES
);
1272 inc_mm_counter(mm
, MM_SWAPENTS
);
1273 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1275 * Store the pfn of the page in a special migration
1276 * pte. do_swap_page() will wait until the migration
1277 * pte is removed and then restart fault handling.
1279 BUG_ON(!(flags
& TTU_MIGRATION
));
1280 entry
= make_migration_entry(page
, pte_write(pteval
));
1282 swp_pte
= swp_entry_to_pte(entry
);
1283 if (pte_soft_dirty(pteval
))
1284 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1285 set_pte_at(mm
, address
, pte
, swp_pte
);
1286 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1287 (flags
& TTU_MIGRATION
)) {
1288 /* Establish migration entry for a file page */
1290 entry
= make_migration_entry(page
, pte_write(pteval
));
1291 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1293 dec_mm_counter(mm
, MM_FILEPAGES
);
1295 page_remove_rmap(page
);
1296 page_cache_release(page
);
1299 pte_unmap_unlock(pte
, ptl
);
1300 if (ret
!= SWAP_FAIL
&& !(flags
& TTU_MUNLOCK
))
1301 mmu_notifier_invalidate_page(mm
, address
);
1306 pte_unmap_unlock(pte
, ptl
);
1310 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1311 * unstable result and race. Plus, We can't wait here because
1312 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1313 * if trylock failed, the page remain in evictable lru and later
1314 * vmscan could retry to move the page to unevictable lru if the
1315 * page is actually mlocked.
1317 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1318 if (vma
->vm_flags
& VM_LOCKED
) {
1319 mlock_vma_page(page
);
1322 up_read(&vma
->vm_mm
->mmap_sem
);
1327 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1329 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1334 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1335 VM_STACK_INCOMPLETE_SETUP
)
1341 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1343 return is_vma_temporary_stack(vma
);
1346 static int page_not_mapped(struct page
*page
)
1348 return !page_mapped(page
);
1352 * try_to_unmap - try to remove all page table mappings to a page
1353 * @page: the page to get unmapped
1354 * @flags: action and flags
1356 * Tries to remove all the page table entries which are mapping this
1357 * page, used in the pageout path. Caller must hold the page lock.
1358 * Return values are:
1360 * SWAP_SUCCESS - we succeeded in removing all mappings
1361 * SWAP_AGAIN - we missed a mapping, try again later
1362 * SWAP_FAIL - the page is unswappable
1363 * SWAP_MLOCK - page is mlocked.
1365 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1368 struct rmap_walk_control rwc
= {
1369 .rmap_one
= try_to_unmap_one
,
1370 .arg
= (void *)flags
,
1371 .done
= page_not_mapped
,
1372 .anon_lock
= page_lock_anon_vma_read
,
1375 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1378 * During exec, a temporary VMA is setup and later moved.
1379 * The VMA is moved under the anon_vma lock but not the
1380 * page tables leading to a race where migration cannot
1381 * find the migration ptes. Rather than increasing the
1382 * locking requirements of exec(), migration skips
1383 * temporary VMAs until after exec() completes.
1385 if ((flags
& TTU_MIGRATION
) && !PageKsm(page
) && PageAnon(page
))
1386 rwc
.invalid_vma
= invalid_migration_vma
;
1388 ret
= rmap_walk(page
, &rwc
);
1390 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1396 * try_to_munlock - try to munlock a page
1397 * @page: the page to be munlocked
1399 * Called from munlock code. Checks all of the VMAs mapping the page
1400 * to make sure nobody else has this page mlocked. The page will be
1401 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1403 * Return values are:
1405 * SWAP_AGAIN - no vma is holding page mlocked, or,
1406 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1407 * SWAP_FAIL - page cannot be located at present
1408 * SWAP_MLOCK - page is now mlocked.
1410 int try_to_munlock(struct page
*page
)
1413 struct rmap_walk_control rwc
= {
1414 .rmap_one
= try_to_unmap_one
,
1415 .arg
= (void *)TTU_MUNLOCK
,
1416 .done
= page_not_mapped
,
1417 .anon_lock
= page_lock_anon_vma_read
,
1421 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1423 ret
= rmap_walk(page
, &rwc
);
1427 void __put_anon_vma(struct anon_vma
*anon_vma
)
1429 struct anon_vma
*root
= anon_vma
->root
;
1431 anon_vma_free(anon_vma
);
1432 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1433 anon_vma_free(root
);
1436 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1437 struct rmap_walk_control
*rwc
)
1439 struct anon_vma
*anon_vma
;
1442 return rwc
->anon_lock(page
);
1445 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1446 * because that depends on page_mapped(); but not all its usages
1447 * are holding mmap_sem. Users without mmap_sem are required to
1448 * take a reference count to prevent the anon_vma disappearing
1450 anon_vma
= page_anon_vma(page
);
1454 anon_vma_lock_read(anon_vma
);
1459 * rmap_walk_anon - do something to anonymous page using the object-based
1461 * @page: the page to be handled
1462 * @rwc: control variable according to each walk type
1464 * Find all the mappings of a page using the mapping pointer and the vma chains
1465 * contained in the anon_vma struct it points to.
1467 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1468 * where the page was found will be held for write. So, we won't recheck
1469 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1472 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1474 struct anon_vma
*anon_vma
;
1476 struct anon_vma_chain
*avc
;
1477 int ret
= SWAP_AGAIN
;
1479 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1483 pgoff
= page_to_pgoff(page
);
1484 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1485 struct vm_area_struct
*vma
= avc
->vma
;
1486 unsigned long address
= vma_address(page
, vma
);
1488 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1491 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1492 if (ret
!= SWAP_AGAIN
)
1494 if (rwc
->done
&& rwc
->done(page
))
1497 anon_vma_unlock_read(anon_vma
);
1502 * rmap_walk_file - do something to file page using the object-based rmap method
1503 * @page: the page to be handled
1504 * @rwc: control variable according to each walk type
1506 * Find all the mappings of a page using the mapping pointer and the vma chains
1507 * contained in the address_space struct it points to.
1509 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1510 * where the page was found will be held for write. So, we won't recheck
1511 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1514 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1516 struct address_space
*mapping
= page
->mapping
;
1518 struct vm_area_struct
*vma
;
1519 int ret
= SWAP_AGAIN
;
1522 * The page lock not only makes sure that page->mapping cannot
1523 * suddenly be NULLified by truncation, it makes sure that the
1524 * structure at mapping cannot be freed and reused yet,
1525 * so we can safely take mapping->i_mmap_rwsem.
1527 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1532 pgoff
= page_to_pgoff(page
);
1533 i_mmap_lock_read(mapping
);
1534 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1535 unsigned long address
= vma_address(page
, vma
);
1537 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1540 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1541 if (ret
!= SWAP_AGAIN
)
1543 if (rwc
->done
&& rwc
->done(page
))
1548 i_mmap_unlock_read(mapping
);
1552 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1554 if (unlikely(PageKsm(page
)))
1555 return rmap_walk_ksm(page
, rwc
);
1556 else if (PageAnon(page
))
1557 return rmap_walk_anon(page
, rwc
);
1559 return rmap_walk_file(page
, rwc
);
1562 #ifdef CONFIG_HUGETLB_PAGE
1564 * The following three functions are for anonymous (private mapped) hugepages.
1565 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1566 * and no lru code, because we handle hugepages differently from common pages.
1568 static void __hugepage_set_anon_rmap(struct page
*page
,
1569 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1571 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1578 anon_vma
= anon_vma
->root
;
1580 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1581 page
->mapping
= (struct address_space
*) anon_vma
;
1582 page
->index
= linear_page_index(vma
, address
);
1585 void hugepage_add_anon_rmap(struct page
*page
,
1586 struct vm_area_struct
*vma
, unsigned long address
)
1588 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1591 BUG_ON(!PageLocked(page
));
1593 /* address might be in next vma when migration races vma_adjust */
1594 first
= atomic_inc_and_test(&page
->_mapcount
);
1596 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1599 void hugepage_add_new_anon_rmap(struct page
*page
,
1600 struct vm_area_struct
*vma
, unsigned long address
)
1602 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1603 atomic_set(&page
->_mapcount
, 0);
1604 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1606 #endif /* CONFIG_HUGETLB_PAGE */