]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/rmap.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
40 * within bdi.wb->list_lock in __sync_single_inode)
41 *
42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
43 * ->tasklist_lock
44 * pte map lock
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 #include <linux/page_idle.h>
63
64 #include <asm/tlbflush.h>
65
66 #include <trace/events/tlb.h>
67
68 #include "internal.h"
69
70 static struct kmem_cache *anon_vma_cachep;
71 static struct kmem_cache *anon_vma_chain_cachep;
72
73 static inline struct anon_vma *anon_vma_alloc(void)
74 {
75 struct anon_vma *anon_vma;
76
77 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
78 if (anon_vma) {
79 atomic_set(&anon_vma->refcount, 1);
80 anon_vma->degree = 1; /* Reference for first vma */
81 anon_vma->parent = anon_vma;
82 /*
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
85 */
86 anon_vma->root = anon_vma;
87 }
88
89 return anon_vma;
90 }
91
92 static inline void anon_vma_free(struct anon_vma *anon_vma)
93 {
94 VM_BUG_ON(atomic_read(&anon_vma->refcount));
95
96 /*
97 * Synchronize against page_lock_anon_vma_read() such that
98 * we can safely hold the lock without the anon_vma getting
99 * freed.
100 *
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
104 *
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
107 * LOCK MB
108 * atomic_read() rwsem_is_locked()
109 *
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
112 */
113 might_sleep();
114 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
115 anon_vma_lock_write(anon_vma);
116 anon_vma_unlock_write(anon_vma);
117 }
118
119 kmem_cache_free(anon_vma_cachep, anon_vma);
120 }
121
122 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
123 {
124 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
125 }
126
127 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
128 {
129 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
130 }
131
132 static void anon_vma_chain_link(struct vm_area_struct *vma,
133 struct anon_vma_chain *avc,
134 struct anon_vma *anon_vma)
135 {
136 avc->vma = vma;
137 avc->anon_vma = anon_vma;
138 list_add(&avc->same_vma, &vma->anon_vma_chain);
139 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
140 }
141
142 /**
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
145 *
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
149 *
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
155 *
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
161 *
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
165 * an anon_vma.
166 *
167 * This must be called with the mmap_sem held for reading.
168 */
169 int anon_vma_prepare(struct vm_area_struct *vma)
170 {
171 struct anon_vma *anon_vma = vma->anon_vma;
172 struct anon_vma_chain *avc;
173
174 might_sleep();
175 if (unlikely(!anon_vma)) {
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *allocated;
178
179 avc = anon_vma_chain_alloc(GFP_KERNEL);
180 if (!avc)
181 goto out_enomem;
182
183 anon_vma = find_mergeable_anon_vma(vma);
184 allocated = NULL;
185 if (!anon_vma) {
186 anon_vma = anon_vma_alloc();
187 if (unlikely(!anon_vma))
188 goto out_enomem_free_avc;
189 allocated = anon_vma;
190 }
191
192 anon_vma_lock_write(anon_vma);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm->page_table_lock);
195 if (likely(!vma->anon_vma)) {
196 vma->anon_vma = anon_vma;
197 anon_vma_chain_link(vma, avc, anon_vma);
198 /* vma reference or self-parent link for new root */
199 anon_vma->degree++;
200 allocated = NULL;
201 avc = NULL;
202 }
203 spin_unlock(&mm->page_table_lock);
204 anon_vma_unlock_write(anon_vma);
205
206 if (unlikely(allocated))
207 put_anon_vma(allocated);
208 if (unlikely(avc))
209 anon_vma_chain_free(avc);
210 }
211 return 0;
212
213 out_enomem_free_avc:
214 anon_vma_chain_free(avc);
215 out_enomem:
216 return -ENOMEM;
217 }
218
219 /*
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
222 * have the same vma.
223 *
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
226 */
227 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
228 {
229 struct anon_vma *new_root = anon_vma->root;
230 if (new_root != root) {
231 if (WARN_ON_ONCE(root))
232 up_write(&root->rwsem);
233 root = new_root;
234 down_write(&root->rwsem);
235 }
236 return root;
237 }
238
239 static inline void unlock_anon_vma_root(struct anon_vma *root)
240 {
241 if (root)
242 up_write(&root->rwsem);
243 }
244
245 /*
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
248 *
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
255 * page is mapped.
256 */
257 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
258 {
259 struct anon_vma_chain *avc, *pavc;
260 struct anon_vma *root = NULL;
261
262 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
263 struct anon_vma *anon_vma;
264
265 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
266 if (unlikely(!avc)) {
267 unlock_anon_vma_root(root);
268 root = NULL;
269 avc = anon_vma_chain_alloc(GFP_KERNEL);
270 if (!avc)
271 goto enomem_failure;
272 }
273 anon_vma = pavc->anon_vma;
274 root = lock_anon_vma_root(root, anon_vma);
275 anon_vma_chain_link(dst, avc, anon_vma);
276
277 /*
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
280 *
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
284 */
285 if (!dst->anon_vma && anon_vma != src->anon_vma &&
286 anon_vma->degree < 2)
287 dst->anon_vma = anon_vma;
288 }
289 if (dst->anon_vma)
290 dst->anon_vma->degree++;
291 unlock_anon_vma_root(root);
292 return 0;
293
294 enomem_failure:
295 /*
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
300 */
301 dst->anon_vma = NULL;
302 unlink_anon_vmas(dst);
303 return -ENOMEM;
304 }
305
306 /*
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
310 */
311 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
312 {
313 struct anon_vma_chain *avc;
314 struct anon_vma *anon_vma;
315 int error;
316
317 /* Don't bother if the parent process has no anon_vma here. */
318 if (!pvma->anon_vma)
319 return 0;
320
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma->anon_vma = NULL;
323
324 /*
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
327 */
328 error = anon_vma_clone(vma, pvma);
329 if (error)
330 return error;
331
332 /* An existing anon_vma has been reused, all done then. */
333 if (vma->anon_vma)
334 return 0;
335
336 /* Then add our own anon_vma. */
337 anon_vma = anon_vma_alloc();
338 if (!anon_vma)
339 goto out_error;
340 avc = anon_vma_chain_alloc(GFP_KERNEL);
341 if (!avc)
342 goto out_error_free_anon_vma;
343
344 /*
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
347 */
348 anon_vma->root = pvma->anon_vma->root;
349 anon_vma->parent = pvma->anon_vma;
350 /*
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
354 */
355 get_anon_vma(anon_vma->root);
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma->anon_vma = anon_vma;
358 anon_vma_lock_write(anon_vma);
359 anon_vma_chain_link(vma, avc, anon_vma);
360 anon_vma->parent->degree++;
361 anon_vma_unlock_write(anon_vma);
362
363 return 0;
364
365 out_error_free_anon_vma:
366 put_anon_vma(anon_vma);
367 out_error:
368 unlink_anon_vmas(vma);
369 return -ENOMEM;
370 }
371
372 void unlink_anon_vmas(struct vm_area_struct *vma)
373 {
374 struct anon_vma_chain *avc, *next;
375 struct anon_vma *root = NULL;
376
377 /*
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
380 */
381 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
382 struct anon_vma *anon_vma = avc->anon_vma;
383
384 root = lock_anon_vma_root(root, anon_vma);
385 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
386
387 /*
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
390 */
391 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
392 anon_vma->parent->degree--;
393 continue;
394 }
395
396 list_del(&avc->same_vma);
397 anon_vma_chain_free(avc);
398 }
399 if (vma->anon_vma)
400 vma->anon_vma->degree--;
401 unlock_anon_vma_root(root);
402
403 /*
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 * needing to write-acquire the anon_vma->root->rwsem.
407 */
408 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
409 struct anon_vma *anon_vma = avc->anon_vma;
410
411 BUG_ON(anon_vma->degree);
412 put_anon_vma(anon_vma);
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417 }
418
419 static void anon_vma_ctor(void *data)
420 {
421 struct anon_vma *anon_vma = data;
422
423 init_rwsem(&anon_vma->rwsem);
424 atomic_set(&anon_vma->refcount, 0);
425 anon_vma->rb_root = RB_ROOT;
426 }
427
428 void __init anon_vma_init(void)
429 {
430 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
431 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
432 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
433 }
434
435 /*
436 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
437 *
438 * Since there is no serialization what so ever against page_remove_rmap()
439 * the best this function can do is return a locked anon_vma that might
440 * have been relevant to this page.
441 *
442 * The page might have been remapped to a different anon_vma or the anon_vma
443 * returned may already be freed (and even reused).
444 *
445 * In case it was remapped to a different anon_vma, the new anon_vma will be a
446 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
447 * ensure that any anon_vma obtained from the page will still be valid for as
448 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
449 *
450 * All users of this function must be very careful when walking the anon_vma
451 * chain and verify that the page in question is indeed mapped in it
452 * [ something equivalent to page_mapped_in_vma() ].
453 *
454 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
455 * that the anon_vma pointer from page->mapping is valid if there is a
456 * mapcount, we can dereference the anon_vma after observing those.
457 */
458 struct anon_vma *page_get_anon_vma(struct page *page)
459 {
460 struct anon_vma *anon_vma = NULL;
461 unsigned long anon_mapping;
462
463 rcu_read_lock();
464 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
465 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
466 goto out;
467 if (!page_mapped(page))
468 goto out;
469
470 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
471 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
472 anon_vma = NULL;
473 goto out;
474 }
475
476 /*
477 * If this page is still mapped, then its anon_vma cannot have been
478 * freed. But if it has been unmapped, we have no security against the
479 * anon_vma structure being freed and reused (for another anon_vma:
480 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
481 * above cannot corrupt).
482 */
483 if (!page_mapped(page)) {
484 rcu_read_unlock();
485 put_anon_vma(anon_vma);
486 return NULL;
487 }
488 out:
489 rcu_read_unlock();
490
491 return anon_vma;
492 }
493
494 /*
495 * Similar to page_get_anon_vma() except it locks the anon_vma.
496 *
497 * Its a little more complex as it tries to keep the fast path to a single
498 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
499 * reference like with page_get_anon_vma() and then block on the mutex.
500 */
501 struct anon_vma *page_lock_anon_vma_read(struct page *page)
502 {
503 struct anon_vma *anon_vma = NULL;
504 struct anon_vma *root_anon_vma;
505 unsigned long anon_mapping;
506
507 rcu_read_lock();
508 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
509 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
510 goto out;
511 if (!page_mapped(page))
512 goto out;
513
514 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
515 root_anon_vma = READ_ONCE(anon_vma->root);
516 if (down_read_trylock(&root_anon_vma->rwsem)) {
517 /*
518 * If the page is still mapped, then this anon_vma is still
519 * its anon_vma, and holding the mutex ensures that it will
520 * not go away, see anon_vma_free().
521 */
522 if (!page_mapped(page)) {
523 up_read(&root_anon_vma->rwsem);
524 anon_vma = NULL;
525 }
526 goto out;
527 }
528
529 /* trylock failed, we got to sleep */
530 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
531 anon_vma = NULL;
532 goto out;
533 }
534
535 if (!page_mapped(page)) {
536 rcu_read_unlock();
537 put_anon_vma(anon_vma);
538 return NULL;
539 }
540
541 /* we pinned the anon_vma, its safe to sleep */
542 rcu_read_unlock();
543 anon_vma_lock_read(anon_vma);
544
545 if (atomic_dec_and_test(&anon_vma->refcount)) {
546 /*
547 * Oops, we held the last refcount, release the lock
548 * and bail -- can't simply use put_anon_vma() because
549 * we'll deadlock on the anon_vma_lock_write() recursion.
550 */
551 anon_vma_unlock_read(anon_vma);
552 __put_anon_vma(anon_vma);
553 anon_vma = NULL;
554 }
555
556 return anon_vma;
557
558 out:
559 rcu_read_unlock();
560 return anon_vma;
561 }
562
563 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
564 {
565 anon_vma_unlock_read(anon_vma);
566 }
567
568 /*
569 * At what user virtual address is page expected in @vma?
570 */
571 static inline unsigned long
572 __vma_address(struct page *page, struct vm_area_struct *vma)
573 {
574 pgoff_t pgoff = page_to_pgoff(page);
575 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
576 }
577
578 inline unsigned long
579 vma_address(struct page *page, struct vm_area_struct *vma)
580 {
581 unsigned long address = __vma_address(page, vma);
582
583 /* page should be within @vma mapping range */
584 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
585
586 return address;
587 }
588
589 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
590 /*
591 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
592 * important if a PTE was dirty when it was unmapped that it's flushed
593 * before any IO is initiated on the page to prevent lost writes. Similarly,
594 * it must be flushed before freeing to prevent data leakage.
595 */
596 void try_to_unmap_flush(void)
597 {
598 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
599 int cpu;
600
601 if (!tlb_ubc->flush_required)
602 return;
603
604 cpu = get_cpu();
605
606 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
607 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
608 local_flush_tlb();
609 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
610 }
611
612 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
613 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
614 cpumask_clear(&tlb_ubc->cpumask);
615 tlb_ubc->flush_required = false;
616 tlb_ubc->writable = false;
617 put_cpu();
618 }
619
620 /* Flush iff there are potentially writable TLB entries that can race with IO */
621 void try_to_unmap_flush_dirty(void)
622 {
623 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
624
625 if (tlb_ubc->writable)
626 try_to_unmap_flush();
627 }
628
629 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
630 struct page *page, bool writable)
631 {
632 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
633
634 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
635 tlb_ubc->flush_required = true;
636
637 /*
638 * Ensure compiler does not re-order the setting of tlb_flush_batched
639 * before the PTE is cleared.
640 */
641 barrier();
642 mm->tlb_flush_batched = true;
643
644 /*
645 * If the PTE was dirty then it's best to assume it's writable. The
646 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
647 * before the page is queued for IO.
648 */
649 if (writable)
650 tlb_ubc->writable = true;
651 }
652
653 /*
654 * Returns true if the TLB flush should be deferred to the end of a batch of
655 * unmap operations to reduce IPIs.
656 */
657 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
658 {
659 bool should_defer = false;
660
661 if (!(flags & TTU_BATCH_FLUSH))
662 return false;
663
664 /* If remote CPUs need to be flushed then defer batch the flush */
665 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
666 should_defer = true;
667 put_cpu();
668
669 return should_defer;
670 }
671
672 /*
673 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
674 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
675 * operation such as mprotect or munmap to race between reclaim unmapping
676 * the page and flushing the page. If this race occurs, it potentially allows
677 * access to data via a stale TLB entry. Tracking all mm's that have TLB
678 * batching in flight would be expensive during reclaim so instead track
679 * whether TLB batching occurred in the past and if so then do a flush here
680 * if required. This will cost one additional flush per reclaim cycle paid
681 * by the first operation at risk such as mprotect and mumap.
682 *
683 * This must be called under the PTL so that an access to tlb_flush_batched
684 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
685 * via the PTL.
686 */
687 void flush_tlb_batched_pending(struct mm_struct *mm)
688 {
689 if (mm->tlb_flush_batched) {
690 flush_tlb_mm(mm);
691
692 /*
693 * Do not allow the compiler to re-order the clearing of
694 * tlb_flush_batched before the tlb is flushed.
695 */
696 barrier();
697 mm->tlb_flush_batched = false;
698 }
699 }
700 #else
701 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
702 struct page *page, bool writable)
703 {
704 }
705
706 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
707 {
708 return false;
709 }
710 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
711
712 /*
713 * At what user virtual address is page expected in vma?
714 * Caller should check the page is actually part of the vma.
715 */
716 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
717 {
718 unsigned long address;
719 if (PageAnon(page)) {
720 struct anon_vma *page__anon_vma = page_anon_vma(page);
721 /*
722 * Note: swapoff's unuse_vma() is more efficient with this
723 * check, and needs it to match anon_vma when KSM is active.
724 */
725 if (!vma->anon_vma || !page__anon_vma ||
726 vma->anon_vma->root != page__anon_vma->root)
727 return -EFAULT;
728 } else if (page->mapping) {
729 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
730 return -EFAULT;
731 } else
732 return -EFAULT;
733 address = __vma_address(page, vma);
734 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
735 return -EFAULT;
736 return address;
737 }
738
739 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
740 {
741 pgd_t *pgd;
742 pud_t *pud;
743 pmd_t *pmd = NULL;
744 pmd_t pmde;
745
746 pgd = pgd_offset(mm, address);
747 if (!pgd_present(*pgd))
748 goto out;
749
750 pud = pud_offset(pgd, address);
751 if (!pud_present(*pud))
752 goto out;
753
754 pmd = pmd_offset(pud, address);
755 /*
756 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
757 * without holding anon_vma lock for write. So when looking for a
758 * genuine pmde (in which to find pte), test present and !THP together.
759 */
760 pmde = *pmd;
761 barrier();
762 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
763 pmd = NULL;
764 out:
765 return pmd;
766 }
767
768 /*
769 * Check that @page is mapped at @address into @mm.
770 *
771 * If @sync is false, page_check_address may perform a racy check to avoid
772 * the page table lock when the pte is not present (helpful when reclaiming
773 * highly shared pages).
774 *
775 * On success returns with pte mapped and locked.
776 */
777 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
778 unsigned long address, spinlock_t **ptlp, int sync)
779 {
780 pmd_t *pmd;
781 pte_t *pte;
782 spinlock_t *ptl;
783
784 if (unlikely(PageHuge(page))) {
785 /* when pud is not present, pte will be NULL */
786 pte = huge_pte_offset(mm, address);
787 if (!pte)
788 return NULL;
789
790 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
791 goto check;
792 }
793
794 pmd = mm_find_pmd(mm, address);
795 if (!pmd)
796 return NULL;
797
798 pte = pte_offset_map(pmd, address);
799 /* Make a quick check before getting the lock */
800 if (!sync && !pte_present(*pte)) {
801 pte_unmap(pte);
802 return NULL;
803 }
804
805 ptl = pte_lockptr(mm, pmd);
806 check:
807 spin_lock(ptl);
808 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
809 *ptlp = ptl;
810 return pte;
811 }
812 pte_unmap_unlock(pte, ptl);
813 return NULL;
814 }
815
816 /**
817 * page_mapped_in_vma - check whether a page is really mapped in a VMA
818 * @page: the page to test
819 * @vma: the VMA to test
820 *
821 * Returns 1 if the page is mapped into the page tables of the VMA, 0
822 * if the page is not mapped into the page tables of this VMA. Only
823 * valid for normal file or anonymous VMAs.
824 */
825 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
826 {
827 unsigned long address;
828 pte_t *pte;
829 spinlock_t *ptl;
830
831 address = __vma_address(page, vma);
832 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
833 return 0;
834 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
835 if (!pte) /* the page is not in this mm */
836 return 0;
837 pte_unmap_unlock(pte, ptl);
838
839 return 1;
840 }
841
842 struct page_referenced_arg {
843 int mapcount;
844 int referenced;
845 unsigned long vm_flags;
846 struct mem_cgroup *memcg;
847 };
848 /*
849 * arg: page_referenced_arg will be passed
850 */
851 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
852 unsigned long address, void *arg)
853 {
854 struct mm_struct *mm = vma->vm_mm;
855 spinlock_t *ptl;
856 int referenced = 0;
857 struct page_referenced_arg *pra = arg;
858
859 if (unlikely(PageTransHuge(page))) {
860 pmd_t *pmd;
861
862 /*
863 * rmap might return false positives; we must filter
864 * these out using page_check_address_pmd().
865 */
866 pmd = page_check_address_pmd(page, mm, address,
867 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
868 if (!pmd)
869 return SWAP_AGAIN;
870
871 if (vma->vm_flags & VM_LOCKED) {
872 spin_unlock(ptl);
873 pra->vm_flags |= VM_LOCKED;
874 return SWAP_FAIL; /* To break the loop */
875 }
876
877 /* go ahead even if the pmd is pmd_trans_splitting() */
878 if (pmdp_clear_flush_young_notify(vma, address, pmd))
879 referenced++;
880 spin_unlock(ptl);
881 } else {
882 pte_t *pte;
883
884 /*
885 * rmap might return false positives; we must filter
886 * these out using page_check_address().
887 */
888 pte = page_check_address(page, mm, address, &ptl, 0);
889 if (!pte)
890 return SWAP_AGAIN;
891
892 if (vma->vm_flags & VM_LOCKED) {
893 pte_unmap_unlock(pte, ptl);
894 pra->vm_flags |= VM_LOCKED;
895 return SWAP_FAIL; /* To break the loop */
896 }
897
898 if (ptep_clear_flush_young_notify(vma, address, pte)) {
899 /*
900 * Don't treat a reference through a sequentially read
901 * mapping as such. If the page has been used in
902 * another mapping, we will catch it; if this other
903 * mapping is already gone, the unmap path will have
904 * set PG_referenced or activated the page.
905 */
906 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
907 referenced++;
908 }
909 pte_unmap_unlock(pte, ptl);
910 }
911
912 if (referenced)
913 clear_page_idle(page);
914 if (test_and_clear_page_young(page))
915 referenced++;
916
917 if (referenced) {
918 pra->referenced++;
919 pra->vm_flags |= vma->vm_flags;
920 }
921
922 pra->mapcount--;
923 if (!pra->mapcount)
924 return SWAP_SUCCESS; /* To break the loop */
925
926 return SWAP_AGAIN;
927 }
928
929 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
930 {
931 struct page_referenced_arg *pra = arg;
932 struct mem_cgroup *memcg = pra->memcg;
933
934 if (!mm_match_cgroup(vma->vm_mm, memcg))
935 return true;
936
937 return false;
938 }
939
940 /**
941 * page_referenced - test if the page was referenced
942 * @page: the page to test
943 * @is_locked: caller holds lock on the page
944 * @memcg: target memory cgroup
945 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
946 *
947 * Quick test_and_clear_referenced for all mappings to a page,
948 * returns the number of ptes which referenced the page.
949 */
950 int page_referenced(struct page *page,
951 int is_locked,
952 struct mem_cgroup *memcg,
953 unsigned long *vm_flags)
954 {
955 int ret;
956 int we_locked = 0;
957 struct page_referenced_arg pra = {
958 .mapcount = page_mapcount(page),
959 .memcg = memcg,
960 };
961 struct rmap_walk_control rwc = {
962 .rmap_one = page_referenced_one,
963 .arg = (void *)&pra,
964 .anon_lock = page_lock_anon_vma_read,
965 };
966
967 *vm_flags = 0;
968 if (!page_mapped(page))
969 return 0;
970
971 if (!page_rmapping(page))
972 return 0;
973
974 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
975 we_locked = trylock_page(page);
976 if (!we_locked)
977 return 1;
978 }
979
980 /*
981 * If we are reclaiming on behalf of a cgroup, skip
982 * counting on behalf of references from different
983 * cgroups
984 */
985 if (memcg) {
986 rwc.invalid_vma = invalid_page_referenced_vma;
987 }
988
989 ret = rmap_walk(page, &rwc);
990 *vm_flags = pra.vm_flags;
991
992 if (we_locked)
993 unlock_page(page);
994
995 return pra.referenced;
996 }
997
998 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
999 unsigned long address, void *arg)
1000 {
1001 struct mm_struct *mm = vma->vm_mm;
1002 pte_t *pte;
1003 spinlock_t *ptl;
1004 int ret = 0;
1005 int *cleaned = arg;
1006
1007 pte = page_check_address(page, mm, address, &ptl, 1);
1008 if (!pte)
1009 goto out;
1010
1011 if (pte_dirty(*pte) || pte_write(*pte)) {
1012 pte_t entry;
1013
1014 flush_cache_page(vma, address, pte_pfn(*pte));
1015 entry = ptep_clear_flush(vma, address, pte);
1016 entry = pte_wrprotect(entry);
1017 entry = pte_mkclean(entry);
1018 set_pte_at(mm, address, pte, entry);
1019 ret = 1;
1020 }
1021
1022 pte_unmap_unlock(pte, ptl);
1023
1024 if (ret) {
1025 mmu_notifier_invalidate_page(mm, address);
1026 (*cleaned)++;
1027 }
1028 out:
1029 return SWAP_AGAIN;
1030 }
1031
1032 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1033 {
1034 if (vma->vm_flags & VM_SHARED)
1035 return false;
1036
1037 return true;
1038 }
1039
1040 int page_mkclean(struct page *page)
1041 {
1042 int cleaned = 0;
1043 struct address_space *mapping;
1044 struct rmap_walk_control rwc = {
1045 .arg = (void *)&cleaned,
1046 .rmap_one = page_mkclean_one,
1047 .invalid_vma = invalid_mkclean_vma,
1048 };
1049
1050 BUG_ON(!PageLocked(page));
1051
1052 if (!page_mapped(page))
1053 return 0;
1054
1055 mapping = page_mapping(page);
1056 if (!mapping)
1057 return 0;
1058
1059 rmap_walk(page, &rwc);
1060
1061 return cleaned;
1062 }
1063 EXPORT_SYMBOL_GPL(page_mkclean);
1064
1065 /**
1066 * page_move_anon_rmap - move a page to our anon_vma
1067 * @page: the page to move to our anon_vma
1068 * @vma: the vma the page belongs to
1069 * @address: the user virtual address mapped
1070 *
1071 * When a page belongs exclusively to one process after a COW event,
1072 * that page can be moved into the anon_vma that belongs to just that
1073 * process, so the rmap code will not search the parent or sibling
1074 * processes.
1075 */
1076 void page_move_anon_rmap(struct page *page,
1077 struct vm_area_struct *vma, unsigned long address)
1078 {
1079 struct anon_vma *anon_vma = vma->anon_vma;
1080
1081 VM_BUG_ON_PAGE(!PageLocked(page), page);
1082 VM_BUG_ON_VMA(!anon_vma, vma);
1083 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1084
1085 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1086 /*
1087 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1088 * simultaneously, so a concurrent reader (eg page_referenced()'s
1089 * PageAnon()) will not see one without the other.
1090 */
1091 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1092 }
1093
1094 /**
1095 * __page_set_anon_rmap - set up new anonymous rmap
1096 * @page: Page to add to rmap
1097 * @vma: VM area to add page to.
1098 * @address: User virtual address of the mapping
1099 * @exclusive: the page is exclusively owned by the current process
1100 */
1101 static void __page_set_anon_rmap(struct page *page,
1102 struct vm_area_struct *vma, unsigned long address, int exclusive)
1103 {
1104 struct anon_vma *anon_vma = vma->anon_vma;
1105
1106 BUG_ON(!anon_vma);
1107
1108 if (PageAnon(page))
1109 return;
1110
1111 /*
1112 * If the page isn't exclusively mapped into this vma,
1113 * we must use the _oldest_ possible anon_vma for the
1114 * page mapping!
1115 */
1116 if (!exclusive)
1117 anon_vma = anon_vma->root;
1118
1119 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1120 page->mapping = (struct address_space *) anon_vma;
1121 page->index = linear_page_index(vma, address);
1122 }
1123
1124 /**
1125 * __page_check_anon_rmap - sanity check anonymous rmap addition
1126 * @page: the page to add the mapping to
1127 * @vma: the vm area in which the mapping is added
1128 * @address: the user virtual address mapped
1129 */
1130 static void __page_check_anon_rmap(struct page *page,
1131 struct vm_area_struct *vma, unsigned long address)
1132 {
1133 #ifdef CONFIG_DEBUG_VM
1134 /*
1135 * The page's anon-rmap details (mapping and index) are guaranteed to
1136 * be set up correctly at this point.
1137 *
1138 * We have exclusion against page_add_anon_rmap because the caller
1139 * always holds the page locked, except if called from page_dup_rmap,
1140 * in which case the page is already known to be setup.
1141 *
1142 * We have exclusion against page_add_new_anon_rmap because those pages
1143 * are initially only visible via the pagetables, and the pte is locked
1144 * over the call to page_add_new_anon_rmap.
1145 */
1146 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1147 BUG_ON(page->index != linear_page_index(vma, address));
1148 #endif
1149 }
1150
1151 /**
1152 * page_add_anon_rmap - add pte mapping to an anonymous page
1153 * @page: the page to add the mapping to
1154 * @vma: the vm area in which the mapping is added
1155 * @address: the user virtual address mapped
1156 *
1157 * The caller needs to hold the pte lock, and the page must be locked in
1158 * the anon_vma case: to serialize mapping,index checking after setting,
1159 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1160 * (but PageKsm is never downgraded to PageAnon).
1161 */
1162 void page_add_anon_rmap(struct page *page,
1163 struct vm_area_struct *vma, unsigned long address)
1164 {
1165 do_page_add_anon_rmap(page, vma, address, 0);
1166 }
1167
1168 /*
1169 * Special version of the above for do_swap_page, which often runs
1170 * into pages that are exclusively owned by the current process.
1171 * Everybody else should continue to use page_add_anon_rmap above.
1172 */
1173 void do_page_add_anon_rmap(struct page *page,
1174 struct vm_area_struct *vma, unsigned long address, int exclusive)
1175 {
1176 int first = atomic_inc_and_test(&page->_mapcount);
1177 if (first) {
1178 /*
1179 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1180 * these counters are not modified in interrupt context, and
1181 * pte lock(a spinlock) is held, which implies preemption
1182 * disabled.
1183 */
1184 if (PageTransHuge(page))
1185 __inc_zone_page_state(page,
1186 NR_ANON_TRANSPARENT_HUGEPAGES);
1187 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1188 hpage_nr_pages(page));
1189 }
1190 if (unlikely(PageKsm(page)))
1191 return;
1192
1193 VM_BUG_ON_PAGE(!PageLocked(page), page);
1194 /* address might be in next vma when migration races vma_adjust */
1195 if (first)
1196 __page_set_anon_rmap(page, vma, address, exclusive);
1197 else
1198 __page_check_anon_rmap(page, vma, address);
1199 }
1200
1201 /**
1202 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1203 * @page: the page to add the mapping to
1204 * @vma: the vm area in which the mapping is added
1205 * @address: the user virtual address mapped
1206 *
1207 * Same as page_add_anon_rmap but must only be called on *new* pages.
1208 * This means the inc-and-test can be bypassed.
1209 * Page does not have to be locked.
1210 */
1211 void page_add_new_anon_rmap(struct page *page,
1212 struct vm_area_struct *vma, unsigned long address)
1213 {
1214 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1215 SetPageSwapBacked(page);
1216 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1217 if (PageTransHuge(page))
1218 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1219 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1220 hpage_nr_pages(page));
1221 __page_set_anon_rmap(page, vma, address, 1);
1222 }
1223
1224 /**
1225 * page_add_file_rmap - add pte mapping to a file page
1226 * @page: the page to add the mapping to
1227 *
1228 * The caller needs to hold the pte lock.
1229 */
1230 void page_add_file_rmap(struct page *page)
1231 {
1232 struct mem_cgroup *memcg;
1233
1234 memcg = mem_cgroup_begin_page_stat(page);
1235 if (atomic_inc_and_test(&page->_mapcount)) {
1236 __inc_zone_page_state(page, NR_FILE_MAPPED);
1237 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1238 }
1239 mem_cgroup_end_page_stat(memcg);
1240 }
1241
1242 static void page_remove_file_rmap(struct page *page)
1243 {
1244 struct mem_cgroup *memcg;
1245
1246 memcg = mem_cgroup_begin_page_stat(page);
1247
1248 /* page still mapped by someone else? */
1249 if (!atomic_add_negative(-1, &page->_mapcount))
1250 goto out;
1251
1252 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1253 if (unlikely(PageHuge(page)))
1254 goto out;
1255
1256 /*
1257 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1258 * these counters are not modified in interrupt context, and
1259 * pte lock(a spinlock) is held, which implies preemption disabled.
1260 */
1261 __dec_zone_page_state(page, NR_FILE_MAPPED);
1262 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1263
1264 if (unlikely(PageMlocked(page)))
1265 clear_page_mlock(page);
1266 out:
1267 mem_cgroup_end_page_stat(memcg);
1268 }
1269
1270 /**
1271 * page_remove_rmap - take down pte mapping from a page
1272 * @page: page to remove mapping from
1273 *
1274 * The caller needs to hold the pte lock.
1275 */
1276 void page_remove_rmap(struct page *page)
1277 {
1278 if (!PageAnon(page)) {
1279 page_remove_file_rmap(page);
1280 return;
1281 }
1282
1283 /* page still mapped by someone else? */
1284 if (!atomic_add_negative(-1, &page->_mapcount))
1285 return;
1286
1287 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1288 if (unlikely(PageHuge(page)))
1289 return;
1290
1291 /*
1292 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1293 * these counters are not modified in interrupt context, and
1294 * pte lock(a spinlock) is held, which implies preemption disabled.
1295 */
1296 if (PageTransHuge(page))
1297 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1298
1299 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1300 -hpage_nr_pages(page));
1301
1302 if (unlikely(PageMlocked(page)))
1303 clear_page_mlock(page);
1304
1305 /*
1306 * It would be tidy to reset the PageAnon mapping here,
1307 * but that might overwrite a racing page_add_anon_rmap
1308 * which increments mapcount after us but sets mapping
1309 * before us: so leave the reset to free_hot_cold_page,
1310 * and remember that it's only reliable while mapped.
1311 * Leaving it set also helps swapoff to reinstate ptes
1312 * faster for those pages still in swapcache.
1313 */
1314 }
1315
1316 /*
1317 * @arg: enum ttu_flags will be passed to this argument
1318 */
1319 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1320 unsigned long address, void *arg)
1321 {
1322 struct mm_struct *mm = vma->vm_mm;
1323 pte_t *pte;
1324 pte_t pteval;
1325 spinlock_t *ptl;
1326 int ret = SWAP_AGAIN;
1327 enum ttu_flags flags = (enum ttu_flags)arg;
1328
1329 /* munlock has nothing to gain from examining un-locked vmas */
1330 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1331 goto out;
1332
1333 pte = page_check_address(page, mm, address, &ptl, 0);
1334 if (!pte)
1335 goto out;
1336
1337 /*
1338 * If the page is mlock()d, we cannot swap it out.
1339 * If it's recently referenced (perhaps page_referenced
1340 * skipped over this mm) then we should reactivate it.
1341 */
1342 if (!(flags & TTU_IGNORE_MLOCK)) {
1343 if (vma->vm_flags & VM_LOCKED) {
1344 /* Holding pte lock, we do *not* need mmap_sem here */
1345 mlock_vma_page(page);
1346 ret = SWAP_MLOCK;
1347 goto out_unmap;
1348 }
1349 if (flags & TTU_MUNLOCK)
1350 goto out_unmap;
1351 }
1352 if (!(flags & TTU_IGNORE_ACCESS)) {
1353 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1354 ret = SWAP_FAIL;
1355 goto out_unmap;
1356 }
1357 }
1358
1359 /* Nuke the page table entry. */
1360 flush_cache_page(vma, address, page_to_pfn(page));
1361 if (should_defer_flush(mm, flags)) {
1362 /*
1363 * We clear the PTE but do not flush so potentially a remote
1364 * CPU could still be writing to the page. If the entry was
1365 * previously clean then the architecture must guarantee that
1366 * a clear->dirty transition on a cached TLB entry is written
1367 * through and traps if the PTE is unmapped.
1368 */
1369 pteval = ptep_get_and_clear(mm, address, pte);
1370
1371 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1372 } else {
1373 pteval = ptep_clear_flush(vma, address, pte);
1374 }
1375
1376 /* Move the dirty bit to the physical page now the pte is gone. */
1377 if (pte_dirty(pteval))
1378 set_page_dirty(page);
1379
1380 /* Update high watermark before we lower rss */
1381 update_hiwater_rss(mm);
1382
1383 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1384 if (PageHuge(page)) {
1385 hugetlb_count_sub(1 << compound_order(page), mm);
1386 } else {
1387 if (PageAnon(page))
1388 dec_mm_counter(mm, MM_ANONPAGES);
1389 else
1390 dec_mm_counter(mm, MM_FILEPAGES);
1391 }
1392 set_pte_at(mm, address, pte,
1393 swp_entry_to_pte(make_hwpoison_entry(page)));
1394 } else if (pte_unused(pteval)) {
1395 /*
1396 * The guest indicated that the page content is of no
1397 * interest anymore. Simply discard the pte, vmscan
1398 * will take care of the rest.
1399 */
1400 if (PageAnon(page))
1401 dec_mm_counter(mm, MM_ANONPAGES);
1402 else
1403 dec_mm_counter(mm, MM_FILEPAGES);
1404 } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1405 swp_entry_t entry;
1406 pte_t swp_pte;
1407 /*
1408 * Store the pfn of the page in a special migration
1409 * pte. do_swap_page() will wait until the migration
1410 * pte is removed and then restart fault handling.
1411 */
1412 entry = make_migration_entry(page, pte_write(pteval));
1413 swp_pte = swp_entry_to_pte(entry);
1414 if (pte_soft_dirty(pteval))
1415 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1416 set_pte_at(mm, address, pte, swp_pte);
1417 } else if (PageAnon(page)) {
1418 swp_entry_t entry = { .val = page_private(page) };
1419 pte_t swp_pte;
1420 /*
1421 * Store the swap location in the pte.
1422 * See handle_pte_fault() ...
1423 */
1424 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1425 if (swap_duplicate(entry) < 0) {
1426 set_pte_at(mm, address, pte, pteval);
1427 ret = SWAP_FAIL;
1428 goto out_unmap;
1429 }
1430 if (list_empty(&mm->mmlist)) {
1431 spin_lock(&mmlist_lock);
1432 if (list_empty(&mm->mmlist))
1433 list_add(&mm->mmlist, &init_mm.mmlist);
1434 spin_unlock(&mmlist_lock);
1435 }
1436 dec_mm_counter(mm, MM_ANONPAGES);
1437 inc_mm_counter(mm, MM_SWAPENTS);
1438 swp_pte = swp_entry_to_pte(entry);
1439 if (pte_soft_dirty(pteval))
1440 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1441 set_pte_at(mm, address, pte, swp_pte);
1442 } else
1443 dec_mm_counter(mm, MM_FILEPAGES);
1444
1445 page_remove_rmap(page);
1446 page_cache_release(page);
1447
1448 out_unmap:
1449 pte_unmap_unlock(pte, ptl);
1450 if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1451 mmu_notifier_invalidate_page(mm, address);
1452 out:
1453 return ret;
1454 }
1455
1456 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1457 {
1458 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1459
1460 if (!maybe_stack)
1461 return false;
1462
1463 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1464 VM_STACK_INCOMPLETE_SETUP)
1465 return true;
1466
1467 return false;
1468 }
1469
1470 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1471 {
1472 return is_vma_temporary_stack(vma);
1473 }
1474
1475 static int page_not_mapped(struct page *page)
1476 {
1477 return !page_mapped(page);
1478 };
1479
1480 /**
1481 * try_to_unmap - try to remove all page table mappings to a page
1482 * @page: the page to get unmapped
1483 * @flags: action and flags
1484 *
1485 * Tries to remove all the page table entries which are mapping this
1486 * page, used in the pageout path. Caller must hold the page lock.
1487 * Return values are:
1488 *
1489 * SWAP_SUCCESS - we succeeded in removing all mappings
1490 * SWAP_AGAIN - we missed a mapping, try again later
1491 * SWAP_FAIL - the page is unswappable
1492 * SWAP_MLOCK - page is mlocked.
1493 */
1494 int try_to_unmap(struct page *page, enum ttu_flags flags)
1495 {
1496 int ret;
1497 struct rmap_walk_control rwc = {
1498 .rmap_one = try_to_unmap_one,
1499 .arg = (void *)flags,
1500 .done = page_not_mapped,
1501 .anon_lock = page_lock_anon_vma_read,
1502 };
1503
1504 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1505
1506 /*
1507 * During exec, a temporary VMA is setup and later moved.
1508 * The VMA is moved under the anon_vma lock but not the
1509 * page tables leading to a race where migration cannot
1510 * find the migration ptes. Rather than increasing the
1511 * locking requirements of exec(), migration skips
1512 * temporary VMAs until after exec() completes.
1513 */
1514 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1515 rwc.invalid_vma = invalid_migration_vma;
1516
1517 ret = rmap_walk(page, &rwc);
1518
1519 if (ret != SWAP_MLOCK && !page_mapped(page))
1520 ret = SWAP_SUCCESS;
1521 return ret;
1522 }
1523
1524 /**
1525 * try_to_munlock - try to munlock a page
1526 * @page: the page to be munlocked
1527 *
1528 * Called from munlock code. Checks all of the VMAs mapping the page
1529 * to make sure nobody else has this page mlocked. The page will be
1530 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1531 *
1532 * Return values are:
1533 *
1534 * SWAP_AGAIN - no vma is holding page mlocked, or,
1535 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1536 * SWAP_FAIL - page cannot be located at present
1537 * SWAP_MLOCK - page is now mlocked.
1538 */
1539 int try_to_munlock(struct page *page)
1540 {
1541 int ret;
1542 struct rmap_walk_control rwc = {
1543 .rmap_one = try_to_unmap_one,
1544 .arg = (void *)TTU_MUNLOCK,
1545 .done = page_not_mapped,
1546 .anon_lock = page_lock_anon_vma_read,
1547
1548 };
1549
1550 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1551
1552 ret = rmap_walk(page, &rwc);
1553 return ret;
1554 }
1555
1556 void __put_anon_vma(struct anon_vma *anon_vma)
1557 {
1558 struct anon_vma *root = anon_vma->root;
1559
1560 anon_vma_free(anon_vma);
1561 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1562 anon_vma_free(root);
1563 }
1564
1565 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1566 struct rmap_walk_control *rwc)
1567 {
1568 struct anon_vma *anon_vma;
1569
1570 if (rwc->anon_lock)
1571 return rwc->anon_lock(page);
1572
1573 /*
1574 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1575 * because that depends on page_mapped(); but not all its usages
1576 * are holding mmap_sem. Users without mmap_sem are required to
1577 * take a reference count to prevent the anon_vma disappearing
1578 */
1579 anon_vma = page_anon_vma(page);
1580 if (!anon_vma)
1581 return NULL;
1582
1583 anon_vma_lock_read(anon_vma);
1584 return anon_vma;
1585 }
1586
1587 /*
1588 * rmap_walk_anon - do something to anonymous page using the object-based
1589 * rmap method
1590 * @page: the page to be handled
1591 * @rwc: control variable according to each walk type
1592 *
1593 * Find all the mappings of a page using the mapping pointer and the vma chains
1594 * contained in the anon_vma struct it points to.
1595 *
1596 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1597 * where the page was found will be held for write. So, we won't recheck
1598 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1599 * LOCKED.
1600 */
1601 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1602 {
1603 struct anon_vma *anon_vma;
1604 pgoff_t pgoff;
1605 struct anon_vma_chain *avc;
1606 int ret = SWAP_AGAIN;
1607
1608 anon_vma = rmap_walk_anon_lock(page, rwc);
1609 if (!anon_vma)
1610 return ret;
1611
1612 pgoff = page_to_pgoff(page);
1613 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1614 struct vm_area_struct *vma = avc->vma;
1615 unsigned long address = vma_address(page, vma);
1616
1617 cond_resched();
1618
1619 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1620 continue;
1621
1622 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1623 if (ret != SWAP_AGAIN)
1624 break;
1625 if (rwc->done && rwc->done(page))
1626 break;
1627 }
1628 anon_vma_unlock_read(anon_vma);
1629 return ret;
1630 }
1631
1632 /*
1633 * rmap_walk_file - do something to file page using the object-based rmap method
1634 * @page: the page to be handled
1635 * @rwc: control variable according to each walk type
1636 *
1637 * Find all the mappings of a page using the mapping pointer and the vma chains
1638 * contained in the address_space struct it points to.
1639 *
1640 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1641 * where the page was found will be held for write. So, we won't recheck
1642 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1643 * LOCKED.
1644 */
1645 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1646 {
1647 struct address_space *mapping = page->mapping;
1648 pgoff_t pgoff;
1649 struct vm_area_struct *vma;
1650 int ret = SWAP_AGAIN;
1651
1652 /*
1653 * The page lock not only makes sure that page->mapping cannot
1654 * suddenly be NULLified by truncation, it makes sure that the
1655 * structure at mapping cannot be freed and reused yet,
1656 * so we can safely take mapping->i_mmap_rwsem.
1657 */
1658 VM_BUG_ON_PAGE(!PageLocked(page), page);
1659
1660 if (!mapping)
1661 return ret;
1662
1663 pgoff = page_to_pgoff(page);
1664 i_mmap_lock_read(mapping);
1665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1666 unsigned long address = vma_address(page, vma);
1667
1668 cond_resched();
1669
1670 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1671 continue;
1672
1673 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1674 if (ret != SWAP_AGAIN)
1675 goto done;
1676 if (rwc->done && rwc->done(page))
1677 goto done;
1678 }
1679
1680 done:
1681 i_mmap_unlock_read(mapping);
1682 return ret;
1683 }
1684
1685 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1686 {
1687 if (unlikely(PageKsm(page)))
1688 return rmap_walk_ksm(page, rwc);
1689 else if (PageAnon(page))
1690 return rmap_walk_anon(page, rwc);
1691 else
1692 return rmap_walk_file(page, rwc);
1693 }
1694
1695 #ifdef CONFIG_HUGETLB_PAGE
1696 /*
1697 * The following three functions are for anonymous (private mapped) hugepages.
1698 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1699 * and no lru code, because we handle hugepages differently from common pages.
1700 */
1701 static void __hugepage_set_anon_rmap(struct page *page,
1702 struct vm_area_struct *vma, unsigned long address, int exclusive)
1703 {
1704 struct anon_vma *anon_vma = vma->anon_vma;
1705
1706 BUG_ON(!anon_vma);
1707
1708 if (PageAnon(page))
1709 return;
1710 if (!exclusive)
1711 anon_vma = anon_vma->root;
1712
1713 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1714 page->mapping = (struct address_space *) anon_vma;
1715 page->index = linear_page_index(vma, address);
1716 }
1717
1718 void hugepage_add_anon_rmap(struct page *page,
1719 struct vm_area_struct *vma, unsigned long address)
1720 {
1721 struct anon_vma *anon_vma = vma->anon_vma;
1722 int first;
1723
1724 BUG_ON(!PageLocked(page));
1725 BUG_ON(!anon_vma);
1726 /* address might be in next vma when migration races vma_adjust */
1727 first = atomic_inc_and_test(&page->_mapcount);
1728 if (first)
1729 __hugepage_set_anon_rmap(page, vma, address, 0);
1730 }
1731
1732 void hugepage_add_new_anon_rmap(struct page *page,
1733 struct vm_area_struct *vma, unsigned long address)
1734 {
1735 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1736 atomic_set(&page->_mapcount, 0);
1737 __hugepage_set_anon_rmap(page, vma, address, 1);
1738 }
1739 #endif /* CONFIG_HUGETLB_PAGE */