]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/rmap.c
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in lock_page_lruvec_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76
77 #include <asm/tlbflush.h>
78
79 #include <trace/events/tlb.h>
80
81 #include "internal.h"
82
83 static struct kmem_cache *anon_vma_cachep;
84 static struct kmem_cache *anon_vma_chain_cachep;
85
86 static inline struct anon_vma *anon_vma_alloc(void)
87 {
88 struct anon_vma *anon_vma;
89
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 if (anon_vma) {
92 atomic_set(&anon_vma->refcount, 1);
93 anon_vma->degree = 1; /* Reference for first vma */
94 anon_vma->parent = anon_vma;
95 /*
96 * Initialise the anon_vma root to point to itself. If called
97 * from fork, the root will be reset to the parents anon_vma.
98 */
99 anon_vma->root = anon_vma;
100 }
101
102 return anon_vma;
103 }
104
105 static inline void anon_vma_free(struct anon_vma *anon_vma)
106 {
107 VM_BUG_ON(atomic_read(&anon_vma->refcount));
108
109 /*
110 * Synchronize against page_lock_anon_vma_read() such that
111 * we can safely hold the lock without the anon_vma getting
112 * freed.
113 *
114 * Relies on the full mb implied by the atomic_dec_and_test() from
115 * put_anon_vma() against the acquire barrier implied by
116 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
117 *
118 * page_lock_anon_vma_read() VS put_anon_vma()
119 * down_read_trylock() atomic_dec_and_test()
120 * LOCK MB
121 * atomic_read() rwsem_is_locked()
122 *
123 * LOCK should suffice since the actual taking of the lock must
124 * happen _before_ what follows.
125 */
126 might_sleep();
127 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
128 anon_vma_lock_write(anon_vma);
129 anon_vma_unlock_write(anon_vma);
130 }
131
132 kmem_cache_free(anon_vma_cachep, anon_vma);
133 }
134
135 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
136 {
137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
138 }
139
140 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
141 {
142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
143 }
144
145 static void anon_vma_chain_link(struct vm_area_struct *vma,
146 struct anon_vma_chain *avc,
147 struct anon_vma *anon_vma)
148 {
149 avc->vma = vma;
150 avc->anon_vma = anon_vma;
151 list_add(&avc->same_vma, &vma->anon_vma_chain);
152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
153 }
154
155 /**
156 * __anon_vma_prepare - attach an anon_vma to a memory region
157 * @vma: the memory region in question
158 *
159 * This makes sure the memory mapping described by 'vma' has
160 * an 'anon_vma' attached to it, so that we can associate the
161 * anonymous pages mapped into it with that anon_vma.
162 *
163 * The common case will be that we already have one, which
164 * is handled inline by anon_vma_prepare(). But if
165 * not we either need to find an adjacent mapping that we
166 * can re-use the anon_vma from (very common when the only
167 * reason for splitting a vma has been mprotect()), or we
168 * allocate a new one.
169 *
170 * Anon-vma allocations are very subtle, because we may have
171 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
172 * and that may actually touch the rwsem even in the newly
173 * allocated vma (it depends on RCU to make sure that the
174 * anon_vma isn't actually destroyed).
175 *
176 * As a result, we need to do proper anon_vma locking even
177 * for the new allocation. At the same time, we do not want
178 * to do any locking for the common case of already having
179 * an anon_vma.
180 *
181 * This must be called with the mmap_lock held for reading.
182 */
183 int __anon_vma_prepare(struct vm_area_struct *vma)
184 {
185 struct mm_struct *mm = vma->vm_mm;
186 struct anon_vma *anon_vma, *allocated;
187 struct anon_vma_chain *avc;
188
189 might_sleep();
190
191 avc = anon_vma_chain_alloc(GFP_KERNEL);
192 if (!avc)
193 goto out_enomem;
194
195 anon_vma = find_mergeable_anon_vma(vma);
196 allocated = NULL;
197 if (!anon_vma) {
198 anon_vma = anon_vma_alloc();
199 if (unlikely(!anon_vma))
200 goto out_enomem_free_avc;
201 allocated = anon_vma;
202 }
203
204 anon_vma_lock_write(anon_vma);
205 /* page_table_lock to protect against threads */
206 spin_lock(&mm->page_table_lock);
207 if (likely(!vma->anon_vma)) {
208 vma->anon_vma = anon_vma;
209 anon_vma_chain_link(vma, avc, anon_vma);
210 /* vma reference or self-parent link for new root */
211 anon_vma->degree++;
212 allocated = NULL;
213 avc = NULL;
214 }
215 spin_unlock(&mm->page_table_lock);
216 anon_vma_unlock_write(anon_vma);
217
218 if (unlikely(allocated))
219 put_anon_vma(allocated);
220 if (unlikely(avc))
221 anon_vma_chain_free(avc);
222
223 return 0;
224
225 out_enomem_free_avc:
226 anon_vma_chain_free(avc);
227 out_enomem:
228 return -ENOMEM;
229 }
230
231 /*
232 * This is a useful helper function for locking the anon_vma root as
233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
234 * have the same vma.
235 *
236 * Such anon_vma's should have the same root, so you'd expect to see
237 * just a single mutex_lock for the whole traversal.
238 */
239 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
240 {
241 struct anon_vma *new_root = anon_vma->root;
242 if (new_root != root) {
243 if (WARN_ON_ONCE(root))
244 up_write(&root->rwsem);
245 root = new_root;
246 down_write(&root->rwsem);
247 }
248 return root;
249 }
250
251 static inline void unlock_anon_vma_root(struct anon_vma *root)
252 {
253 if (root)
254 up_write(&root->rwsem);
255 }
256
257 /*
258 * Attach the anon_vmas from src to dst.
259 * Returns 0 on success, -ENOMEM on failure.
260 *
261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
262 * anon_vma_fork(). The first three want an exact copy of src, while the last
263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
266 *
267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
270 * case of constantly forking task. On the other hand, an anon_vma with more
271 * than one child isn't reused even if there was no alive vma, thus rmap
272 * walker has a good chance of avoiding scanning the whole hierarchy when it
273 * searches where page is mapped.
274 */
275 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
276 {
277 struct anon_vma_chain *avc, *pavc;
278 struct anon_vma *root = NULL;
279
280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
281 struct anon_vma *anon_vma;
282
283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 if (unlikely(!avc)) {
285 unlock_anon_vma_root(root);
286 root = NULL;
287 avc = anon_vma_chain_alloc(GFP_KERNEL);
288 if (!avc)
289 goto enomem_failure;
290 }
291 anon_vma = pavc->anon_vma;
292 root = lock_anon_vma_root(root, anon_vma);
293 anon_vma_chain_link(dst, avc, anon_vma);
294
295 /*
296 * Reuse existing anon_vma if its degree lower than two,
297 * that means it has no vma and only one anon_vma child.
298 *
299 * Do not chose parent anon_vma, otherwise first child
300 * will always reuse it. Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
302 */
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma != src->anon_vma && anon_vma->degree < 2)
305 dst->anon_vma = anon_vma;
306 }
307 if (dst->anon_vma)
308 dst->anon_vma->degree++;
309 unlock_anon_vma_root(root);
310 return 0;
311
312 enomem_failure:
313 /*
314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 * decremented in unlink_anon_vmas().
316 * We can safely do this because callers of anon_vma_clone() don't care
317 * about dst->anon_vma if anon_vma_clone() failed.
318 */
319 dst->anon_vma = NULL;
320 unlink_anon_vmas(dst);
321 return -ENOMEM;
322 }
323
324 /*
325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
326 * the corresponding VMA in the parent process is attached to.
327 * Returns 0 on success, non-zero on failure.
328 */
329 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
330 {
331 struct anon_vma_chain *avc;
332 struct anon_vma *anon_vma;
333 int error;
334
335 /* Don't bother if the parent process has no anon_vma here. */
336 if (!pvma->anon_vma)
337 return 0;
338
339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 vma->anon_vma = NULL;
341
342 /*
343 * First, attach the new VMA to the parent VMA's anon_vmas,
344 * so rmap can find non-COWed pages in child processes.
345 */
346 error = anon_vma_clone(vma, pvma);
347 if (error)
348 return error;
349
350 /* An existing anon_vma has been reused, all done then. */
351 if (vma->anon_vma)
352 return 0;
353
354 /* Then add our own anon_vma. */
355 anon_vma = anon_vma_alloc();
356 if (!anon_vma)
357 goto out_error;
358 avc = anon_vma_chain_alloc(GFP_KERNEL);
359 if (!avc)
360 goto out_error_free_anon_vma;
361
362 /*
363 * The root anon_vma's rwsem is the lock actually used when we
364 * lock any of the anon_vmas in this anon_vma tree.
365 */
366 anon_vma->root = pvma->anon_vma->root;
367 anon_vma->parent = pvma->anon_vma;
368 /*
369 * With refcounts, an anon_vma can stay around longer than the
370 * process it belongs to. The root anon_vma needs to be pinned until
371 * this anon_vma is freed, because the lock lives in the root.
372 */
373 get_anon_vma(anon_vma->root);
374 /* Mark this anon_vma as the one where our new (COWed) pages go. */
375 vma->anon_vma = anon_vma;
376 anon_vma_lock_write(anon_vma);
377 anon_vma_chain_link(vma, avc, anon_vma);
378 anon_vma->parent->degree++;
379 anon_vma_unlock_write(anon_vma);
380
381 return 0;
382
383 out_error_free_anon_vma:
384 put_anon_vma(anon_vma);
385 out_error:
386 unlink_anon_vmas(vma);
387 return -ENOMEM;
388 }
389
390 void unlink_anon_vmas(struct vm_area_struct *vma)
391 {
392 struct anon_vma_chain *avc, *next;
393 struct anon_vma *root = NULL;
394
395 /*
396 * Unlink each anon_vma chained to the VMA. This list is ordered
397 * from newest to oldest, ensuring the root anon_vma gets freed last.
398 */
399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
400 struct anon_vma *anon_vma = avc->anon_vma;
401
402 root = lock_anon_vma_root(root, anon_vma);
403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
404
405 /*
406 * Leave empty anon_vmas on the list - we'll need
407 * to free them outside the lock.
408 */
409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
410 anon_vma->parent->degree--;
411 continue;
412 }
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
417 if (vma->anon_vma) {
418 vma->anon_vma->degree--;
419
420 /*
421 * vma would still be needed after unlink, and anon_vma will be prepared
422 * when handle fault.
423 */
424 vma->anon_vma = NULL;
425 }
426 unlock_anon_vma_root(root);
427
428 /*
429 * Iterate the list once more, it now only contains empty and unlinked
430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
431 * needing to write-acquire the anon_vma->root->rwsem.
432 */
433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 struct anon_vma *anon_vma = avc->anon_vma;
435
436 VM_WARN_ON(anon_vma->degree);
437 put_anon_vma(anon_vma);
438
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
441 }
442 }
443
444 static void anon_vma_ctor(void *data)
445 {
446 struct anon_vma *anon_vma = data;
447
448 init_rwsem(&anon_vma->rwsem);
449 atomic_set(&anon_vma->refcount, 0);
450 anon_vma->rb_root = RB_ROOT_CACHED;
451 }
452
453 void __init anon_vma_init(void)
454 {
455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
457 anon_vma_ctor);
458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 SLAB_PANIC|SLAB_ACCOUNT);
460 }
461
462 /*
463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
464 *
465 * Since there is no serialization what so ever against page_remove_rmap()
466 * the best this function can do is return a refcount increased anon_vma
467 * that might have been relevant to this page.
468 *
469 * The page might have been remapped to a different anon_vma or the anon_vma
470 * returned may already be freed (and even reused).
471 *
472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474 * ensure that any anon_vma obtained from the page will still be valid for as
475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
476 *
477 * All users of this function must be very careful when walking the anon_vma
478 * chain and verify that the page in question is indeed mapped in it
479 * [ something equivalent to page_mapped_in_vma() ].
480 *
481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483 * if there is a mapcount, we can dereference the anon_vma after observing
484 * those.
485 */
486 struct anon_vma *page_get_anon_vma(struct page *page)
487 {
488 struct anon_vma *anon_vma = NULL;
489 unsigned long anon_mapping;
490
491 rcu_read_lock();
492 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
494 goto out;
495 if (!page_mapped(page))
496 goto out;
497
498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
499 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
500 anon_vma = NULL;
501 goto out;
502 }
503
504 /*
505 * If this page is still mapped, then its anon_vma cannot have been
506 * freed. But if it has been unmapped, we have no security against the
507 * anon_vma structure being freed and reused (for another anon_vma:
508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
509 * above cannot corrupt).
510 */
511 if (!page_mapped(page)) {
512 rcu_read_unlock();
513 put_anon_vma(anon_vma);
514 return NULL;
515 }
516 out:
517 rcu_read_unlock();
518
519 return anon_vma;
520 }
521
522 /*
523 * Similar to page_get_anon_vma() except it locks the anon_vma.
524 *
525 * Its a little more complex as it tries to keep the fast path to a single
526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527 * reference like with page_get_anon_vma() and then block on the mutex.
528 */
529 struct anon_vma *page_lock_anon_vma_read(struct page *page)
530 {
531 struct anon_vma *anon_vma = NULL;
532 struct anon_vma *root_anon_vma;
533 unsigned long anon_mapping;
534
535 rcu_read_lock();
536 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
538 goto out;
539 if (!page_mapped(page))
540 goto out;
541
542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
543 root_anon_vma = READ_ONCE(anon_vma->root);
544 if (down_read_trylock(&root_anon_vma->rwsem)) {
545 /*
546 * If the page is still mapped, then this anon_vma is still
547 * its anon_vma, and holding the mutex ensures that it will
548 * not go away, see anon_vma_free().
549 */
550 if (!page_mapped(page)) {
551 up_read(&root_anon_vma->rwsem);
552 anon_vma = NULL;
553 }
554 goto out;
555 }
556
557 /* trylock failed, we got to sleep */
558 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
559 anon_vma = NULL;
560 goto out;
561 }
562
563 if (!page_mapped(page)) {
564 rcu_read_unlock();
565 put_anon_vma(anon_vma);
566 return NULL;
567 }
568
569 /* we pinned the anon_vma, its safe to sleep */
570 rcu_read_unlock();
571 anon_vma_lock_read(anon_vma);
572
573 if (atomic_dec_and_test(&anon_vma->refcount)) {
574 /*
575 * Oops, we held the last refcount, release the lock
576 * and bail -- can't simply use put_anon_vma() because
577 * we'll deadlock on the anon_vma_lock_write() recursion.
578 */
579 anon_vma_unlock_read(anon_vma);
580 __put_anon_vma(anon_vma);
581 anon_vma = NULL;
582 }
583
584 return anon_vma;
585
586 out:
587 rcu_read_unlock();
588 return anon_vma;
589 }
590
591 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
592 {
593 anon_vma_unlock_read(anon_vma);
594 }
595
596 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
597 /*
598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599 * important if a PTE was dirty when it was unmapped that it's flushed
600 * before any IO is initiated on the page to prevent lost writes. Similarly,
601 * it must be flushed before freeing to prevent data leakage.
602 */
603 void try_to_unmap_flush(void)
604 {
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606
607 if (!tlb_ubc->flush_required)
608 return;
609
610 arch_tlbbatch_flush(&tlb_ubc->arch);
611 tlb_ubc->flush_required = false;
612 tlb_ubc->writable = false;
613 }
614
615 /* Flush iff there are potentially writable TLB entries that can race with IO */
616 void try_to_unmap_flush_dirty(void)
617 {
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622 }
623
624 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
625 {
626 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
627
628 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
629 tlb_ubc->flush_required = true;
630
631 /*
632 * Ensure compiler does not re-order the setting of tlb_flush_batched
633 * before the PTE is cleared.
634 */
635 barrier();
636 mm->tlb_flush_batched = true;
637
638 /*
639 * If the PTE was dirty then it's best to assume it's writable. The
640 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
641 * before the page is queued for IO.
642 */
643 if (writable)
644 tlb_ubc->writable = true;
645 }
646
647 /*
648 * Returns true if the TLB flush should be deferred to the end of a batch of
649 * unmap operations to reduce IPIs.
650 */
651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652 {
653 bool should_defer = false;
654
655 if (!(flags & TTU_BATCH_FLUSH))
656 return false;
657
658 /* If remote CPUs need to be flushed then defer batch the flush */
659 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
660 should_defer = true;
661 put_cpu();
662
663 return should_defer;
664 }
665
666 /*
667 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
668 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
669 * operation such as mprotect or munmap to race between reclaim unmapping
670 * the page and flushing the page. If this race occurs, it potentially allows
671 * access to data via a stale TLB entry. Tracking all mm's that have TLB
672 * batching in flight would be expensive during reclaim so instead track
673 * whether TLB batching occurred in the past and if so then do a flush here
674 * if required. This will cost one additional flush per reclaim cycle paid
675 * by the first operation at risk such as mprotect and mumap.
676 *
677 * This must be called under the PTL so that an access to tlb_flush_batched
678 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
679 * via the PTL.
680 */
681 void flush_tlb_batched_pending(struct mm_struct *mm)
682 {
683 if (data_race(mm->tlb_flush_batched)) {
684 flush_tlb_mm(mm);
685
686 /*
687 * Do not allow the compiler to re-order the clearing of
688 * tlb_flush_batched before the tlb is flushed.
689 */
690 barrier();
691 mm->tlb_flush_batched = false;
692 }
693 }
694 #else
695 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
696 {
697 }
698
699 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
700 {
701 return false;
702 }
703 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
704
705 /*
706 * At what user virtual address is page expected in vma?
707 * Caller should check the page is actually part of the vma.
708 */
709 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
710 {
711 if (PageAnon(page)) {
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
713 /*
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
716 */
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
719 return -EFAULT;
720 } else if (!vma->vm_file) {
721 return -EFAULT;
722 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
723 return -EFAULT;
724 }
725
726 return vma_address(page, vma);
727 }
728
729 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
730 {
731 pgd_t *pgd;
732 p4d_t *p4d;
733 pud_t *pud;
734 pmd_t *pmd = NULL;
735 pmd_t pmde;
736
737 pgd = pgd_offset(mm, address);
738 if (!pgd_present(*pgd))
739 goto out;
740
741 p4d = p4d_offset(pgd, address);
742 if (!p4d_present(*p4d))
743 goto out;
744
745 pud = pud_offset(p4d, address);
746 if (!pud_present(*pud))
747 goto out;
748
749 pmd = pmd_offset(pud, address);
750 /*
751 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
752 * without holding anon_vma lock for write. So when looking for a
753 * genuine pmde (in which to find pte), test present and !THP together.
754 */
755 pmde = *pmd;
756 barrier();
757 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
758 pmd = NULL;
759 out:
760 return pmd;
761 }
762
763 struct page_referenced_arg {
764 int mapcount;
765 int referenced;
766 unsigned long vm_flags;
767 struct mem_cgroup *memcg;
768 };
769 /*
770 * arg: page_referenced_arg will be passed
771 */
772 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
773 unsigned long address, void *arg)
774 {
775 struct page_referenced_arg *pra = arg;
776 struct page_vma_mapped_walk pvmw = {
777 .page = page,
778 .vma = vma,
779 .address = address,
780 };
781 int referenced = 0;
782
783 while (page_vma_mapped_walk(&pvmw)) {
784 address = pvmw.address;
785
786 if (vma->vm_flags & VM_LOCKED) {
787 page_vma_mapped_walk_done(&pvmw);
788 pra->vm_flags |= VM_LOCKED;
789 return false; /* To break the loop */
790 }
791
792 if (pvmw.pte) {
793 if (ptep_clear_flush_young_notify(vma, address,
794 pvmw.pte)) {
795 /*
796 * Don't treat a reference through
797 * a sequentially read mapping as such.
798 * If the page has been used in another mapping,
799 * we will catch it; if this other mapping is
800 * already gone, the unmap path will have set
801 * PG_referenced or activated the page.
802 */
803 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
804 referenced++;
805 }
806 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
807 if (pmdp_clear_flush_young_notify(vma, address,
808 pvmw.pmd))
809 referenced++;
810 } else {
811 /* unexpected pmd-mapped page? */
812 WARN_ON_ONCE(1);
813 }
814
815 pra->mapcount--;
816 }
817
818 if (referenced)
819 clear_page_idle(page);
820 if (test_and_clear_page_young(page))
821 referenced++;
822
823 if (referenced) {
824 pra->referenced++;
825 pra->vm_flags |= vma->vm_flags;
826 }
827
828 if (!pra->mapcount)
829 return false; /* To break the loop */
830
831 return true;
832 }
833
834 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
835 {
836 struct page_referenced_arg *pra = arg;
837 struct mem_cgroup *memcg = pra->memcg;
838
839 if (!mm_match_cgroup(vma->vm_mm, memcg))
840 return true;
841
842 return false;
843 }
844
845 /**
846 * page_referenced - test if the page was referenced
847 * @page: the page to test
848 * @is_locked: caller holds lock on the page
849 * @memcg: target memory cgroup
850 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
851 *
852 * Quick test_and_clear_referenced for all mappings to a page,
853 * returns the number of ptes which referenced the page.
854 */
855 int page_referenced(struct page *page,
856 int is_locked,
857 struct mem_cgroup *memcg,
858 unsigned long *vm_flags)
859 {
860 int we_locked = 0;
861 struct page_referenced_arg pra = {
862 .mapcount = total_mapcount(page),
863 .memcg = memcg,
864 };
865 struct rmap_walk_control rwc = {
866 .rmap_one = page_referenced_one,
867 .arg = (void *)&pra,
868 .anon_lock = page_lock_anon_vma_read,
869 };
870
871 *vm_flags = 0;
872 if (!pra.mapcount)
873 return 0;
874
875 if (!page_rmapping(page))
876 return 0;
877
878 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
879 we_locked = trylock_page(page);
880 if (!we_locked)
881 return 1;
882 }
883
884 /*
885 * If we are reclaiming on behalf of a cgroup, skip
886 * counting on behalf of references from different
887 * cgroups
888 */
889 if (memcg) {
890 rwc.invalid_vma = invalid_page_referenced_vma;
891 }
892
893 rmap_walk(page, &rwc);
894 *vm_flags = pra.vm_flags;
895
896 if (we_locked)
897 unlock_page(page);
898
899 return pra.referenced;
900 }
901
902 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
903 unsigned long address, void *arg)
904 {
905 struct page_vma_mapped_walk pvmw = {
906 .page = page,
907 .vma = vma,
908 .address = address,
909 .flags = PVMW_SYNC,
910 };
911 struct mmu_notifier_range range;
912 int *cleaned = arg;
913
914 /*
915 * We have to assume the worse case ie pmd for invalidation. Note that
916 * the page can not be free from this function.
917 */
918 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
919 0, vma, vma->vm_mm, address,
920 vma_address_end(page, vma));
921 mmu_notifier_invalidate_range_start(&range);
922
923 while (page_vma_mapped_walk(&pvmw)) {
924 int ret = 0;
925
926 address = pvmw.address;
927 if (pvmw.pte) {
928 pte_t entry;
929 pte_t *pte = pvmw.pte;
930
931 if (!pte_dirty(*pte) && !pte_write(*pte))
932 continue;
933
934 flush_cache_page(vma, address, pte_pfn(*pte));
935 entry = ptep_clear_flush(vma, address, pte);
936 entry = pte_wrprotect(entry);
937 entry = pte_mkclean(entry);
938 set_pte_at(vma->vm_mm, address, pte, entry);
939 ret = 1;
940 } else {
941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
942 pmd_t *pmd = pvmw.pmd;
943 pmd_t entry;
944
945 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
946 continue;
947
948 flush_cache_page(vma, address, page_to_pfn(page));
949 entry = pmdp_invalidate(vma, address, pmd);
950 entry = pmd_wrprotect(entry);
951 entry = pmd_mkclean(entry);
952 set_pmd_at(vma->vm_mm, address, pmd, entry);
953 ret = 1;
954 #else
955 /* unexpected pmd-mapped page? */
956 WARN_ON_ONCE(1);
957 #endif
958 }
959
960 /*
961 * No need to call mmu_notifier_invalidate_range() as we are
962 * downgrading page table protection not changing it to point
963 * to a new page.
964 *
965 * See Documentation/vm/mmu_notifier.rst
966 */
967 if (ret)
968 (*cleaned)++;
969 }
970
971 mmu_notifier_invalidate_range_end(&range);
972
973 return true;
974 }
975
976 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
977 {
978 if (vma->vm_flags & VM_SHARED)
979 return false;
980
981 return true;
982 }
983
984 int page_mkclean(struct page *page)
985 {
986 int cleaned = 0;
987 struct address_space *mapping;
988 struct rmap_walk_control rwc = {
989 .arg = (void *)&cleaned,
990 .rmap_one = page_mkclean_one,
991 .invalid_vma = invalid_mkclean_vma,
992 };
993
994 BUG_ON(!PageLocked(page));
995
996 if (!page_mapped(page))
997 return 0;
998
999 mapping = page_mapping(page);
1000 if (!mapping)
1001 return 0;
1002
1003 rmap_walk(page, &rwc);
1004
1005 return cleaned;
1006 }
1007 EXPORT_SYMBOL_GPL(page_mkclean);
1008
1009 /**
1010 * page_move_anon_rmap - move a page to our anon_vma
1011 * @page: the page to move to our anon_vma
1012 * @vma: the vma the page belongs to
1013 *
1014 * When a page belongs exclusively to one process after a COW event,
1015 * that page can be moved into the anon_vma that belongs to just that
1016 * process, so the rmap code will not search the parent or sibling
1017 * processes.
1018 */
1019 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1020 {
1021 struct anon_vma *anon_vma = vma->anon_vma;
1022
1023 page = compound_head(page);
1024
1025 VM_BUG_ON_PAGE(!PageLocked(page), page);
1026 VM_BUG_ON_VMA(!anon_vma, vma);
1027
1028 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1029 /*
1030 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1031 * simultaneously, so a concurrent reader (eg page_referenced()'s
1032 * PageAnon()) will not see one without the other.
1033 */
1034 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1035 }
1036
1037 /**
1038 * __page_set_anon_rmap - set up new anonymous rmap
1039 * @page: Page or Hugepage to add to rmap
1040 * @vma: VM area to add page to.
1041 * @address: User virtual address of the mapping
1042 * @exclusive: the page is exclusively owned by the current process
1043 */
1044 static void __page_set_anon_rmap(struct page *page,
1045 struct vm_area_struct *vma, unsigned long address, int exclusive)
1046 {
1047 struct anon_vma *anon_vma = vma->anon_vma;
1048
1049 BUG_ON(!anon_vma);
1050
1051 if (PageAnon(page))
1052 return;
1053
1054 /*
1055 * If the page isn't exclusively mapped into this vma,
1056 * we must use the _oldest_ possible anon_vma for the
1057 * page mapping!
1058 */
1059 if (!exclusive)
1060 anon_vma = anon_vma->root;
1061
1062 /*
1063 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1064 * Make sure the compiler doesn't split the stores of anon_vma and
1065 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1066 * could mistake the mapping for a struct address_space and crash.
1067 */
1068 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1069 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1070 page->index = linear_page_index(vma, address);
1071 }
1072
1073 /**
1074 * __page_check_anon_rmap - sanity check anonymous rmap addition
1075 * @page: the page to add the mapping to
1076 * @vma: the vm area in which the mapping is added
1077 * @address: the user virtual address mapped
1078 */
1079 static void __page_check_anon_rmap(struct page *page,
1080 struct vm_area_struct *vma, unsigned long address)
1081 {
1082 /*
1083 * The page's anon-rmap details (mapping and index) are guaranteed to
1084 * be set up correctly at this point.
1085 *
1086 * We have exclusion against page_add_anon_rmap because the caller
1087 * always holds the page locked.
1088 *
1089 * We have exclusion against page_add_new_anon_rmap because those pages
1090 * are initially only visible via the pagetables, and the pte is locked
1091 * over the call to page_add_new_anon_rmap.
1092 */
1093 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1094 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1095 page);
1096 }
1097
1098 /**
1099 * page_add_anon_rmap - add pte mapping to an anonymous page
1100 * @page: the page to add the mapping to
1101 * @vma: the vm area in which the mapping is added
1102 * @address: the user virtual address mapped
1103 * @compound: charge the page as compound or small page
1104 *
1105 * The caller needs to hold the pte lock, and the page must be locked in
1106 * the anon_vma case: to serialize mapping,index checking after setting,
1107 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1108 * (but PageKsm is never downgraded to PageAnon).
1109 */
1110 void page_add_anon_rmap(struct page *page,
1111 struct vm_area_struct *vma, unsigned long address, bool compound)
1112 {
1113 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1114 }
1115
1116 /*
1117 * Special version of the above for do_swap_page, which often runs
1118 * into pages that are exclusively owned by the current process.
1119 * Everybody else should continue to use page_add_anon_rmap above.
1120 */
1121 void do_page_add_anon_rmap(struct page *page,
1122 struct vm_area_struct *vma, unsigned long address, int flags)
1123 {
1124 bool compound = flags & RMAP_COMPOUND;
1125 bool first;
1126
1127 if (unlikely(PageKsm(page)))
1128 lock_page_memcg(page);
1129 else
1130 VM_BUG_ON_PAGE(!PageLocked(page), page);
1131
1132 if (compound) {
1133 atomic_t *mapcount;
1134 VM_BUG_ON_PAGE(!PageLocked(page), page);
1135 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1136 mapcount = compound_mapcount_ptr(page);
1137 first = atomic_inc_and_test(mapcount);
1138 } else {
1139 first = atomic_inc_and_test(&page->_mapcount);
1140 }
1141
1142 if (first) {
1143 int nr = compound ? thp_nr_pages(page) : 1;
1144 /*
1145 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1146 * these counters are not modified in interrupt context, and
1147 * pte lock(a spinlock) is held, which implies preemption
1148 * disabled.
1149 */
1150 if (compound)
1151 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1152 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1153 }
1154
1155 if (unlikely(PageKsm(page))) {
1156 unlock_page_memcg(page);
1157 return;
1158 }
1159
1160 /* address might be in next vma when migration races vma_adjust */
1161 if (first)
1162 __page_set_anon_rmap(page, vma, address,
1163 flags & RMAP_EXCLUSIVE);
1164 else
1165 __page_check_anon_rmap(page, vma, address);
1166 }
1167
1168 /**
1169 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1170 * @page: the page to add the mapping to
1171 * @vma: the vm area in which the mapping is added
1172 * @address: the user virtual address mapped
1173 * @compound: charge the page as compound or small page
1174 *
1175 * Same as page_add_anon_rmap but must only be called on *new* pages.
1176 * This means the inc-and-test can be bypassed.
1177 * Page does not have to be locked.
1178 */
1179 void page_add_new_anon_rmap(struct page *page,
1180 struct vm_area_struct *vma, unsigned long address, bool compound)
1181 {
1182 int nr = compound ? thp_nr_pages(page) : 1;
1183
1184 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1185 __SetPageSwapBacked(page);
1186 if (compound) {
1187 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1188 /* increment count (starts at -1) */
1189 atomic_set(compound_mapcount_ptr(page), 0);
1190 if (hpage_pincount_available(page))
1191 atomic_set(compound_pincount_ptr(page), 0);
1192
1193 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1194 } else {
1195 /* Anon THP always mapped first with PMD */
1196 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1197 /* increment count (starts at -1) */
1198 atomic_set(&page->_mapcount, 0);
1199 }
1200 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1201 __page_set_anon_rmap(page, vma, address, 1);
1202 }
1203
1204 /**
1205 * page_add_file_rmap - add pte mapping to a file page
1206 * @page: the page to add the mapping to
1207 * @compound: charge the page as compound or small page
1208 *
1209 * The caller needs to hold the pte lock.
1210 */
1211 void page_add_file_rmap(struct page *page, bool compound)
1212 {
1213 int i, nr = 1;
1214
1215 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1216 lock_page_memcg(page);
1217 if (compound && PageTransHuge(page)) {
1218 int nr_pages = thp_nr_pages(page);
1219
1220 for (i = 0, nr = 0; i < nr_pages; i++) {
1221 if (atomic_inc_and_test(&page[i]._mapcount))
1222 nr++;
1223 }
1224 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1225 goto out;
1226 if (PageSwapBacked(page))
1227 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1228 nr_pages);
1229 else
1230 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1231 nr_pages);
1232 } else {
1233 if (PageTransCompound(page) && page_mapping(page)) {
1234 struct page *head = compound_head(page);
1235
1236 VM_WARN_ON_ONCE(!PageLocked(page));
1237
1238 SetPageDoubleMap(head);
1239 if (PageMlocked(page))
1240 clear_page_mlock(head);
1241 }
1242 if (!atomic_inc_and_test(&page->_mapcount))
1243 goto out;
1244 }
1245 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1246 out:
1247 unlock_page_memcg(page);
1248 }
1249
1250 static void page_remove_file_rmap(struct page *page, bool compound)
1251 {
1252 int i, nr = 1;
1253
1254 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1255
1256 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1257 if (unlikely(PageHuge(page))) {
1258 /* hugetlb pages are always mapped with pmds */
1259 atomic_dec(compound_mapcount_ptr(page));
1260 return;
1261 }
1262
1263 /* page still mapped by someone else? */
1264 if (compound && PageTransHuge(page)) {
1265 int nr_pages = thp_nr_pages(page);
1266
1267 for (i = 0, nr = 0; i < nr_pages; i++) {
1268 if (atomic_add_negative(-1, &page[i]._mapcount))
1269 nr++;
1270 }
1271 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1272 return;
1273 if (PageSwapBacked(page))
1274 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1275 -nr_pages);
1276 else
1277 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1278 -nr_pages);
1279 } else {
1280 if (!atomic_add_negative(-1, &page->_mapcount))
1281 return;
1282 }
1283
1284 /*
1285 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1286 * these counters are not modified in interrupt context, and
1287 * pte lock(a spinlock) is held, which implies preemption disabled.
1288 */
1289 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1290
1291 if (unlikely(PageMlocked(page)))
1292 clear_page_mlock(page);
1293 }
1294
1295 static void page_remove_anon_compound_rmap(struct page *page)
1296 {
1297 int i, nr;
1298
1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1300 return;
1301
1302 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1303 if (unlikely(PageHuge(page)))
1304 return;
1305
1306 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1307 return;
1308
1309 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1310
1311 if (TestClearPageDoubleMap(page)) {
1312 /*
1313 * Subpages can be mapped with PTEs too. Check how many of
1314 * them are still mapped.
1315 */
1316 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1317 if (atomic_add_negative(-1, &page[i]._mapcount))
1318 nr++;
1319 }
1320
1321 /*
1322 * Queue the page for deferred split if at least one small
1323 * page of the compound page is unmapped, but at least one
1324 * small page is still mapped.
1325 */
1326 if (nr && nr < thp_nr_pages(page))
1327 deferred_split_huge_page(page);
1328 } else {
1329 nr = thp_nr_pages(page);
1330 }
1331
1332 if (unlikely(PageMlocked(page)))
1333 clear_page_mlock(page);
1334
1335 if (nr)
1336 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1337 }
1338
1339 /**
1340 * page_remove_rmap - take down pte mapping from a page
1341 * @page: page to remove mapping from
1342 * @compound: uncharge the page as compound or small page
1343 *
1344 * The caller needs to hold the pte lock.
1345 */
1346 void page_remove_rmap(struct page *page, bool compound)
1347 {
1348 lock_page_memcg(page);
1349
1350 if (!PageAnon(page)) {
1351 page_remove_file_rmap(page, compound);
1352 goto out;
1353 }
1354
1355 if (compound) {
1356 page_remove_anon_compound_rmap(page);
1357 goto out;
1358 }
1359
1360 /* page still mapped by someone else? */
1361 if (!atomic_add_negative(-1, &page->_mapcount))
1362 goto out;
1363
1364 /*
1365 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1366 * these counters are not modified in interrupt context, and
1367 * pte lock(a spinlock) is held, which implies preemption disabled.
1368 */
1369 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1370
1371 if (unlikely(PageMlocked(page)))
1372 clear_page_mlock(page);
1373
1374 if (PageTransCompound(page))
1375 deferred_split_huge_page(compound_head(page));
1376
1377 /*
1378 * It would be tidy to reset the PageAnon mapping here,
1379 * but that might overwrite a racing page_add_anon_rmap
1380 * which increments mapcount after us but sets mapping
1381 * before us: so leave the reset to free_unref_page,
1382 * and remember that it's only reliable while mapped.
1383 * Leaving it set also helps swapoff to reinstate ptes
1384 * faster for those pages still in swapcache.
1385 */
1386 out:
1387 unlock_page_memcg(page);
1388 }
1389
1390 /*
1391 * @arg: enum ttu_flags will be passed to this argument
1392 */
1393 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1394 unsigned long address, void *arg)
1395 {
1396 struct mm_struct *mm = vma->vm_mm;
1397 struct page_vma_mapped_walk pvmw = {
1398 .page = page,
1399 .vma = vma,
1400 .address = address,
1401 };
1402 pte_t pteval;
1403 struct page *subpage;
1404 bool ret = true;
1405 struct mmu_notifier_range range;
1406 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1407
1408 /*
1409 * When racing against e.g. zap_pte_range() on another cpu,
1410 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1411 * try_to_unmap() may return before page_mapped() has become false,
1412 * if page table locking is skipped: use TTU_SYNC to wait for that.
1413 */
1414 if (flags & TTU_SYNC)
1415 pvmw.flags = PVMW_SYNC;
1416
1417 if (flags & TTU_SPLIT_HUGE_PMD)
1418 split_huge_pmd_address(vma, address, false, page);
1419
1420 /*
1421 * For THP, we have to assume the worse case ie pmd for invalidation.
1422 * For hugetlb, it could be much worse if we need to do pud
1423 * invalidation in the case of pmd sharing.
1424 *
1425 * Note that the page can not be free in this function as call of
1426 * try_to_unmap() must hold a reference on the page.
1427 */
1428 range.end = PageKsm(page) ?
1429 address + PAGE_SIZE : vma_address_end(page, vma);
1430 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1431 address, range.end);
1432 if (PageHuge(page)) {
1433 /*
1434 * If sharing is possible, start and end will be adjusted
1435 * accordingly.
1436 */
1437 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1438 &range.end);
1439 }
1440 mmu_notifier_invalidate_range_start(&range);
1441
1442 while (page_vma_mapped_walk(&pvmw)) {
1443 /*
1444 * If the page is mlock()d, we cannot swap it out.
1445 */
1446 if (!(flags & TTU_IGNORE_MLOCK) &&
1447 (vma->vm_flags & VM_LOCKED)) {
1448 /*
1449 * PTE-mapped THP are never marked as mlocked: so do
1450 * not set it on a DoubleMap THP, nor on an Anon THP
1451 * (which may still be PTE-mapped after DoubleMap was
1452 * cleared). But stop unmapping even in those cases.
1453 */
1454 if (!PageTransCompound(page) || (PageHead(page) &&
1455 !PageDoubleMap(page) && !PageAnon(page)))
1456 mlock_vma_page(page);
1457 page_vma_mapped_walk_done(&pvmw);
1458 ret = false;
1459 break;
1460 }
1461
1462 /* Unexpected PMD-mapped THP? */
1463 VM_BUG_ON_PAGE(!pvmw.pte, page);
1464
1465 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1466 address = pvmw.address;
1467
1468 if (PageHuge(page) && !PageAnon(page)) {
1469 /*
1470 * To call huge_pmd_unshare, i_mmap_rwsem must be
1471 * held in write mode. Caller needs to explicitly
1472 * do this outside rmap routines.
1473 */
1474 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1475 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1476 /*
1477 * huge_pmd_unshare unmapped an entire PMD
1478 * page. There is no way of knowing exactly
1479 * which PMDs may be cached for this mm, so
1480 * we must flush them all. start/end were
1481 * already adjusted above to cover this range.
1482 */
1483 flush_cache_range(vma, range.start, range.end);
1484 flush_tlb_range(vma, range.start, range.end);
1485 mmu_notifier_invalidate_range(mm, range.start,
1486 range.end);
1487
1488 /*
1489 * The ref count of the PMD page was dropped
1490 * which is part of the way map counting
1491 * is done for shared PMDs. Return 'true'
1492 * here. When there is no other sharing,
1493 * huge_pmd_unshare returns false and we will
1494 * unmap the actual page and drop map count
1495 * to zero.
1496 */
1497 page_vma_mapped_walk_done(&pvmw);
1498 break;
1499 }
1500 }
1501
1502 /* Nuke the page table entry. */
1503 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1504 if (should_defer_flush(mm, flags)) {
1505 /*
1506 * We clear the PTE but do not flush so potentially
1507 * a remote CPU could still be writing to the page.
1508 * If the entry was previously clean then the
1509 * architecture must guarantee that a clear->dirty
1510 * transition on a cached TLB entry is written through
1511 * and traps if the PTE is unmapped.
1512 */
1513 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1514
1515 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1516 } else {
1517 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1518 }
1519
1520 /* Move the dirty bit to the page. Now the pte is gone. */
1521 if (pte_dirty(pteval))
1522 set_page_dirty(page);
1523
1524 /* Update high watermark before we lower rss */
1525 update_hiwater_rss(mm);
1526
1527 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1528 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1529 if (PageHuge(page)) {
1530 hugetlb_count_sub(compound_nr(page), mm);
1531 set_huge_swap_pte_at(mm, address,
1532 pvmw.pte, pteval,
1533 vma_mmu_pagesize(vma));
1534 } else {
1535 dec_mm_counter(mm, mm_counter(page));
1536 set_pte_at(mm, address, pvmw.pte, pteval);
1537 }
1538
1539 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1540 /*
1541 * The guest indicated that the page content is of no
1542 * interest anymore. Simply discard the pte, vmscan
1543 * will take care of the rest.
1544 * A future reference will then fault in a new zero
1545 * page. When userfaultfd is active, we must not drop
1546 * this page though, as its main user (postcopy
1547 * migration) will not expect userfaults on already
1548 * copied pages.
1549 */
1550 dec_mm_counter(mm, mm_counter(page));
1551 /* We have to invalidate as we cleared the pte */
1552 mmu_notifier_invalidate_range(mm, address,
1553 address + PAGE_SIZE);
1554 } else if (PageAnon(page)) {
1555 swp_entry_t entry = { .val = page_private(subpage) };
1556 pte_t swp_pte;
1557 /*
1558 * Store the swap location in the pte.
1559 * See handle_pte_fault() ...
1560 */
1561 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1562 WARN_ON_ONCE(1);
1563 ret = false;
1564 /* We have to invalidate as we cleared the pte */
1565 mmu_notifier_invalidate_range(mm, address,
1566 address + PAGE_SIZE);
1567 page_vma_mapped_walk_done(&pvmw);
1568 break;
1569 }
1570
1571 /* MADV_FREE page check */
1572 if (!PageSwapBacked(page)) {
1573 int ref_count, map_count;
1574
1575 /*
1576 * Synchronize with gup_pte_range():
1577 * - clear PTE; barrier; read refcount
1578 * - inc refcount; barrier; read PTE
1579 */
1580 smp_mb();
1581
1582 ref_count = page_ref_count(page);
1583 map_count = page_mapcount(page);
1584
1585 /*
1586 * Order reads for page refcount and dirty flag
1587 * (see comments in __remove_mapping()).
1588 */
1589 smp_rmb();
1590
1591 /*
1592 * The only page refs must be one from isolation
1593 * plus the rmap(s) (dropped by discard:).
1594 */
1595 if (ref_count == 1 + map_count &&
1596 !PageDirty(page)) {
1597 /* Invalidate as we cleared the pte */
1598 mmu_notifier_invalidate_range(mm,
1599 address, address + PAGE_SIZE);
1600 dec_mm_counter(mm, MM_ANONPAGES);
1601 goto discard;
1602 }
1603
1604 /*
1605 * If the page was redirtied, it cannot be
1606 * discarded. Remap the page to page table.
1607 */
1608 set_pte_at(mm, address, pvmw.pte, pteval);
1609 SetPageSwapBacked(page);
1610 ret = false;
1611 page_vma_mapped_walk_done(&pvmw);
1612 break;
1613 }
1614
1615 if (swap_duplicate(entry) < 0) {
1616 set_pte_at(mm, address, pvmw.pte, pteval);
1617 ret = false;
1618 page_vma_mapped_walk_done(&pvmw);
1619 break;
1620 }
1621 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1622 set_pte_at(mm, address, pvmw.pte, pteval);
1623 ret = false;
1624 page_vma_mapped_walk_done(&pvmw);
1625 break;
1626 }
1627 if (list_empty(&mm->mmlist)) {
1628 spin_lock(&mmlist_lock);
1629 if (list_empty(&mm->mmlist))
1630 list_add(&mm->mmlist, &init_mm.mmlist);
1631 spin_unlock(&mmlist_lock);
1632 }
1633 dec_mm_counter(mm, MM_ANONPAGES);
1634 inc_mm_counter(mm, MM_SWAPENTS);
1635 swp_pte = swp_entry_to_pte(entry);
1636 if (pte_soft_dirty(pteval))
1637 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1638 if (pte_uffd_wp(pteval))
1639 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1640 set_pte_at(mm, address, pvmw.pte, swp_pte);
1641 /* Invalidate as we cleared the pte */
1642 mmu_notifier_invalidate_range(mm, address,
1643 address + PAGE_SIZE);
1644 } else {
1645 /*
1646 * This is a locked file-backed page, thus it cannot
1647 * be removed from the page cache and replaced by a new
1648 * page before mmu_notifier_invalidate_range_end, so no
1649 * concurrent thread might update its page table to
1650 * point at new page while a device still is using this
1651 * page.
1652 *
1653 * See Documentation/vm/mmu_notifier.rst
1654 */
1655 dec_mm_counter(mm, mm_counter_file(page));
1656 }
1657 discard:
1658 /*
1659 * No need to call mmu_notifier_invalidate_range() it has be
1660 * done above for all cases requiring it to happen under page
1661 * table lock before mmu_notifier_invalidate_range_end()
1662 *
1663 * See Documentation/vm/mmu_notifier.rst
1664 */
1665 page_remove_rmap(subpage, PageHuge(page));
1666 put_page(page);
1667 }
1668
1669 mmu_notifier_invalidate_range_end(&range);
1670
1671 return ret;
1672 }
1673
1674 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1675 {
1676 return vma_is_temporary_stack(vma);
1677 }
1678
1679 static int page_not_mapped(struct page *page)
1680 {
1681 return !page_mapped(page);
1682 }
1683
1684 /**
1685 * try_to_unmap - try to remove all page table mappings to a page
1686 * @page: the page to get unmapped
1687 * @flags: action and flags
1688 *
1689 * Tries to remove all the page table entries which are mapping this
1690 * page, used in the pageout path. Caller must hold the page lock.
1691 *
1692 * It is the caller's responsibility to check if the page is still
1693 * mapped when needed (use TTU_SYNC to prevent accounting races).
1694 */
1695 void try_to_unmap(struct page *page, enum ttu_flags flags)
1696 {
1697 struct rmap_walk_control rwc = {
1698 .rmap_one = try_to_unmap_one,
1699 .arg = (void *)flags,
1700 .done = page_not_mapped,
1701 .anon_lock = page_lock_anon_vma_read,
1702 };
1703
1704 if (flags & TTU_RMAP_LOCKED)
1705 rmap_walk_locked(page, &rwc);
1706 else
1707 rmap_walk(page, &rwc);
1708 }
1709
1710 /*
1711 * @arg: enum ttu_flags will be passed to this argument.
1712 *
1713 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1714 * containing migration entries.
1715 */
1716 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1717 unsigned long address, void *arg)
1718 {
1719 struct mm_struct *mm = vma->vm_mm;
1720 struct page_vma_mapped_walk pvmw = {
1721 .page = page,
1722 .vma = vma,
1723 .address = address,
1724 };
1725 pte_t pteval;
1726 struct page *subpage;
1727 bool ret = true;
1728 struct mmu_notifier_range range;
1729 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1730
1731 /*
1732 * When racing against e.g. zap_pte_range() on another cpu,
1733 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1734 * try_to_migrate() may return before page_mapped() has become false,
1735 * if page table locking is skipped: use TTU_SYNC to wait for that.
1736 */
1737 if (flags & TTU_SYNC)
1738 pvmw.flags = PVMW_SYNC;
1739
1740 /*
1741 * unmap_page() in mm/huge_memory.c is the only user of migration with
1742 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1743 */
1744 if (flags & TTU_SPLIT_HUGE_PMD)
1745 split_huge_pmd_address(vma, address, true, page);
1746
1747 /*
1748 * For THP, we have to assume the worse case ie pmd for invalidation.
1749 * For hugetlb, it could be much worse if we need to do pud
1750 * invalidation in the case of pmd sharing.
1751 *
1752 * Note that the page can not be free in this function as call of
1753 * try_to_unmap() must hold a reference on the page.
1754 */
1755 range.end = PageKsm(page) ?
1756 address + PAGE_SIZE : vma_address_end(page, vma);
1757 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1758 address, range.end);
1759 if (PageHuge(page)) {
1760 /*
1761 * If sharing is possible, start and end will be adjusted
1762 * accordingly.
1763 */
1764 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1765 &range.end);
1766 }
1767 mmu_notifier_invalidate_range_start(&range);
1768
1769 while (page_vma_mapped_walk(&pvmw)) {
1770 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1771 /* PMD-mapped THP migration entry */
1772 if (!pvmw.pte) {
1773 VM_BUG_ON_PAGE(PageHuge(page) ||
1774 !PageTransCompound(page), page);
1775
1776 set_pmd_migration_entry(&pvmw, page);
1777 continue;
1778 }
1779 #endif
1780
1781 /* Unexpected PMD-mapped THP? */
1782 VM_BUG_ON_PAGE(!pvmw.pte, page);
1783
1784 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1785 address = pvmw.address;
1786
1787 if (PageHuge(page) && !PageAnon(page)) {
1788 /*
1789 * To call huge_pmd_unshare, i_mmap_rwsem must be
1790 * held in write mode. Caller needs to explicitly
1791 * do this outside rmap routines.
1792 */
1793 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1794 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1795 /*
1796 * huge_pmd_unshare unmapped an entire PMD
1797 * page. There is no way of knowing exactly
1798 * which PMDs may be cached for this mm, so
1799 * we must flush them all. start/end were
1800 * already adjusted above to cover this range.
1801 */
1802 flush_cache_range(vma, range.start, range.end);
1803 flush_tlb_range(vma, range.start, range.end);
1804 mmu_notifier_invalidate_range(mm, range.start,
1805 range.end);
1806
1807 /*
1808 * The ref count of the PMD page was dropped
1809 * which is part of the way map counting
1810 * is done for shared PMDs. Return 'true'
1811 * here. When there is no other sharing,
1812 * huge_pmd_unshare returns false and we will
1813 * unmap the actual page and drop map count
1814 * to zero.
1815 */
1816 page_vma_mapped_walk_done(&pvmw);
1817 break;
1818 }
1819 }
1820
1821 /* Nuke the page table entry. */
1822 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1823 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1824
1825 /* Move the dirty bit to the page. Now the pte is gone. */
1826 if (pte_dirty(pteval))
1827 set_page_dirty(page);
1828
1829 /* Update high watermark before we lower rss */
1830 update_hiwater_rss(mm);
1831
1832 if (is_zone_device_page(page)) {
1833 swp_entry_t entry;
1834 pte_t swp_pte;
1835
1836 /*
1837 * Store the pfn of the page in a special migration
1838 * pte. do_swap_page() will wait until the migration
1839 * pte is removed and then restart fault handling.
1840 */
1841 entry = make_readable_migration_entry(
1842 page_to_pfn(page));
1843 swp_pte = swp_entry_to_pte(entry);
1844
1845 /*
1846 * pteval maps a zone device page and is therefore
1847 * a swap pte.
1848 */
1849 if (pte_swp_soft_dirty(pteval))
1850 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1851 if (pte_swp_uffd_wp(pteval))
1852 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1853 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1854 /*
1855 * No need to invalidate here it will synchronize on
1856 * against the special swap migration pte.
1857 *
1858 * The assignment to subpage above was computed from a
1859 * swap PTE which results in an invalid pointer.
1860 * Since only PAGE_SIZE pages can currently be
1861 * migrated, just set it to page. This will need to be
1862 * changed when hugepage migrations to device private
1863 * memory are supported.
1864 */
1865 subpage = page;
1866 } else if (PageHWPoison(page)) {
1867 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1868 if (PageHuge(page)) {
1869 hugetlb_count_sub(compound_nr(page), mm);
1870 set_huge_swap_pte_at(mm, address,
1871 pvmw.pte, pteval,
1872 vma_mmu_pagesize(vma));
1873 } else {
1874 dec_mm_counter(mm, mm_counter(page));
1875 set_pte_at(mm, address, pvmw.pte, pteval);
1876 }
1877
1878 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1879 /*
1880 * The guest indicated that the page content is of no
1881 * interest anymore. Simply discard the pte, vmscan
1882 * will take care of the rest.
1883 * A future reference will then fault in a new zero
1884 * page. When userfaultfd is active, we must not drop
1885 * this page though, as its main user (postcopy
1886 * migration) will not expect userfaults on already
1887 * copied pages.
1888 */
1889 dec_mm_counter(mm, mm_counter(page));
1890 /* We have to invalidate as we cleared the pte */
1891 mmu_notifier_invalidate_range(mm, address,
1892 address + PAGE_SIZE);
1893 } else {
1894 swp_entry_t entry;
1895 pte_t swp_pte;
1896
1897 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1898 set_pte_at(mm, address, pvmw.pte, pteval);
1899 ret = false;
1900 page_vma_mapped_walk_done(&pvmw);
1901 break;
1902 }
1903
1904 /*
1905 * Store the pfn of the page in a special migration
1906 * pte. do_swap_page() will wait until the migration
1907 * pte is removed and then restart fault handling.
1908 */
1909 if (pte_write(pteval))
1910 entry = make_writable_migration_entry(
1911 page_to_pfn(subpage));
1912 else
1913 entry = make_readable_migration_entry(
1914 page_to_pfn(subpage));
1915
1916 swp_pte = swp_entry_to_pte(entry);
1917 if (pte_soft_dirty(pteval))
1918 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1919 if (pte_uffd_wp(pteval))
1920 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1921 set_pte_at(mm, address, pvmw.pte, swp_pte);
1922 /*
1923 * No need to invalidate here it will synchronize on
1924 * against the special swap migration pte.
1925 */
1926 }
1927
1928 /*
1929 * No need to call mmu_notifier_invalidate_range() it has be
1930 * done above for all cases requiring it to happen under page
1931 * table lock before mmu_notifier_invalidate_range_end()
1932 *
1933 * See Documentation/vm/mmu_notifier.rst
1934 */
1935 page_remove_rmap(subpage, PageHuge(page));
1936 put_page(page);
1937 }
1938
1939 mmu_notifier_invalidate_range_end(&range);
1940
1941 return ret;
1942 }
1943
1944 /**
1945 * try_to_migrate - try to replace all page table mappings with swap entries
1946 * @page: the page to replace page table entries for
1947 * @flags: action and flags
1948 *
1949 * Tries to remove all the page table entries which are mapping this page and
1950 * replace them with special swap entries. Caller must hold the page lock.
1951 */
1952 void try_to_migrate(struct page *page, enum ttu_flags flags)
1953 {
1954 struct rmap_walk_control rwc = {
1955 .rmap_one = try_to_migrate_one,
1956 .arg = (void *)flags,
1957 .done = page_not_mapped,
1958 .anon_lock = page_lock_anon_vma_read,
1959 };
1960
1961 /*
1962 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1963 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1964 */
1965 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1966 TTU_SYNC)))
1967 return;
1968
1969 if (is_zone_device_page(page) && !is_device_private_page(page))
1970 return;
1971
1972 /*
1973 * During exec, a temporary VMA is setup and later moved.
1974 * The VMA is moved under the anon_vma lock but not the
1975 * page tables leading to a race where migration cannot
1976 * find the migration ptes. Rather than increasing the
1977 * locking requirements of exec(), migration skips
1978 * temporary VMAs until after exec() completes.
1979 */
1980 if (!PageKsm(page) && PageAnon(page))
1981 rwc.invalid_vma = invalid_migration_vma;
1982
1983 if (flags & TTU_RMAP_LOCKED)
1984 rmap_walk_locked(page, &rwc);
1985 else
1986 rmap_walk(page, &rwc);
1987 }
1988
1989 /*
1990 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1991 * found. Once one is found the page is locked and the scan can be terminated.
1992 */
1993 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1994 unsigned long address, void *unused)
1995 {
1996 struct page_vma_mapped_walk pvmw = {
1997 .page = page,
1998 .vma = vma,
1999 .address = address,
2000 };
2001
2002 /* An un-locked vma doesn't have any pages to lock, continue the scan */
2003 if (!(vma->vm_flags & VM_LOCKED))
2004 return true;
2005
2006 while (page_vma_mapped_walk(&pvmw)) {
2007 /*
2008 * Need to recheck under the ptl to serialise with
2009 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
2010 * munlock_vma_pages_range().
2011 */
2012 if (vma->vm_flags & VM_LOCKED) {
2013 /*
2014 * PTE-mapped THP are never marked as mlocked; but
2015 * this function is never called on a DoubleMap THP,
2016 * nor on an Anon THP (which may still be PTE-mapped
2017 * after DoubleMap was cleared).
2018 */
2019 mlock_vma_page(page);
2020 /*
2021 * No need to scan further once the page is marked
2022 * as mlocked.
2023 */
2024 page_vma_mapped_walk_done(&pvmw);
2025 return false;
2026 }
2027 }
2028
2029 return true;
2030 }
2031
2032 /**
2033 * page_mlock - try to mlock a page
2034 * @page: the page to be mlocked
2035 *
2036 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2037 * the page if any are found. The page will be returned with PG_mlocked cleared
2038 * if it is not mapped by any locked vmas.
2039 */
2040 void page_mlock(struct page *page)
2041 {
2042 struct rmap_walk_control rwc = {
2043 .rmap_one = page_mlock_one,
2044 .done = page_not_mapped,
2045 .anon_lock = page_lock_anon_vma_read,
2046
2047 };
2048
2049 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2050 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2051
2052 /* Anon THP are only marked as mlocked when singly mapped */
2053 if (PageTransCompound(page) && PageAnon(page))
2054 return;
2055
2056 rmap_walk(page, &rwc);
2057 }
2058
2059 #ifdef CONFIG_DEVICE_PRIVATE
2060 struct make_exclusive_args {
2061 struct mm_struct *mm;
2062 unsigned long address;
2063 void *owner;
2064 bool valid;
2065 };
2066
2067 static bool page_make_device_exclusive_one(struct page *page,
2068 struct vm_area_struct *vma, unsigned long address, void *priv)
2069 {
2070 struct mm_struct *mm = vma->vm_mm;
2071 struct page_vma_mapped_walk pvmw = {
2072 .page = page,
2073 .vma = vma,
2074 .address = address,
2075 };
2076 struct make_exclusive_args *args = priv;
2077 pte_t pteval;
2078 struct page *subpage;
2079 bool ret = true;
2080 struct mmu_notifier_range range;
2081 swp_entry_t entry;
2082 pte_t swp_pte;
2083
2084 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2085 vma->vm_mm, address, min(vma->vm_end,
2086 address + page_size(page)), args->owner);
2087 mmu_notifier_invalidate_range_start(&range);
2088
2089 while (page_vma_mapped_walk(&pvmw)) {
2090 /* Unexpected PMD-mapped THP? */
2091 VM_BUG_ON_PAGE(!pvmw.pte, page);
2092
2093 if (!pte_present(*pvmw.pte)) {
2094 ret = false;
2095 page_vma_mapped_walk_done(&pvmw);
2096 break;
2097 }
2098
2099 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2100 address = pvmw.address;
2101
2102 /* Nuke the page table entry. */
2103 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2104 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2105
2106 /* Move the dirty bit to the page. Now the pte is gone. */
2107 if (pte_dirty(pteval))
2108 set_page_dirty(page);
2109
2110 /*
2111 * Check that our target page is still mapped at the expected
2112 * address.
2113 */
2114 if (args->mm == mm && args->address == address &&
2115 pte_write(pteval))
2116 args->valid = true;
2117
2118 /*
2119 * Store the pfn of the page in a special migration
2120 * pte. do_swap_page() will wait until the migration
2121 * pte is removed and then restart fault handling.
2122 */
2123 if (pte_write(pteval))
2124 entry = make_writable_device_exclusive_entry(
2125 page_to_pfn(subpage));
2126 else
2127 entry = make_readable_device_exclusive_entry(
2128 page_to_pfn(subpage));
2129 swp_pte = swp_entry_to_pte(entry);
2130 if (pte_soft_dirty(pteval))
2131 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2132 if (pte_uffd_wp(pteval))
2133 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2134
2135 set_pte_at(mm, address, pvmw.pte, swp_pte);
2136
2137 /*
2138 * There is a reference on the page for the swap entry which has
2139 * been removed, so shouldn't take another.
2140 */
2141 page_remove_rmap(subpage, false);
2142 }
2143
2144 mmu_notifier_invalidate_range_end(&range);
2145
2146 return ret;
2147 }
2148
2149 /**
2150 * page_make_device_exclusive - mark the page exclusively owned by a device
2151 * @page: the page to replace page table entries for
2152 * @mm: the mm_struct where the page is expected to be mapped
2153 * @address: address where the page is expected to be mapped
2154 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2155 *
2156 * Tries to remove all the page table entries which are mapping this page and
2157 * replace them with special device exclusive swap entries to grant a device
2158 * exclusive access to the page. Caller must hold the page lock.
2159 *
2160 * Returns false if the page is still mapped, or if it could not be unmapped
2161 * from the expected address. Otherwise returns true (success).
2162 */
2163 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2164 unsigned long address, void *owner)
2165 {
2166 struct make_exclusive_args args = {
2167 .mm = mm,
2168 .address = address,
2169 .owner = owner,
2170 .valid = false,
2171 };
2172 struct rmap_walk_control rwc = {
2173 .rmap_one = page_make_device_exclusive_one,
2174 .done = page_not_mapped,
2175 .anon_lock = page_lock_anon_vma_read,
2176 .arg = &args,
2177 };
2178
2179 /*
2180 * Restrict to anonymous pages for now to avoid potential writeback
2181 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2182 * those.
2183 */
2184 if (!PageAnon(page) || PageTail(page))
2185 return false;
2186
2187 rmap_walk(page, &rwc);
2188
2189 return args.valid && !page_mapcount(page);
2190 }
2191
2192 /**
2193 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2194 * @mm: mm_struct of assoicated target process
2195 * @start: start of the region to mark for exclusive device access
2196 * @end: end address of region
2197 * @pages: returns the pages which were successfully marked for exclusive access
2198 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2199 *
2200 * Returns: number of pages found in the range by GUP. A page is marked for
2201 * exclusive access only if the page pointer is non-NULL.
2202 *
2203 * This function finds ptes mapping page(s) to the given address range, locks
2204 * them and replaces mappings with special swap entries preventing userspace CPU
2205 * access. On fault these entries are replaced with the original mapping after
2206 * calling MMU notifiers.
2207 *
2208 * A driver using this to program access from a device must use a mmu notifier
2209 * critical section to hold a device specific lock during programming. Once
2210 * programming is complete it should drop the page lock and reference after
2211 * which point CPU access to the page will revoke the exclusive access.
2212 */
2213 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2214 unsigned long end, struct page **pages,
2215 void *owner)
2216 {
2217 long npages = (end - start) >> PAGE_SHIFT;
2218 long i;
2219
2220 npages = get_user_pages_remote(mm, start, npages,
2221 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2222 pages, NULL, NULL);
2223 if (npages < 0)
2224 return npages;
2225
2226 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2227 if (!trylock_page(pages[i])) {
2228 put_page(pages[i]);
2229 pages[i] = NULL;
2230 continue;
2231 }
2232
2233 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2234 unlock_page(pages[i]);
2235 put_page(pages[i]);
2236 pages[i] = NULL;
2237 }
2238 }
2239
2240 return npages;
2241 }
2242 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2243 #endif
2244
2245 void __put_anon_vma(struct anon_vma *anon_vma)
2246 {
2247 struct anon_vma *root = anon_vma->root;
2248
2249 anon_vma_free(anon_vma);
2250 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2251 anon_vma_free(root);
2252 }
2253
2254 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2255 struct rmap_walk_control *rwc)
2256 {
2257 struct anon_vma *anon_vma;
2258
2259 if (rwc->anon_lock)
2260 return rwc->anon_lock(page);
2261
2262 /*
2263 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2264 * because that depends on page_mapped(); but not all its usages
2265 * are holding mmap_lock. Users without mmap_lock are required to
2266 * take a reference count to prevent the anon_vma disappearing
2267 */
2268 anon_vma = page_anon_vma(page);
2269 if (!anon_vma)
2270 return NULL;
2271
2272 anon_vma_lock_read(anon_vma);
2273 return anon_vma;
2274 }
2275
2276 /*
2277 * rmap_walk_anon - do something to anonymous page using the object-based
2278 * rmap method
2279 * @page: the page to be handled
2280 * @rwc: control variable according to each walk type
2281 *
2282 * Find all the mappings of a page using the mapping pointer and the vma chains
2283 * contained in the anon_vma struct it points to.
2284 *
2285 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2286 * where the page was found will be held for write. So, we won't recheck
2287 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2288 * LOCKED.
2289 */
2290 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2291 bool locked)
2292 {
2293 struct anon_vma *anon_vma;
2294 pgoff_t pgoff_start, pgoff_end;
2295 struct anon_vma_chain *avc;
2296
2297 if (locked) {
2298 anon_vma = page_anon_vma(page);
2299 /* anon_vma disappear under us? */
2300 VM_BUG_ON_PAGE(!anon_vma, page);
2301 } else {
2302 anon_vma = rmap_walk_anon_lock(page, rwc);
2303 }
2304 if (!anon_vma)
2305 return;
2306
2307 pgoff_start = page_to_pgoff(page);
2308 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2309 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2310 pgoff_start, pgoff_end) {
2311 struct vm_area_struct *vma = avc->vma;
2312 unsigned long address = vma_address(page, vma);
2313
2314 VM_BUG_ON_VMA(address == -EFAULT, vma);
2315 cond_resched();
2316
2317 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2318 continue;
2319
2320 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2321 break;
2322 if (rwc->done && rwc->done(page))
2323 break;
2324 }
2325
2326 if (!locked)
2327 anon_vma_unlock_read(anon_vma);
2328 }
2329
2330 /*
2331 * rmap_walk_file - do something to file page using the object-based rmap method
2332 * @page: the page to be handled
2333 * @rwc: control variable according to each walk type
2334 *
2335 * Find all the mappings of a page using the mapping pointer and the vma chains
2336 * contained in the address_space struct it points to.
2337 *
2338 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2339 * where the page was found will be held for write. So, we won't recheck
2340 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2341 * LOCKED.
2342 */
2343 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2344 bool locked)
2345 {
2346 struct address_space *mapping = page_mapping(page);
2347 pgoff_t pgoff_start, pgoff_end;
2348 struct vm_area_struct *vma;
2349
2350 /*
2351 * The page lock not only makes sure that page->mapping cannot
2352 * suddenly be NULLified by truncation, it makes sure that the
2353 * structure at mapping cannot be freed and reused yet,
2354 * so we can safely take mapping->i_mmap_rwsem.
2355 */
2356 VM_BUG_ON_PAGE(!PageLocked(page), page);
2357
2358 if (!mapping)
2359 return;
2360
2361 pgoff_start = page_to_pgoff(page);
2362 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2363 if (!locked)
2364 i_mmap_lock_read(mapping);
2365 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2366 pgoff_start, pgoff_end) {
2367 unsigned long address = vma_address(page, vma);
2368
2369 VM_BUG_ON_VMA(address == -EFAULT, vma);
2370 cond_resched();
2371
2372 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2373 continue;
2374
2375 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2376 goto done;
2377 if (rwc->done && rwc->done(page))
2378 goto done;
2379 }
2380
2381 done:
2382 if (!locked)
2383 i_mmap_unlock_read(mapping);
2384 }
2385
2386 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2387 {
2388 if (unlikely(PageKsm(page)))
2389 rmap_walk_ksm(page, rwc);
2390 else if (PageAnon(page))
2391 rmap_walk_anon(page, rwc, false);
2392 else
2393 rmap_walk_file(page, rwc, false);
2394 }
2395
2396 /* Like rmap_walk, but caller holds relevant rmap lock */
2397 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2398 {
2399 /* no ksm support for now */
2400 VM_BUG_ON_PAGE(PageKsm(page), page);
2401 if (PageAnon(page))
2402 rmap_walk_anon(page, rwc, true);
2403 else
2404 rmap_walk_file(page, rwc, true);
2405 }
2406
2407 #ifdef CONFIG_HUGETLB_PAGE
2408 /*
2409 * The following two functions are for anonymous (private mapped) hugepages.
2410 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2411 * and no lru code, because we handle hugepages differently from common pages.
2412 */
2413 void hugepage_add_anon_rmap(struct page *page,
2414 struct vm_area_struct *vma, unsigned long address)
2415 {
2416 struct anon_vma *anon_vma = vma->anon_vma;
2417 int first;
2418
2419 BUG_ON(!PageLocked(page));
2420 BUG_ON(!anon_vma);
2421 /* address might be in next vma when migration races vma_adjust */
2422 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2423 if (first)
2424 __page_set_anon_rmap(page, vma, address, 0);
2425 }
2426
2427 void hugepage_add_new_anon_rmap(struct page *page,
2428 struct vm_area_struct *vma, unsigned long address)
2429 {
2430 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2431 atomic_set(compound_mapcount_ptr(page), 0);
2432 if (hpage_pincount_available(page))
2433 atomic_set(compound_pincount_ptr(page), 0);
2434
2435 __page_set_anon_rmap(page, vma, address, 1);
2436 }
2437 #endif /* CONFIG_HUGETLB_PAGE */