]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/rmap.c
net: encx24j600: Fix invalid logic in reading of MISTAT register
[mirror_ubuntu-jammy-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in lock_page_lruvec_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/tlb.h>
80
81 #include "internal.h"
82
83 static struct kmem_cache *anon_vma_cachep;
84 static struct kmem_cache *anon_vma_chain_cachep;
85
86 static inline struct anon_vma *anon_vma_alloc(void)
87 {
88 struct anon_vma *anon_vma;
89
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 if (anon_vma) {
92 atomic_set(&anon_vma->refcount, 1);
93 anon_vma->num_children = 0;
94 anon_vma->num_active_vmas = 0;
95 anon_vma->parent = anon_vma;
96 /*
97 * Initialise the anon_vma root to point to itself. If called
98 * from fork, the root will be reset to the parents anon_vma.
99 */
100 anon_vma->root = anon_vma;
101 }
102
103 return anon_vma;
104 }
105
106 static inline void anon_vma_free(struct anon_vma *anon_vma)
107 {
108 VM_BUG_ON(atomic_read(&anon_vma->refcount));
109
110 /*
111 * Synchronize against page_lock_anon_vma_read() such that
112 * we can safely hold the lock without the anon_vma getting
113 * freed.
114 *
115 * Relies on the full mb implied by the atomic_dec_and_test() from
116 * put_anon_vma() against the acquire barrier implied by
117 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
118 *
119 * page_lock_anon_vma_read() VS put_anon_vma()
120 * down_read_trylock() atomic_dec_and_test()
121 * LOCK MB
122 * atomic_read() rwsem_is_locked()
123 *
124 * LOCK should suffice since the actual taking of the lock must
125 * happen _before_ what follows.
126 */
127 might_sleep();
128 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
129 anon_vma_lock_write(anon_vma);
130 anon_vma_unlock_write(anon_vma);
131 }
132
133 kmem_cache_free(anon_vma_cachep, anon_vma);
134 }
135
136 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
137 {
138 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
139 }
140
141 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
142 {
143 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
144 }
145
146 static void anon_vma_chain_link(struct vm_area_struct *vma,
147 struct anon_vma_chain *avc,
148 struct anon_vma *anon_vma)
149 {
150 avc->vma = vma;
151 avc->anon_vma = anon_vma;
152 list_add(&avc->same_vma, &vma->anon_vma_chain);
153 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
154 }
155
156 /**
157 * __anon_vma_prepare - attach an anon_vma to a memory region
158 * @vma: the memory region in question
159 *
160 * This makes sure the memory mapping described by 'vma' has
161 * an 'anon_vma' attached to it, so that we can associate the
162 * anonymous pages mapped into it with that anon_vma.
163 *
164 * The common case will be that we already have one, which
165 * is handled inline by anon_vma_prepare(). But if
166 * not we either need to find an adjacent mapping that we
167 * can re-use the anon_vma from (very common when the only
168 * reason for splitting a vma has been mprotect()), or we
169 * allocate a new one.
170 *
171 * Anon-vma allocations are very subtle, because we may have
172 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
173 * and that may actually touch the rwsem even in the newly
174 * allocated vma (it depends on RCU to make sure that the
175 * anon_vma isn't actually destroyed).
176 *
177 * As a result, we need to do proper anon_vma locking even
178 * for the new allocation. At the same time, we do not want
179 * to do any locking for the common case of already having
180 * an anon_vma.
181 *
182 * This must be called with the mmap_lock held for reading.
183 */
184 int __anon_vma_prepare(struct vm_area_struct *vma)
185 {
186 struct mm_struct *mm = vma->vm_mm;
187 struct anon_vma *anon_vma, *allocated;
188 struct anon_vma_chain *avc;
189
190 might_sleep();
191
192 avc = anon_vma_chain_alloc(GFP_KERNEL);
193 if (!avc)
194 goto out_enomem;
195
196 anon_vma = find_mergeable_anon_vma(vma);
197 allocated = NULL;
198 if (!anon_vma) {
199 anon_vma = anon_vma_alloc();
200 if (unlikely(!anon_vma))
201 goto out_enomem_free_avc;
202 anon_vma->num_children++; /* self-parent link for new root */
203 allocated = anon_vma;
204 }
205
206 anon_vma_lock_write(anon_vma);
207 /* page_table_lock to protect against threads */
208 spin_lock(&mm->page_table_lock);
209 if (likely(!vma->anon_vma)) {
210 vma->anon_vma = anon_vma;
211 anon_vma_chain_link(vma, avc, anon_vma);
212 anon_vma->num_active_vmas++;
213 allocated = NULL;
214 avc = NULL;
215 }
216 spin_unlock(&mm->page_table_lock);
217 anon_vma_unlock_write(anon_vma);
218
219 if (unlikely(allocated))
220 put_anon_vma(allocated);
221 if (unlikely(avc))
222 anon_vma_chain_free(avc);
223
224 return 0;
225
226 out_enomem_free_avc:
227 anon_vma_chain_free(avc);
228 out_enomem:
229 return -ENOMEM;
230 }
231
232 /*
233 * This is a useful helper function for locking the anon_vma root as
234 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
235 * have the same vma.
236 *
237 * Such anon_vma's should have the same root, so you'd expect to see
238 * just a single mutex_lock for the whole traversal.
239 */
240 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
241 {
242 struct anon_vma *new_root = anon_vma->root;
243 if (new_root != root) {
244 if (WARN_ON_ONCE(root))
245 up_write(&root->rwsem);
246 root = new_root;
247 down_write(&root->rwsem);
248 }
249 return root;
250 }
251
252 static inline void unlock_anon_vma_root(struct anon_vma *root)
253 {
254 if (root)
255 up_write(&root->rwsem);
256 }
257
258 /*
259 * Attach the anon_vmas from src to dst.
260 * Returns 0 on success, -ENOMEM on failure.
261 *
262 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
263 * anon_vma_fork(). The first three want an exact copy of src, while the last
264 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
265 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
266 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
267 *
268 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
269 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
270 * This prevents degradation of anon_vma hierarchy to endless linear chain in
271 * case of constantly forking task. On the other hand, an anon_vma with more
272 * than one child isn't reused even if there was no alive vma, thus rmap
273 * walker has a good chance of avoiding scanning the whole hierarchy when it
274 * searches where page is mapped.
275 */
276 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
277 {
278 struct anon_vma_chain *avc, *pavc;
279 struct anon_vma *root = NULL;
280
281 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
282 struct anon_vma *anon_vma;
283
284 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
285 if (unlikely(!avc)) {
286 unlock_anon_vma_root(root);
287 root = NULL;
288 avc = anon_vma_chain_alloc(GFP_KERNEL);
289 if (!avc)
290 goto enomem_failure;
291 }
292 anon_vma = pavc->anon_vma;
293 root = lock_anon_vma_root(root, anon_vma);
294 anon_vma_chain_link(dst, avc, anon_vma);
295
296 /*
297 * Reuse existing anon_vma if it has no vma and only one
298 * anon_vma child.
299 *
300 * Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
302 */
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma->num_children < 2 &&
305 anon_vma->num_active_vmas == 0)
306 dst->anon_vma = anon_vma;
307 }
308 if (dst->anon_vma)
309 dst->anon_vma->num_active_vmas++;
310 unlock_anon_vma_root(root);
311 return 0;
312
313 enomem_failure:
314 /*
315 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
316 * decremented in unlink_anon_vmas().
317 * We can safely do this because callers of anon_vma_clone() don't care
318 * about dst->anon_vma if anon_vma_clone() failed.
319 */
320 dst->anon_vma = NULL;
321 unlink_anon_vmas(dst);
322 return -ENOMEM;
323 }
324
325 /*
326 * Attach vma to its own anon_vma, as well as to the anon_vmas that
327 * the corresponding VMA in the parent process is attached to.
328 * Returns 0 on success, non-zero on failure.
329 */
330 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
331 {
332 struct anon_vma_chain *avc;
333 struct anon_vma *anon_vma;
334 int error;
335
336 /* Don't bother if the parent process has no anon_vma here. */
337 if (!pvma->anon_vma)
338 return 0;
339
340 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
341 vma->anon_vma = NULL;
342
343 /*
344 * First, attach the new VMA to the parent VMA's anon_vmas,
345 * so rmap can find non-COWed pages in child processes.
346 */
347 error = anon_vma_clone(vma, pvma);
348 if (error)
349 return error;
350
351 /* An existing anon_vma has been reused, all done then. */
352 if (vma->anon_vma)
353 return 0;
354
355 /* Then add our own anon_vma. */
356 anon_vma = anon_vma_alloc();
357 if (!anon_vma)
358 goto out_error;
359 anon_vma->num_active_vmas++;
360 avc = anon_vma_chain_alloc(GFP_KERNEL);
361 if (!avc)
362 goto out_error_free_anon_vma;
363
364 /*
365 * The root anon_vma's rwsem is the lock actually used when we
366 * lock any of the anon_vmas in this anon_vma tree.
367 */
368 anon_vma->root = pvma->anon_vma->root;
369 anon_vma->parent = pvma->anon_vma;
370 /*
371 * With refcounts, an anon_vma can stay around longer than the
372 * process it belongs to. The root anon_vma needs to be pinned until
373 * this anon_vma is freed, because the lock lives in the root.
374 */
375 get_anon_vma(anon_vma->root);
376 /* Mark this anon_vma as the one where our new (COWed) pages go. */
377 vma->anon_vma = anon_vma;
378 anon_vma_lock_write(anon_vma);
379 anon_vma_chain_link(vma, avc, anon_vma);
380 anon_vma->parent->num_children++;
381 anon_vma_unlock_write(anon_vma);
382
383 return 0;
384
385 out_error_free_anon_vma:
386 put_anon_vma(anon_vma);
387 out_error:
388 unlink_anon_vmas(vma);
389 return -ENOMEM;
390 }
391
392 void unlink_anon_vmas(struct vm_area_struct *vma)
393 {
394 struct anon_vma_chain *avc, *next;
395 struct anon_vma *root = NULL;
396
397 /*
398 * Unlink each anon_vma chained to the VMA. This list is ordered
399 * from newest to oldest, ensuring the root anon_vma gets freed last.
400 */
401 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
402 struct anon_vma *anon_vma = avc->anon_vma;
403
404 root = lock_anon_vma_root(root, anon_vma);
405 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
406
407 /*
408 * Leave empty anon_vmas on the list - we'll need
409 * to free them outside the lock.
410 */
411 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
412 anon_vma->parent->num_children--;
413 continue;
414 }
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 if (vma->anon_vma) {
420 vma->anon_vma->num_active_vmas--;
421
422 /*
423 * vma would still be needed after unlink, and anon_vma will be prepared
424 * when handle fault.
425 */
426 vma->anon_vma = NULL;
427 }
428 unlock_anon_vma_root(root);
429
430 /*
431 * Iterate the list once more, it now only contains empty and unlinked
432 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
433 * needing to write-acquire the anon_vma->root->rwsem.
434 */
435 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
436 struct anon_vma *anon_vma = avc->anon_vma;
437
438 VM_WARN_ON(anon_vma->num_children);
439 VM_WARN_ON(anon_vma->num_active_vmas);
440 put_anon_vma(anon_vma);
441
442 list_del(&avc->same_vma);
443 anon_vma_chain_free(avc);
444 }
445 }
446
447 static void anon_vma_ctor(void *data)
448 {
449 struct anon_vma *anon_vma = data;
450
451 init_rwsem(&anon_vma->rwsem);
452 atomic_set(&anon_vma->refcount, 0);
453 anon_vma->rb_root = RB_ROOT_CACHED;
454 }
455
456 void __init anon_vma_init(void)
457 {
458 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
459 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
460 anon_vma_ctor);
461 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
462 SLAB_PANIC|SLAB_ACCOUNT);
463 }
464
465 /*
466 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
467 *
468 * Since there is no serialization what so ever against page_remove_rmap()
469 * the best this function can do is return a refcount increased anon_vma
470 * that might have been relevant to this page.
471 *
472 * The page might have been remapped to a different anon_vma or the anon_vma
473 * returned may already be freed (and even reused).
474 *
475 * In case it was remapped to a different anon_vma, the new anon_vma will be a
476 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
477 * ensure that any anon_vma obtained from the page will still be valid for as
478 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
479 *
480 * All users of this function must be very careful when walking the anon_vma
481 * chain and verify that the page in question is indeed mapped in it
482 * [ something equivalent to page_mapped_in_vma() ].
483 *
484 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
485 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
486 * if there is a mapcount, we can dereference the anon_vma after observing
487 * those.
488 */
489 struct anon_vma *page_get_anon_vma(struct page *page)
490 {
491 struct anon_vma *anon_vma = NULL;
492 unsigned long anon_mapping;
493
494 rcu_read_lock();
495 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
496 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
497 goto out;
498 if (!page_mapped(page))
499 goto out;
500
501 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
502 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
503 anon_vma = NULL;
504 goto out;
505 }
506
507 /*
508 * If this page is still mapped, then its anon_vma cannot have been
509 * freed. But if it has been unmapped, we have no security against the
510 * anon_vma structure being freed and reused (for another anon_vma:
511 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
512 * above cannot corrupt).
513 */
514 if (!page_mapped(page)) {
515 rcu_read_unlock();
516 put_anon_vma(anon_vma);
517 return NULL;
518 }
519 out:
520 rcu_read_unlock();
521
522 return anon_vma;
523 }
524
525 /*
526 * Similar to page_get_anon_vma() except it locks the anon_vma.
527 *
528 * Its a little more complex as it tries to keep the fast path to a single
529 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
530 * reference like with page_get_anon_vma() and then block on the mutex.
531 */
532 struct anon_vma *page_lock_anon_vma_read(struct page *page)
533 {
534 struct anon_vma *anon_vma = NULL;
535 struct anon_vma *root_anon_vma;
536 unsigned long anon_mapping;
537
538 rcu_read_lock();
539 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
540 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
541 goto out;
542 if (!page_mapped(page))
543 goto out;
544
545 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
546 root_anon_vma = READ_ONCE(anon_vma->root);
547 if (down_read_trylock(&root_anon_vma->rwsem)) {
548 /*
549 * If the page is still mapped, then this anon_vma is still
550 * its anon_vma, and holding the mutex ensures that it will
551 * not go away, see anon_vma_free().
552 */
553 if (!page_mapped(page)) {
554 up_read(&root_anon_vma->rwsem);
555 anon_vma = NULL;
556 }
557 goto out;
558 }
559
560 /* trylock failed, we got to sleep */
561 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
562 anon_vma = NULL;
563 goto out;
564 }
565
566 if (!page_mapped(page)) {
567 rcu_read_unlock();
568 put_anon_vma(anon_vma);
569 return NULL;
570 }
571
572 /* we pinned the anon_vma, its safe to sleep */
573 rcu_read_unlock();
574 anon_vma_lock_read(anon_vma);
575
576 if (atomic_dec_and_test(&anon_vma->refcount)) {
577 /*
578 * Oops, we held the last refcount, release the lock
579 * and bail -- can't simply use put_anon_vma() because
580 * we'll deadlock on the anon_vma_lock_write() recursion.
581 */
582 anon_vma_unlock_read(anon_vma);
583 __put_anon_vma(anon_vma);
584 anon_vma = NULL;
585 }
586
587 return anon_vma;
588
589 out:
590 rcu_read_unlock();
591 return anon_vma;
592 }
593
594 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
595 {
596 anon_vma_unlock_read(anon_vma);
597 }
598
599 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
600 /*
601 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
602 * important if a PTE was dirty when it was unmapped that it's flushed
603 * before any IO is initiated on the page to prevent lost writes. Similarly,
604 * it must be flushed before freeing to prevent data leakage.
605 */
606 void try_to_unmap_flush(void)
607 {
608 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
609
610 if (!tlb_ubc->flush_required)
611 return;
612
613 arch_tlbbatch_flush(&tlb_ubc->arch);
614 tlb_ubc->flush_required = false;
615 tlb_ubc->writable = false;
616 }
617
618 /* Flush iff there are potentially writable TLB entries that can race with IO */
619 void try_to_unmap_flush_dirty(void)
620 {
621 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
622
623 if (tlb_ubc->writable)
624 try_to_unmap_flush();
625 }
626
627 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
628 {
629 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
630
631 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
632 tlb_ubc->flush_required = true;
633
634 /*
635 * Ensure compiler does not re-order the setting of tlb_flush_batched
636 * before the PTE is cleared.
637 */
638 barrier();
639 mm->tlb_flush_batched = true;
640
641 /*
642 * If the PTE was dirty then it's best to assume it's writable. The
643 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
644 * before the page is queued for IO.
645 */
646 if (writable)
647 tlb_ubc->writable = true;
648 }
649
650 /*
651 * Returns true if the TLB flush should be deferred to the end of a batch of
652 * unmap operations to reduce IPIs.
653 */
654 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
655 {
656 bool should_defer = false;
657
658 if (!(flags & TTU_BATCH_FLUSH))
659 return false;
660
661 /* If remote CPUs need to be flushed then defer batch the flush */
662 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
663 should_defer = true;
664 put_cpu();
665
666 return should_defer;
667 }
668
669 /*
670 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
671 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
672 * operation such as mprotect or munmap to race between reclaim unmapping
673 * the page and flushing the page. If this race occurs, it potentially allows
674 * access to data via a stale TLB entry. Tracking all mm's that have TLB
675 * batching in flight would be expensive during reclaim so instead track
676 * whether TLB batching occurred in the past and if so then do a flush here
677 * if required. This will cost one additional flush per reclaim cycle paid
678 * by the first operation at risk such as mprotect and mumap.
679 *
680 * This must be called under the PTL so that an access to tlb_flush_batched
681 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
682 * via the PTL.
683 */
684 void flush_tlb_batched_pending(struct mm_struct *mm)
685 {
686 if (data_race(mm->tlb_flush_batched)) {
687 flush_tlb_mm(mm);
688
689 /*
690 * Do not allow the compiler to re-order the clearing of
691 * tlb_flush_batched before the tlb is flushed.
692 */
693 barrier();
694 mm->tlb_flush_batched = false;
695 }
696 }
697 #else
698 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
699 {
700 }
701
702 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
703 {
704 return false;
705 }
706 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
707
708 /*
709 * At what user virtual address is page expected in vma?
710 * Caller should check the page is actually part of the vma.
711 */
712 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
713 {
714 if (PageAnon(page)) {
715 struct anon_vma *page__anon_vma = page_anon_vma(page);
716 /*
717 * Note: swapoff's unuse_vma() is more efficient with this
718 * check, and needs it to match anon_vma when KSM is active.
719 */
720 if (!vma->anon_vma || !page__anon_vma ||
721 vma->anon_vma->root != page__anon_vma->root)
722 return -EFAULT;
723 } else if (!vma->vm_file) {
724 return -EFAULT;
725 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
726 return -EFAULT;
727 }
728
729 return vma_address(page, vma);
730 }
731
732 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
733 {
734 pgd_t *pgd;
735 p4d_t *p4d;
736 pud_t *pud;
737 pmd_t *pmd = NULL;
738 pmd_t pmde;
739
740 pgd = pgd_offset(mm, address);
741 if (!pgd_present(*pgd))
742 goto out;
743
744 p4d = p4d_offset(pgd, address);
745 if (!p4d_present(*p4d))
746 goto out;
747
748 pud = pud_offset(p4d, address);
749 if (!pud_present(*pud))
750 goto out;
751
752 pmd = pmd_offset(pud, address);
753 /*
754 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
755 * without holding anon_vma lock for write. So when looking for a
756 * genuine pmde (in which to find pte), test present and !THP together.
757 */
758 pmde = *pmd;
759 barrier();
760 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
761 pmd = NULL;
762 out:
763 return pmd;
764 }
765
766 struct page_referenced_arg {
767 int mapcount;
768 int referenced;
769 unsigned long vm_flags;
770 struct mem_cgroup *memcg;
771 };
772 /*
773 * arg: page_referenced_arg will be passed
774 */
775 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
776 unsigned long address, void *arg)
777 {
778 struct page_referenced_arg *pra = arg;
779 struct page_vma_mapped_walk pvmw = {
780 .page = page,
781 .vma = vma,
782 .address = address,
783 };
784 int referenced = 0;
785
786 while (page_vma_mapped_walk(&pvmw)) {
787 address = pvmw.address;
788
789 if (vma->vm_flags & VM_LOCKED) {
790 page_vma_mapped_walk_done(&pvmw);
791 pra->vm_flags |= VM_LOCKED;
792 return false; /* To break the loop */
793 }
794
795 if (pvmw.pte) {
796 if (ptep_clear_flush_young_notify(vma, address,
797 pvmw.pte)) {
798 /*
799 * Don't treat a reference through
800 * a sequentially read mapping as such.
801 * If the page has been used in another mapping,
802 * we will catch it; if this other mapping is
803 * already gone, the unmap path will have set
804 * PG_referenced or activated the page.
805 */
806 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
807 referenced++;
808 }
809 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
810 if (pmdp_clear_flush_young_notify(vma, address,
811 pvmw.pmd))
812 referenced++;
813 } else {
814 /* unexpected pmd-mapped page? */
815 WARN_ON_ONCE(1);
816 }
817
818 pra->mapcount--;
819 }
820
821 if (referenced)
822 clear_page_idle(page);
823 if (test_and_clear_page_young(page))
824 referenced++;
825
826 if (referenced) {
827 pra->referenced++;
828 pra->vm_flags |= vma->vm_flags;
829 }
830
831 if (!pra->mapcount)
832 return false; /* To break the loop */
833
834 return true;
835 }
836
837 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
838 {
839 struct page_referenced_arg *pra = arg;
840 struct mem_cgroup *memcg = pra->memcg;
841
842 if (!mm_match_cgroup(vma->vm_mm, memcg))
843 return true;
844
845 return false;
846 }
847
848 /**
849 * page_referenced - test if the page was referenced
850 * @page: the page to test
851 * @is_locked: caller holds lock on the page
852 * @memcg: target memory cgroup
853 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
854 *
855 * Quick test_and_clear_referenced for all mappings to a page,
856 * returns the number of ptes which referenced the page.
857 */
858 int page_referenced(struct page *page,
859 int is_locked,
860 struct mem_cgroup *memcg,
861 unsigned long *vm_flags)
862 {
863 int we_locked = 0;
864 struct page_referenced_arg pra = {
865 .mapcount = total_mapcount(page),
866 .memcg = memcg,
867 };
868 struct rmap_walk_control rwc = {
869 .rmap_one = page_referenced_one,
870 .arg = (void *)&pra,
871 .anon_lock = page_lock_anon_vma_read,
872 };
873
874 *vm_flags = 0;
875 if (!pra.mapcount)
876 return 0;
877
878 if (!page_rmapping(page))
879 return 0;
880
881 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
882 we_locked = trylock_page(page);
883 if (!we_locked)
884 return 1;
885 }
886
887 /*
888 * If we are reclaiming on behalf of a cgroup, skip
889 * counting on behalf of references from different
890 * cgroups
891 */
892 if (memcg) {
893 rwc.invalid_vma = invalid_page_referenced_vma;
894 }
895
896 rmap_walk(page, &rwc);
897 *vm_flags = pra.vm_flags;
898
899 if (we_locked)
900 unlock_page(page);
901
902 return pra.referenced;
903 }
904
905 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
906 unsigned long address, void *arg)
907 {
908 struct page_vma_mapped_walk pvmw = {
909 .page = page,
910 .vma = vma,
911 .address = address,
912 .flags = PVMW_SYNC,
913 };
914 struct mmu_notifier_range range;
915 int *cleaned = arg;
916
917 /*
918 * We have to assume the worse case ie pmd for invalidation. Note that
919 * the page can not be free from this function.
920 */
921 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
922 0, vma, vma->vm_mm, address,
923 vma_address_end(page, vma));
924 mmu_notifier_invalidate_range_start(&range);
925
926 while (page_vma_mapped_walk(&pvmw)) {
927 int ret = 0;
928
929 address = pvmw.address;
930 if (pvmw.pte) {
931 pte_t entry;
932 pte_t *pte = pvmw.pte;
933
934 if (!pte_dirty(*pte) && !pte_write(*pte))
935 continue;
936
937 flush_cache_page(vma, address, pte_pfn(*pte));
938 entry = ptep_clear_flush(vma, address, pte);
939 entry = pte_wrprotect(entry);
940 entry = pte_mkclean(entry);
941 set_pte_at(vma->vm_mm, address, pte, entry);
942 ret = 1;
943 } else {
944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
945 pmd_t *pmd = pvmw.pmd;
946 pmd_t entry;
947
948 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
949 continue;
950
951 flush_cache_page(vma, address, page_to_pfn(page));
952 entry = pmdp_invalidate(vma, address, pmd);
953 entry = pmd_wrprotect(entry);
954 entry = pmd_mkclean(entry);
955 set_pmd_at(vma->vm_mm, address, pmd, entry);
956 ret = 1;
957 #else
958 /* unexpected pmd-mapped page? */
959 WARN_ON_ONCE(1);
960 #endif
961 }
962
963 /*
964 * No need to call mmu_notifier_invalidate_range() as we are
965 * downgrading page table protection not changing it to point
966 * to a new page.
967 *
968 * See Documentation/vm/mmu_notifier.rst
969 */
970 if (ret)
971 (*cleaned)++;
972 }
973
974 mmu_notifier_invalidate_range_end(&range);
975
976 return true;
977 }
978
979 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
980 {
981 if (vma->vm_flags & VM_SHARED)
982 return false;
983
984 return true;
985 }
986
987 int page_mkclean(struct page *page)
988 {
989 int cleaned = 0;
990 struct address_space *mapping;
991 struct rmap_walk_control rwc = {
992 .arg = (void *)&cleaned,
993 .rmap_one = page_mkclean_one,
994 .invalid_vma = invalid_mkclean_vma,
995 };
996
997 BUG_ON(!PageLocked(page));
998
999 if (!page_mapped(page))
1000 return 0;
1001
1002 mapping = page_mapping(page);
1003 if (!mapping)
1004 return 0;
1005
1006 rmap_walk(page, &rwc);
1007
1008 return cleaned;
1009 }
1010 EXPORT_SYMBOL_GPL(page_mkclean);
1011
1012 /**
1013 * page_move_anon_rmap - move a page to our anon_vma
1014 * @page: the page to move to our anon_vma
1015 * @vma: the vma the page belongs to
1016 *
1017 * When a page belongs exclusively to one process after a COW event,
1018 * that page can be moved into the anon_vma that belongs to just that
1019 * process, so the rmap code will not search the parent or sibling
1020 * processes.
1021 */
1022 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1023 {
1024 struct anon_vma *anon_vma = vma->anon_vma;
1025
1026 page = compound_head(page);
1027
1028 VM_BUG_ON_PAGE(!PageLocked(page), page);
1029 VM_BUG_ON_VMA(!anon_vma, vma);
1030
1031 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1032 /*
1033 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1034 * simultaneously, so a concurrent reader (eg page_referenced()'s
1035 * PageAnon()) will not see one without the other.
1036 */
1037 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1038 }
1039
1040 /**
1041 * __page_set_anon_rmap - set up new anonymous rmap
1042 * @page: Page or Hugepage to add to rmap
1043 * @vma: VM area to add page to.
1044 * @address: User virtual address of the mapping
1045 * @exclusive: the page is exclusively owned by the current process
1046 */
1047 static void __page_set_anon_rmap(struct page *page,
1048 struct vm_area_struct *vma, unsigned long address, int exclusive)
1049 {
1050 struct anon_vma *anon_vma = vma->anon_vma;
1051
1052 BUG_ON(!anon_vma);
1053
1054 if (PageAnon(page))
1055 return;
1056
1057 /*
1058 * If the page isn't exclusively mapped into this vma,
1059 * we must use the _oldest_ possible anon_vma for the
1060 * page mapping!
1061 */
1062 if (!exclusive)
1063 anon_vma = anon_vma->root;
1064
1065 /*
1066 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1067 * Make sure the compiler doesn't split the stores of anon_vma and
1068 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1069 * could mistake the mapping for a struct address_space and crash.
1070 */
1071 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1072 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1073 page->index = linear_page_index(vma, address);
1074 }
1075
1076 /**
1077 * __page_check_anon_rmap - sanity check anonymous rmap addition
1078 * @page: the page to add the mapping to
1079 * @vma: the vm area in which the mapping is added
1080 * @address: the user virtual address mapped
1081 */
1082 static void __page_check_anon_rmap(struct page *page,
1083 struct vm_area_struct *vma, unsigned long address)
1084 {
1085 /*
1086 * The page's anon-rmap details (mapping and index) are guaranteed to
1087 * be set up correctly at this point.
1088 *
1089 * We have exclusion against page_add_anon_rmap because the caller
1090 * always holds the page locked.
1091 *
1092 * We have exclusion against page_add_new_anon_rmap because those pages
1093 * are initially only visible via the pagetables, and the pte is locked
1094 * over the call to page_add_new_anon_rmap.
1095 */
1096 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1097 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1098 page);
1099 }
1100
1101 /**
1102 * page_add_anon_rmap - add pte mapping to an anonymous page
1103 * @page: the page to add the mapping to
1104 * @vma: the vm area in which the mapping is added
1105 * @address: the user virtual address mapped
1106 * @compound: charge the page as compound or small page
1107 *
1108 * The caller needs to hold the pte lock, and the page must be locked in
1109 * the anon_vma case: to serialize mapping,index checking after setting,
1110 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1111 * (but PageKsm is never downgraded to PageAnon).
1112 */
1113 void page_add_anon_rmap(struct page *page,
1114 struct vm_area_struct *vma, unsigned long address, bool compound)
1115 {
1116 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1117 }
1118
1119 /*
1120 * Special version of the above for do_swap_page, which often runs
1121 * into pages that are exclusively owned by the current process.
1122 * Everybody else should continue to use page_add_anon_rmap above.
1123 */
1124 void do_page_add_anon_rmap(struct page *page,
1125 struct vm_area_struct *vma, unsigned long address, int flags)
1126 {
1127 bool compound = flags & RMAP_COMPOUND;
1128 bool first;
1129
1130 if (unlikely(PageKsm(page)))
1131 lock_page_memcg(page);
1132 else
1133 VM_BUG_ON_PAGE(!PageLocked(page), page);
1134
1135 if (compound) {
1136 atomic_t *mapcount;
1137 VM_BUG_ON_PAGE(!PageLocked(page), page);
1138 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1139 mapcount = compound_mapcount_ptr(page);
1140 first = atomic_inc_and_test(mapcount);
1141 } else {
1142 first = atomic_inc_and_test(&page->_mapcount);
1143 }
1144
1145 if (first) {
1146 int nr = compound ? thp_nr_pages(page) : 1;
1147 /*
1148 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1149 * these counters are not modified in interrupt context, and
1150 * pte lock(a spinlock) is held, which implies preemption
1151 * disabled.
1152 */
1153 if (compound)
1154 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1155 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1156 }
1157
1158 if (unlikely(PageKsm(page))) {
1159 unlock_page_memcg(page);
1160 return;
1161 }
1162
1163 /* address might be in next vma when migration races vma_adjust */
1164 if (first)
1165 __page_set_anon_rmap(page, vma, address,
1166 flags & RMAP_EXCLUSIVE);
1167 else
1168 __page_check_anon_rmap(page, vma, address);
1169 }
1170
1171 /**
1172 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1173 * @page: the page to add the mapping to
1174 * @vma: the vm area in which the mapping is added
1175 * @address: the user virtual address mapped
1176 * @compound: charge the page as compound or small page
1177 *
1178 * Same as page_add_anon_rmap but must only be called on *new* pages.
1179 * This means the inc-and-test can be bypassed.
1180 * Page does not have to be locked.
1181 */
1182 void page_add_new_anon_rmap(struct page *page,
1183 struct vm_area_struct *vma, unsigned long address, bool compound)
1184 {
1185 int nr = compound ? thp_nr_pages(page) : 1;
1186
1187 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1188 __SetPageSwapBacked(page);
1189 if (compound) {
1190 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1191 /* increment count (starts at -1) */
1192 atomic_set(compound_mapcount_ptr(page), 0);
1193 if (hpage_pincount_available(page))
1194 atomic_set(compound_pincount_ptr(page), 0);
1195
1196 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1197 } else {
1198 /* Anon THP always mapped first with PMD */
1199 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1200 /* increment count (starts at -1) */
1201 atomic_set(&page->_mapcount, 0);
1202 }
1203 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1204 __page_set_anon_rmap(page, vma, address, 1);
1205 }
1206
1207 /**
1208 * page_add_file_rmap - add pte mapping to a file page
1209 * @page: the page to add the mapping to
1210 * @compound: charge the page as compound or small page
1211 *
1212 * The caller needs to hold the pte lock.
1213 */
1214 void page_add_file_rmap(struct page *page, bool compound)
1215 {
1216 int i, nr = 1;
1217
1218 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1219 lock_page_memcg(page);
1220 if (compound && PageTransHuge(page)) {
1221 int nr_pages = thp_nr_pages(page);
1222
1223 for (i = 0, nr = 0; i < nr_pages; i++) {
1224 if (atomic_inc_and_test(&page[i]._mapcount))
1225 nr++;
1226 }
1227 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1228 goto out;
1229 if (PageSwapBacked(page))
1230 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1231 nr_pages);
1232 else
1233 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1234 nr_pages);
1235 } else {
1236 if (PageTransCompound(page) && page_mapping(page)) {
1237 struct page *head = compound_head(page);
1238
1239 VM_WARN_ON_ONCE(!PageLocked(page));
1240
1241 SetPageDoubleMap(head);
1242 if (PageMlocked(page))
1243 clear_page_mlock(head);
1244 }
1245 if (!atomic_inc_and_test(&page->_mapcount))
1246 goto out;
1247 }
1248 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1249 out:
1250 unlock_page_memcg(page);
1251 }
1252
1253 static void page_remove_file_rmap(struct page *page, bool compound)
1254 {
1255 int i, nr = 1;
1256
1257 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1258
1259 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1260 if (unlikely(PageHuge(page))) {
1261 /* hugetlb pages are always mapped with pmds */
1262 atomic_dec(compound_mapcount_ptr(page));
1263 return;
1264 }
1265
1266 /* page still mapped by someone else? */
1267 if (compound && PageTransHuge(page)) {
1268 int nr_pages = thp_nr_pages(page);
1269
1270 for (i = 0, nr = 0; i < nr_pages; i++) {
1271 if (atomic_add_negative(-1, &page[i]._mapcount))
1272 nr++;
1273 }
1274 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1275 return;
1276 if (PageSwapBacked(page))
1277 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1278 -nr_pages);
1279 else
1280 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1281 -nr_pages);
1282 } else {
1283 if (!atomic_add_negative(-1, &page->_mapcount))
1284 return;
1285 }
1286
1287 /*
1288 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1289 * these counters are not modified in interrupt context, and
1290 * pte lock(a spinlock) is held, which implies preemption disabled.
1291 */
1292 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1293
1294 if (unlikely(PageMlocked(page)))
1295 clear_page_mlock(page);
1296 }
1297
1298 static void page_remove_anon_compound_rmap(struct page *page)
1299 {
1300 int i, nr;
1301
1302 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1303 return;
1304
1305 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1306 if (unlikely(PageHuge(page)))
1307 return;
1308
1309 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1310 return;
1311
1312 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1313
1314 if (TestClearPageDoubleMap(page)) {
1315 /*
1316 * Subpages can be mapped with PTEs too. Check how many of
1317 * them are still mapped.
1318 */
1319 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1320 if (atomic_add_negative(-1, &page[i]._mapcount))
1321 nr++;
1322 }
1323
1324 /*
1325 * Queue the page for deferred split if at least one small
1326 * page of the compound page is unmapped, but at least one
1327 * small page is still mapped.
1328 */
1329 if (nr && nr < thp_nr_pages(page))
1330 deferred_split_huge_page(page);
1331 } else {
1332 nr = thp_nr_pages(page);
1333 }
1334
1335 if (unlikely(PageMlocked(page)))
1336 clear_page_mlock(page);
1337
1338 if (nr)
1339 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1340 }
1341
1342 /**
1343 * page_remove_rmap - take down pte mapping from a page
1344 * @page: page to remove mapping from
1345 * @compound: uncharge the page as compound or small page
1346 *
1347 * The caller needs to hold the pte lock.
1348 */
1349 void page_remove_rmap(struct page *page, bool compound)
1350 {
1351 lock_page_memcg(page);
1352
1353 if (!PageAnon(page)) {
1354 page_remove_file_rmap(page, compound);
1355 goto out;
1356 }
1357
1358 if (compound) {
1359 page_remove_anon_compound_rmap(page);
1360 goto out;
1361 }
1362
1363 /* page still mapped by someone else? */
1364 if (!atomic_add_negative(-1, &page->_mapcount))
1365 goto out;
1366
1367 /*
1368 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1369 * these counters are not modified in interrupt context, and
1370 * pte lock(a spinlock) is held, which implies preemption disabled.
1371 */
1372 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1373
1374 if (unlikely(PageMlocked(page)))
1375 clear_page_mlock(page);
1376
1377 if (PageTransCompound(page))
1378 deferred_split_huge_page(compound_head(page));
1379
1380 /*
1381 * It would be tidy to reset the PageAnon mapping here,
1382 * but that might overwrite a racing page_add_anon_rmap
1383 * which increments mapcount after us but sets mapping
1384 * before us: so leave the reset to free_unref_page,
1385 * and remember that it's only reliable while mapped.
1386 * Leaving it set also helps swapoff to reinstate ptes
1387 * faster for those pages still in swapcache.
1388 */
1389 out:
1390 unlock_page_memcg(page);
1391 }
1392
1393 /*
1394 * @arg: enum ttu_flags will be passed to this argument
1395 */
1396 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1397 unsigned long address, void *arg)
1398 {
1399 struct mm_struct *mm = vma->vm_mm;
1400 struct page_vma_mapped_walk pvmw = {
1401 .page = page,
1402 .vma = vma,
1403 .address = address,
1404 };
1405 pte_t pteval;
1406 struct page *subpage;
1407 bool ret = true;
1408 struct mmu_notifier_range range;
1409 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1410
1411 /*
1412 * When racing against e.g. zap_pte_range() on another cpu,
1413 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1414 * try_to_unmap() may return before page_mapped() has become false,
1415 * if page table locking is skipped: use TTU_SYNC to wait for that.
1416 */
1417 if (flags & TTU_SYNC)
1418 pvmw.flags = PVMW_SYNC;
1419
1420 if (flags & TTU_SPLIT_HUGE_PMD)
1421 split_huge_pmd_address(vma, address, false, page);
1422
1423 /*
1424 * For THP, we have to assume the worse case ie pmd for invalidation.
1425 * For hugetlb, it could be much worse if we need to do pud
1426 * invalidation in the case of pmd sharing.
1427 *
1428 * Note that the page can not be free in this function as call of
1429 * try_to_unmap() must hold a reference on the page.
1430 */
1431 range.end = PageKsm(page) ?
1432 address + PAGE_SIZE : vma_address_end(page, vma);
1433 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1434 address, range.end);
1435 if (PageHuge(page)) {
1436 /*
1437 * If sharing is possible, start and end will be adjusted
1438 * accordingly.
1439 */
1440 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1441 &range.end);
1442 }
1443 mmu_notifier_invalidate_range_start(&range);
1444
1445 while (page_vma_mapped_walk(&pvmw)) {
1446 /*
1447 * If the page is mlock()d, we cannot swap it out.
1448 */
1449 if (!(flags & TTU_IGNORE_MLOCK) &&
1450 (vma->vm_flags & VM_LOCKED)) {
1451 /*
1452 * PTE-mapped THP are never marked as mlocked: so do
1453 * not set it on a DoubleMap THP, nor on an Anon THP
1454 * (which may still be PTE-mapped after DoubleMap was
1455 * cleared). But stop unmapping even in those cases.
1456 */
1457 if (!PageTransCompound(page) || (PageHead(page) &&
1458 !PageDoubleMap(page) && !PageAnon(page)))
1459 mlock_vma_page(page);
1460 page_vma_mapped_walk_done(&pvmw);
1461 ret = false;
1462 break;
1463 }
1464
1465 /* Unexpected PMD-mapped THP? */
1466 VM_BUG_ON_PAGE(!pvmw.pte, page);
1467
1468 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1469 address = pvmw.address;
1470
1471 if (PageHuge(page) && !PageAnon(page)) {
1472 /*
1473 * To call huge_pmd_unshare, i_mmap_rwsem must be
1474 * held in write mode. Caller needs to explicitly
1475 * do this outside rmap routines.
1476 */
1477 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1478 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1479 /*
1480 * huge_pmd_unshare unmapped an entire PMD
1481 * page. There is no way of knowing exactly
1482 * which PMDs may be cached for this mm, so
1483 * we must flush them all. start/end were
1484 * already adjusted above to cover this range.
1485 */
1486 flush_cache_range(vma, range.start, range.end);
1487 flush_tlb_range(vma, range.start, range.end);
1488 mmu_notifier_invalidate_range(mm, range.start,
1489 range.end);
1490
1491 /*
1492 * The ref count of the PMD page was dropped
1493 * which is part of the way map counting
1494 * is done for shared PMDs. Return 'true'
1495 * here. When there is no other sharing,
1496 * huge_pmd_unshare returns false and we will
1497 * unmap the actual page and drop map count
1498 * to zero.
1499 */
1500 page_vma_mapped_walk_done(&pvmw);
1501 break;
1502 }
1503 }
1504
1505 /* Nuke the page table entry. */
1506 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1507 if (should_defer_flush(mm, flags)) {
1508 /*
1509 * We clear the PTE but do not flush so potentially
1510 * a remote CPU could still be writing to the page.
1511 * If the entry was previously clean then the
1512 * architecture must guarantee that a clear->dirty
1513 * transition on a cached TLB entry is written through
1514 * and traps if the PTE is unmapped.
1515 */
1516 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1517
1518 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1519 } else {
1520 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1521 }
1522
1523 /* Move the dirty bit to the page. Now the pte is gone. */
1524 if (pte_dirty(pteval))
1525 set_page_dirty(page);
1526
1527 /* Update high watermark before we lower rss */
1528 update_hiwater_rss(mm);
1529
1530 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1531 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1532 if (PageHuge(page)) {
1533 hugetlb_count_sub(compound_nr(page), mm);
1534 set_huge_swap_pte_at(mm, address,
1535 pvmw.pte, pteval,
1536 vma_mmu_pagesize(vma));
1537 } else {
1538 dec_mm_counter(mm, mm_counter(page));
1539 set_pte_at(mm, address, pvmw.pte, pteval);
1540 }
1541
1542 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1543 /*
1544 * The guest indicated that the page content is of no
1545 * interest anymore. Simply discard the pte, vmscan
1546 * will take care of the rest.
1547 * A future reference will then fault in a new zero
1548 * page. When userfaultfd is active, we must not drop
1549 * this page though, as its main user (postcopy
1550 * migration) will not expect userfaults on already
1551 * copied pages.
1552 */
1553 dec_mm_counter(mm, mm_counter(page));
1554 /* We have to invalidate as we cleared the pte */
1555 mmu_notifier_invalidate_range(mm, address,
1556 address + PAGE_SIZE);
1557 } else if (PageAnon(page)) {
1558 swp_entry_t entry = { .val = page_private(subpage) };
1559 pte_t swp_pte;
1560 /*
1561 * Store the swap location in the pte.
1562 * See handle_pte_fault() ...
1563 */
1564 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1565 WARN_ON_ONCE(1);
1566 ret = false;
1567 /* We have to invalidate as we cleared the pte */
1568 mmu_notifier_invalidate_range(mm, address,
1569 address + PAGE_SIZE);
1570 page_vma_mapped_walk_done(&pvmw);
1571 break;
1572 }
1573
1574 /* MADV_FREE page check */
1575 if (!PageSwapBacked(page)) {
1576 int ref_count, map_count;
1577
1578 /*
1579 * Synchronize with gup_pte_range():
1580 * - clear PTE; barrier; read refcount
1581 * - inc refcount; barrier; read PTE
1582 */
1583 smp_mb();
1584
1585 ref_count = page_ref_count(page);
1586 map_count = page_mapcount(page);
1587
1588 /*
1589 * Order reads for page refcount and dirty flag
1590 * (see comments in __remove_mapping()).
1591 */
1592 smp_rmb();
1593
1594 /*
1595 * The only page refs must be one from isolation
1596 * plus the rmap(s) (dropped by discard:).
1597 */
1598 if (ref_count == 1 + map_count &&
1599 !PageDirty(page)) {
1600 /* Invalidate as we cleared the pte */
1601 mmu_notifier_invalidate_range(mm,
1602 address, address + PAGE_SIZE);
1603 dec_mm_counter(mm, MM_ANONPAGES);
1604 goto discard;
1605 }
1606
1607 /*
1608 * If the page was redirtied, it cannot be
1609 * discarded. Remap the page to page table.
1610 */
1611 set_pte_at(mm, address, pvmw.pte, pteval);
1612 SetPageSwapBacked(page);
1613 ret = false;
1614 page_vma_mapped_walk_done(&pvmw);
1615 break;
1616 }
1617
1618 if (swap_duplicate(entry) < 0) {
1619 set_pte_at(mm, address, pvmw.pte, pteval);
1620 ret = false;
1621 page_vma_mapped_walk_done(&pvmw);
1622 break;
1623 }
1624 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1625 set_pte_at(mm, address, pvmw.pte, pteval);
1626 ret = false;
1627 page_vma_mapped_walk_done(&pvmw);
1628 break;
1629 }
1630 if (list_empty(&mm->mmlist)) {
1631 spin_lock(&mmlist_lock);
1632 if (list_empty(&mm->mmlist))
1633 list_add(&mm->mmlist, &init_mm.mmlist);
1634 spin_unlock(&mmlist_lock);
1635 }
1636 dec_mm_counter(mm, MM_ANONPAGES);
1637 inc_mm_counter(mm, MM_SWAPENTS);
1638 swp_pte = swp_entry_to_pte(entry);
1639 if (pte_soft_dirty(pteval))
1640 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1641 if (pte_uffd_wp(pteval))
1642 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1643 set_pte_at(mm, address, pvmw.pte, swp_pte);
1644 /* Invalidate as we cleared the pte */
1645 mmu_notifier_invalidate_range(mm, address,
1646 address + PAGE_SIZE);
1647 } else {
1648 /*
1649 * This is a locked file-backed page, thus it cannot
1650 * be removed from the page cache and replaced by a new
1651 * page before mmu_notifier_invalidate_range_end, so no
1652 * concurrent thread might update its page table to
1653 * point at new page while a device still is using this
1654 * page.
1655 *
1656 * See Documentation/vm/mmu_notifier.rst
1657 */
1658 dec_mm_counter(mm, mm_counter_file(page));
1659 }
1660 discard:
1661 /*
1662 * No need to call mmu_notifier_invalidate_range() it has be
1663 * done above for all cases requiring it to happen under page
1664 * table lock before mmu_notifier_invalidate_range_end()
1665 *
1666 * See Documentation/vm/mmu_notifier.rst
1667 */
1668 page_remove_rmap(subpage, PageHuge(page));
1669 put_page(page);
1670 }
1671
1672 mmu_notifier_invalidate_range_end(&range);
1673
1674 return ret;
1675 }
1676
1677 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1678 {
1679 return vma_is_temporary_stack(vma);
1680 }
1681
1682 static int page_not_mapped(struct page *page)
1683 {
1684 return !page_mapped(page);
1685 }
1686
1687 /**
1688 * try_to_unmap - try to remove all page table mappings to a page
1689 * @page: the page to get unmapped
1690 * @flags: action and flags
1691 *
1692 * Tries to remove all the page table entries which are mapping this
1693 * page, used in the pageout path. Caller must hold the page lock.
1694 *
1695 * It is the caller's responsibility to check if the page is still
1696 * mapped when needed (use TTU_SYNC to prevent accounting races).
1697 */
1698 void try_to_unmap(struct page *page, enum ttu_flags flags)
1699 {
1700 struct rmap_walk_control rwc = {
1701 .rmap_one = try_to_unmap_one,
1702 .arg = (void *)flags,
1703 .done = page_not_mapped,
1704 .anon_lock = page_lock_anon_vma_read,
1705 };
1706
1707 if (flags & TTU_RMAP_LOCKED)
1708 rmap_walk_locked(page, &rwc);
1709 else
1710 rmap_walk(page, &rwc);
1711 }
1712
1713 /*
1714 * @arg: enum ttu_flags will be passed to this argument.
1715 *
1716 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1717 * containing migration entries.
1718 */
1719 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1720 unsigned long address, void *arg)
1721 {
1722 struct mm_struct *mm = vma->vm_mm;
1723 struct page_vma_mapped_walk pvmw = {
1724 .page = page,
1725 .vma = vma,
1726 .address = address,
1727 };
1728 pte_t pteval;
1729 struct page *subpage;
1730 bool ret = true;
1731 struct mmu_notifier_range range;
1732 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1733
1734 /*
1735 * When racing against e.g. zap_pte_range() on another cpu,
1736 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1737 * try_to_migrate() may return before page_mapped() has become false,
1738 * if page table locking is skipped: use TTU_SYNC to wait for that.
1739 */
1740 if (flags & TTU_SYNC)
1741 pvmw.flags = PVMW_SYNC;
1742
1743 /*
1744 * unmap_page() in mm/huge_memory.c is the only user of migration with
1745 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1746 */
1747 if (flags & TTU_SPLIT_HUGE_PMD)
1748 split_huge_pmd_address(vma, address, true, page);
1749
1750 /*
1751 * For THP, we have to assume the worse case ie pmd for invalidation.
1752 * For hugetlb, it could be much worse if we need to do pud
1753 * invalidation in the case of pmd sharing.
1754 *
1755 * Note that the page can not be free in this function as call of
1756 * try_to_unmap() must hold a reference on the page.
1757 */
1758 range.end = PageKsm(page) ?
1759 address + PAGE_SIZE : vma_address_end(page, vma);
1760 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1761 address, range.end);
1762 if (PageHuge(page)) {
1763 /*
1764 * If sharing is possible, start and end will be adjusted
1765 * accordingly.
1766 */
1767 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1768 &range.end);
1769 }
1770 mmu_notifier_invalidate_range_start(&range);
1771
1772 while (page_vma_mapped_walk(&pvmw)) {
1773 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1774 /* PMD-mapped THP migration entry */
1775 if (!pvmw.pte) {
1776 VM_BUG_ON_PAGE(PageHuge(page) ||
1777 !PageTransCompound(page), page);
1778
1779 set_pmd_migration_entry(&pvmw, page);
1780 continue;
1781 }
1782 #endif
1783
1784 /* Unexpected PMD-mapped THP? */
1785 VM_BUG_ON_PAGE(!pvmw.pte, page);
1786
1787 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1788 address = pvmw.address;
1789
1790 if (PageHuge(page) && !PageAnon(page)) {
1791 /*
1792 * To call huge_pmd_unshare, i_mmap_rwsem must be
1793 * held in write mode. Caller needs to explicitly
1794 * do this outside rmap routines.
1795 */
1796 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1797 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1798 /*
1799 * huge_pmd_unshare unmapped an entire PMD
1800 * page. There is no way of knowing exactly
1801 * which PMDs may be cached for this mm, so
1802 * we must flush them all. start/end were
1803 * already adjusted above to cover this range.
1804 */
1805 flush_cache_range(vma, range.start, range.end);
1806 flush_tlb_range(vma, range.start, range.end);
1807 mmu_notifier_invalidate_range(mm, range.start,
1808 range.end);
1809
1810 /*
1811 * The ref count of the PMD page was dropped
1812 * which is part of the way map counting
1813 * is done for shared PMDs. Return 'true'
1814 * here. When there is no other sharing,
1815 * huge_pmd_unshare returns false and we will
1816 * unmap the actual page and drop map count
1817 * to zero.
1818 */
1819 page_vma_mapped_walk_done(&pvmw);
1820 break;
1821 }
1822 }
1823
1824 /* Nuke the page table entry. */
1825 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1826 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1827
1828 /* Move the dirty bit to the page. Now the pte is gone. */
1829 if (pte_dirty(pteval))
1830 set_page_dirty(page);
1831
1832 /* Update high watermark before we lower rss */
1833 update_hiwater_rss(mm);
1834
1835 if (is_zone_device_page(page)) {
1836 swp_entry_t entry;
1837 pte_t swp_pte;
1838
1839 /*
1840 * Store the pfn of the page in a special migration
1841 * pte. do_swap_page() will wait until the migration
1842 * pte is removed and then restart fault handling.
1843 */
1844 entry = make_readable_migration_entry(
1845 page_to_pfn(page));
1846 swp_pte = swp_entry_to_pte(entry);
1847
1848 /*
1849 * pteval maps a zone device page and is therefore
1850 * a swap pte.
1851 */
1852 if (pte_swp_soft_dirty(pteval))
1853 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1854 if (pte_swp_uffd_wp(pteval))
1855 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1856 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1857 /*
1858 * No need to invalidate here it will synchronize on
1859 * against the special swap migration pte.
1860 *
1861 * The assignment to subpage above was computed from a
1862 * swap PTE which results in an invalid pointer.
1863 * Since only PAGE_SIZE pages can currently be
1864 * migrated, just set it to page. This will need to be
1865 * changed when hugepage migrations to device private
1866 * memory are supported.
1867 */
1868 subpage = page;
1869 } else if (PageHWPoison(page)) {
1870 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1871 if (PageHuge(page)) {
1872 hugetlb_count_sub(compound_nr(page), mm);
1873 set_huge_swap_pte_at(mm, address,
1874 pvmw.pte, pteval,
1875 vma_mmu_pagesize(vma));
1876 } else {
1877 dec_mm_counter(mm, mm_counter(page));
1878 set_pte_at(mm, address, pvmw.pte, pteval);
1879 }
1880
1881 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1882 /*
1883 * The guest indicated that the page content is of no
1884 * interest anymore. Simply discard the pte, vmscan
1885 * will take care of the rest.
1886 * A future reference will then fault in a new zero
1887 * page. When userfaultfd is active, we must not drop
1888 * this page though, as its main user (postcopy
1889 * migration) will not expect userfaults on already
1890 * copied pages.
1891 */
1892 dec_mm_counter(mm, mm_counter(page));
1893 /* We have to invalidate as we cleared the pte */
1894 mmu_notifier_invalidate_range(mm, address,
1895 address + PAGE_SIZE);
1896 } else {
1897 swp_entry_t entry;
1898 pte_t swp_pte;
1899
1900 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1901 set_pte_at(mm, address, pvmw.pte, pteval);
1902 ret = false;
1903 page_vma_mapped_walk_done(&pvmw);
1904 break;
1905 }
1906
1907 /*
1908 * Store the pfn of the page in a special migration
1909 * pte. do_swap_page() will wait until the migration
1910 * pte is removed and then restart fault handling.
1911 */
1912 if (pte_write(pteval))
1913 entry = make_writable_migration_entry(
1914 page_to_pfn(subpage));
1915 else
1916 entry = make_readable_migration_entry(
1917 page_to_pfn(subpage));
1918
1919 swp_pte = swp_entry_to_pte(entry);
1920 if (pte_soft_dirty(pteval))
1921 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1922 if (pte_uffd_wp(pteval))
1923 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1924 set_pte_at(mm, address, pvmw.pte, swp_pte);
1925 /*
1926 * No need to invalidate here it will synchronize on
1927 * against the special swap migration pte.
1928 */
1929 }
1930
1931 /*
1932 * No need to call mmu_notifier_invalidate_range() it has be
1933 * done above for all cases requiring it to happen under page
1934 * table lock before mmu_notifier_invalidate_range_end()
1935 *
1936 * See Documentation/vm/mmu_notifier.rst
1937 */
1938 page_remove_rmap(subpage, PageHuge(page));
1939 put_page(page);
1940 }
1941
1942 mmu_notifier_invalidate_range_end(&range);
1943
1944 return ret;
1945 }
1946
1947 /**
1948 * try_to_migrate - try to replace all page table mappings with swap entries
1949 * @page: the page to replace page table entries for
1950 * @flags: action and flags
1951 *
1952 * Tries to remove all the page table entries which are mapping this page and
1953 * replace them with special swap entries. Caller must hold the page lock.
1954 */
1955 void try_to_migrate(struct page *page, enum ttu_flags flags)
1956 {
1957 struct rmap_walk_control rwc = {
1958 .rmap_one = try_to_migrate_one,
1959 .arg = (void *)flags,
1960 .done = page_not_mapped,
1961 .anon_lock = page_lock_anon_vma_read,
1962 };
1963
1964 /*
1965 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1966 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1967 */
1968 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1969 TTU_SYNC)))
1970 return;
1971
1972 if (is_zone_device_page(page) && !is_device_private_page(page))
1973 return;
1974
1975 /*
1976 * During exec, a temporary VMA is setup and later moved.
1977 * The VMA is moved under the anon_vma lock but not the
1978 * page tables leading to a race where migration cannot
1979 * find the migration ptes. Rather than increasing the
1980 * locking requirements of exec(), migration skips
1981 * temporary VMAs until after exec() completes.
1982 */
1983 if (!PageKsm(page) && PageAnon(page))
1984 rwc.invalid_vma = invalid_migration_vma;
1985
1986 if (flags & TTU_RMAP_LOCKED)
1987 rmap_walk_locked(page, &rwc);
1988 else
1989 rmap_walk(page, &rwc);
1990 }
1991
1992 /*
1993 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1994 * found. Once one is found the page is locked and the scan can be terminated.
1995 */
1996 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1997 unsigned long address, void *unused)
1998 {
1999 struct page_vma_mapped_walk pvmw = {
2000 .page = page,
2001 .vma = vma,
2002 .address = address,
2003 };
2004
2005 /* An un-locked vma doesn't have any pages to lock, continue the scan */
2006 if (!(vma->vm_flags & VM_LOCKED))
2007 return true;
2008
2009 while (page_vma_mapped_walk(&pvmw)) {
2010 /*
2011 * Need to recheck under the ptl to serialise with
2012 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
2013 * munlock_vma_pages_range().
2014 */
2015 if (vma->vm_flags & VM_LOCKED) {
2016 /*
2017 * PTE-mapped THP are never marked as mlocked; but
2018 * this function is never called on a DoubleMap THP,
2019 * nor on an Anon THP (which may still be PTE-mapped
2020 * after DoubleMap was cleared).
2021 */
2022 mlock_vma_page(page);
2023 /*
2024 * No need to scan further once the page is marked
2025 * as mlocked.
2026 */
2027 page_vma_mapped_walk_done(&pvmw);
2028 return false;
2029 }
2030 }
2031
2032 return true;
2033 }
2034
2035 /**
2036 * page_mlock - try to mlock a page
2037 * @page: the page to be mlocked
2038 *
2039 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2040 * the page if any are found. The page will be returned with PG_mlocked cleared
2041 * if it is not mapped by any locked vmas.
2042 */
2043 void page_mlock(struct page *page)
2044 {
2045 struct rmap_walk_control rwc = {
2046 .rmap_one = page_mlock_one,
2047 .done = page_not_mapped,
2048 .anon_lock = page_lock_anon_vma_read,
2049
2050 };
2051
2052 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2053 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2054
2055 /* Anon THP are only marked as mlocked when singly mapped */
2056 if (PageTransCompound(page) && PageAnon(page))
2057 return;
2058
2059 rmap_walk(page, &rwc);
2060 }
2061
2062 #ifdef CONFIG_DEVICE_PRIVATE
2063 struct make_exclusive_args {
2064 struct mm_struct *mm;
2065 unsigned long address;
2066 void *owner;
2067 bool valid;
2068 };
2069
2070 static bool page_make_device_exclusive_one(struct page *page,
2071 struct vm_area_struct *vma, unsigned long address, void *priv)
2072 {
2073 struct mm_struct *mm = vma->vm_mm;
2074 struct page_vma_mapped_walk pvmw = {
2075 .page = page,
2076 .vma = vma,
2077 .address = address,
2078 };
2079 struct make_exclusive_args *args = priv;
2080 pte_t pteval;
2081 struct page *subpage;
2082 bool ret = true;
2083 struct mmu_notifier_range range;
2084 swp_entry_t entry;
2085 pte_t swp_pte;
2086
2087 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2088 vma->vm_mm, address, min(vma->vm_end,
2089 address + page_size(page)), args->owner);
2090 mmu_notifier_invalidate_range_start(&range);
2091
2092 while (page_vma_mapped_walk(&pvmw)) {
2093 /* Unexpected PMD-mapped THP? */
2094 VM_BUG_ON_PAGE(!pvmw.pte, page);
2095
2096 if (!pte_present(*pvmw.pte)) {
2097 ret = false;
2098 page_vma_mapped_walk_done(&pvmw);
2099 break;
2100 }
2101
2102 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2103 address = pvmw.address;
2104
2105 /* Nuke the page table entry. */
2106 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2107 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2108
2109 /* Move the dirty bit to the page. Now the pte is gone. */
2110 if (pte_dirty(pteval))
2111 set_page_dirty(page);
2112
2113 /*
2114 * Check that our target page is still mapped at the expected
2115 * address.
2116 */
2117 if (args->mm == mm && args->address == address &&
2118 pte_write(pteval))
2119 args->valid = true;
2120
2121 /*
2122 * Store the pfn of the page in a special migration
2123 * pte. do_swap_page() will wait until the migration
2124 * pte is removed and then restart fault handling.
2125 */
2126 if (pte_write(pteval))
2127 entry = make_writable_device_exclusive_entry(
2128 page_to_pfn(subpage));
2129 else
2130 entry = make_readable_device_exclusive_entry(
2131 page_to_pfn(subpage));
2132 swp_pte = swp_entry_to_pte(entry);
2133 if (pte_soft_dirty(pteval))
2134 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2135 if (pte_uffd_wp(pteval))
2136 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2137
2138 set_pte_at(mm, address, pvmw.pte, swp_pte);
2139
2140 /*
2141 * There is a reference on the page for the swap entry which has
2142 * been removed, so shouldn't take another.
2143 */
2144 page_remove_rmap(subpage, false);
2145 }
2146
2147 mmu_notifier_invalidate_range_end(&range);
2148
2149 return ret;
2150 }
2151
2152 /**
2153 * page_make_device_exclusive - mark the page exclusively owned by a device
2154 * @page: the page to replace page table entries for
2155 * @mm: the mm_struct where the page is expected to be mapped
2156 * @address: address where the page is expected to be mapped
2157 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2158 *
2159 * Tries to remove all the page table entries which are mapping this page and
2160 * replace them with special device exclusive swap entries to grant a device
2161 * exclusive access to the page. Caller must hold the page lock.
2162 *
2163 * Returns false if the page is still mapped, or if it could not be unmapped
2164 * from the expected address. Otherwise returns true (success).
2165 */
2166 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2167 unsigned long address, void *owner)
2168 {
2169 struct make_exclusive_args args = {
2170 .mm = mm,
2171 .address = address,
2172 .owner = owner,
2173 .valid = false,
2174 };
2175 struct rmap_walk_control rwc = {
2176 .rmap_one = page_make_device_exclusive_one,
2177 .done = page_not_mapped,
2178 .anon_lock = page_lock_anon_vma_read,
2179 .arg = &args,
2180 };
2181
2182 /*
2183 * Restrict to anonymous pages for now to avoid potential writeback
2184 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2185 * those.
2186 */
2187 if (!PageAnon(page) || PageTail(page))
2188 return false;
2189
2190 rmap_walk(page, &rwc);
2191
2192 return args.valid && !page_mapcount(page);
2193 }
2194
2195 /**
2196 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2197 * @mm: mm_struct of assoicated target process
2198 * @start: start of the region to mark for exclusive device access
2199 * @end: end address of region
2200 * @pages: returns the pages which were successfully marked for exclusive access
2201 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2202 *
2203 * Returns: number of pages found in the range by GUP. A page is marked for
2204 * exclusive access only if the page pointer is non-NULL.
2205 *
2206 * This function finds ptes mapping page(s) to the given address range, locks
2207 * them and replaces mappings with special swap entries preventing userspace CPU
2208 * access. On fault these entries are replaced with the original mapping after
2209 * calling MMU notifiers.
2210 *
2211 * A driver using this to program access from a device must use a mmu notifier
2212 * critical section to hold a device specific lock during programming. Once
2213 * programming is complete it should drop the page lock and reference after
2214 * which point CPU access to the page will revoke the exclusive access.
2215 */
2216 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2217 unsigned long end, struct page **pages,
2218 void *owner)
2219 {
2220 long npages = (end - start) >> PAGE_SHIFT;
2221 long i;
2222
2223 npages = get_user_pages_remote(mm, start, npages,
2224 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2225 pages, NULL, NULL);
2226 if (npages < 0)
2227 return npages;
2228
2229 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2230 if (!trylock_page(pages[i])) {
2231 put_page(pages[i]);
2232 pages[i] = NULL;
2233 continue;
2234 }
2235
2236 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2237 unlock_page(pages[i]);
2238 put_page(pages[i]);
2239 pages[i] = NULL;
2240 }
2241 }
2242
2243 return npages;
2244 }
2245 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2246 #endif
2247
2248 void __put_anon_vma(struct anon_vma *anon_vma)
2249 {
2250 struct anon_vma *root = anon_vma->root;
2251
2252 anon_vma_free(anon_vma);
2253 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2254 anon_vma_free(root);
2255 }
2256
2257 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2258 struct rmap_walk_control *rwc)
2259 {
2260 struct anon_vma *anon_vma;
2261
2262 if (rwc->anon_lock)
2263 return rwc->anon_lock(page);
2264
2265 /*
2266 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2267 * because that depends on page_mapped(); but not all its usages
2268 * are holding mmap_lock. Users without mmap_lock are required to
2269 * take a reference count to prevent the anon_vma disappearing
2270 */
2271 anon_vma = page_anon_vma(page);
2272 if (!anon_vma)
2273 return NULL;
2274
2275 anon_vma_lock_read(anon_vma);
2276 return anon_vma;
2277 }
2278
2279 /*
2280 * rmap_walk_anon - do something to anonymous page using the object-based
2281 * rmap method
2282 * @page: the page to be handled
2283 * @rwc: control variable according to each walk type
2284 *
2285 * Find all the mappings of a page using the mapping pointer and the vma chains
2286 * contained in the anon_vma struct it points to.
2287 *
2288 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2289 * where the page was found will be held for write. So, we won't recheck
2290 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2291 * LOCKED.
2292 */
2293 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2294 bool locked)
2295 {
2296 struct anon_vma *anon_vma;
2297 pgoff_t pgoff_start, pgoff_end;
2298 struct anon_vma_chain *avc;
2299
2300 if (locked) {
2301 anon_vma = page_anon_vma(page);
2302 /* anon_vma disappear under us? */
2303 VM_BUG_ON_PAGE(!anon_vma, page);
2304 } else {
2305 anon_vma = rmap_walk_anon_lock(page, rwc);
2306 }
2307 if (!anon_vma)
2308 return;
2309
2310 pgoff_start = page_to_pgoff(page);
2311 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2312 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2313 pgoff_start, pgoff_end) {
2314 struct vm_area_struct *vma = avc->vma;
2315 unsigned long address = vma_address(page, vma);
2316
2317 VM_BUG_ON_VMA(address == -EFAULT, vma);
2318 cond_resched();
2319
2320 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2321 continue;
2322
2323 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2324 break;
2325 if (rwc->done && rwc->done(page))
2326 break;
2327 }
2328
2329 if (!locked)
2330 anon_vma_unlock_read(anon_vma);
2331 }
2332
2333 /*
2334 * rmap_walk_file - do something to file page using the object-based rmap method
2335 * @page: the page to be handled
2336 * @rwc: control variable according to each walk type
2337 *
2338 * Find all the mappings of a page using the mapping pointer and the vma chains
2339 * contained in the address_space struct it points to.
2340 *
2341 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2342 * where the page was found will be held for write. So, we won't recheck
2343 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2344 * LOCKED.
2345 */
2346 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2347 bool locked)
2348 {
2349 struct address_space *mapping = page_mapping(page);
2350 pgoff_t pgoff_start, pgoff_end;
2351 struct vm_area_struct *vma;
2352
2353 /*
2354 * The page lock not only makes sure that page->mapping cannot
2355 * suddenly be NULLified by truncation, it makes sure that the
2356 * structure at mapping cannot be freed and reused yet,
2357 * so we can safely take mapping->i_mmap_rwsem.
2358 */
2359 VM_BUG_ON_PAGE(!PageLocked(page), page);
2360
2361 if (!mapping)
2362 return;
2363
2364 pgoff_start = page_to_pgoff(page);
2365 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2366 if (!locked)
2367 i_mmap_lock_read(mapping);
2368 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2369 pgoff_start, pgoff_end) {
2370 unsigned long address = vma_address(page, vma);
2371
2372 VM_BUG_ON_VMA(address == -EFAULT, vma);
2373 cond_resched();
2374
2375 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2376 continue;
2377
2378 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2379 goto done;
2380 if (rwc->done && rwc->done(page))
2381 goto done;
2382 }
2383
2384 done:
2385 if (!locked)
2386 i_mmap_unlock_read(mapping);
2387 }
2388
2389 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2390 {
2391 if (unlikely(PageKsm(page)))
2392 rmap_walk_ksm(page, rwc);
2393 else if (PageAnon(page))
2394 rmap_walk_anon(page, rwc, false);
2395 else
2396 rmap_walk_file(page, rwc, false);
2397 }
2398
2399 /* Like rmap_walk, but caller holds relevant rmap lock */
2400 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2401 {
2402 /* no ksm support for now */
2403 VM_BUG_ON_PAGE(PageKsm(page), page);
2404 if (PageAnon(page))
2405 rmap_walk_anon(page, rwc, true);
2406 else
2407 rmap_walk_file(page, rwc, true);
2408 }
2409
2410 #ifdef CONFIG_HUGETLB_PAGE
2411 /*
2412 * The following two functions are for anonymous (private mapped) hugepages.
2413 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2414 * and no lru code, because we handle hugepages differently from common pages.
2415 */
2416 void hugepage_add_anon_rmap(struct page *page,
2417 struct vm_area_struct *vma, unsigned long address)
2418 {
2419 struct anon_vma *anon_vma = vma->anon_vma;
2420 int first;
2421
2422 BUG_ON(!PageLocked(page));
2423 BUG_ON(!anon_vma);
2424 /* address might be in next vma when migration races vma_adjust */
2425 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2426 if (first)
2427 __page_set_anon_rmap(page, vma, address, 0);
2428 }
2429
2430 void hugepage_add_new_anon_rmap(struct page *page,
2431 struct vm_area_struct *vma, unsigned long address)
2432 {
2433 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2434 atomic_set(compound_mapcount_ptr(page), 0);
2435 if (hpage_pincount_available(page))
2436 atomic_set(compound_pincount_ptr(page), 0);
2437
2438 __page_set_anon_rmap(page, vma, address, 1);
2439 }
2440 #endif /* CONFIG_HUGETLB_PAGE */