]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/rmap.c
Merge branch 'overlayfs-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mszere...
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
77 /*
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
80 */
81 anon_vma->root = anon_vma;
82 }
83
84 return anon_vma;
85 }
86
87 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 {
89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90
91 /*
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
95 *
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
99 *
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
102 * LOCK MB
103 * atomic_read() rwsem_is_locked()
104 *
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
107 */
108 might_sleep();
109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 anon_vma_lock_write(anon_vma);
111 anon_vma_unlock_write(anon_vma);
112 }
113
114 kmem_cache_free(anon_vma_cachep, anon_vma);
115 }
116
117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
118 {
119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 }
121
122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
123 {
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
125 }
126
127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
130 {
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 }
136
137 /**
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
140 *
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
144 *
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
150 *
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
156 *
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
161 *
162 * This must be called with the mmap_sem held for reading.
163 */
164 int anon_vma_prepare(struct vm_area_struct *vma)
165 {
166 struct anon_vma *anon_vma = vma->anon_vma;
167 struct anon_vma_chain *avc;
168
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
172 struct anon_vma *allocated;
173
174 avc = anon_vma_chain_alloc(GFP_KERNEL);
175 if (!avc)
176 goto out_enomem;
177
178 anon_vma = find_mergeable_anon_vma(vma);
179 allocated = NULL;
180 if (!anon_vma) {
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
183 goto out_enomem_free_avc;
184 allocated = anon_vma;
185 }
186
187 anon_vma_lock_write(anon_vma);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
192 anon_vma_chain_link(vma, avc, anon_vma);
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
195 allocated = NULL;
196 avc = NULL;
197 }
198 spin_unlock(&mm->page_table_lock);
199 anon_vma_unlock_write(anon_vma);
200
201 if (unlikely(allocated))
202 put_anon_vma(allocated);
203 if (unlikely(avc))
204 anon_vma_chain_free(avc);
205 }
206 return 0;
207
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
212 }
213
214 /*
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
218 *
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
221 */
222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
223 {
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
227 up_write(&root->rwsem);
228 root = new_root;
229 down_write(&root->rwsem);
230 }
231 return root;
232 }
233
234 static inline void unlock_anon_vma_root(struct anon_vma *root)
235 {
236 if (root)
237 up_write(&root->rwsem);
238 }
239
240 /*
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
243 *
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
251 */
252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
253 {
254 struct anon_vma_chain *avc, *pavc;
255 struct anon_vma *root = NULL;
256
257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 struct anon_vma *anon_vma;
259
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
267 }
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
271
272 /*
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
275 *
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
279 */
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
283 }
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
286 unlock_anon_vma_root(root);
287 return 0;
288
289 enomem_failure:
290 unlink_anon_vmas(dst);
291 return -ENOMEM;
292 }
293
294 /*
295 * Attach vma to its own anon_vma, as well as to the anon_vmas that
296 * the corresponding VMA in the parent process is attached to.
297 * Returns 0 on success, non-zero on failure.
298 */
299 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
300 {
301 struct anon_vma_chain *avc;
302 struct anon_vma *anon_vma;
303 int error;
304
305 /* Don't bother if the parent process has no anon_vma here. */
306 if (!pvma->anon_vma)
307 return 0;
308
309 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
310 vma->anon_vma = NULL;
311
312 /*
313 * First, attach the new VMA to the parent VMA's anon_vmas,
314 * so rmap can find non-COWed pages in child processes.
315 */
316 error = anon_vma_clone(vma, pvma);
317 if (error)
318 return error;
319
320 /* An existing anon_vma has been reused, all done then. */
321 if (vma->anon_vma)
322 return 0;
323
324 /* Then add our own anon_vma. */
325 anon_vma = anon_vma_alloc();
326 if (!anon_vma)
327 goto out_error;
328 avc = anon_vma_chain_alloc(GFP_KERNEL);
329 if (!avc)
330 goto out_error_free_anon_vma;
331
332 /*
333 * The root anon_vma's spinlock is the lock actually used when we
334 * lock any of the anon_vmas in this anon_vma tree.
335 */
336 anon_vma->root = pvma->anon_vma->root;
337 anon_vma->parent = pvma->anon_vma;
338 /*
339 * With refcounts, an anon_vma can stay around longer than the
340 * process it belongs to. The root anon_vma needs to be pinned until
341 * this anon_vma is freed, because the lock lives in the root.
342 */
343 get_anon_vma(anon_vma->root);
344 /* Mark this anon_vma as the one where our new (COWed) pages go. */
345 vma->anon_vma = anon_vma;
346 anon_vma_lock_write(anon_vma);
347 anon_vma_chain_link(vma, avc, anon_vma);
348 anon_vma->parent->degree++;
349 anon_vma_unlock_write(anon_vma);
350
351 return 0;
352
353 out_error_free_anon_vma:
354 put_anon_vma(anon_vma);
355 out_error:
356 unlink_anon_vmas(vma);
357 return -ENOMEM;
358 }
359
360 void unlink_anon_vmas(struct vm_area_struct *vma)
361 {
362 struct anon_vma_chain *avc, *next;
363 struct anon_vma *root = NULL;
364
365 /*
366 * Unlink each anon_vma chained to the VMA. This list is ordered
367 * from newest to oldest, ensuring the root anon_vma gets freed last.
368 */
369 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
370 struct anon_vma *anon_vma = avc->anon_vma;
371
372 root = lock_anon_vma_root(root, anon_vma);
373 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
374
375 /*
376 * Leave empty anon_vmas on the list - we'll need
377 * to free them outside the lock.
378 */
379 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
380 anon_vma->parent->degree--;
381 continue;
382 }
383
384 list_del(&avc->same_vma);
385 anon_vma_chain_free(avc);
386 }
387 if (vma->anon_vma)
388 vma->anon_vma->degree--;
389 unlock_anon_vma_root(root);
390
391 /*
392 * Iterate the list once more, it now only contains empty and unlinked
393 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
394 * needing to write-acquire the anon_vma->root->rwsem.
395 */
396 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
397 struct anon_vma *anon_vma = avc->anon_vma;
398
399 BUG_ON(anon_vma->degree);
400 put_anon_vma(anon_vma);
401
402 list_del(&avc->same_vma);
403 anon_vma_chain_free(avc);
404 }
405 }
406
407 static void anon_vma_ctor(void *data)
408 {
409 struct anon_vma *anon_vma = data;
410
411 init_rwsem(&anon_vma->rwsem);
412 atomic_set(&anon_vma->refcount, 0);
413 anon_vma->rb_root = RB_ROOT;
414 }
415
416 void __init anon_vma_init(void)
417 {
418 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
419 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
420 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
421 }
422
423 /*
424 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
425 *
426 * Since there is no serialization what so ever against page_remove_rmap()
427 * the best this function can do is return a locked anon_vma that might
428 * have been relevant to this page.
429 *
430 * The page might have been remapped to a different anon_vma or the anon_vma
431 * returned may already be freed (and even reused).
432 *
433 * In case it was remapped to a different anon_vma, the new anon_vma will be a
434 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
435 * ensure that any anon_vma obtained from the page will still be valid for as
436 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
437 *
438 * All users of this function must be very careful when walking the anon_vma
439 * chain and verify that the page in question is indeed mapped in it
440 * [ something equivalent to page_mapped_in_vma() ].
441 *
442 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
443 * that the anon_vma pointer from page->mapping is valid if there is a
444 * mapcount, we can dereference the anon_vma after observing those.
445 */
446 struct anon_vma *page_get_anon_vma(struct page *page)
447 {
448 struct anon_vma *anon_vma = NULL;
449 unsigned long anon_mapping;
450
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
457
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
460 anon_vma = NULL;
461 goto out;
462 }
463
464 /*
465 * If this page is still mapped, then its anon_vma cannot have been
466 * freed. But if it has been unmapped, we have no security against the
467 * anon_vma structure being freed and reused (for another anon_vma:
468 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
469 * above cannot corrupt).
470 */
471 if (!page_mapped(page)) {
472 rcu_read_unlock();
473 put_anon_vma(anon_vma);
474 return NULL;
475 }
476 out:
477 rcu_read_unlock();
478
479 return anon_vma;
480 }
481
482 /*
483 * Similar to page_get_anon_vma() except it locks the anon_vma.
484 *
485 * Its a little more complex as it tries to keep the fast path to a single
486 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
487 * reference like with page_get_anon_vma() and then block on the mutex.
488 */
489 struct anon_vma *page_lock_anon_vma_read(struct page *page)
490 {
491 struct anon_vma *anon_vma = NULL;
492 struct anon_vma *root_anon_vma;
493 unsigned long anon_mapping;
494
495 rcu_read_lock();
496 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
497 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
498 goto out;
499 if (!page_mapped(page))
500 goto out;
501
502 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
503 root_anon_vma = ACCESS_ONCE(anon_vma->root);
504 if (down_read_trylock(&root_anon_vma->rwsem)) {
505 /*
506 * If the page is still mapped, then this anon_vma is still
507 * its anon_vma, and holding the mutex ensures that it will
508 * not go away, see anon_vma_free().
509 */
510 if (!page_mapped(page)) {
511 up_read(&root_anon_vma->rwsem);
512 anon_vma = NULL;
513 }
514 goto out;
515 }
516
517 /* trylock failed, we got to sleep */
518 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
519 anon_vma = NULL;
520 goto out;
521 }
522
523 if (!page_mapped(page)) {
524 rcu_read_unlock();
525 put_anon_vma(anon_vma);
526 return NULL;
527 }
528
529 /* we pinned the anon_vma, its safe to sleep */
530 rcu_read_unlock();
531 anon_vma_lock_read(anon_vma);
532
533 if (atomic_dec_and_test(&anon_vma->refcount)) {
534 /*
535 * Oops, we held the last refcount, release the lock
536 * and bail -- can't simply use put_anon_vma() because
537 * we'll deadlock on the anon_vma_lock_write() recursion.
538 */
539 anon_vma_unlock_read(anon_vma);
540 __put_anon_vma(anon_vma);
541 anon_vma = NULL;
542 }
543
544 return anon_vma;
545
546 out:
547 rcu_read_unlock();
548 return anon_vma;
549 }
550
551 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
552 {
553 anon_vma_unlock_read(anon_vma);
554 }
555
556 /*
557 * At what user virtual address is page expected in @vma?
558 */
559 static inline unsigned long
560 __vma_address(struct page *page, struct vm_area_struct *vma)
561 {
562 pgoff_t pgoff = page_to_pgoff(page);
563 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
564 }
565
566 inline unsigned long
567 vma_address(struct page *page, struct vm_area_struct *vma)
568 {
569 unsigned long address = __vma_address(page, vma);
570
571 /* page should be within @vma mapping range */
572 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
573
574 return address;
575 }
576
577 /*
578 * At what user virtual address is page expected in vma?
579 * Caller should check the page is actually part of the vma.
580 */
581 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
582 {
583 unsigned long address;
584 if (PageAnon(page)) {
585 struct anon_vma *page__anon_vma = page_anon_vma(page);
586 /*
587 * Note: swapoff's unuse_vma() is more efficient with this
588 * check, and needs it to match anon_vma when KSM is active.
589 */
590 if (!vma->anon_vma || !page__anon_vma ||
591 vma->anon_vma->root != page__anon_vma->root)
592 return -EFAULT;
593 } else if (page->mapping) {
594 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
595 return -EFAULT;
596 } else
597 return -EFAULT;
598 address = __vma_address(page, vma);
599 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
600 return -EFAULT;
601 return address;
602 }
603
604 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
605 {
606 pgd_t *pgd;
607 pud_t *pud;
608 pmd_t *pmd = NULL;
609 pmd_t pmde;
610
611 pgd = pgd_offset(mm, address);
612 if (!pgd_present(*pgd))
613 goto out;
614
615 pud = pud_offset(pgd, address);
616 if (!pud_present(*pud))
617 goto out;
618
619 pmd = pmd_offset(pud, address);
620 /*
621 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
622 * without holding anon_vma lock for write. So when looking for a
623 * genuine pmde (in which to find pte), test present and !THP together.
624 */
625 pmde = *pmd;
626 barrier();
627 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
628 pmd = NULL;
629 out:
630 return pmd;
631 }
632
633 /*
634 * Check that @page is mapped at @address into @mm.
635 *
636 * If @sync is false, page_check_address may perform a racy check to avoid
637 * the page table lock when the pte is not present (helpful when reclaiming
638 * highly shared pages).
639 *
640 * On success returns with pte mapped and locked.
641 */
642 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
643 unsigned long address, spinlock_t **ptlp, int sync)
644 {
645 pmd_t *pmd;
646 pte_t *pte;
647 spinlock_t *ptl;
648
649 if (unlikely(PageHuge(page))) {
650 /* when pud is not present, pte will be NULL */
651 pte = huge_pte_offset(mm, address);
652 if (!pte)
653 return NULL;
654
655 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
656 goto check;
657 }
658
659 pmd = mm_find_pmd(mm, address);
660 if (!pmd)
661 return NULL;
662
663 pte = pte_offset_map(pmd, address);
664 /* Make a quick check before getting the lock */
665 if (!sync && !pte_present(*pte)) {
666 pte_unmap(pte);
667 return NULL;
668 }
669
670 ptl = pte_lockptr(mm, pmd);
671 check:
672 spin_lock(ptl);
673 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
674 *ptlp = ptl;
675 return pte;
676 }
677 pte_unmap_unlock(pte, ptl);
678 return NULL;
679 }
680
681 /**
682 * page_mapped_in_vma - check whether a page is really mapped in a VMA
683 * @page: the page to test
684 * @vma: the VMA to test
685 *
686 * Returns 1 if the page is mapped into the page tables of the VMA, 0
687 * if the page is not mapped into the page tables of this VMA. Only
688 * valid for normal file or anonymous VMAs.
689 */
690 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
691 {
692 unsigned long address;
693 pte_t *pte;
694 spinlock_t *ptl;
695
696 address = __vma_address(page, vma);
697 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
698 return 0;
699 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
700 if (!pte) /* the page is not in this mm */
701 return 0;
702 pte_unmap_unlock(pte, ptl);
703
704 return 1;
705 }
706
707 struct page_referenced_arg {
708 int mapcount;
709 int referenced;
710 unsigned long vm_flags;
711 struct mem_cgroup *memcg;
712 };
713 /*
714 * arg: page_referenced_arg will be passed
715 */
716 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
717 unsigned long address, void *arg)
718 {
719 struct mm_struct *mm = vma->vm_mm;
720 spinlock_t *ptl;
721 int referenced = 0;
722 struct page_referenced_arg *pra = arg;
723
724 if (unlikely(PageTransHuge(page))) {
725 pmd_t *pmd;
726
727 /*
728 * rmap might return false positives; we must filter
729 * these out using page_check_address_pmd().
730 */
731 pmd = page_check_address_pmd(page, mm, address,
732 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
733 if (!pmd)
734 return SWAP_AGAIN;
735
736 if (vma->vm_flags & VM_LOCKED) {
737 spin_unlock(ptl);
738 pra->vm_flags |= VM_LOCKED;
739 return SWAP_FAIL; /* To break the loop */
740 }
741
742 /* go ahead even if the pmd is pmd_trans_splitting() */
743 if (pmdp_clear_flush_young_notify(vma, address, pmd))
744 referenced++;
745 spin_unlock(ptl);
746 } else {
747 pte_t *pte;
748
749 /*
750 * rmap might return false positives; we must filter
751 * these out using page_check_address().
752 */
753 pte = page_check_address(page, mm, address, &ptl, 0);
754 if (!pte)
755 return SWAP_AGAIN;
756
757 if (vma->vm_flags & VM_LOCKED) {
758 pte_unmap_unlock(pte, ptl);
759 pra->vm_flags |= VM_LOCKED;
760 return SWAP_FAIL; /* To break the loop */
761 }
762
763 if (ptep_clear_flush_young_notify(vma, address, pte)) {
764 /*
765 * Don't treat a reference through a sequentially read
766 * mapping as such. If the page has been used in
767 * another mapping, we will catch it; if this other
768 * mapping is already gone, the unmap path will have
769 * set PG_referenced or activated the page.
770 */
771 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
772 referenced++;
773 }
774 pte_unmap_unlock(pte, ptl);
775 }
776
777 if (referenced) {
778 pra->referenced++;
779 pra->vm_flags |= vma->vm_flags;
780 }
781
782 pra->mapcount--;
783 if (!pra->mapcount)
784 return SWAP_SUCCESS; /* To break the loop */
785
786 return SWAP_AGAIN;
787 }
788
789 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
790 {
791 struct page_referenced_arg *pra = arg;
792 struct mem_cgroup *memcg = pra->memcg;
793
794 if (!mm_match_cgroup(vma->vm_mm, memcg))
795 return true;
796
797 return false;
798 }
799
800 /**
801 * page_referenced - test if the page was referenced
802 * @page: the page to test
803 * @is_locked: caller holds lock on the page
804 * @memcg: target memory cgroup
805 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
806 *
807 * Quick test_and_clear_referenced for all mappings to a page,
808 * returns the number of ptes which referenced the page.
809 */
810 int page_referenced(struct page *page,
811 int is_locked,
812 struct mem_cgroup *memcg,
813 unsigned long *vm_flags)
814 {
815 int ret;
816 int we_locked = 0;
817 struct page_referenced_arg pra = {
818 .mapcount = page_mapcount(page),
819 .memcg = memcg,
820 };
821 struct rmap_walk_control rwc = {
822 .rmap_one = page_referenced_one,
823 .arg = (void *)&pra,
824 .anon_lock = page_lock_anon_vma_read,
825 };
826
827 *vm_flags = 0;
828 if (!page_mapped(page))
829 return 0;
830
831 if (!page_rmapping(page))
832 return 0;
833
834 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
835 we_locked = trylock_page(page);
836 if (!we_locked)
837 return 1;
838 }
839
840 /*
841 * If we are reclaiming on behalf of a cgroup, skip
842 * counting on behalf of references from different
843 * cgroups
844 */
845 if (memcg) {
846 rwc.invalid_vma = invalid_page_referenced_vma;
847 }
848
849 ret = rmap_walk(page, &rwc);
850 *vm_flags = pra.vm_flags;
851
852 if (we_locked)
853 unlock_page(page);
854
855 return pra.referenced;
856 }
857
858 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
859 unsigned long address, void *arg)
860 {
861 struct mm_struct *mm = vma->vm_mm;
862 pte_t *pte;
863 spinlock_t *ptl;
864 int ret = 0;
865 int *cleaned = arg;
866
867 pte = page_check_address(page, mm, address, &ptl, 1);
868 if (!pte)
869 goto out;
870
871 if (pte_dirty(*pte) || pte_write(*pte)) {
872 pte_t entry;
873
874 flush_cache_page(vma, address, pte_pfn(*pte));
875 entry = ptep_clear_flush(vma, address, pte);
876 entry = pte_wrprotect(entry);
877 entry = pte_mkclean(entry);
878 set_pte_at(mm, address, pte, entry);
879 ret = 1;
880 }
881
882 pte_unmap_unlock(pte, ptl);
883
884 if (ret) {
885 mmu_notifier_invalidate_page(mm, address);
886 (*cleaned)++;
887 }
888 out:
889 return SWAP_AGAIN;
890 }
891
892 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
893 {
894 if (vma->vm_flags & VM_SHARED)
895 return false;
896
897 return true;
898 }
899
900 int page_mkclean(struct page *page)
901 {
902 int cleaned = 0;
903 struct address_space *mapping;
904 struct rmap_walk_control rwc = {
905 .arg = (void *)&cleaned,
906 .rmap_one = page_mkclean_one,
907 .invalid_vma = invalid_mkclean_vma,
908 };
909
910 BUG_ON(!PageLocked(page));
911
912 if (!page_mapped(page))
913 return 0;
914
915 mapping = page_mapping(page);
916 if (!mapping)
917 return 0;
918
919 rmap_walk(page, &rwc);
920
921 return cleaned;
922 }
923 EXPORT_SYMBOL_GPL(page_mkclean);
924
925 /**
926 * page_move_anon_rmap - move a page to our anon_vma
927 * @page: the page to move to our anon_vma
928 * @vma: the vma the page belongs to
929 * @address: the user virtual address mapped
930 *
931 * When a page belongs exclusively to one process after a COW event,
932 * that page can be moved into the anon_vma that belongs to just that
933 * process, so the rmap code will not search the parent or sibling
934 * processes.
935 */
936 void page_move_anon_rmap(struct page *page,
937 struct vm_area_struct *vma, unsigned long address)
938 {
939 struct anon_vma *anon_vma = vma->anon_vma;
940
941 VM_BUG_ON_PAGE(!PageLocked(page), page);
942 VM_BUG_ON_VMA(!anon_vma, vma);
943 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
944
945 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
946 page->mapping = (struct address_space *) anon_vma;
947 }
948
949 /**
950 * __page_set_anon_rmap - set up new anonymous rmap
951 * @page: Page to add to rmap
952 * @vma: VM area to add page to.
953 * @address: User virtual address of the mapping
954 * @exclusive: the page is exclusively owned by the current process
955 */
956 static void __page_set_anon_rmap(struct page *page,
957 struct vm_area_struct *vma, unsigned long address, int exclusive)
958 {
959 struct anon_vma *anon_vma = vma->anon_vma;
960
961 BUG_ON(!anon_vma);
962
963 if (PageAnon(page))
964 return;
965
966 /*
967 * If the page isn't exclusively mapped into this vma,
968 * we must use the _oldest_ possible anon_vma for the
969 * page mapping!
970 */
971 if (!exclusive)
972 anon_vma = anon_vma->root;
973
974 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
975 page->mapping = (struct address_space *) anon_vma;
976 page->index = linear_page_index(vma, address);
977 }
978
979 /**
980 * __page_check_anon_rmap - sanity check anonymous rmap addition
981 * @page: the page to add the mapping to
982 * @vma: the vm area in which the mapping is added
983 * @address: the user virtual address mapped
984 */
985 static void __page_check_anon_rmap(struct page *page,
986 struct vm_area_struct *vma, unsigned long address)
987 {
988 #ifdef CONFIG_DEBUG_VM
989 /*
990 * The page's anon-rmap details (mapping and index) are guaranteed to
991 * be set up correctly at this point.
992 *
993 * We have exclusion against page_add_anon_rmap because the caller
994 * always holds the page locked, except if called from page_dup_rmap,
995 * in which case the page is already known to be setup.
996 *
997 * We have exclusion against page_add_new_anon_rmap because those pages
998 * are initially only visible via the pagetables, and the pte is locked
999 * over the call to page_add_new_anon_rmap.
1000 */
1001 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1002 BUG_ON(page->index != linear_page_index(vma, address));
1003 #endif
1004 }
1005
1006 /**
1007 * page_add_anon_rmap - add pte mapping to an anonymous page
1008 * @page: the page to add the mapping to
1009 * @vma: the vm area in which the mapping is added
1010 * @address: the user virtual address mapped
1011 *
1012 * The caller needs to hold the pte lock, and the page must be locked in
1013 * the anon_vma case: to serialize mapping,index checking after setting,
1014 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1015 * (but PageKsm is never downgraded to PageAnon).
1016 */
1017 void page_add_anon_rmap(struct page *page,
1018 struct vm_area_struct *vma, unsigned long address)
1019 {
1020 do_page_add_anon_rmap(page, vma, address, 0);
1021 }
1022
1023 /*
1024 * Special version of the above for do_swap_page, which often runs
1025 * into pages that are exclusively owned by the current process.
1026 * Everybody else should continue to use page_add_anon_rmap above.
1027 */
1028 void do_page_add_anon_rmap(struct page *page,
1029 struct vm_area_struct *vma, unsigned long address, int exclusive)
1030 {
1031 int first = atomic_inc_and_test(&page->_mapcount);
1032 if (first) {
1033 /*
1034 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1035 * these counters are not modified in interrupt context, and
1036 * pte lock(a spinlock) is held, which implies preemption
1037 * disabled.
1038 */
1039 if (PageTransHuge(page))
1040 __inc_zone_page_state(page,
1041 NR_ANON_TRANSPARENT_HUGEPAGES);
1042 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1043 hpage_nr_pages(page));
1044 }
1045 if (unlikely(PageKsm(page)))
1046 return;
1047
1048 VM_BUG_ON_PAGE(!PageLocked(page), page);
1049 /* address might be in next vma when migration races vma_adjust */
1050 if (first)
1051 __page_set_anon_rmap(page, vma, address, exclusive);
1052 else
1053 __page_check_anon_rmap(page, vma, address);
1054 }
1055
1056 /**
1057 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1058 * @page: the page to add the mapping to
1059 * @vma: the vm area in which the mapping is added
1060 * @address: the user virtual address mapped
1061 *
1062 * Same as page_add_anon_rmap but must only be called on *new* pages.
1063 * This means the inc-and-test can be bypassed.
1064 * Page does not have to be locked.
1065 */
1066 void page_add_new_anon_rmap(struct page *page,
1067 struct vm_area_struct *vma, unsigned long address)
1068 {
1069 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1070 SetPageSwapBacked(page);
1071 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1072 if (PageTransHuge(page))
1073 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1074 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1075 hpage_nr_pages(page));
1076 __page_set_anon_rmap(page, vma, address, 1);
1077 }
1078
1079 /**
1080 * page_add_file_rmap - add pte mapping to a file page
1081 * @page: the page to add the mapping to
1082 *
1083 * The caller needs to hold the pte lock.
1084 */
1085 void page_add_file_rmap(struct page *page)
1086 {
1087 struct mem_cgroup *memcg;
1088
1089 memcg = mem_cgroup_begin_page_stat(page);
1090 if (atomic_inc_and_test(&page->_mapcount)) {
1091 __inc_zone_page_state(page, NR_FILE_MAPPED);
1092 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1093 }
1094 mem_cgroup_end_page_stat(memcg);
1095 }
1096
1097 static void page_remove_file_rmap(struct page *page)
1098 {
1099 struct mem_cgroup *memcg;
1100
1101 memcg = mem_cgroup_begin_page_stat(page);
1102
1103 /* page still mapped by someone else? */
1104 if (!atomic_add_negative(-1, &page->_mapcount))
1105 goto out;
1106
1107 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1108 if (unlikely(PageHuge(page)))
1109 goto out;
1110
1111 /*
1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 * these counters are not modified in interrupt context, and
1114 * pte lock(a spinlock) is held, which implies preemption disabled.
1115 */
1116 __dec_zone_page_state(page, NR_FILE_MAPPED);
1117 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1118
1119 if (unlikely(PageMlocked(page)))
1120 clear_page_mlock(page);
1121 out:
1122 mem_cgroup_end_page_stat(memcg);
1123 }
1124
1125 /**
1126 * page_remove_rmap - take down pte mapping from a page
1127 * @page: page to remove mapping from
1128 *
1129 * The caller needs to hold the pte lock.
1130 */
1131 void page_remove_rmap(struct page *page)
1132 {
1133 if (!PageAnon(page)) {
1134 page_remove_file_rmap(page);
1135 return;
1136 }
1137
1138 /* page still mapped by someone else? */
1139 if (!atomic_add_negative(-1, &page->_mapcount))
1140 return;
1141
1142 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1143 if (unlikely(PageHuge(page)))
1144 return;
1145
1146 /*
1147 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1148 * these counters are not modified in interrupt context, and
1149 * pte lock(a spinlock) is held, which implies preemption disabled.
1150 */
1151 if (PageTransHuge(page))
1152 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1153
1154 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1155 -hpage_nr_pages(page));
1156
1157 if (unlikely(PageMlocked(page)))
1158 clear_page_mlock(page);
1159
1160 /*
1161 * It would be tidy to reset the PageAnon mapping here,
1162 * but that might overwrite a racing page_add_anon_rmap
1163 * which increments mapcount after us but sets mapping
1164 * before us: so leave the reset to free_hot_cold_page,
1165 * and remember that it's only reliable while mapped.
1166 * Leaving it set also helps swapoff to reinstate ptes
1167 * faster for those pages still in swapcache.
1168 */
1169 }
1170
1171 /*
1172 * @arg: enum ttu_flags will be passed to this argument
1173 */
1174 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1175 unsigned long address, void *arg)
1176 {
1177 struct mm_struct *mm = vma->vm_mm;
1178 pte_t *pte;
1179 pte_t pteval;
1180 spinlock_t *ptl;
1181 int ret = SWAP_AGAIN;
1182 enum ttu_flags flags = (enum ttu_flags)arg;
1183
1184 pte = page_check_address(page, mm, address, &ptl, 0);
1185 if (!pte)
1186 goto out;
1187
1188 /*
1189 * If the page is mlock()d, we cannot swap it out.
1190 * If it's recently referenced (perhaps page_referenced
1191 * skipped over this mm) then we should reactivate it.
1192 */
1193 if (!(flags & TTU_IGNORE_MLOCK)) {
1194 if (vma->vm_flags & VM_LOCKED)
1195 goto out_mlock;
1196
1197 if (flags & TTU_MUNLOCK)
1198 goto out_unmap;
1199 }
1200 if (!(flags & TTU_IGNORE_ACCESS)) {
1201 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1202 ret = SWAP_FAIL;
1203 goto out_unmap;
1204 }
1205 }
1206
1207 /* Nuke the page table entry. */
1208 flush_cache_page(vma, address, page_to_pfn(page));
1209 pteval = ptep_clear_flush(vma, address, pte);
1210
1211 /* Move the dirty bit to the physical page now the pte is gone. */
1212 if (pte_dirty(pteval))
1213 set_page_dirty(page);
1214
1215 /* Update high watermark before we lower rss */
1216 update_hiwater_rss(mm);
1217
1218 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1219 if (!PageHuge(page)) {
1220 if (PageAnon(page))
1221 dec_mm_counter(mm, MM_ANONPAGES);
1222 else
1223 dec_mm_counter(mm, MM_FILEPAGES);
1224 }
1225 set_pte_at(mm, address, pte,
1226 swp_entry_to_pte(make_hwpoison_entry(page)));
1227 } else if (pte_unused(pteval)) {
1228 /*
1229 * The guest indicated that the page content is of no
1230 * interest anymore. Simply discard the pte, vmscan
1231 * will take care of the rest.
1232 */
1233 if (PageAnon(page))
1234 dec_mm_counter(mm, MM_ANONPAGES);
1235 else
1236 dec_mm_counter(mm, MM_FILEPAGES);
1237 } else if (PageAnon(page)) {
1238 swp_entry_t entry = { .val = page_private(page) };
1239 pte_t swp_pte;
1240
1241 if (PageSwapCache(page)) {
1242 /*
1243 * Store the swap location in the pte.
1244 * See handle_pte_fault() ...
1245 */
1246 if (swap_duplicate(entry) < 0) {
1247 set_pte_at(mm, address, pte, pteval);
1248 ret = SWAP_FAIL;
1249 goto out_unmap;
1250 }
1251 if (list_empty(&mm->mmlist)) {
1252 spin_lock(&mmlist_lock);
1253 if (list_empty(&mm->mmlist))
1254 list_add(&mm->mmlist, &init_mm.mmlist);
1255 spin_unlock(&mmlist_lock);
1256 }
1257 dec_mm_counter(mm, MM_ANONPAGES);
1258 inc_mm_counter(mm, MM_SWAPENTS);
1259 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1260 /*
1261 * Store the pfn of the page in a special migration
1262 * pte. do_swap_page() will wait until the migration
1263 * pte is removed and then restart fault handling.
1264 */
1265 BUG_ON(!(flags & TTU_MIGRATION));
1266 entry = make_migration_entry(page, pte_write(pteval));
1267 }
1268 swp_pte = swp_entry_to_pte(entry);
1269 if (pte_soft_dirty(pteval))
1270 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1271 set_pte_at(mm, address, pte, swp_pte);
1272 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1273 (flags & TTU_MIGRATION)) {
1274 /* Establish migration entry for a file page */
1275 swp_entry_t entry;
1276 entry = make_migration_entry(page, pte_write(pteval));
1277 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1278 } else
1279 dec_mm_counter(mm, MM_FILEPAGES);
1280
1281 page_remove_rmap(page);
1282 page_cache_release(page);
1283
1284 out_unmap:
1285 pte_unmap_unlock(pte, ptl);
1286 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1287 mmu_notifier_invalidate_page(mm, address);
1288 out:
1289 return ret;
1290
1291 out_mlock:
1292 pte_unmap_unlock(pte, ptl);
1293
1294
1295 /*
1296 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1297 * unstable result and race. Plus, We can't wait here because
1298 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1299 * if trylock failed, the page remain in evictable lru and later
1300 * vmscan could retry to move the page to unevictable lru if the
1301 * page is actually mlocked.
1302 */
1303 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1304 if (vma->vm_flags & VM_LOCKED) {
1305 mlock_vma_page(page);
1306 ret = SWAP_MLOCK;
1307 }
1308 up_read(&vma->vm_mm->mmap_sem);
1309 }
1310 return ret;
1311 }
1312
1313 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1314 {
1315 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1316
1317 if (!maybe_stack)
1318 return false;
1319
1320 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1321 VM_STACK_INCOMPLETE_SETUP)
1322 return true;
1323
1324 return false;
1325 }
1326
1327 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1328 {
1329 return is_vma_temporary_stack(vma);
1330 }
1331
1332 static int page_not_mapped(struct page *page)
1333 {
1334 return !page_mapped(page);
1335 };
1336
1337 /**
1338 * try_to_unmap - try to remove all page table mappings to a page
1339 * @page: the page to get unmapped
1340 * @flags: action and flags
1341 *
1342 * Tries to remove all the page table entries which are mapping this
1343 * page, used in the pageout path. Caller must hold the page lock.
1344 * Return values are:
1345 *
1346 * SWAP_SUCCESS - we succeeded in removing all mappings
1347 * SWAP_AGAIN - we missed a mapping, try again later
1348 * SWAP_FAIL - the page is unswappable
1349 * SWAP_MLOCK - page is mlocked.
1350 */
1351 int try_to_unmap(struct page *page, enum ttu_flags flags)
1352 {
1353 int ret;
1354 struct rmap_walk_control rwc = {
1355 .rmap_one = try_to_unmap_one,
1356 .arg = (void *)flags,
1357 .done = page_not_mapped,
1358 .anon_lock = page_lock_anon_vma_read,
1359 };
1360
1361 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1362
1363 /*
1364 * During exec, a temporary VMA is setup and later moved.
1365 * The VMA is moved under the anon_vma lock but not the
1366 * page tables leading to a race where migration cannot
1367 * find the migration ptes. Rather than increasing the
1368 * locking requirements of exec(), migration skips
1369 * temporary VMAs until after exec() completes.
1370 */
1371 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1372 rwc.invalid_vma = invalid_migration_vma;
1373
1374 ret = rmap_walk(page, &rwc);
1375
1376 if (ret != SWAP_MLOCK && !page_mapped(page))
1377 ret = SWAP_SUCCESS;
1378 return ret;
1379 }
1380
1381 /**
1382 * try_to_munlock - try to munlock a page
1383 * @page: the page to be munlocked
1384 *
1385 * Called from munlock code. Checks all of the VMAs mapping the page
1386 * to make sure nobody else has this page mlocked. The page will be
1387 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1388 *
1389 * Return values are:
1390 *
1391 * SWAP_AGAIN - no vma is holding page mlocked, or,
1392 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1393 * SWAP_FAIL - page cannot be located at present
1394 * SWAP_MLOCK - page is now mlocked.
1395 */
1396 int try_to_munlock(struct page *page)
1397 {
1398 int ret;
1399 struct rmap_walk_control rwc = {
1400 .rmap_one = try_to_unmap_one,
1401 .arg = (void *)TTU_MUNLOCK,
1402 .done = page_not_mapped,
1403 .anon_lock = page_lock_anon_vma_read,
1404
1405 };
1406
1407 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1408
1409 ret = rmap_walk(page, &rwc);
1410 return ret;
1411 }
1412
1413 void __put_anon_vma(struct anon_vma *anon_vma)
1414 {
1415 struct anon_vma *root = anon_vma->root;
1416
1417 anon_vma_free(anon_vma);
1418 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1419 anon_vma_free(root);
1420 }
1421
1422 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1423 struct rmap_walk_control *rwc)
1424 {
1425 struct anon_vma *anon_vma;
1426
1427 if (rwc->anon_lock)
1428 return rwc->anon_lock(page);
1429
1430 /*
1431 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1432 * because that depends on page_mapped(); but not all its usages
1433 * are holding mmap_sem. Users without mmap_sem are required to
1434 * take a reference count to prevent the anon_vma disappearing
1435 */
1436 anon_vma = page_anon_vma(page);
1437 if (!anon_vma)
1438 return NULL;
1439
1440 anon_vma_lock_read(anon_vma);
1441 return anon_vma;
1442 }
1443
1444 /*
1445 * rmap_walk_anon - do something to anonymous page using the object-based
1446 * rmap method
1447 * @page: the page to be handled
1448 * @rwc: control variable according to each walk type
1449 *
1450 * Find all the mappings of a page using the mapping pointer and the vma chains
1451 * contained in the anon_vma struct it points to.
1452 *
1453 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1454 * where the page was found will be held for write. So, we won't recheck
1455 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1456 * LOCKED.
1457 */
1458 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1459 {
1460 struct anon_vma *anon_vma;
1461 pgoff_t pgoff;
1462 struct anon_vma_chain *avc;
1463 int ret = SWAP_AGAIN;
1464
1465 anon_vma = rmap_walk_anon_lock(page, rwc);
1466 if (!anon_vma)
1467 return ret;
1468
1469 pgoff = page_to_pgoff(page);
1470 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1471 struct vm_area_struct *vma = avc->vma;
1472 unsigned long address = vma_address(page, vma);
1473
1474 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1475 continue;
1476
1477 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1478 if (ret != SWAP_AGAIN)
1479 break;
1480 if (rwc->done && rwc->done(page))
1481 break;
1482 }
1483 anon_vma_unlock_read(anon_vma);
1484 return ret;
1485 }
1486
1487 /*
1488 * rmap_walk_file - do something to file page using the object-based rmap method
1489 * @page: the page to be handled
1490 * @rwc: control variable according to each walk type
1491 *
1492 * Find all the mappings of a page using the mapping pointer and the vma chains
1493 * contained in the address_space struct it points to.
1494 *
1495 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1496 * where the page was found will be held for write. So, we won't recheck
1497 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1498 * LOCKED.
1499 */
1500 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1501 {
1502 struct address_space *mapping = page->mapping;
1503 pgoff_t pgoff;
1504 struct vm_area_struct *vma;
1505 int ret = SWAP_AGAIN;
1506
1507 /*
1508 * The page lock not only makes sure that page->mapping cannot
1509 * suddenly be NULLified by truncation, it makes sure that the
1510 * structure at mapping cannot be freed and reused yet,
1511 * so we can safely take mapping->i_mmap_rwsem.
1512 */
1513 VM_BUG_ON_PAGE(!PageLocked(page), page);
1514
1515 if (!mapping)
1516 return ret;
1517
1518 pgoff = page_to_pgoff(page);
1519 i_mmap_lock_read(mapping);
1520 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1521 unsigned long address = vma_address(page, vma);
1522
1523 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1524 continue;
1525
1526 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1527 if (ret != SWAP_AGAIN)
1528 goto done;
1529 if (rwc->done && rwc->done(page))
1530 goto done;
1531 }
1532
1533 done:
1534 i_mmap_unlock_read(mapping);
1535 return ret;
1536 }
1537
1538 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1539 {
1540 if (unlikely(PageKsm(page)))
1541 return rmap_walk_ksm(page, rwc);
1542 else if (PageAnon(page))
1543 return rmap_walk_anon(page, rwc);
1544 else
1545 return rmap_walk_file(page, rwc);
1546 }
1547
1548 #ifdef CONFIG_HUGETLB_PAGE
1549 /*
1550 * The following three functions are for anonymous (private mapped) hugepages.
1551 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1552 * and no lru code, because we handle hugepages differently from common pages.
1553 */
1554 static void __hugepage_set_anon_rmap(struct page *page,
1555 struct vm_area_struct *vma, unsigned long address, int exclusive)
1556 {
1557 struct anon_vma *anon_vma = vma->anon_vma;
1558
1559 BUG_ON(!anon_vma);
1560
1561 if (PageAnon(page))
1562 return;
1563 if (!exclusive)
1564 anon_vma = anon_vma->root;
1565
1566 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1567 page->mapping = (struct address_space *) anon_vma;
1568 page->index = linear_page_index(vma, address);
1569 }
1570
1571 void hugepage_add_anon_rmap(struct page *page,
1572 struct vm_area_struct *vma, unsigned long address)
1573 {
1574 struct anon_vma *anon_vma = vma->anon_vma;
1575 int first;
1576
1577 BUG_ON(!PageLocked(page));
1578 BUG_ON(!anon_vma);
1579 /* address might be in next vma when migration races vma_adjust */
1580 first = atomic_inc_and_test(&page->_mapcount);
1581 if (first)
1582 __hugepage_set_anon_rmap(page, vma, address, 0);
1583 }
1584
1585 void hugepage_add_new_anon_rmap(struct page *page,
1586 struct vm_area_struct *vma, unsigned long address)
1587 {
1588 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1589 atomic_set(&page->_mapcount, 0);
1590 __hugepage_set_anon_rmap(page, vma, address, 1);
1591 }
1592 #endif /* CONFIG_HUGETLB_PAGE */