]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/rmap.c
mm: replace ACCESS_ONCE with READ_ONCE or barriers
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83 }
84
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89 /*
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 *
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
106 might_sleep();
107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 anon_vma_lock_write(anon_vma);
109 anon_vma_unlock_write(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128 {
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133 }
134
135 /**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
162 int anon_vma_prepare(struct vm_area_struct *vma)
163 {
164 struct anon_vma *anon_vma = vma->anon_vma;
165 struct anon_vma_chain *avc;
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
170 struct anon_vma *allocated;
171
172 avc = anon_vma_chain_alloc(GFP_KERNEL);
173 if (!avc)
174 goto out_enomem;
175
176 anon_vma = find_mergeable_anon_vma(vma);
177 allocated = NULL;
178 if (!anon_vma) {
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
181 goto out_enomem_free_avc;
182 allocated = anon_vma;
183 }
184
185 anon_vma_lock_write(anon_vma);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
190 anon_vma_chain_link(vma, avc, anon_vma);
191 allocated = NULL;
192 avc = NULL;
193 }
194 spin_unlock(&mm->page_table_lock);
195 anon_vma_unlock_write(anon_vma);
196
197 if (unlikely(allocated))
198 put_anon_vma(allocated);
199 if (unlikely(avc))
200 anon_vma_chain_free(avc);
201 }
202 return 0;
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
208 }
209
210 /*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 {
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
223 up_write(&root->rwsem);
224 root = new_root;
225 down_write(&root->rwsem);
226 }
227 return root;
228 }
229
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 {
232 if (root)
233 up_write(&root->rwsem);
234 }
235
236 /*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 {
242 struct anon_vma_chain *avc, *pavc;
243 struct anon_vma *root = NULL;
244
245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 struct anon_vma *anon_vma;
247
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
259 }
260 unlock_anon_vma_root(root);
261 return 0;
262
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
266 }
267
268 /*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 {
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
277
278 /* Don't bother if the parent process has no anon_vma here. */
279 if (!pvma->anon_vma)
280 return 0;
281
282 /*
283 * First, attach the new VMA to the parent VMA's anon_vmas,
284 * so rmap can find non-COWed pages in child processes.
285 */
286 if (anon_vma_clone(vma, pvma))
287 return -ENOMEM;
288
289 /* Then add our own anon_vma. */
290 anon_vma = anon_vma_alloc();
291 if (!anon_vma)
292 goto out_error;
293 avc = anon_vma_chain_alloc(GFP_KERNEL);
294 if (!avc)
295 goto out_error_free_anon_vma;
296
297 /*
298 * The root anon_vma's spinlock is the lock actually used when we
299 * lock any of the anon_vmas in this anon_vma tree.
300 */
301 anon_vma->root = pvma->anon_vma->root;
302 /*
303 * With refcounts, an anon_vma can stay around longer than the
304 * process it belongs to. The root anon_vma needs to be pinned until
305 * this anon_vma is freed, because the lock lives in the root.
306 */
307 get_anon_vma(anon_vma->root);
308 /* Mark this anon_vma as the one where our new (COWed) pages go. */
309 vma->anon_vma = anon_vma;
310 anon_vma_lock_write(anon_vma);
311 anon_vma_chain_link(vma, avc, anon_vma);
312 anon_vma_unlock_write(anon_vma);
313
314 return 0;
315
316 out_error_free_anon_vma:
317 put_anon_vma(anon_vma);
318 out_error:
319 unlink_anon_vmas(vma);
320 return -ENOMEM;
321 }
322
323 void unlink_anon_vmas(struct vm_area_struct *vma)
324 {
325 struct anon_vma_chain *avc, *next;
326 struct anon_vma *root = NULL;
327
328 /*
329 * Unlink each anon_vma chained to the VMA. This list is ordered
330 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 */
332 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
333 struct anon_vma *anon_vma = avc->anon_vma;
334
335 root = lock_anon_vma_root(root, anon_vma);
336 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
337
338 /*
339 * Leave empty anon_vmas on the list - we'll need
340 * to free them outside the lock.
341 */
342 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
343 continue;
344
345 list_del(&avc->same_vma);
346 anon_vma_chain_free(avc);
347 }
348 unlock_anon_vma_root(root);
349
350 /*
351 * Iterate the list once more, it now only contains empty and unlinked
352 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
353 * needing to write-acquire the anon_vma->root->rwsem.
354 */
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 struct anon_vma *anon_vma = avc->anon_vma;
357
358 put_anon_vma(anon_vma);
359
360 list_del(&avc->same_vma);
361 anon_vma_chain_free(avc);
362 }
363 }
364
365 static void anon_vma_ctor(void *data)
366 {
367 struct anon_vma *anon_vma = data;
368
369 init_rwsem(&anon_vma->rwsem);
370 atomic_set(&anon_vma->refcount, 0);
371 anon_vma->rb_root = RB_ROOT;
372 }
373
374 void __init anon_vma_init(void)
375 {
376 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
377 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
378 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
379 }
380
381 /*
382 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 *
384 * Since there is no serialization what so ever against page_remove_rmap()
385 * the best this function can do is return a locked anon_vma that might
386 * have been relevant to this page.
387 *
388 * The page might have been remapped to a different anon_vma or the anon_vma
389 * returned may already be freed (and even reused).
390 *
391 * In case it was remapped to a different anon_vma, the new anon_vma will be a
392 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
393 * ensure that any anon_vma obtained from the page will still be valid for as
394 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 *
396 * All users of this function must be very careful when walking the anon_vma
397 * chain and verify that the page in question is indeed mapped in it
398 * [ something equivalent to page_mapped_in_vma() ].
399 *
400 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
401 * that the anon_vma pointer from page->mapping is valid if there is a
402 * mapcount, we can dereference the anon_vma after observing those.
403 */
404 struct anon_vma *page_get_anon_vma(struct page *page)
405 {
406 struct anon_vma *anon_vma = NULL;
407 unsigned long anon_mapping;
408
409 rcu_read_lock();
410 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
411 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
412 goto out;
413 if (!page_mapped(page))
414 goto out;
415
416 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
417 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
418 anon_vma = NULL;
419 goto out;
420 }
421
422 /*
423 * If this page is still mapped, then its anon_vma cannot have been
424 * freed. But if it has been unmapped, we have no security against the
425 * anon_vma structure being freed and reused (for another anon_vma:
426 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
427 * above cannot corrupt).
428 */
429 if (!page_mapped(page)) {
430 rcu_read_unlock();
431 put_anon_vma(anon_vma);
432 return NULL;
433 }
434 out:
435 rcu_read_unlock();
436
437 return anon_vma;
438 }
439
440 /*
441 * Similar to page_get_anon_vma() except it locks the anon_vma.
442 *
443 * Its a little more complex as it tries to keep the fast path to a single
444 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
445 * reference like with page_get_anon_vma() and then block on the mutex.
446 */
447 struct anon_vma *page_lock_anon_vma_read(struct page *page)
448 {
449 struct anon_vma *anon_vma = NULL;
450 struct anon_vma *root_anon_vma;
451 unsigned long anon_mapping;
452
453 rcu_read_lock();
454 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
455 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
456 goto out;
457 if (!page_mapped(page))
458 goto out;
459
460 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
461 root_anon_vma = ACCESS_ONCE(anon_vma->root);
462 if (down_read_trylock(&root_anon_vma->rwsem)) {
463 /*
464 * If the page is still mapped, then this anon_vma is still
465 * its anon_vma, and holding the mutex ensures that it will
466 * not go away, see anon_vma_free().
467 */
468 if (!page_mapped(page)) {
469 up_read(&root_anon_vma->rwsem);
470 anon_vma = NULL;
471 }
472 goto out;
473 }
474
475 /* trylock failed, we got to sleep */
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
479 }
480
481 if (!page_mapped(page)) {
482 rcu_read_unlock();
483 put_anon_vma(anon_vma);
484 return NULL;
485 }
486
487 /* we pinned the anon_vma, its safe to sleep */
488 rcu_read_unlock();
489 anon_vma_lock_read(anon_vma);
490
491 if (atomic_dec_and_test(&anon_vma->refcount)) {
492 /*
493 * Oops, we held the last refcount, release the lock
494 * and bail -- can't simply use put_anon_vma() because
495 * we'll deadlock on the anon_vma_lock_write() recursion.
496 */
497 anon_vma_unlock_read(anon_vma);
498 __put_anon_vma(anon_vma);
499 anon_vma = NULL;
500 }
501
502 return anon_vma;
503
504 out:
505 rcu_read_unlock();
506 return anon_vma;
507 }
508
509 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
510 {
511 anon_vma_unlock_read(anon_vma);
512 }
513
514 /*
515 * At what user virtual address is page expected in @vma?
516 */
517 static inline unsigned long
518 __vma_address(struct page *page, struct vm_area_struct *vma)
519 {
520 pgoff_t pgoff = page_to_pgoff(page);
521 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
522 }
523
524 inline unsigned long
525 vma_address(struct page *page, struct vm_area_struct *vma)
526 {
527 unsigned long address = __vma_address(page, vma);
528
529 /* page should be within @vma mapping range */
530 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
531
532 return address;
533 }
534
535 /*
536 * At what user virtual address is page expected in vma?
537 * Caller should check the page is actually part of the vma.
538 */
539 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
540 {
541 unsigned long address;
542 if (PageAnon(page)) {
543 struct anon_vma *page__anon_vma = page_anon_vma(page);
544 /*
545 * Note: swapoff's unuse_vma() is more efficient with this
546 * check, and needs it to match anon_vma when KSM is active.
547 */
548 if (!vma->anon_vma || !page__anon_vma ||
549 vma->anon_vma->root != page__anon_vma->root)
550 return -EFAULT;
551 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
552 if (!vma->vm_file ||
553 vma->vm_file->f_mapping != page->mapping)
554 return -EFAULT;
555 } else
556 return -EFAULT;
557 address = __vma_address(page, vma);
558 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
559 return -EFAULT;
560 return address;
561 }
562
563 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
564 {
565 pgd_t *pgd;
566 pud_t *pud;
567 pmd_t *pmd = NULL;
568 pmd_t pmde;
569
570 pgd = pgd_offset(mm, address);
571 if (!pgd_present(*pgd))
572 goto out;
573
574 pud = pud_offset(pgd, address);
575 if (!pud_present(*pud))
576 goto out;
577
578 pmd = pmd_offset(pud, address);
579 /*
580 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
581 * without holding anon_vma lock for write. So when looking for a
582 * genuine pmde (in which to find pte), test present and !THP together.
583 */
584 pmde = *pmd;
585 barrier();
586 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
587 pmd = NULL;
588 out:
589 return pmd;
590 }
591
592 /*
593 * Check that @page is mapped at @address into @mm.
594 *
595 * If @sync is false, page_check_address may perform a racy check to avoid
596 * the page table lock when the pte is not present (helpful when reclaiming
597 * highly shared pages).
598 *
599 * On success returns with pte mapped and locked.
600 */
601 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
602 unsigned long address, spinlock_t **ptlp, int sync)
603 {
604 pmd_t *pmd;
605 pte_t *pte;
606 spinlock_t *ptl;
607
608 if (unlikely(PageHuge(page))) {
609 /* when pud is not present, pte will be NULL */
610 pte = huge_pte_offset(mm, address);
611 if (!pte)
612 return NULL;
613
614 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
615 goto check;
616 }
617
618 pmd = mm_find_pmd(mm, address);
619 if (!pmd)
620 return NULL;
621
622 pte = pte_offset_map(pmd, address);
623 /* Make a quick check before getting the lock */
624 if (!sync && !pte_present(*pte)) {
625 pte_unmap(pte);
626 return NULL;
627 }
628
629 ptl = pte_lockptr(mm, pmd);
630 check:
631 spin_lock(ptl);
632 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
633 *ptlp = ptl;
634 return pte;
635 }
636 pte_unmap_unlock(pte, ptl);
637 return NULL;
638 }
639
640 /**
641 * page_mapped_in_vma - check whether a page is really mapped in a VMA
642 * @page: the page to test
643 * @vma: the VMA to test
644 *
645 * Returns 1 if the page is mapped into the page tables of the VMA, 0
646 * if the page is not mapped into the page tables of this VMA. Only
647 * valid for normal file or anonymous VMAs.
648 */
649 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
650 {
651 unsigned long address;
652 pte_t *pte;
653 spinlock_t *ptl;
654
655 address = __vma_address(page, vma);
656 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
657 return 0;
658 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
659 if (!pte) /* the page is not in this mm */
660 return 0;
661 pte_unmap_unlock(pte, ptl);
662
663 return 1;
664 }
665
666 struct page_referenced_arg {
667 int mapcount;
668 int referenced;
669 unsigned long vm_flags;
670 struct mem_cgroup *memcg;
671 };
672 /*
673 * arg: page_referenced_arg will be passed
674 */
675 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
676 unsigned long address, void *arg)
677 {
678 struct mm_struct *mm = vma->vm_mm;
679 spinlock_t *ptl;
680 int referenced = 0;
681 struct page_referenced_arg *pra = arg;
682
683 if (unlikely(PageTransHuge(page))) {
684 pmd_t *pmd;
685
686 /*
687 * rmap might return false positives; we must filter
688 * these out using page_check_address_pmd().
689 */
690 pmd = page_check_address_pmd(page, mm, address,
691 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
692 if (!pmd)
693 return SWAP_AGAIN;
694
695 if (vma->vm_flags & VM_LOCKED) {
696 spin_unlock(ptl);
697 pra->vm_flags |= VM_LOCKED;
698 return SWAP_FAIL; /* To break the loop */
699 }
700
701 /* go ahead even if the pmd is pmd_trans_splitting() */
702 if (pmdp_clear_flush_young_notify(vma, address, pmd))
703 referenced++;
704 spin_unlock(ptl);
705 } else {
706 pte_t *pte;
707
708 /*
709 * rmap might return false positives; we must filter
710 * these out using page_check_address().
711 */
712 pte = page_check_address(page, mm, address, &ptl, 0);
713 if (!pte)
714 return SWAP_AGAIN;
715
716 if (vma->vm_flags & VM_LOCKED) {
717 pte_unmap_unlock(pte, ptl);
718 pra->vm_flags |= VM_LOCKED;
719 return SWAP_FAIL; /* To break the loop */
720 }
721
722 if (ptep_clear_flush_young_notify(vma, address, pte)) {
723 /*
724 * Don't treat a reference through a sequentially read
725 * mapping as such. If the page has been used in
726 * another mapping, we will catch it; if this other
727 * mapping is already gone, the unmap path will have
728 * set PG_referenced or activated the page.
729 */
730 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
731 referenced++;
732 }
733 pte_unmap_unlock(pte, ptl);
734 }
735
736 if (referenced) {
737 pra->referenced++;
738 pra->vm_flags |= vma->vm_flags;
739 }
740
741 pra->mapcount--;
742 if (!pra->mapcount)
743 return SWAP_SUCCESS; /* To break the loop */
744
745 return SWAP_AGAIN;
746 }
747
748 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
749 {
750 struct page_referenced_arg *pra = arg;
751 struct mem_cgroup *memcg = pra->memcg;
752
753 if (!mm_match_cgroup(vma->vm_mm, memcg))
754 return true;
755
756 return false;
757 }
758
759 /**
760 * page_referenced - test if the page was referenced
761 * @page: the page to test
762 * @is_locked: caller holds lock on the page
763 * @memcg: target memory cgroup
764 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
765 *
766 * Quick test_and_clear_referenced for all mappings to a page,
767 * returns the number of ptes which referenced the page.
768 */
769 int page_referenced(struct page *page,
770 int is_locked,
771 struct mem_cgroup *memcg,
772 unsigned long *vm_flags)
773 {
774 int ret;
775 int we_locked = 0;
776 struct page_referenced_arg pra = {
777 .mapcount = page_mapcount(page),
778 .memcg = memcg,
779 };
780 struct rmap_walk_control rwc = {
781 .rmap_one = page_referenced_one,
782 .arg = (void *)&pra,
783 .anon_lock = page_lock_anon_vma_read,
784 };
785
786 *vm_flags = 0;
787 if (!page_mapped(page))
788 return 0;
789
790 if (!page_rmapping(page))
791 return 0;
792
793 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
794 we_locked = trylock_page(page);
795 if (!we_locked)
796 return 1;
797 }
798
799 /*
800 * If we are reclaiming on behalf of a cgroup, skip
801 * counting on behalf of references from different
802 * cgroups
803 */
804 if (memcg) {
805 rwc.invalid_vma = invalid_page_referenced_vma;
806 }
807
808 ret = rmap_walk(page, &rwc);
809 *vm_flags = pra.vm_flags;
810
811 if (we_locked)
812 unlock_page(page);
813
814 return pra.referenced;
815 }
816
817 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
818 unsigned long address, void *arg)
819 {
820 struct mm_struct *mm = vma->vm_mm;
821 pte_t *pte;
822 spinlock_t *ptl;
823 int ret = 0;
824 int *cleaned = arg;
825
826 pte = page_check_address(page, mm, address, &ptl, 1);
827 if (!pte)
828 goto out;
829
830 if (pte_dirty(*pte) || pte_write(*pte)) {
831 pte_t entry;
832
833 flush_cache_page(vma, address, pte_pfn(*pte));
834 entry = ptep_clear_flush(vma, address, pte);
835 entry = pte_wrprotect(entry);
836 entry = pte_mkclean(entry);
837 set_pte_at(mm, address, pte, entry);
838 ret = 1;
839 }
840
841 pte_unmap_unlock(pte, ptl);
842
843 if (ret) {
844 mmu_notifier_invalidate_page(mm, address);
845 (*cleaned)++;
846 }
847 out:
848 return SWAP_AGAIN;
849 }
850
851 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
852 {
853 if (vma->vm_flags & VM_SHARED)
854 return false;
855
856 return true;
857 }
858
859 int page_mkclean(struct page *page)
860 {
861 int cleaned = 0;
862 struct address_space *mapping;
863 struct rmap_walk_control rwc = {
864 .arg = (void *)&cleaned,
865 .rmap_one = page_mkclean_one,
866 .invalid_vma = invalid_mkclean_vma,
867 };
868
869 BUG_ON(!PageLocked(page));
870
871 if (!page_mapped(page))
872 return 0;
873
874 mapping = page_mapping(page);
875 if (!mapping)
876 return 0;
877
878 rmap_walk(page, &rwc);
879
880 return cleaned;
881 }
882 EXPORT_SYMBOL_GPL(page_mkclean);
883
884 /**
885 * page_move_anon_rmap - move a page to our anon_vma
886 * @page: the page to move to our anon_vma
887 * @vma: the vma the page belongs to
888 * @address: the user virtual address mapped
889 *
890 * When a page belongs exclusively to one process after a COW event,
891 * that page can be moved into the anon_vma that belongs to just that
892 * process, so the rmap code will not search the parent or sibling
893 * processes.
894 */
895 void page_move_anon_rmap(struct page *page,
896 struct vm_area_struct *vma, unsigned long address)
897 {
898 struct anon_vma *anon_vma = vma->anon_vma;
899
900 VM_BUG_ON_PAGE(!PageLocked(page), page);
901 VM_BUG_ON_VMA(!anon_vma, vma);
902 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
903
904 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
905 page->mapping = (struct address_space *) anon_vma;
906 }
907
908 /**
909 * __page_set_anon_rmap - set up new anonymous rmap
910 * @page: Page to add to rmap
911 * @vma: VM area to add page to.
912 * @address: User virtual address of the mapping
913 * @exclusive: the page is exclusively owned by the current process
914 */
915 static void __page_set_anon_rmap(struct page *page,
916 struct vm_area_struct *vma, unsigned long address, int exclusive)
917 {
918 struct anon_vma *anon_vma = vma->anon_vma;
919
920 BUG_ON(!anon_vma);
921
922 if (PageAnon(page))
923 return;
924
925 /*
926 * If the page isn't exclusively mapped into this vma,
927 * we must use the _oldest_ possible anon_vma for the
928 * page mapping!
929 */
930 if (!exclusive)
931 anon_vma = anon_vma->root;
932
933 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
934 page->mapping = (struct address_space *) anon_vma;
935 page->index = linear_page_index(vma, address);
936 }
937
938 /**
939 * __page_check_anon_rmap - sanity check anonymous rmap addition
940 * @page: the page to add the mapping to
941 * @vma: the vm area in which the mapping is added
942 * @address: the user virtual address mapped
943 */
944 static void __page_check_anon_rmap(struct page *page,
945 struct vm_area_struct *vma, unsigned long address)
946 {
947 #ifdef CONFIG_DEBUG_VM
948 /*
949 * The page's anon-rmap details (mapping and index) are guaranteed to
950 * be set up correctly at this point.
951 *
952 * We have exclusion against page_add_anon_rmap because the caller
953 * always holds the page locked, except if called from page_dup_rmap,
954 * in which case the page is already known to be setup.
955 *
956 * We have exclusion against page_add_new_anon_rmap because those pages
957 * are initially only visible via the pagetables, and the pte is locked
958 * over the call to page_add_new_anon_rmap.
959 */
960 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
961 BUG_ON(page->index != linear_page_index(vma, address));
962 #endif
963 }
964
965 /**
966 * page_add_anon_rmap - add pte mapping to an anonymous page
967 * @page: the page to add the mapping to
968 * @vma: the vm area in which the mapping is added
969 * @address: the user virtual address mapped
970 *
971 * The caller needs to hold the pte lock, and the page must be locked in
972 * the anon_vma case: to serialize mapping,index checking after setting,
973 * and to ensure that PageAnon is not being upgraded racily to PageKsm
974 * (but PageKsm is never downgraded to PageAnon).
975 */
976 void page_add_anon_rmap(struct page *page,
977 struct vm_area_struct *vma, unsigned long address)
978 {
979 do_page_add_anon_rmap(page, vma, address, 0);
980 }
981
982 /*
983 * Special version of the above for do_swap_page, which often runs
984 * into pages that are exclusively owned by the current process.
985 * Everybody else should continue to use page_add_anon_rmap above.
986 */
987 void do_page_add_anon_rmap(struct page *page,
988 struct vm_area_struct *vma, unsigned long address, int exclusive)
989 {
990 int first = atomic_inc_and_test(&page->_mapcount);
991 if (first) {
992 /*
993 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
994 * these counters are not modified in interrupt context, and
995 * pte lock(a spinlock) is held, which implies preemption
996 * disabled.
997 */
998 if (PageTransHuge(page))
999 __inc_zone_page_state(page,
1000 NR_ANON_TRANSPARENT_HUGEPAGES);
1001 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1002 hpage_nr_pages(page));
1003 }
1004 if (unlikely(PageKsm(page)))
1005 return;
1006
1007 VM_BUG_ON_PAGE(!PageLocked(page), page);
1008 /* address might be in next vma when migration races vma_adjust */
1009 if (first)
1010 __page_set_anon_rmap(page, vma, address, exclusive);
1011 else
1012 __page_check_anon_rmap(page, vma, address);
1013 }
1014
1015 /**
1016 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1017 * @page: the page to add the mapping to
1018 * @vma: the vm area in which the mapping is added
1019 * @address: the user virtual address mapped
1020 *
1021 * Same as page_add_anon_rmap but must only be called on *new* pages.
1022 * This means the inc-and-test can be bypassed.
1023 * Page does not have to be locked.
1024 */
1025 void page_add_new_anon_rmap(struct page *page,
1026 struct vm_area_struct *vma, unsigned long address)
1027 {
1028 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1029 SetPageSwapBacked(page);
1030 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1031 if (PageTransHuge(page))
1032 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1033 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1034 hpage_nr_pages(page));
1035 __page_set_anon_rmap(page, vma, address, 1);
1036 }
1037
1038 /**
1039 * page_add_file_rmap - add pte mapping to a file page
1040 * @page: the page to add the mapping to
1041 *
1042 * The caller needs to hold the pte lock.
1043 */
1044 void page_add_file_rmap(struct page *page)
1045 {
1046 struct mem_cgroup *memcg;
1047 unsigned long flags;
1048 bool locked;
1049
1050 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1051 if (atomic_inc_and_test(&page->_mapcount)) {
1052 __inc_zone_page_state(page, NR_FILE_MAPPED);
1053 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1054 }
1055 mem_cgroup_end_page_stat(memcg, locked, flags);
1056 }
1057
1058 static void page_remove_file_rmap(struct page *page)
1059 {
1060 struct mem_cgroup *memcg;
1061 unsigned long flags;
1062 bool locked;
1063
1064 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1065
1066 /* page still mapped by someone else? */
1067 if (!atomic_add_negative(-1, &page->_mapcount))
1068 goto out;
1069
1070 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1071 if (unlikely(PageHuge(page)))
1072 goto out;
1073
1074 /*
1075 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1076 * these counters are not modified in interrupt context, and
1077 * pte lock(a spinlock) is held, which implies preemption disabled.
1078 */
1079 __dec_zone_page_state(page, NR_FILE_MAPPED);
1080 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1081
1082 if (unlikely(PageMlocked(page)))
1083 clear_page_mlock(page);
1084 out:
1085 mem_cgroup_end_page_stat(memcg, locked, flags);
1086 }
1087
1088 /**
1089 * page_remove_rmap - take down pte mapping from a page
1090 * @page: page to remove mapping from
1091 *
1092 * The caller needs to hold the pte lock.
1093 */
1094 void page_remove_rmap(struct page *page)
1095 {
1096 if (!PageAnon(page)) {
1097 page_remove_file_rmap(page);
1098 return;
1099 }
1100
1101 /* page still mapped by someone else? */
1102 if (!atomic_add_negative(-1, &page->_mapcount))
1103 return;
1104
1105 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1106 if (unlikely(PageHuge(page)))
1107 return;
1108
1109 /*
1110 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1111 * these counters are not modified in interrupt context, and
1112 * pte lock(a spinlock) is held, which implies preemption disabled.
1113 */
1114 if (PageTransHuge(page))
1115 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1116
1117 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1118 -hpage_nr_pages(page));
1119
1120 if (unlikely(PageMlocked(page)))
1121 clear_page_mlock(page);
1122
1123 /*
1124 * It would be tidy to reset the PageAnon mapping here,
1125 * but that might overwrite a racing page_add_anon_rmap
1126 * which increments mapcount after us but sets mapping
1127 * before us: so leave the reset to free_hot_cold_page,
1128 * and remember that it's only reliable while mapped.
1129 * Leaving it set also helps swapoff to reinstate ptes
1130 * faster for those pages still in swapcache.
1131 */
1132 }
1133
1134 /*
1135 * @arg: enum ttu_flags will be passed to this argument
1136 */
1137 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1138 unsigned long address, void *arg)
1139 {
1140 struct mm_struct *mm = vma->vm_mm;
1141 pte_t *pte;
1142 pte_t pteval;
1143 spinlock_t *ptl;
1144 int ret = SWAP_AGAIN;
1145 enum ttu_flags flags = (enum ttu_flags)arg;
1146
1147 pte = page_check_address(page, mm, address, &ptl, 0);
1148 if (!pte)
1149 goto out;
1150
1151 /*
1152 * If the page is mlock()d, we cannot swap it out.
1153 * If it's recently referenced (perhaps page_referenced
1154 * skipped over this mm) then we should reactivate it.
1155 */
1156 if (!(flags & TTU_IGNORE_MLOCK)) {
1157 if (vma->vm_flags & VM_LOCKED)
1158 goto out_mlock;
1159
1160 if (flags & TTU_MUNLOCK)
1161 goto out_unmap;
1162 }
1163 if (!(flags & TTU_IGNORE_ACCESS)) {
1164 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1165 ret = SWAP_FAIL;
1166 goto out_unmap;
1167 }
1168 }
1169
1170 /* Nuke the page table entry. */
1171 flush_cache_page(vma, address, page_to_pfn(page));
1172 pteval = ptep_clear_flush(vma, address, pte);
1173
1174 /* Move the dirty bit to the physical page now the pte is gone. */
1175 if (pte_dirty(pteval))
1176 set_page_dirty(page);
1177
1178 /* Update high watermark before we lower rss */
1179 update_hiwater_rss(mm);
1180
1181 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1182 if (!PageHuge(page)) {
1183 if (PageAnon(page))
1184 dec_mm_counter(mm, MM_ANONPAGES);
1185 else
1186 dec_mm_counter(mm, MM_FILEPAGES);
1187 }
1188 set_pte_at(mm, address, pte,
1189 swp_entry_to_pte(make_hwpoison_entry(page)));
1190 } else if (pte_unused(pteval)) {
1191 /*
1192 * The guest indicated that the page content is of no
1193 * interest anymore. Simply discard the pte, vmscan
1194 * will take care of the rest.
1195 */
1196 if (PageAnon(page))
1197 dec_mm_counter(mm, MM_ANONPAGES);
1198 else
1199 dec_mm_counter(mm, MM_FILEPAGES);
1200 } else if (PageAnon(page)) {
1201 swp_entry_t entry = { .val = page_private(page) };
1202 pte_t swp_pte;
1203
1204 if (PageSwapCache(page)) {
1205 /*
1206 * Store the swap location in the pte.
1207 * See handle_pte_fault() ...
1208 */
1209 if (swap_duplicate(entry) < 0) {
1210 set_pte_at(mm, address, pte, pteval);
1211 ret = SWAP_FAIL;
1212 goto out_unmap;
1213 }
1214 if (list_empty(&mm->mmlist)) {
1215 spin_lock(&mmlist_lock);
1216 if (list_empty(&mm->mmlist))
1217 list_add(&mm->mmlist, &init_mm.mmlist);
1218 spin_unlock(&mmlist_lock);
1219 }
1220 dec_mm_counter(mm, MM_ANONPAGES);
1221 inc_mm_counter(mm, MM_SWAPENTS);
1222 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1223 /*
1224 * Store the pfn of the page in a special migration
1225 * pte. do_swap_page() will wait until the migration
1226 * pte is removed and then restart fault handling.
1227 */
1228 BUG_ON(!(flags & TTU_MIGRATION));
1229 entry = make_migration_entry(page, pte_write(pteval));
1230 }
1231 swp_pte = swp_entry_to_pte(entry);
1232 if (pte_soft_dirty(pteval))
1233 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1234 set_pte_at(mm, address, pte, swp_pte);
1235 BUG_ON(pte_file(*pte));
1236 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1237 (flags & TTU_MIGRATION)) {
1238 /* Establish migration entry for a file page */
1239 swp_entry_t entry;
1240 entry = make_migration_entry(page, pte_write(pteval));
1241 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1242 } else
1243 dec_mm_counter(mm, MM_FILEPAGES);
1244
1245 page_remove_rmap(page);
1246 page_cache_release(page);
1247
1248 out_unmap:
1249 pte_unmap_unlock(pte, ptl);
1250 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1251 mmu_notifier_invalidate_page(mm, address);
1252 out:
1253 return ret;
1254
1255 out_mlock:
1256 pte_unmap_unlock(pte, ptl);
1257
1258
1259 /*
1260 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1261 * unstable result and race. Plus, We can't wait here because
1262 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1263 * if trylock failed, the page remain in evictable lru and later
1264 * vmscan could retry to move the page to unevictable lru if the
1265 * page is actually mlocked.
1266 */
1267 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1268 if (vma->vm_flags & VM_LOCKED) {
1269 mlock_vma_page(page);
1270 ret = SWAP_MLOCK;
1271 }
1272 up_read(&vma->vm_mm->mmap_sem);
1273 }
1274 return ret;
1275 }
1276
1277 /*
1278 * objrmap doesn't work for nonlinear VMAs because the assumption that
1279 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1280 * Consequently, given a particular page and its ->index, we cannot locate the
1281 * ptes which are mapping that page without an exhaustive linear search.
1282 *
1283 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1284 * maps the file to which the target page belongs. The ->vm_private_data field
1285 * holds the current cursor into that scan. Successive searches will circulate
1286 * around the vma's virtual address space.
1287 *
1288 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1289 * more scanning pressure is placed against them as well. Eventually pages
1290 * will become fully unmapped and are eligible for eviction.
1291 *
1292 * For very sparsely populated VMAs this is a little inefficient - chances are
1293 * there there won't be many ptes located within the scan cluster. In this case
1294 * maybe we could scan further - to the end of the pte page, perhaps.
1295 *
1296 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1297 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1298 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1299 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1300 */
1301 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1302 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1303
1304 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1305 struct vm_area_struct *vma, struct page *check_page)
1306 {
1307 struct mm_struct *mm = vma->vm_mm;
1308 pmd_t *pmd;
1309 pte_t *pte;
1310 pte_t pteval;
1311 spinlock_t *ptl;
1312 struct page *page;
1313 unsigned long address;
1314 unsigned long mmun_start; /* For mmu_notifiers */
1315 unsigned long mmun_end; /* For mmu_notifiers */
1316 unsigned long end;
1317 int ret = SWAP_AGAIN;
1318 int locked_vma = 0;
1319
1320 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1321 end = address + CLUSTER_SIZE;
1322 if (address < vma->vm_start)
1323 address = vma->vm_start;
1324 if (end > vma->vm_end)
1325 end = vma->vm_end;
1326
1327 pmd = mm_find_pmd(mm, address);
1328 if (!pmd)
1329 return ret;
1330
1331 mmun_start = address;
1332 mmun_end = end;
1333 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1334
1335 /*
1336 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1337 * keep the sem while scanning the cluster for mlocking pages.
1338 */
1339 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1340 locked_vma = (vma->vm_flags & VM_LOCKED);
1341 if (!locked_vma)
1342 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1343 }
1344
1345 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1346
1347 /* Update high watermark before we lower rss */
1348 update_hiwater_rss(mm);
1349
1350 for (; address < end; pte++, address += PAGE_SIZE) {
1351 if (!pte_present(*pte))
1352 continue;
1353 page = vm_normal_page(vma, address, *pte);
1354 BUG_ON(!page || PageAnon(page));
1355
1356 if (locked_vma) {
1357 if (page == check_page) {
1358 /* we know we have check_page locked */
1359 mlock_vma_page(page);
1360 ret = SWAP_MLOCK;
1361 } else if (trylock_page(page)) {
1362 /*
1363 * If we can lock the page, perform mlock.
1364 * Otherwise leave the page alone, it will be
1365 * eventually encountered again later.
1366 */
1367 mlock_vma_page(page);
1368 unlock_page(page);
1369 }
1370 continue; /* don't unmap */
1371 }
1372
1373 /*
1374 * No need for _notify because we're within an
1375 * mmu_notifier_invalidate_range_ {start|end} scope.
1376 */
1377 if (ptep_clear_flush_young(vma, address, pte))
1378 continue;
1379
1380 /* Nuke the page table entry. */
1381 flush_cache_page(vma, address, pte_pfn(*pte));
1382 pteval = ptep_clear_flush(vma, address, pte);
1383
1384 /* If nonlinear, store the file page offset in the pte. */
1385 if (page->index != linear_page_index(vma, address)) {
1386 pte_t ptfile = pgoff_to_pte(page->index);
1387 if (pte_soft_dirty(pteval))
1388 ptfile = pte_file_mksoft_dirty(ptfile);
1389 set_pte_at(mm, address, pte, ptfile);
1390 }
1391
1392 /* Move the dirty bit to the physical page now the pte is gone. */
1393 if (pte_dirty(pteval))
1394 set_page_dirty(page);
1395
1396 page_remove_rmap(page);
1397 page_cache_release(page);
1398 dec_mm_counter(mm, MM_FILEPAGES);
1399 (*mapcount)--;
1400 }
1401 pte_unmap_unlock(pte - 1, ptl);
1402 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1403 if (locked_vma)
1404 up_read(&vma->vm_mm->mmap_sem);
1405 return ret;
1406 }
1407
1408 static int try_to_unmap_nonlinear(struct page *page,
1409 struct address_space *mapping, void *arg)
1410 {
1411 struct vm_area_struct *vma;
1412 int ret = SWAP_AGAIN;
1413 unsigned long cursor;
1414 unsigned long max_nl_cursor = 0;
1415 unsigned long max_nl_size = 0;
1416 unsigned int mapcount;
1417
1418 list_for_each_entry(vma,
1419 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1420
1421 cursor = (unsigned long) vma->vm_private_data;
1422 if (cursor > max_nl_cursor)
1423 max_nl_cursor = cursor;
1424 cursor = vma->vm_end - vma->vm_start;
1425 if (cursor > max_nl_size)
1426 max_nl_size = cursor;
1427 }
1428
1429 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1430 return SWAP_FAIL;
1431 }
1432
1433 /*
1434 * We don't try to search for this page in the nonlinear vmas,
1435 * and page_referenced wouldn't have found it anyway. Instead
1436 * just walk the nonlinear vmas trying to age and unmap some.
1437 * The mapcount of the page we came in with is irrelevant,
1438 * but even so use it as a guide to how hard we should try?
1439 */
1440 mapcount = page_mapcount(page);
1441 if (!mapcount)
1442 return ret;
1443
1444 cond_resched();
1445
1446 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1447 if (max_nl_cursor == 0)
1448 max_nl_cursor = CLUSTER_SIZE;
1449
1450 do {
1451 list_for_each_entry(vma,
1452 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1453
1454 cursor = (unsigned long) vma->vm_private_data;
1455 while (cursor < max_nl_cursor &&
1456 cursor < vma->vm_end - vma->vm_start) {
1457 if (try_to_unmap_cluster(cursor, &mapcount,
1458 vma, page) == SWAP_MLOCK)
1459 ret = SWAP_MLOCK;
1460 cursor += CLUSTER_SIZE;
1461 vma->vm_private_data = (void *) cursor;
1462 if ((int)mapcount <= 0)
1463 return ret;
1464 }
1465 vma->vm_private_data = (void *) max_nl_cursor;
1466 }
1467 cond_resched();
1468 max_nl_cursor += CLUSTER_SIZE;
1469 } while (max_nl_cursor <= max_nl_size);
1470
1471 /*
1472 * Don't loop forever (perhaps all the remaining pages are
1473 * in locked vmas). Reset cursor on all unreserved nonlinear
1474 * vmas, now forgetting on which ones it had fallen behind.
1475 */
1476 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1477 vma->vm_private_data = NULL;
1478
1479 return ret;
1480 }
1481
1482 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1483 {
1484 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1485
1486 if (!maybe_stack)
1487 return false;
1488
1489 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1490 VM_STACK_INCOMPLETE_SETUP)
1491 return true;
1492
1493 return false;
1494 }
1495
1496 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1497 {
1498 return is_vma_temporary_stack(vma);
1499 }
1500
1501 static int page_not_mapped(struct page *page)
1502 {
1503 return !page_mapped(page);
1504 };
1505
1506 /**
1507 * try_to_unmap - try to remove all page table mappings to a page
1508 * @page: the page to get unmapped
1509 * @flags: action and flags
1510 *
1511 * Tries to remove all the page table entries which are mapping this
1512 * page, used in the pageout path. Caller must hold the page lock.
1513 * Return values are:
1514 *
1515 * SWAP_SUCCESS - we succeeded in removing all mappings
1516 * SWAP_AGAIN - we missed a mapping, try again later
1517 * SWAP_FAIL - the page is unswappable
1518 * SWAP_MLOCK - page is mlocked.
1519 */
1520 int try_to_unmap(struct page *page, enum ttu_flags flags)
1521 {
1522 int ret;
1523 struct rmap_walk_control rwc = {
1524 .rmap_one = try_to_unmap_one,
1525 .arg = (void *)flags,
1526 .done = page_not_mapped,
1527 .file_nonlinear = try_to_unmap_nonlinear,
1528 .anon_lock = page_lock_anon_vma_read,
1529 };
1530
1531 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1532
1533 /*
1534 * During exec, a temporary VMA is setup and later moved.
1535 * The VMA is moved under the anon_vma lock but not the
1536 * page tables leading to a race where migration cannot
1537 * find the migration ptes. Rather than increasing the
1538 * locking requirements of exec(), migration skips
1539 * temporary VMAs until after exec() completes.
1540 */
1541 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1542 rwc.invalid_vma = invalid_migration_vma;
1543
1544 ret = rmap_walk(page, &rwc);
1545
1546 if (ret != SWAP_MLOCK && !page_mapped(page))
1547 ret = SWAP_SUCCESS;
1548 return ret;
1549 }
1550
1551 /**
1552 * try_to_munlock - try to munlock a page
1553 * @page: the page to be munlocked
1554 *
1555 * Called from munlock code. Checks all of the VMAs mapping the page
1556 * to make sure nobody else has this page mlocked. The page will be
1557 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1558 *
1559 * Return values are:
1560 *
1561 * SWAP_AGAIN - no vma is holding page mlocked, or,
1562 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1563 * SWAP_FAIL - page cannot be located at present
1564 * SWAP_MLOCK - page is now mlocked.
1565 */
1566 int try_to_munlock(struct page *page)
1567 {
1568 int ret;
1569 struct rmap_walk_control rwc = {
1570 .rmap_one = try_to_unmap_one,
1571 .arg = (void *)TTU_MUNLOCK,
1572 .done = page_not_mapped,
1573 /*
1574 * We don't bother to try to find the munlocked page in
1575 * nonlinears. It's costly. Instead, later, page reclaim logic
1576 * may call try_to_unmap() and recover PG_mlocked lazily.
1577 */
1578 .file_nonlinear = NULL,
1579 .anon_lock = page_lock_anon_vma_read,
1580
1581 };
1582
1583 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1584
1585 ret = rmap_walk(page, &rwc);
1586 return ret;
1587 }
1588
1589 void __put_anon_vma(struct anon_vma *anon_vma)
1590 {
1591 struct anon_vma *root = anon_vma->root;
1592
1593 anon_vma_free(anon_vma);
1594 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1595 anon_vma_free(root);
1596 }
1597
1598 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1599 struct rmap_walk_control *rwc)
1600 {
1601 struct anon_vma *anon_vma;
1602
1603 if (rwc->anon_lock)
1604 return rwc->anon_lock(page);
1605
1606 /*
1607 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1608 * because that depends on page_mapped(); but not all its usages
1609 * are holding mmap_sem. Users without mmap_sem are required to
1610 * take a reference count to prevent the anon_vma disappearing
1611 */
1612 anon_vma = page_anon_vma(page);
1613 if (!anon_vma)
1614 return NULL;
1615
1616 anon_vma_lock_read(anon_vma);
1617 return anon_vma;
1618 }
1619
1620 /*
1621 * rmap_walk_anon - do something to anonymous page using the object-based
1622 * rmap method
1623 * @page: the page to be handled
1624 * @rwc: control variable according to each walk type
1625 *
1626 * Find all the mappings of a page using the mapping pointer and the vma chains
1627 * contained in the anon_vma struct it points to.
1628 *
1629 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1630 * where the page was found will be held for write. So, we won't recheck
1631 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1632 * LOCKED.
1633 */
1634 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1635 {
1636 struct anon_vma *anon_vma;
1637 pgoff_t pgoff = page_to_pgoff(page);
1638 struct anon_vma_chain *avc;
1639 int ret = SWAP_AGAIN;
1640
1641 anon_vma = rmap_walk_anon_lock(page, rwc);
1642 if (!anon_vma)
1643 return ret;
1644
1645 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1646 struct vm_area_struct *vma = avc->vma;
1647 unsigned long address = vma_address(page, vma);
1648
1649 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1650 continue;
1651
1652 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1653 if (ret != SWAP_AGAIN)
1654 break;
1655 if (rwc->done && rwc->done(page))
1656 break;
1657 }
1658 anon_vma_unlock_read(anon_vma);
1659 return ret;
1660 }
1661
1662 /*
1663 * rmap_walk_file - do something to file page using the object-based rmap method
1664 * @page: the page to be handled
1665 * @rwc: control variable according to each walk type
1666 *
1667 * Find all the mappings of a page using the mapping pointer and the vma chains
1668 * contained in the address_space struct it points to.
1669 *
1670 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1671 * where the page was found will be held for write. So, we won't recheck
1672 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1673 * LOCKED.
1674 */
1675 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1676 {
1677 struct address_space *mapping = page->mapping;
1678 pgoff_t pgoff = page_to_pgoff(page);
1679 struct vm_area_struct *vma;
1680 int ret = SWAP_AGAIN;
1681
1682 /*
1683 * The page lock not only makes sure that page->mapping cannot
1684 * suddenly be NULLified by truncation, it makes sure that the
1685 * structure at mapping cannot be freed and reused yet,
1686 * so we can safely take mapping->i_mmap_mutex.
1687 */
1688 VM_BUG_ON_PAGE(!PageLocked(page), page);
1689
1690 if (!mapping)
1691 return ret;
1692 mutex_lock(&mapping->i_mmap_mutex);
1693 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1694 unsigned long address = vma_address(page, vma);
1695
1696 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1697 continue;
1698
1699 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1700 if (ret != SWAP_AGAIN)
1701 goto done;
1702 if (rwc->done && rwc->done(page))
1703 goto done;
1704 }
1705
1706 if (!rwc->file_nonlinear)
1707 goto done;
1708
1709 if (list_empty(&mapping->i_mmap_nonlinear))
1710 goto done;
1711
1712 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1713
1714 done:
1715 mutex_unlock(&mapping->i_mmap_mutex);
1716 return ret;
1717 }
1718
1719 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1720 {
1721 if (unlikely(PageKsm(page)))
1722 return rmap_walk_ksm(page, rwc);
1723 else if (PageAnon(page))
1724 return rmap_walk_anon(page, rwc);
1725 else
1726 return rmap_walk_file(page, rwc);
1727 }
1728
1729 #ifdef CONFIG_HUGETLB_PAGE
1730 /*
1731 * The following three functions are for anonymous (private mapped) hugepages.
1732 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1733 * and no lru code, because we handle hugepages differently from common pages.
1734 */
1735 static void __hugepage_set_anon_rmap(struct page *page,
1736 struct vm_area_struct *vma, unsigned long address, int exclusive)
1737 {
1738 struct anon_vma *anon_vma = vma->anon_vma;
1739
1740 BUG_ON(!anon_vma);
1741
1742 if (PageAnon(page))
1743 return;
1744 if (!exclusive)
1745 anon_vma = anon_vma->root;
1746
1747 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1748 page->mapping = (struct address_space *) anon_vma;
1749 page->index = linear_page_index(vma, address);
1750 }
1751
1752 void hugepage_add_anon_rmap(struct page *page,
1753 struct vm_area_struct *vma, unsigned long address)
1754 {
1755 struct anon_vma *anon_vma = vma->anon_vma;
1756 int first;
1757
1758 BUG_ON(!PageLocked(page));
1759 BUG_ON(!anon_vma);
1760 /* address might be in next vma when migration races vma_adjust */
1761 first = atomic_inc_and_test(&page->_mapcount);
1762 if (first)
1763 __hugepage_set_anon_rmap(page, vma, address, 0);
1764 }
1765
1766 void hugepage_add_new_anon_rmap(struct page *page,
1767 struct vm_area_struct *vma, unsigned long address)
1768 {
1769 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1770 atomic_set(&page->_mapcount, 0);
1771 __hugepage_set_anon_rmap(page, vma, address, 1);
1772 }
1773 #endif /* CONFIG_HUGETLB_PAGE */