]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/rmap.c
rmap: fix NULL-pointer dereference on THP munlocking
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66
67 #include <asm/tlbflush.h>
68
69 #include <trace/events/tlb.h>
70
71 #include "internal.h"
72
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 struct anon_vma *anon_vma;
79
80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 if (anon_vma) {
82 atomic_set(&anon_vma->refcount, 1);
83 anon_vma->degree = 1; /* Reference for first vma */
84 anon_vma->parent = anon_vma;
85 /*
86 * Initialise the anon_vma root to point to itself. If called
87 * from fork, the root will be reset to the parents anon_vma.
88 */
89 anon_vma->root = anon_vma;
90 }
91
92 return anon_vma;
93 }
94
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 VM_BUG_ON(atomic_read(&anon_vma->refcount));
98
99 /*
100 * Synchronize against page_lock_anon_vma_read() such that
101 * we can safely hold the lock without the anon_vma getting
102 * freed.
103 *
104 * Relies on the full mb implied by the atomic_dec_and_test() from
105 * put_anon_vma() against the acquire barrier implied by
106 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 *
108 * page_lock_anon_vma_read() VS put_anon_vma()
109 * down_read_trylock() atomic_dec_and_test()
110 * LOCK MB
111 * atomic_read() rwsem_is_locked()
112 *
113 * LOCK should suffice since the actual taking of the lock must
114 * happen _before_ what follows.
115 */
116 might_sleep();
117 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 anon_vma_lock_write(anon_vma);
119 anon_vma_unlock_write(anon_vma);
120 }
121
122 kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 struct anon_vma_chain *avc,
137 struct anon_vma *anon_vma)
138 {
139 avc->vma = vma;
140 avc->anon_vma = anon_vma;
141 list_add(&avc->same_vma, &vma->anon_vma_chain);
142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144
145 /**
146 * __anon_vma_prepare - attach an anon_vma to a memory region
147 * @vma: the memory region in question
148 *
149 * This makes sure the memory mapping described by 'vma' has
150 * an 'anon_vma' attached to it, so that we can associate the
151 * anonymous pages mapped into it with that anon_vma.
152 *
153 * The common case will be that we already have one, which
154 * is handled inline by anon_vma_prepare(). But if
155 * not we either need to find an adjacent mapping that we
156 * can re-use the anon_vma from (very common when the only
157 * reason for splitting a vma has been mprotect()), or we
158 * allocate a new one.
159 *
160 * Anon-vma allocations are very subtle, because we may have
161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162 * and that may actually touch the spinlock even in the newly
163 * allocated vma (it depends on RCU to make sure that the
164 * anon_vma isn't actually destroyed).
165 *
166 * As a result, we need to do proper anon_vma locking even
167 * for the new allocation. At the same time, we do not want
168 * to do any locking for the common case of already having
169 * an anon_vma.
170 *
171 * This must be called with the mmap_sem held for reading.
172 */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 struct mm_struct *mm = vma->vm_mm;
176 struct anon_vma *anon_vma, *allocated;
177 struct anon_vma_chain *avc;
178
179 might_sleep();
180
181 avc = anon_vma_chain_alloc(GFP_KERNEL);
182 if (!avc)
183 goto out_enomem;
184
185 anon_vma = find_mergeable_anon_vma(vma);
186 allocated = NULL;
187 if (!anon_vma) {
188 anon_vma = anon_vma_alloc();
189 if (unlikely(!anon_vma))
190 goto out_enomem_free_avc;
191 allocated = anon_vma;
192 }
193
194 anon_vma_lock_write(anon_vma);
195 /* page_table_lock to protect against threads */
196 spin_lock(&mm->page_table_lock);
197 if (likely(!vma->anon_vma)) {
198 vma->anon_vma = anon_vma;
199 anon_vma_chain_link(vma, avc, anon_vma);
200 /* vma reference or self-parent link for new root */
201 anon_vma->degree++;
202 allocated = NULL;
203 avc = NULL;
204 }
205 spin_unlock(&mm->page_table_lock);
206 anon_vma_unlock_write(anon_vma);
207
208 if (unlikely(allocated))
209 put_anon_vma(allocated);
210 if (unlikely(avc))
211 anon_vma_chain_free(avc);
212
213 return 0;
214
215 out_enomem_free_avc:
216 anon_vma_chain_free(avc);
217 out_enomem:
218 return -ENOMEM;
219 }
220
221 /*
222 * This is a useful helper function for locking the anon_vma root as
223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224 * have the same vma.
225 *
226 * Such anon_vma's should have the same root, so you'd expect to see
227 * just a single mutex_lock for the whole traversal.
228 */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 struct anon_vma *new_root = anon_vma->root;
232 if (new_root != root) {
233 if (WARN_ON_ONCE(root))
234 up_write(&root->rwsem);
235 root = new_root;
236 down_write(&root->rwsem);
237 }
238 return root;
239 }
240
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 if (root)
244 up_write(&root->rwsem);
245 }
246
247 /*
248 * Attach the anon_vmas from src to dst.
249 * Returns 0 on success, -ENOMEM on failure.
250 *
251 * If dst->anon_vma is NULL this function tries to find and reuse existing
252 * anon_vma which has no vmas and only one child anon_vma. This prevents
253 * degradation of anon_vma hierarchy to endless linear chain in case of
254 * constantly forking task. On the other hand, an anon_vma with more than one
255 * child isn't reused even if there was no alive vma, thus rmap walker has a
256 * good chance of avoiding scanning the whole hierarchy when it searches where
257 * page is mapped.
258 */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 struct anon_vma_chain *avc, *pavc;
262 struct anon_vma *root = NULL;
263
264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 struct anon_vma *anon_vma;
266
267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 if (unlikely(!avc)) {
269 unlock_anon_vma_root(root);
270 root = NULL;
271 avc = anon_vma_chain_alloc(GFP_KERNEL);
272 if (!avc)
273 goto enomem_failure;
274 }
275 anon_vma = pavc->anon_vma;
276 root = lock_anon_vma_root(root, anon_vma);
277 anon_vma_chain_link(dst, avc, anon_vma);
278
279 /*
280 * Reuse existing anon_vma if its degree lower than two,
281 * that means it has no vma and only one anon_vma child.
282 *
283 * Do not chose parent anon_vma, otherwise first child
284 * will always reuse it. Root anon_vma is never reused:
285 * it has self-parent reference and at least one child.
286 */
287 if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 anon_vma->degree < 2)
289 dst->anon_vma = anon_vma;
290 }
291 if (dst->anon_vma)
292 dst->anon_vma->degree++;
293 unlock_anon_vma_root(root);
294 return 0;
295
296 enomem_failure:
297 /*
298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 * decremented in unlink_anon_vmas().
300 * We can safely do this because callers of anon_vma_clone() don't care
301 * about dst->anon_vma if anon_vma_clone() failed.
302 */
303 dst->anon_vma = NULL;
304 unlink_anon_vmas(dst);
305 return -ENOMEM;
306 }
307
308 /*
309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
310 * the corresponding VMA in the parent process is attached to.
311 * Returns 0 on success, non-zero on failure.
312 */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 struct anon_vma_chain *avc;
316 struct anon_vma *anon_vma;
317 int error;
318
319 /* Don't bother if the parent process has no anon_vma here. */
320 if (!pvma->anon_vma)
321 return 0;
322
323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 vma->anon_vma = NULL;
325
326 /*
327 * First, attach the new VMA to the parent VMA's anon_vmas,
328 * so rmap can find non-COWed pages in child processes.
329 */
330 error = anon_vma_clone(vma, pvma);
331 if (error)
332 return error;
333
334 /* An existing anon_vma has been reused, all done then. */
335 if (vma->anon_vma)
336 return 0;
337
338 /* Then add our own anon_vma. */
339 anon_vma = anon_vma_alloc();
340 if (!anon_vma)
341 goto out_error;
342 avc = anon_vma_chain_alloc(GFP_KERNEL);
343 if (!avc)
344 goto out_error_free_anon_vma;
345
346 /*
347 * The root anon_vma's spinlock is the lock actually used when we
348 * lock any of the anon_vmas in this anon_vma tree.
349 */
350 anon_vma->root = pvma->anon_vma->root;
351 anon_vma->parent = pvma->anon_vma;
352 /*
353 * With refcounts, an anon_vma can stay around longer than the
354 * process it belongs to. The root anon_vma needs to be pinned until
355 * this anon_vma is freed, because the lock lives in the root.
356 */
357 get_anon_vma(anon_vma->root);
358 /* Mark this anon_vma as the one where our new (COWed) pages go. */
359 vma->anon_vma = anon_vma;
360 anon_vma_lock_write(anon_vma);
361 anon_vma_chain_link(vma, avc, anon_vma);
362 anon_vma->parent->degree++;
363 anon_vma_unlock_write(anon_vma);
364
365 return 0;
366
367 out_error_free_anon_vma:
368 put_anon_vma(anon_vma);
369 out_error:
370 unlink_anon_vmas(vma);
371 return -ENOMEM;
372 }
373
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 struct anon_vma_chain *avc, *next;
377 struct anon_vma *root = NULL;
378
379 /*
380 * Unlink each anon_vma chained to the VMA. This list is ordered
381 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 */
383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 struct anon_vma *anon_vma = avc->anon_vma;
385
386 root = lock_anon_vma_root(root, anon_vma);
387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388
389 /*
390 * Leave empty anon_vmas on the list - we'll need
391 * to free them outside the lock.
392 */
393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 anon_vma->parent->degree--;
395 continue;
396 }
397
398 list_del(&avc->same_vma);
399 anon_vma_chain_free(avc);
400 }
401 if (vma->anon_vma)
402 vma->anon_vma->degree--;
403 unlock_anon_vma_root(root);
404
405 /*
406 * Iterate the list once more, it now only contains empty and unlinked
407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 * needing to write-acquire the anon_vma->root->rwsem.
409 */
410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 struct anon_vma *anon_vma = avc->anon_vma;
412
413 VM_WARN_ON(anon_vma->degree);
414 put_anon_vma(anon_vma);
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 }
420
421 static void anon_vma_ctor(void *data)
422 {
423 struct anon_vma *anon_vma = data;
424
425 init_rwsem(&anon_vma->rwsem);
426 atomic_set(&anon_vma->refcount, 0);
427 anon_vma->rb_root = RB_ROOT;
428 }
429
430 void __init anon_vma_init(void)
431 {
432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 anon_vma_ctor);
435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 SLAB_PANIC|SLAB_ACCOUNT);
437 }
438
439 /*
440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 *
442 * Since there is no serialization what so ever against page_remove_rmap()
443 * the best this function can do is return a locked anon_vma that might
444 * have been relevant to this page.
445 *
446 * The page might have been remapped to a different anon_vma or the anon_vma
447 * returned may already be freed (and even reused).
448 *
449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451 * ensure that any anon_vma obtained from the page will still be valid for as
452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 *
454 * All users of this function must be very careful when walking the anon_vma
455 * chain and verify that the page in question is indeed mapped in it
456 * [ something equivalent to page_mapped_in_vma() ].
457 *
458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459 * that the anon_vma pointer from page->mapping is valid if there is a
460 * mapcount, we can dereference the anon_vma after observing those.
461 */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 struct anon_vma *anon_vma = NULL;
465 unsigned long anon_mapping;
466
467 rcu_read_lock();
468 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 goto out;
471 if (!page_mapped(page))
472 goto out;
473
474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 anon_vma = NULL;
477 goto out;
478 }
479
480 /*
481 * If this page is still mapped, then its anon_vma cannot have been
482 * freed. But if it has been unmapped, we have no security against the
483 * anon_vma structure being freed and reused (for another anon_vma:
484 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 * above cannot corrupt).
486 */
487 if (!page_mapped(page)) {
488 rcu_read_unlock();
489 put_anon_vma(anon_vma);
490 return NULL;
491 }
492 out:
493 rcu_read_unlock();
494
495 return anon_vma;
496 }
497
498 /*
499 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 *
501 * Its a little more complex as it tries to keep the fast path to a single
502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503 * reference like with page_get_anon_vma() and then block on the mutex.
504 */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 struct anon_vma *anon_vma = NULL;
508 struct anon_vma *root_anon_vma;
509 unsigned long anon_mapping;
510
511 rcu_read_lock();
512 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 goto out;
515 if (!page_mapped(page))
516 goto out;
517
518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 root_anon_vma = READ_ONCE(anon_vma->root);
520 if (down_read_trylock(&root_anon_vma->rwsem)) {
521 /*
522 * If the page is still mapped, then this anon_vma is still
523 * its anon_vma, and holding the mutex ensures that it will
524 * not go away, see anon_vma_free().
525 */
526 if (!page_mapped(page)) {
527 up_read(&root_anon_vma->rwsem);
528 anon_vma = NULL;
529 }
530 goto out;
531 }
532
533 /* trylock failed, we got to sleep */
534 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 anon_vma = NULL;
536 goto out;
537 }
538
539 if (!page_mapped(page)) {
540 rcu_read_unlock();
541 put_anon_vma(anon_vma);
542 return NULL;
543 }
544
545 /* we pinned the anon_vma, its safe to sleep */
546 rcu_read_unlock();
547 anon_vma_lock_read(anon_vma);
548
549 if (atomic_dec_and_test(&anon_vma->refcount)) {
550 /*
551 * Oops, we held the last refcount, release the lock
552 * and bail -- can't simply use put_anon_vma() because
553 * we'll deadlock on the anon_vma_lock_write() recursion.
554 */
555 anon_vma_unlock_read(anon_vma);
556 __put_anon_vma(anon_vma);
557 anon_vma = NULL;
558 }
559
560 return anon_vma;
561
562 out:
563 rcu_read_unlock();
564 return anon_vma;
565 }
566
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 anon_vma_unlock_read(anon_vma);
570 }
571
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575 * important if a PTE was dirty when it was unmapped that it's flushed
576 * before any IO is initiated on the page to prevent lost writes. Similarly,
577 * it must be flushed before freeing to prevent data leakage.
578 */
579 void try_to_unmap_flush(void)
580 {
581 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582 int cpu;
583
584 if (!tlb_ubc->flush_required)
585 return;
586
587 cpu = get_cpu();
588
589 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
590 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
591 local_flush_tlb();
592 trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
593 }
594
595 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
596 flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
597 cpumask_clear(&tlb_ubc->cpumask);
598 tlb_ubc->flush_required = false;
599 tlb_ubc->writable = false;
600 put_cpu();
601 }
602
603 /* Flush iff there are potentially writable TLB entries that can race with IO */
604 void try_to_unmap_flush_dirty(void)
605 {
606 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
607
608 if (tlb_ubc->writable)
609 try_to_unmap_flush();
610 }
611
612 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
613 {
614 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615
616 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
617 tlb_ubc->flush_required = true;
618
619 /*
620 * If the PTE was dirty then it's best to assume it's writable. The
621 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
622 * before the page is queued for IO.
623 */
624 if (writable)
625 tlb_ubc->writable = true;
626 }
627
628 /*
629 * Returns true if the TLB flush should be deferred to the end of a batch of
630 * unmap operations to reduce IPIs.
631 */
632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
633 {
634 bool should_defer = false;
635
636 if (!(flags & TTU_BATCH_FLUSH))
637 return false;
638
639 /* If remote CPUs need to be flushed then defer batch the flush */
640 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
641 should_defer = true;
642 put_cpu();
643
644 return should_defer;
645 }
646 #else
647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
648 {
649 }
650
651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652 {
653 return false;
654 }
655 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
656
657 /*
658 * At what user virtual address is page expected in vma?
659 * Caller should check the page is actually part of the vma.
660 */
661 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
662 {
663 unsigned long address;
664 if (PageAnon(page)) {
665 struct anon_vma *page__anon_vma = page_anon_vma(page);
666 /*
667 * Note: swapoff's unuse_vma() is more efficient with this
668 * check, and needs it to match anon_vma when KSM is active.
669 */
670 if (!vma->anon_vma || !page__anon_vma ||
671 vma->anon_vma->root != page__anon_vma->root)
672 return -EFAULT;
673 } else if (page->mapping) {
674 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
675 return -EFAULT;
676 } else
677 return -EFAULT;
678 address = __vma_address(page, vma);
679 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
680 return -EFAULT;
681 return address;
682 }
683
684 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
685 {
686 pgd_t *pgd;
687 pud_t *pud;
688 pmd_t *pmd = NULL;
689 pmd_t pmde;
690
691 pgd = pgd_offset(mm, address);
692 if (!pgd_present(*pgd))
693 goto out;
694
695 pud = pud_offset(pgd, address);
696 if (!pud_present(*pud))
697 goto out;
698
699 pmd = pmd_offset(pud, address);
700 /*
701 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
702 * without holding anon_vma lock for write. So when looking for a
703 * genuine pmde (in which to find pte), test present and !THP together.
704 */
705 pmde = *pmd;
706 barrier();
707 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
708 pmd = NULL;
709 out:
710 return pmd;
711 }
712
713 struct page_referenced_arg {
714 int mapcount;
715 int referenced;
716 unsigned long vm_flags;
717 struct mem_cgroup *memcg;
718 };
719 /*
720 * arg: page_referenced_arg will be passed
721 */
722 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
723 unsigned long address, void *arg)
724 {
725 struct page_referenced_arg *pra = arg;
726 struct page_vma_mapped_walk pvmw = {
727 .page = page,
728 .vma = vma,
729 .address = address,
730 };
731 int referenced = 0;
732
733 while (page_vma_mapped_walk(&pvmw)) {
734 address = pvmw.address;
735
736 if (vma->vm_flags & VM_LOCKED) {
737 page_vma_mapped_walk_done(&pvmw);
738 pra->vm_flags |= VM_LOCKED;
739 return SWAP_FAIL; /* To break the loop */
740 }
741
742 if (pvmw.pte) {
743 if (ptep_clear_flush_young_notify(vma, address,
744 pvmw.pte)) {
745 /*
746 * Don't treat a reference through
747 * a sequentially read mapping as such.
748 * If the page has been used in another mapping,
749 * we will catch it; if this other mapping is
750 * already gone, the unmap path will have set
751 * PG_referenced or activated the page.
752 */
753 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
754 referenced++;
755 }
756 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
757 if (pmdp_clear_flush_young_notify(vma, address,
758 pvmw.pmd))
759 referenced++;
760 } else {
761 /* unexpected pmd-mapped page? */
762 WARN_ON_ONCE(1);
763 }
764
765 pra->mapcount--;
766 }
767
768 if (referenced)
769 clear_page_idle(page);
770 if (test_and_clear_page_young(page))
771 referenced++;
772
773 if (referenced) {
774 pra->referenced++;
775 pra->vm_flags |= vma->vm_flags;
776 }
777
778 if (!pra->mapcount)
779 return SWAP_SUCCESS; /* To break the loop */
780
781 return SWAP_AGAIN;
782 }
783
784 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
785 {
786 struct page_referenced_arg *pra = arg;
787 struct mem_cgroup *memcg = pra->memcg;
788
789 if (!mm_match_cgroup(vma->vm_mm, memcg))
790 return true;
791
792 return false;
793 }
794
795 /**
796 * page_referenced - test if the page was referenced
797 * @page: the page to test
798 * @is_locked: caller holds lock on the page
799 * @memcg: target memory cgroup
800 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
801 *
802 * Quick test_and_clear_referenced for all mappings to a page,
803 * returns the number of ptes which referenced the page.
804 */
805 int page_referenced(struct page *page,
806 int is_locked,
807 struct mem_cgroup *memcg,
808 unsigned long *vm_flags)
809 {
810 int ret;
811 int we_locked = 0;
812 struct page_referenced_arg pra = {
813 .mapcount = total_mapcount(page),
814 .memcg = memcg,
815 };
816 struct rmap_walk_control rwc = {
817 .rmap_one = page_referenced_one,
818 .arg = (void *)&pra,
819 .anon_lock = page_lock_anon_vma_read,
820 };
821
822 *vm_flags = 0;
823 if (!page_mapped(page))
824 return 0;
825
826 if (!page_rmapping(page))
827 return 0;
828
829 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
830 we_locked = trylock_page(page);
831 if (!we_locked)
832 return 1;
833 }
834
835 /*
836 * If we are reclaiming on behalf of a cgroup, skip
837 * counting on behalf of references from different
838 * cgroups
839 */
840 if (memcg) {
841 rwc.invalid_vma = invalid_page_referenced_vma;
842 }
843
844 ret = rmap_walk(page, &rwc);
845 *vm_flags = pra.vm_flags;
846
847 if (we_locked)
848 unlock_page(page);
849
850 return pra.referenced;
851 }
852
853 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
854 unsigned long address, void *arg)
855 {
856 struct page_vma_mapped_walk pvmw = {
857 .page = page,
858 .vma = vma,
859 .address = address,
860 .flags = PVMW_SYNC,
861 };
862 int *cleaned = arg;
863
864 while (page_vma_mapped_walk(&pvmw)) {
865 int ret = 0;
866 address = pvmw.address;
867 if (pvmw.pte) {
868 pte_t entry;
869 pte_t *pte = pvmw.pte;
870
871 if (!pte_dirty(*pte) && !pte_write(*pte))
872 continue;
873
874 flush_cache_page(vma, address, pte_pfn(*pte));
875 entry = ptep_clear_flush(vma, address, pte);
876 entry = pte_wrprotect(entry);
877 entry = pte_mkclean(entry);
878 set_pte_at(vma->vm_mm, address, pte, entry);
879 ret = 1;
880 } else {
881 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
882 pmd_t *pmd = pvmw.pmd;
883 pmd_t entry;
884
885 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
886 continue;
887
888 flush_cache_page(vma, address, page_to_pfn(page));
889 entry = pmdp_huge_clear_flush(vma, address, pmd);
890 entry = pmd_wrprotect(entry);
891 entry = pmd_mkclean(entry);
892 set_pmd_at(vma->vm_mm, address, pmd, entry);
893 ret = 1;
894 #else
895 /* unexpected pmd-mapped page? */
896 WARN_ON_ONCE(1);
897 #endif
898 }
899
900 if (ret) {
901 mmu_notifier_invalidate_page(vma->vm_mm, address);
902 (*cleaned)++;
903 }
904 }
905
906 return SWAP_AGAIN;
907 }
908
909 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
910 {
911 if (vma->vm_flags & VM_SHARED)
912 return false;
913
914 return true;
915 }
916
917 int page_mkclean(struct page *page)
918 {
919 int cleaned = 0;
920 struct address_space *mapping;
921 struct rmap_walk_control rwc = {
922 .arg = (void *)&cleaned,
923 .rmap_one = page_mkclean_one,
924 .invalid_vma = invalid_mkclean_vma,
925 };
926
927 BUG_ON(!PageLocked(page));
928
929 if (!page_mapped(page))
930 return 0;
931
932 mapping = page_mapping(page);
933 if (!mapping)
934 return 0;
935
936 rmap_walk(page, &rwc);
937
938 return cleaned;
939 }
940 EXPORT_SYMBOL_GPL(page_mkclean);
941
942 /**
943 * page_move_anon_rmap - move a page to our anon_vma
944 * @page: the page to move to our anon_vma
945 * @vma: the vma the page belongs to
946 *
947 * When a page belongs exclusively to one process after a COW event,
948 * that page can be moved into the anon_vma that belongs to just that
949 * process, so the rmap code will not search the parent or sibling
950 * processes.
951 */
952 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
953 {
954 struct anon_vma *anon_vma = vma->anon_vma;
955
956 page = compound_head(page);
957
958 VM_BUG_ON_PAGE(!PageLocked(page), page);
959 VM_BUG_ON_VMA(!anon_vma, vma);
960
961 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
962 /*
963 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
964 * simultaneously, so a concurrent reader (eg page_referenced()'s
965 * PageAnon()) will not see one without the other.
966 */
967 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
968 }
969
970 /**
971 * __page_set_anon_rmap - set up new anonymous rmap
972 * @page: Page to add to rmap
973 * @vma: VM area to add page to.
974 * @address: User virtual address of the mapping
975 * @exclusive: the page is exclusively owned by the current process
976 */
977 static void __page_set_anon_rmap(struct page *page,
978 struct vm_area_struct *vma, unsigned long address, int exclusive)
979 {
980 struct anon_vma *anon_vma = vma->anon_vma;
981
982 BUG_ON(!anon_vma);
983
984 if (PageAnon(page))
985 return;
986
987 /*
988 * If the page isn't exclusively mapped into this vma,
989 * we must use the _oldest_ possible anon_vma for the
990 * page mapping!
991 */
992 if (!exclusive)
993 anon_vma = anon_vma->root;
994
995 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
996 page->mapping = (struct address_space *) anon_vma;
997 page->index = linear_page_index(vma, address);
998 }
999
1000 /**
1001 * __page_check_anon_rmap - sanity check anonymous rmap addition
1002 * @page: the page to add the mapping to
1003 * @vma: the vm area in which the mapping is added
1004 * @address: the user virtual address mapped
1005 */
1006 static void __page_check_anon_rmap(struct page *page,
1007 struct vm_area_struct *vma, unsigned long address)
1008 {
1009 #ifdef CONFIG_DEBUG_VM
1010 /*
1011 * The page's anon-rmap details (mapping and index) are guaranteed to
1012 * be set up correctly at this point.
1013 *
1014 * We have exclusion against page_add_anon_rmap because the caller
1015 * always holds the page locked, except if called from page_dup_rmap,
1016 * in which case the page is already known to be setup.
1017 *
1018 * We have exclusion against page_add_new_anon_rmap because those pages
1019 * are initially only visible via the pagetables, and the pte is locked
1020 * over the call to page_add_new_anon_rmap.
1021 */
1022 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1023 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1024 #endif
1025 }
1026
1027 /**
1028 * page_add_anon_rmap - add pte mapping to an anonymous page
1029 * @page: the page to add the mapping to
1030 * @vma: the vm area in which the mapping is added
1031 * @address: the user virtual address mapped
1032 * @compound: charge the page as compound or small page
1033 *
1034 * The caller needs to hold the pte lock, and the page must be locked in
1035 * the anon_vma case: to serialize mapping,index checking after setting,
1036 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1037 * (but PageKsm is never downgraded to PageAnon).
1038 */
1039 void page_add_anon_rmap(struct page *page,
1040 struct vm_area_struct *vma, unsigned long address, bool compound)
1041 {
1042 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1043 }
1044
1045 /*
1046 * Special version of the above for do_swap_page, which often runs
1047 * into pages that are exclusively owned by the current process.
1048 * Everybody else should continue to use page_add_anon_rmap above.
1049 */
1050 void do_page_add_anon_rmap(struct page *page,
1051 struct vm_area_struct *vma, unsigned long address, int flags)
1052 {
1053 bool compound = flags & RMAP_COMPOUND;
1054 bool first;
1055
1056 if (compound) {
1057 atomic_t *mapcount;
1058 VM_BUG_ON_PAGE(!PageLocked(page), page);
1059 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1060 mapcount = compound_mapcount_ptr(page);
1061 first = atomic_inc_and_test(mapcount);
1062 } else {
1063 first = atomic_inc_and_test(&page->_mapcount);
1064 }
1065
1066 if (first) {
1067 int nr = compound ? hpage_nr_pages(page) : 1;
1068 /*
1069 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1070 * these counters are not modified in interrupt context, and
1071 * pte lock(a spinlock) is held, which implies preemption
1072 * disabled.
1073 */
1074 if (compound)
1075 __inc_node_page_state(page, NR_ANON_THPS);
1076 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1077 }
1078 if (unlikely(PageKsm(page)))
1079 return;
1080
1081 VM_BUG_ON_PAGE(!PageLocked(page), page);
1082
1083 /* address might be in next vma when migration races vma_adjust */
1084 if (first)
1085 __page_set_anon_rmap(page, vma, address,
1086 flags & RMAP_EXCLUSIVE);
1087 else
1088 __page_check_anon_rmap(page, vma, address);
1089 }
1090
1091 /**
1092 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1093 * @page: the page to add the mapping to
1094 * @vma: the vm area in which the mapping is added
1095 * @address: the user virtual address mapped
1096 * @compound: charge the page as compound or small page
1097 *
1098 * Same as page_add_anon_rmap but must only be called on *new* pages.
1099 * This means the inc-and-test can be bypassed.
1100 * Page does not have to be locked.
1101 */
1102 void page_add_new_anon_rmap(struct page *page,
1103 struct vm_area_struct *vma, unsigned long address, bool compound)
1104 {
1105 int nr = compound ? hpage_nr_pages(page) : 1;
1106
1107 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1108 __SetPageSwapBacked(page);
1109 if (compound) {
1110 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1111 /* increment count (starts at -1) */
1112 atomic_set(compound_mapcount_ptr(page), 0);
1113 __inc_node_page_state(page, NR_ANON_THPS);
1114 } else {
1115 /* Anon THP always mapped first with PMD */
1116 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1117 /* increment count (starts at -1) */
1118 atomic_set(&page->_mapcount, 0);
1119 }
1120 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1121 __page_set_anon_rmap(page, vma, address, 1);
1122 }
1123
1124 /**
1125 * page_add_file_rmap - add pte mapping to a file page
1126 * @page: the page to add the mapping to
1127 *
1128 * The caller needs to hold the pte lock.
1129 */
1130 void page_add_file_rmap(struct page *page, bool compound)
1131 {
1132 int i, nr = 1;
1133
1134 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1135 lock_page_memcg(page);
1136 if (compound && PageTransHuge(page)) {
1137 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1138 if (atomic_inc_and_test(&page[i]._mapcount))
1139 nr++;
1140 }
1141 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1142 goto out;
1143 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1144 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1145 } else {
1146 if (PageTransCompound(page) && page_mapping(page)) {
1147 VM_WARN_ON_ONCE(!PageLocked(page));
1148
1149 SetPageDoubleMap(compound_head(page));
1150 if (PageMlocked(page))
1151 clear_page_mlock(compound_head(page));
1152 }
1153 if (!atomic_inc_and_test(&page->_mapcount))
1154 goto out;
1155 }
1156 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1157 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1158 out:
1159 unlock_page_memcg(page);
1160 }
1161
1162 static void page_remove_file_rmap(struct page *page, bool compound)
1163 {
1164 int i, nr = 1;
1165
1166 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1167 lock_page_memcg(page);
1168
1169 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1170 if (unlikely(PageHuge(page))) {
1171 /* hugetlb pages are always mapped with pmds */
1172 atomic_dec(compound_mapcount_ptr(page));
1173 goto out;
1174 }
1175
1176 /* page still mapped by someone else? */
1177 if (compound && PageTransHuge(page)) {
1178 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1179 if (atomic_add_negative(-1, &page[i]._mapcount))
1180 nr++;
1181 }
1182 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1183 goto out;
1184 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1185 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1186 } else {
1187 if (!atomic_add_negative(-1, &page->_mapcount))
1188 goto out;
1189 }
1190
1191 /*
1192 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1193 * these counters are not modified in interrupt context, and
1194 * pte lock(a spinlock) is held, which implies preemption disabled.
1195 */
1196 __mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1197 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1198
1199 if (unlikely(PageMlocked(page)))
1200 clear_page_mlock(page);
1201 out:
1202 unlock_page_memcg(page);
1203 }
1204
1205 static void page_remove_anon_compound_rmap(struct page *page)
1206 {
1207 int i, nr;
1208
1209 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1210 return;
1211
1212 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1213 if (unlikely(PageHuge(page)))
1214 return;
1215
1216 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1217 return;
1218
1219 __dec_node_page_state(page, NR_ANON_THPS);
1220
1221 if (TestClearPageDoubleMap(page)) {
1222 /*
1223 * Subpages can be mapped with PTEs too. Check how many of
1224 * themi are still mapped.
1225 */
1226 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1227 if (atomic_add_negative(-1, &page[i]._mapcount))
1228 nr++;
1229 }
1230 } else {
1231 nr = HPAGE_PMD_NR;
1232 }
1233
1234 if (unlikely(PageMlocked(page)))
1235 clear_page_mlock(page);
1236
1237 if (nr) {
1238 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1239 deferred_split_huge_page(page);
1240 }
1241 }
1242
1243 /**
1244 * page_remove_rmap - take down pte mapping from a page
1245 * @page: page to remove mapping from
1246 * @compound: uncharge the page as compound or small page
1247 *
1248 * The caller needs to hold the pte lock.
1249 */
1250 void page_remove_rmap(struct page *page, bool compound)
1251 {
1252 if (!PageAnon(page))
1253 return page_remove_file_rmap(page, compound);
1254
1255 if (compound)
1256 return page_remove_anon_compound_rmap(page);
1257
1258 /* page still mapped by someone else? */
1259 if (!atomic_add_negative(-1, &page->_mapcount))
1260 return;
1261
1262 /*
1263 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1264 * these counters are not modified in interrupt context, and
1265 * pte lock(a spinlock) is held, which implies preemption disabled.
1266 */
1267 __dec_node_page_state(page, NR_ANON_MAPPED);
1268
1269 if (unlikely(PageMlocked(page)))
1270 clear_page_mlock(page);
1271
1272 if (PageTransCompound(page))
1273 deferred_split_huge_page(compound_head(page));
1274
1275 /*
1276 * It would be tidy to reset the PageAnon mapping here,
1277 * but that might overwrite a racing page_add_anon_rmap
1278 * which increments mapcount after us but sets mapping
1279 * before us: so leave the reset to free_hot_cold_page,
1280 * and remember that it's only reliable while mapped.
1281 * Leaving it set also helps swapoff to reinstate ptes
1282 * faster for those pages still in swapcache.
1283 */
1284 }
1285
1286 struct rmap_private {
1287 enum ttu_flags flags;
1288 int lazyfreed;
1289 };
1290
1291 /*
1292 * @arg: enum ttu_flags will be passed to this argument
1293 */
1294 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1295 unsigned long address, void *arg)
1296 {
1297 struct mm_struct *mm = vma->vm_mm;
1298 struct page_vma_mapped_walk pvmw = {
1299 .page = page,
1300 .vma = vma,
1301 .address = address,
1302 };
1303 pte_t pteval;
1304 struct page *subpage;
1305 int ret = SWAP_AGAIN;
1306 struct rmap_private *rp = arg;
1307 enum ttu_flags flags = rp->flags;
1308
1309 /* munlock has nothing to gain from examining un-locked vmas */
1310 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1311 return SWAP_AGAIN;
1312
1313 if (flags & TTU_SPLIT_HUGE_PMD) {
1314 split_huge_pmd_address(vma, address,
1315 flags & TTU_MIGRATION, page);
1316 }
1317
1318 while (page_vma_mapped_walk(&pvmw)) {
1319 /*
1320 * If the page is mlock()d, we cannot swap it out.
1321 * If it's recently referenced (perhaps page_referenced
1322 * skipped over this mm) then we should reactivate it.
1323 */
1324 if (!(flags & TTU_IGNORE_MLOCK)) {
1325 if (vma->vm_flags & VM_LOCKED) {
1326 /* PTE-mapped THP are never mlocked */
1327 if (!PageTransCompound(page)) {
1328 /*
1329 * Holding pte lock, we do *not* need
1330 * mmap_sem here
1331 */
1332 mlock_vma_page(page);
1333 }
1334 ret = SWAP_MLOCK;
1335 page_vma_mapped_walk_done(&pvmw);
1336 break;
1337 }
1338 if (flags & TTU_MUNLOCK)
1339 continue;
1340 }
1341
1342 /* Unexpected PMD-mapped THP? */
1343 VM_BUG_ON_PAGE(!pvmw.pte, page);
1344
1345 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1346 address = pvmw.address;
1347
1348
1349 if (!(flags & TTU_IGNORE_ACCESS)) {
1350 if (ptep_clear_flush_young_notify(vma, address,
1351 pvmw.pte)) {
1352 ret = SWAP_FAIL;
1353 page_vma_mapped_walk_done(&pvmw);
1354 break;
1355 }
1356 }
1357
1358 /* Nuke the page table entry. */
1359 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1360 if (should_defer_flush(mm, flags)) {
1361 /*
1362 * We clear the PTE but do not flush so potentially
1363 * a remote CPU could still be writing to the page.
1364 * If the entry was previously clean then the
1365 * architecture must guarantee that a clear->dirty
1366 * transition on a cached TLB entry is written through
1367 * and traps if the PTE is unmapped.
1368 */
1369 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1370
1371 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1372 } else {
1373 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1374 }
1375
1376 /* Move the dirty bit to the page. Now the pte is gone. */
1377 if (pte_dirty(pteval))
1378 set_page_dirty(page);
1379
1380 /* Update high watermark before we lower rss */
1381 update_hiwater_rss(mm);
1382
1383 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1384 if (PageHuge(page)) {
1385 int nr = 1 << compound_order(page);
1386 hugetlb_count_sub(nr, mm);
1387 } else {
1388 dec_mm_counter(mm, mm_counter(page));
1389 }
1390
1391 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1392 set_pte_at(mm, address, pvmw.pte, pteval);
1393 } else if (pte_unused(pteval)) {
1394 /*
1395 * The guest indicated that the page content is of no
1396 * interest anymore. Simply discard the pte, vmscan
1397 * will take care of the rest.
1398 */
1399 dec_mm_counter(mm, mm_counter(page));
1400 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1401 (flags & TTU_MIGRATION)) {
1402 swp_entry_t entry;
1403 pte_t swp_pte;
1404 /*
1405 * Store the pfn of the page in a special migration
1406 * pte. do_swap_page() will wait until the migration
1407 * pte is removed and then restart fault handling.
1408 */
1409 entry = make_migration_entry(subpage,
1410 pte_write(pteval));
1411 swp_pte = swp_entry_to_pte(entry);
1412 if (pte_soft_dirty(pteval))
1413 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1414 set_pte_at(mm, address, pvmw.pte, swp_pte);
1415 } else if (PageAnon(page)) {
1416 swp_entry_t entry = { .val = page_private(subpage) };
1417 pte_t swp_pte;
1418 /*
1419 * Store the swap location in the pte.
1420 * See handle_pte_fault() ...
1421 */
1422 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1423
1424 if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1425 /* It's a freeable page by MADV_FREE */
1426 dec_mm_counter(mm, MM_ANONPAGES);
1427 rp->lazyfreed++;
1428 goto discard;
1429 }
1430
1431 if (swap_duplicate(entry) < 0) {
1432 set_pte_at(mm, address, pvmw.pte, pteval);
1433 ret = SWAP_FAIL;
1434 page_vma_mapped_walk_done(&pvmw);
1435 break;
1436 }
1437 if (list_empty(&mm->mmlist)) {
1438 spin_lock(&mmlist_lock);
1439 if (list_empty(&mm->mmlist))
1440 list_add(&mm->mmlist, &init_mm.mmlist);
1441 spin_unlock(&mmlist_lock);
1442 }
1443 dec_mm_counter(mm, MM_ANONPAGES);
1444 inc_mm_counter(mm, MM_SWAPENTS);
1445 swp_pte = swp_entry_to_pte(entry);
1446 if (pte_soft_dirty(pteval))
1447 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1448 set_pte_at(mm, address, pvmw.pte, swp_pte);
1449 } else
1450 dec_mm_counter(mm, mm_counter_file(page));
1451 discard:
1452 page_remove_rmap(subpage, PageHuge(page));
1453 put_page(page);
1454 mmu_notifier_invalidate_page(mm, address);
1455 }
1456 return ret;
1457 }
1458
1459 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1460 {
1461 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1462
1463 if (!maybe_stack)
1464 return false;
1465
1466 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1467 VM_STACK_INCOMPLETE_SETUP)
1468 return true;
1469
1470 return false;
1471 }
1472
1473 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1474 {
1475 return is_vma_temporary_stack(vma);
1476 }
1477
1478 static int page_mapcount_is_zero(struct page *page)
1479 {
1480 return !total_mapcount(page);
1481 }
1482
1483 /**
1484 * try_to_unmap - try to remove all page table mappings to a page
1485 * @page: the page to get unmapped
1486 * @flags: action and flags
1487 *
1488 * Tries to remove all the page table entries which are mapping this
1489 * page, used in the pageout path. Caller must hold the page lock.
1490 * Return values are:
1491 *
1492 * SWAP_SUCCESS - we succeeded in removing all mappings
1493 * SWAP_AGAIN - we missed a mapping, try again later
1494 * SWAP_FAIL - the page is unswappable
1495 * SWAP_MLOCK - page is mlocked.
1496 */
1497 int try_to_unmap(struct page *page, enum ttu_flags flags)
1498 {
1499 int ret;
1500 struct rmap_private rp = {
1501 .flags = flags,
1502 .lazyfreed = 0,
1503 };
1504
1505 struct rmap_walk_control rwc = {
1506 .rmap_one = try_to_unmap_one,
1507 .arg = &rp,
1508 .done = page_mapcount_is_zero,
1509 .anon_lock = page_lock_anon_vma_read,
1510 };
1511
1512 /*
1513 * During exec, a temporary VMA is setup and later moved.
1514 * The VMA is moved under the anon_vma lock but not the
1515 * page tables leading to a race where migration cannot
1516 * find the migration ptes. Rather than increasing the
1517 * locking requirements of exec(), migration skips
1518 * temporary VMAs until after exec() completes.
1519 */
1520 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1521 rwc.invalid_vma = invalid_migration_vma;
1522
1523 if (flags & TTU_RMAP_LOCKED)
1524 ret = rmap_walk_locked(page, &rwc);
1525 else
1526 ret = rmap_walk(page, &rwc);
1527
1528 if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1529 ret = SWAP_SUCCESS;
1530 if (rp.lazyfreed && !PageDirty(page))
1531 ret = SWAP_LZFREE;
1532 }
1533 return ret;
1534 }
1535
1536 static int page_not_mapped(struct page *page)
1537 {
1538 return !page_mapped(page);
1539 };
1540
1541 /**
1542 * try_to_munlock - try to munlock a page
1543 * @page: the page to be munlocked
1544 *
1545 * Called from munlock code. Checks all of the VMAs mapping the page
1546 * to make sure nobody else has this page mlocked. The page will be
1547 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1548 *
1549 * Return values are:
1550 *
1551 * SWAP_AGAIN - no vma is holding page mlocked, or,
1552 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1553 * SWAP_FAIL - page cannot be located at present
1554 * SWAP_MLOCK - page is now mlocked.
1555 */
1556 int try_to_munlock(struct page *page)
1557 {
1558 int ret;
1559 struct rmap_private rp = {
1560 .flags = TTU_MUNLOCK,
1561 .lazyfreed = 0,
1562 };
1563
1564 struct rmap_walk_control rwc = {
1565 .rmap_one = try_to_unmap_one,
1566 .arg = &rp,
1567 .done = page_not_mapped,
1568 .anon_lock = page_lock_anon_vma_read,
1569
1570 };
1571
1572 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1573
1574 ret = rmap_walk(page, &rwc);
1575 return ret;
1576 }
1577
1578 void __put_anon_vma(struct anon_vma *anon_vma)
1579 {
1580 struct anon_vma *root = anon_vma->root;
1581
1582 anon_vma_free(anon_vma);
1583 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1584 anon_vma_free(root);
1585 }
1586
1587 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1588 struct rmap_walk_control *rwc)
1589 {
1590 struct anon_vma *anon_vma;
1591
1592 if (rwc->anon_lock)
1593 return rwc->anon_lock(page);
1594
1595 /*
1596 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1597 * because that depends on page_mapped(); but not all its usages
1598 * are holding mmap_sem. Users without mmap_sem are required to
1599 * take a reference count to prevent the anon_vma disappearing
1600 */
1601 anon_vma = page_anon_vma(page);
1602 if (!anon_vma)
1603 return NULL;
1604
1605 anon_vma_lock_read(anon_vma);
1606 return anon_vma;
1607 }
1608
1609 /*
1610 * rmap_walk_anon - do something to anonymous page using the object-based
1611 * rmap method
1612 * @page: the page to be handled
1613 * @rwc: control variable according to each walk type
1614 *
1615 * Find all the mappings of a page using the mapping pointer and the vma chains
1616 * contained in the anon_vma struct it points to.
1617 *
1618 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1619 * where the page was found will be held for write. So, we won't recheck
1620 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1621 * LOCKED.
1622 */
1623 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1624 bool locked)
1625 {
1626 struct anon_vma *anon_vma;
1627 pgoff_t pgoff_start, pgoff_end;
1628 struct anon_vma_chain *avc;
1629 int ret = SWAP_AGAIN;
1630
1631 if (locked) {
1632 anon_vma = page_anon_vma(page);
1633 /* anon_vma disappear under us? */
1634 VM_BUG_ON_PAGE(!anon_vma, page);
1635 } else {
1636 anon_vma = rmap_walk_anon_lock(page, rwc);
1637 }
1638 if (!anon_vma)
1639 return ret;
1640
1641 pgoff_start = page_to_pgoff(page);
1642 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1643 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1644 pgoff_start, pgoff_end) {
1645 struct vm_area_struct *vma = avc->vma;
1646 unsigned long address = vma_address(page, vma);
1647
1648 cond_resched();
1649
1650 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1651 continue;
1652
1653 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1654 if (ret != SWAP_AGAIN)
1655 break;
1656 if (rwc->done && rwc->done(page))
1657 break;
1658 }
1659
1660 if (!locked)
1661 anon_vma_unlock_read(anon_vma);
1662 return ret;
1663 }
1664
1665 /*
1666 * rmap_walk_file - do something to file page using the object-based rmap method
1667 * @page: the page to be handled
1668 * @rwc: control variable according to each walk type
1669 *
1670 * Find all the mappings of a page using the mapping pointer and the vma chains
1671 * contained in the address_space struct it points to.
1672 *
1673 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1674 * where the page was found will be held for write. So, we won't recheck
1675 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1676 * LOCKED.
1677 */
1678 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1679 bool locked)
1680 {
1681 struct address_space *mapping = page_mapping(page);
1682 pgoff_t pgoff_start, pgoff_end;
1683 struct vm_area_struct *vma;
1684 int ret = SWAP_AGAIN;
1685
1686 /*
1687 * The page lock not only makes sure that page->mapping cannot
1688 * suddenly be NULLified by truncation, it makes sure that the
1689 * structure at mapping cannot be freed and reused yet,
1690 * so we can safely take mapping->i_mmap_rwsem.
1691 */
1692 VM_BUG_ON_PAGE(!PageLocked(page), page);
1693
1694 if (!mapping)
1695 return ret;
1696
1697 pgoff_start = page_to_pgoff(page);
1698 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1699 if (!locked)
1700 i_mmap_lock_read(mapping);
1701 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1702 pgoff_start, pgoff_end) {
1703 unsigned long address = vma_address(page, vma);
1704
1705 cond_resched();
1706
1707 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1708 continue;
1709
1710 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1711 if (ret != SWAP_AGAIN)
1712 goto done;
1713 if (rwc->done && rwc->done(page))
1714 goto done;
1715 }
1716
1717 done:
1718 if (!locked)
1719 i_mmap_unlock_read(mapping);
1720 return ret;
1721 }
1722
1723 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1724 {
1725 if (unlikely(PageKsm(page)))
1726 return rmap_walk_ksm(page, rwc);
1727 else if (PageAnon(page))
1728 return rmap_walk_anon(page, rwc, false);
1729 else
1730 return rmap_walk_file(page, rwc, false);
1731 }
1732
1733 /* Like rmap_walk, but caller holds relevant rmap lock */
1734 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1735 {
1736 /* no ksm support for now */
1737 VM_BUG_ON_PAGE(PageKsm(page), page);
1738 if (PageAnon(page))
1739 return rmap_walk_anon(page, rwc, true);
1740 else
1741 return rmap_walk_file(page, rwc, true);
1742 }
1743
1744 #ifdef CONFIG_HUGETLB_PAGE
1745 /*
1746 * The following three functions are for anonymous (private mapped) hugepages.
1747 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1748 * and no lru code, because we handle hugepages differently from common pages.
1749 */
1750 static void __hugepage_set_anon_rmap(struct page *page,
1751 struct vm_area_struct *vma, unsigned long address, int exclusive)
1752 {
1753 struct anon_vma *anon_vma = vma->anon_vma;
1754
1755 BUG_ON(!anon_vma);
1756
1757 if (PageAnon(page))
1758 return;
1759 if (!exclusive)
1760 anon_vma = anon_vma->root;
1761
1762 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1763 page->mapping = (struct address_space *) anon_vma;
1764 page->index = linear_page_index(vma, address);
1765 }
1766
1767 void hugepage_add_anon_rmap(struct page *page,
1768 struct vm_area_struct *vma, unsigned long address)
1769 {
1770 struct anon_vma *anon_vma = vma->anon_vma;
1771 int first;
1772
1773 BUG_ON(!PageLocked(page));
1774 BUG_ON(!anon_vma);
1775 /* address might be in next vma when migration races vma_adjust */
1776 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1777 if (first)
1778 __hugepage_set_anon_rmap(page, vma, address, 0);
1779 }
1780
1781 void hugepage_add_new_anon_rmap(struct page *page,
1782 struct vm_area_struct *vma, unsigned long address)
1783 {
1784 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1785 atomic_set(compound_mapcount_ptr(page), 0);
1786 __hugepage_set_anon_rmap(page, vma, address, 1);
1787 }
1788 #endif /* CONFIG_HUGETLB_PAGE */