]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/rmap.c
Merge tag 'optee-bus-for-v5.9' of git://git.linaro.org/people/jens.wiklander/linux...
[mirror_ubuntu-hirsute-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
36 * i_pages lock (widely used)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
52 */
53
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/tlb.h>
79
80 #include "internal.h"
81
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 struct anon_vma *anon_vma;
88
89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 if (anon_vma) {
91 atomic_set(&anon_vma->refcount, 1);
92 anon_vma->degree = 1; /* Reference for first vma */
93 anon_vma->parent = anon_vma;
94 /*
95 * Initialise the anon_vma root to point to itself. If called
96 * from fork, the root will be reset to the parents anon_vma.
97 */
98 anon_vma->root = anon_vma;
99 }
100
101 return anon_vma;
102 }
103
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 VM_BUG_ON(atomic_read(&anon_vma->refcount));
107
108 /*
109 * Synchronize against page_lock_anon_vma_read() such that
110 * we can safely hold the lock without the anon_vma getting
111 * freed.
112 *
113 * Relies on the full mb implied by the atomic_dec_and_test() from
114 * put_anon_vma() against the acquire barrier implied by
115 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 *
117 * page_lock_anon_vma_read() VS put_anon_vma()
118 * down_read_trylock() atomic_dec_and_test()
119 * LOCK MB
120 * atomic_read() rwsem_is_locked()
121 *
122 * LOCK should suffice since the actual taking of the lock must
123 * happen _before_ what follows.
124 */
125 might_sleep();
126 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 anon_vma_lock_write(anon_vma);
128 anon_vma_unlock_write(anon_vma);
129 }
130
131 kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 struct anon_vma_chain *avc,
146 struct anon_vma *anon_vma)
147 {
148 avc->vma = vma;
149 avc->anon_vma = anon_vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153
154 /**
155 * __anon_vma_prepare - attach an anon_vma to a memory region
156 * @vma: the memory region in question
157 *
158 * This makes sure the memory mapping described by 'vma' has
159 * an 'anon_vma' attached to it, so that we can associate the
160 * anonymous pages mapped into it with that anon_vma.
161 *
162 * The common case will be that we already have one, which
163 * is handled inline by anon_vma_prepare(). But if
164 * not we either need to find an adjacent mapping that we
165 * can re-use the anon_vma from (very common when the only
166 * reason for splitting a vma has been mprotect()), or we
167 * allocate a new one.
168 *
169 * Anon-vma allocations are very subtle, because we may have
170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171 * and that may actually touch the spinlock even in the newly
172 * allocated vma (it depends on RCU to make sure that the
173 * anon_vma isn't actually destroyed).
174 *
175 * As a result, we need to do proper anon_vma locking even
176 * for the new allocation. At the same time, we do not want
177 * to do any locking for the common case of already having
178 * an anon_vma.
179 *
180 * This must be called with the mmap_lock held for reading.
181 */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 struct mm_struct *mm = vma->vm_mm;
185 struct anon_vma *anon_vma, *allocated;
186 struct anon_vma_chain *avc;
187
188 might_sleep();
189
190 avc = anon_vma_chain_alloc(GFP_KERNEL);
191 if (!avc)
192 goto out_enomem;
193
194 anon_vma = find_mergeable_anon_vma(vma);
195 allocated = NULL;
196 if (!anon_vma) {
197 anon_vma = anon_vma_alloc();
198 if (unlikely(!anon_vma))
199 goto out_enomem_free_avc;
200 allocated = anon_vma;
201 }
202
203 anon_vma_lock_write(anon_vma);
204 /* page_table_lock to protect against threads */
205 spin_lock(&mm->page_table_lock);
206 if (likely(!vma->anon_vma)) {
207 vma->anon_vma = anon_vma;
208 anon_vma_chain_link(vma, avc, anon_vma);
209 /* vma reference or self-parent link for new root */
210 anon_vma->degree++;
211 allocated = NULL;
212 avc = NULL;
213 }
214 spin_unlock(&mm->page_table_lock);
215 anon_vma_unlock_write(anon_vma);
216
217 if (unlikely(allocated))
218 put_anon_vma(allocated);
219 if (unlikely(avc))
220 anon_vma_chain_free(avc);
221
222 return 0;
223
224 out_enomem_free_avc:
225 anon_vma_chain_free(avc);
226 out_enomem:
227 return -ENOMEM;
228 }
229
230 /*
231 * This is a useful helper function for locking the anon_vma root as
232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233 * have the same vma.
234 *
235 * Such anon_vma's should have the same root, so you'd expect to see
236 * just a single mutex_lock for the whole traversal.
237 */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 struct anon_vma *new_root = anon_vma->root;
241 if (new_root != root) {
242 if (WARN_ON_ONCE(root))
243 up_write(&root->rwsem);
244 root = new_root;
245 down_write(&root->rwsem);
246 }
247 return root;
248 }
249
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 if (root)
253 up_write(&root->rwsem);
254 }
255
256 /*
257 * Attach the anon_vmas from src to dst.
258 * Returns 0 on success, -ENOMEM on failure.
259 *
260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
261 * anon_vma_fork(). The first three want an exact copy of src, while the last
262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265 *
266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
269 * case of constantly forking task. On the other hand, an anon_vma with more
270 * than one child isn't reused even if there was no alive vma, thus rmap
271 * walker has a good chance of avoiding scanning the whole hierarchy when it
272 * searches where page is mapped.
273 */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 struct anon_vma_chain *avc, *pavc;
277 struct anon_vma *root = NULL;
278
279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 struct anon_vma *anon_vma;
281
282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 if (unlikely(!avc)) {
284 unlock_anon_vma_root(root);
285 root = NULL;
286 avc = anon_vma_chain_alloc(GFP_KERNEL);
287 if (!avc)
288 goto enomem_failure;
289 }
290 anon_vma = pavc->anon_vma;
291 root = lock_anon_vma_root(root, anon_vma);
292 anon_vma_chain_link(dst, avc, anon_vma);
293
294 /*
295 * Reuse existing anon_vma if its degree lower than two,
296 * that means it has no vma and only one anon_vma child.
297 *
298 * Do not chose parent anon_vma, otherwise first child
299 * will always reuse it. Root anon_vma is never reused:
300 * it has self-parent reference and at least one child.
301 */
302 if (!dst->anon_vma && src->anon_vma &&
303 anon_vma != src->anon_vma && anon_vma->degree < 2)
304 dst->anon_vma = anon_vma;
305 }
306 if (dst->anon_vma)
307 dst->anon_vma->degree++;
308 unlock_anon_vma_root(root);
309 return 0;
310
311 enomem_failure:
312 /*
313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 * decremented in unlink_anon_vmas().
315 * We can safely do this because callers of anon_vma_clone() don't care
316 * about dst->anon_vma if anon_vma_clone() failed.
317 */
318 dst->anon_vma = NULL;
319 unlink_anon_vmas(dst);
320 return -ENOMEM;
321 }
322
323 /*
324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
325 * the corresponding VMA in the parent process is attached to.
326 * Returns 0 on success, non-zero on failure.
327 */
328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329 {
330 struct anon_vma_chain *avc;
331 struct anon_vma *anon_vma;
332 int error;
333
334 /* Don't bother if the parent process has no anon_vma here. */
335 if (!pvma->anon_vma)
336 return 0;
337
338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 vma->anon_vma = NULL;
340
341 /*
342 * First, attach the new VMA to the parent VMA's anon_vmas,
343 * so rmap can find non-COWed pages in child processes.
344 */
345 error = anon_vma_clone(vma, pvma);
346 if (error)
347 return error;
348
349 /* An existing anon_vma has been reused, all done then. */
350 if (vma->anon_vma)
351 return 0;
352
353 /* Then add our own anon_vma. */
354 anon_vma = anon_vma_alloc();
355 if (!anon_vma)
356 goto out_error;
357 avc = anon_vma_chain_alloc(GFP_KERNEL);
358 if (!avc)
359 goto out_error_free_anon_vma;
360
361 /*
362 * The root anon_vma's spinlock is the lock actually used when we
363 * lock any of the anon_vmas in this anon_vma tree.
364 */
365 anon_vma->root = pvma->anon_vma->root;
366 anon_vma->parent = pvma->anon_vma;
367 /*
368 * With refcounts, an anon_vma can stay around longer than the
369 * process it belongs to. The root anon_vma needs to be pinned until
370 * this anon_vma is freed, because the lock lives in the root.
371 */
372 get_anon_vma(anon_vma->root);
373 /* Mark this anon_vma as the one where our new (COWed) pages go. */
374 vma->anon_vma = anon_vma;
375 anon_vma_lock_write(anon_vma);
376 anon_vma_chain_link(vma, avc, anon_vma);
377 anon_vma->parent->degree++;
378 anon_vma_unlock_write(anon_vma);
379
380 return 0;
381
382 out_error_free_anon_vma:
383 put_anon_vma(anon_vma);
384 out_error:
385 unlink_anon_vmas(vma);
386 return -ENOMEM;
387 }
388
389 void unlink_anon_vmas(struct vm_area_struct *vma)
390 {
391 struct anon_vma_chain *avc, *next;
392 struct anon_vma *root = NULL;
393
394 /*
395 * Unlink each anon_vma chained to the VMA. This list is ordered
396 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 */
398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 struct anon_vma *anon_vma = avc->anon_vma;
400
401 root = lock_anon_vma_root(root, anon_vma);
402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403
404 /*
405 * Leave empty anon_vmas on the list - we'll need
406 * to free them outside the lock.
407 */
408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 anon_vma->parent->degree--;
410 continue;
411 }
412
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
416 if (vma->anon_vma)
417 vma->anon_vma->degree--;
418 unlock_anon_vma_root(root);
419
420 /*
421 * Iterate the list once more, it now only contains empty and unlinked
422 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
423 * needing to write-acquire the anon_vma->root->rwsem.
424 */
425 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
426 struct anon_vma *anon_vma = avc->anon_vma;
427
428 VM_WARN_ON(anon_vma->degree);
429 put_anon_vma(anon_vma);
430
431 list_del(&avc->same_vma);
432 anon_vma_chain_free(avc);
433 }
434 }
435
436 static void anon_vma_ctor(void *data)
437 {
438 struct anon_vma *anon_vma = data;
439
440 init_rwsem(&anon_vma->rwsem);
441 atomic_set(&anon_vma->refcount, 0);
442 anon_vma->rb_root = RB_ROOT_CACHED;
443 }
444
445 void __init anon_vma_init(void)
446 {
447 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
448 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
449 anon_vma_ctor);
450 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
451 SLAB_PANIC|SLAB_ACCOUNT);
452 }
453
454 /*
455 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
456 *
457 * Since there is no serialization what so ever against page_remove_rmap()
458 * the best this function can do is return a locked anon_vma that might
459 * have been relevant to this page.
460 *
461 * The page might have been remapped to a different anon_vma or the anon_vma
462 * returned may already be freed (and even reused).
463 *
464 * In case it was remapped to a different anon_vma, the new anon_vma will be a
465 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
466 * ensure that any anon_vma obtained from the page will still be valid for as
467 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
468 *
469 * All users of this function must be very careful when walking the anon_vma
470 * chain and verify that the page in question is indeed mapped in it
471 * [ something equivalent to page_mapped_in_vma() ].
472 *
473 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
474 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
475 * if there is a mapcount, we can dereference the anon_vma after observing
476 * those.
477 */
478 struct anon_vma *page_get_anon_vma(struct page *page)
479 {
480 struct anon_vma *anon_vma = NULL;
481 unsigned long anon_mapping;
482
483 rcu_read_lock();
484 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
485 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
486 goto out;
487 if (!page_mapped(page))
488 goto out;
489
490 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
491 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
492 anon_vma = NULL;
493 goto out;
494 }
495
496 /*
497 * If this page is still mapped, then its anon_vma cannot have been
498 * freed. But if it has been unmapped, we have no security against the
499 * anon_vma structure being freed and reused (for another anon_vma:
500 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
501 * above cannot corrupt).
502 */
503 if (!page_mapped(page)) {
504 rcu_read_unlock();
505 put_anon_vma(anon_vma);
506 return NULL;
507 }
508 out:
509 rcu_read_unlock();
510
511 return anon_vma;
512 }
513
514 /*
515 * Similar to page_get_anon_vma() except it locks the anon_vma.
516 *
517 * Its a little more complex as it tries to keep the fast path to a single
518 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
519 * reference like with page_get_anon_vma() and then block on the mutex.
520 */
521 struct anon_vma *page_lock_anon_vma_read(struct page *page)
522 {
523 struct anon_vma *anon_vma = NULL;
524 struct anon_vma *root_anon_vma;
525 unsigned long anon_mapping;
526
527 rcu_read_lock();
528 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
529 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
530 goto out;
531 if (!page_mapped(page))
532 goto out;
533
534 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
535 root_anon_vma = READ_ONCE(anon_vma->root);
536 if (down_read_trylock(&root_anon_vma->rwsem)) {
537 /*
538 * If the page is still mapped, then this anon_vma is still
539 * its anon_vma, and holding the mutex ensures that it will
540 * not go away, see anon_vma_free().
541 */
542 if (!page_mapped(page)) {
543 up_read(&root_anon_vma->rwsem);
544 anon_vma = NULL;
545 }
546 goto out;
547 }
548
549 /* trylock failed, we got to sleep */
550 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
551 anon_vma = NULL;
552 goto out;
553 }
554
555 if (!page_mapped(page)) {
556 rcu_read_unlock();
557 put_anon_vma(anon_vma);
558 return NULL;
559 }
560
561 /* we pinned the anon_vma, its safe to sleep */
562 rcu_read_unlock();
563 anon_vma_lock_read(anon_vma);
564
565 if (atomic_dec_and_test(&anon_vma->refcount)) {
566 /*
567 * Oops, we held the last refcount, release the lock
568 * and bail -- can't simply use put_anon_vma() because
569 * we'll deadlock on the anon_vma_lock_write() recursion.
570 */
571 anon_vma_unlock_read(anon_vma);
572 __put_anon_vma(anon_vma);
573 anon_vma = NULL;
574 }
575
576 return anon_vma;
577
578 out:
579 rcu_read_unlock();
580 return anon_vma;
581 }
582
583 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
584 {
585 anon_vma_unlock_read(anon_vma);
586 }
587
588 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
589 /*
590 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
591 * important if a PTE was dirty when it was unmapped that it's flushed
592 * before any IO is initiated on the page to prevent lost writes. Similarly,
593 * it must be flushed before freeing to prevent data leakage.
594 */
595 void try_to_unmap_flush(void)
596 {
597 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
598
599 if (!tlb_ubc->flush_required)
600 return;
601
602 arch_tlbbatch_flush(&tlb_ubc->arch);
603 tlb_ubc->flush_required = false;
604 tlb_ubc->writable = false;
605 }
606
607 /* Flush iff there are potentially writable TLB entries that can race with IO */
608 void try_to_unmap_flush_dirty(void)
609 {
610 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
611
612 if (tlb_ubc->writable)
613 try_to_unmap_flush();
614 }
615
616 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
617 {
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
621 tlb_ubc->flush_required = true;
622
623 /*
624 * Ensure compiler does not re-order the setting of tlb_flush_batched
625 * before the PTE is cleared.
626 */
627 barrier();
628 mm->tlb_flush_batched = true;
629
630 /*
631 * If the PTE was dirty then it's best to assume it's writable. The
632 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
633 * before the page is queued for IO.
634 */
635 if (writable)
636 tlb_ubc->writable = true;
637 }
638
639 /*
640 * Returns true if the TLB flush should be deferred to the end of a batch of
641 * unmap operations to reduce IPIs.
642 */
643 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
644 {
645 bool should_defer = false;
646
647 if (!(flags & TTU_BATCH_FLUSH))
648 return false;
649
650 /* If remote CPUs need to be flushed then defer batch the flush */
651 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
652 should_defer = true;
653 put_cpu();
654
655 return should_defer;
656 }
657
658 /*
659 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
660 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
661 * operation such as mprotect or munmap to race between reclaim unmapping
662 * the page and flushing the page. If this race occurs, it potentially allows
663 * access to data via a stale TLB entry. Tracking all mm's that have TLB
664 * batching in flight would be expensive during reclaim so instead track
665 * whether TLB batching occurred in the past and if so then do a flush here
666 * if required. This will cost one additional flush per reclaim cycle paid
667 * by the first operation at risk such as mprotect and mumap.
668 *
669 * This must be called under the PTL so that an access to tlb_flush_batched
670 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
671 * via the PTL.
672 */
673 void flush_tlb_batched_pending(struct mm_struct *mm)
674 {
675 if (mm->tlb_flush_batched) {
676 flush_tlb_mm(mm);
677
678 /*
679 * Do not allow the compiler to re-order the clearing of
680 * tlb_flush_batched before the tlb is flushed.
681 */
682 barrier();
683 mm->tlb_flush_batched = false;
684 }
685 }
686 #else
687 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
688 {
689 }
690
691 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
692 {
693 return false;
694 }
695 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
696
697 /*
698 * At what user virtual address is page expected in vma?
699 * Caller should check the page is actually part of the vma.
700 */
701 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
702 {
703 unsigned long address;
704 if (PageAnon(page)) {
705 struct anon_vma *page__anon_vma = page_anon_vma(page);
706 /*
707 * Note: swapoff's unuse_vma() is more efficient with this
708 * check, and needs it to match anon_vma when KSM is active.
709 */
710 if (!vma->anon_vma || !page__anon_vma ||
711 vma->anon_vma->root != page__anon_vma->root)
712 return -EFAULT;
713 } else if (page->mapping) {
714 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
715 return -EFAULT;
716 } else
717 return -EFAULT;
718 address = __vma_address(page, vma);
719 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
720 return -EFAULT;
721 return address;
722 }
723
724 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
725 {
726 pgd_t *pgd;
727 p4d_t *p4d;
728 pud_t *pud;
729 pmd_t *pmd = NULL;
730 pmd_t pmde;
731
732 pgd = pgd_offset(mm, address);
733 if (!pgd_present(*pgd))
734 goto out;
735
736 p4d = p4d_offset(pgd, address);
737 if (!p4d_present(*p4d))
738 goto out;
739
740 pud = pud_offset(p4d, address);
741 if (!pud_present(*pud))
742 goto out;
743
744 pmd = pmd_offset(pud, address);
745 /*
746 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
747 * without holding anon_vma lock for write. So when looking for a
748 * genuine pmde (in which to find pte), test present and !THP together.
749 */
750 pmde = *pmd;
751 barrier();
752 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
753 pmd = NULL;
754 out:
755 return pmd;
756 }
757
758 struct page_referenced_arg {
759 int mapcount;
760 int referenced;
761 unsigned long vm_flags;
762 struct mem_cgroup *memcg;
763 };
764 /*
765 * arg: page_referenced_arg will be passed
766 */
767 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
768 unsigned long address, void *arg)
769 {
770 struct page_referenced_arg *pra = arg;
771 struct page_vma_mapped_walk pvmw = {
772 .page = page,
773 .vma = vma,
774 .address = address,
775 };
776 int referenced = 0;
777
778 while (page_vma_mapped_walk(&pvmw)) {
779 address = pvmw.address;
780
781 if (vma->vm_flags & VM_LOCKED) {
782 page_vma_mapped_walk_done(&pvmw);
783 pra->vm_flags |= VM_LOCKED;
784 return false; /* To break the loop */
785 }
786
787 if (pvmw.pte) {
788 if (ptep_clear_flush_young_notify(vma, address,
789 pvmw.pte)) {
790 /*
791 * Don't treat a reference through
792 * a sequentially read mapping as such.
793 * If the page has been used in another mapping,
794 * we will catch it; if this other mapping is
795 * already gone, the unmap path will have set
796 * PG_referenced or activated the page.
797 */
798 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
799 referenced++;
800 }
801 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
802 if (pmdp_clear_flush_young_notify(vma, address,
803 pvmw.pmd))
804 referenced++;
805 } else {
806 /* unexpected pmd-mapped page? */
807 WARN_ON_ONCE(1);
808 }
809
810 pra->mapcount--;
811 }
812
813 if (referenced)
814 clear_page_idle(page);
815 if (test_and_clear_page_young(page))
816 referenced++;
817
818 if (referenced) {
819 pra->referenced++;
820 pra->vm_flags |= vma->vm_flags;
821 }
822
823 if (!pra->mapcount)
824 return false; /* To break the loop */
825
826 return true;
827 }
828
829 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
830 {
831 struct page_referenced_arg *pra = arg;
832 struct mem_cgroup *memcg = pra->memcg;
833
834 if (!mm_match_cgroup(vma->vm_mm, memcg))
835 return true;
836
837 return false;
838 }
839
840 /**
841 * page_referenced - test if the page was referenced
842 * @page: the page to test
843 * @is_locked: caller holds lock on the page
844 * @memcg: target memory cgroup
845 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
846 *
847 * Quick test_and_clear_referenced for all mappings to a page,
848 * returns the number of ptes which referenced the page.
849 */
850 int page_referenced(struct page *page,
851 int is_locked,
852 struct mem_cgroup *memcg,
853 unsigned long *vm_flags)
854 {
855 int we_locked = 0;
856 struct page_referenced_arg pra = {
857 .mapcount = total_mapcount(page),
858 .memcg = memcg,
859 };
860 struct rmap_walk_control rwc = {
861 .rmap_one = page_referenced_one,
862 .arg = (void *)&pra,
863 .anon_lock = page_lock_anon_vma_read,
864 };
865
866 *vm_flags = 0;
867 if (!pra.mapcount)
868 return 0;
869
870 if (!page_rmapping(page))
871 return 0;
872
873 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
874 we_locked = trylock_page(page);
875 if (!we_locked)
876 return 1;
877 }
878
879 /*
880 * If we are reclaiming on behalf of a cgroup, skip
881 * counting on behalf of references from different
882 * cgroups
883 */
884 if (memcg) {
885 rwc.invalid_vma = invalid_page_referenced_vma;
886 }
887
888 rmap_walk(page, &rwc);
889 *vm_flags = pra.vm_flags;
890
891 if (we_locked)
892 unlock_page(page);
893
894 return pra.referenced;
895 }
896
897 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
898 unsigned long address, void *arg)
899 {
900 struct page_vma_mapped_walk pvmw = {
901 .page = page,
902 .vma = vma,
903 .address = address,
904 .flags = PVMW_SYNC,
905 };
906 struct mmu_notifier_range range;
907 int *cleaned = arg;
908
909 /*
910 * We have to assume the worse case ie pmd for invalidation. Note that
911 * the page can not be free from this function.
912 */
913 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
914 0, vma, vma->vm_mm, address,
915 min(vma->vm_end, address + page_size(page)));
916 mmu_notifier_invalidate_range_start(&range);
917
918 while (page_vma_mapped_walk(&pvmw)) {
919 int ret = 0;
920
921 address = pvmw.address;
922 if (pvmw.pte) {
923 pte_t entry;
924 pte_t *pte = pvmw.pte;
925
926 if (!pte_dirty(*pte) && !pte_write(*pte))
927 continue;
928
929 flush_cache_page(vma, address, pte_pfn(*pte));
930 entry = ptep_clear_flush(vma, address, pte);
931 entry = pte_wrprotect(entry);
932 entry = pte_mkclean(entry);
933 set_pte_at(vma->vm_mm, address, pte, entry);
934 ret = 1;
935 } else {
936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
937 pmd_t *pmd = pvmw.pmd;
938 pmd_t entry;
939
940 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
941 continue;
942
943 flush_cache_page(vma, address, page_to_pfn(page));
944 entry = pmdp_invalidate(vma, address, pmd);
945 entry = pmd_wrprotect(entry);
946 entry = pmd_mkclean(entry);
947 set_pmd_at(vma->vm_mm, address, pmd, entry);
948 ret = 1;
949 #else
950 /* unexpected pmd-mapped page? */
951 WARN_ON_ONCE(1);
952 #endif
953 }
954
955 /*
956 * No need to call mmu_notifier_invalidate_range() as we are
957 * downgrading page table protection not changing it to point
958 * to a new page.
959 *
960 * See Documentation/vm/mmu_notifier.rst
961 */
962 if (ret)
963 (*cleaned)++;
964 }
965
966 mmu_notifier_invalidate_range_end(&range);
967
968 return true;
969 }
970
971 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
972 {
973 if (vma->vm_flags & VM_SHARED)
974 return false;
975
976 return true;
977 }
978
979 int page_mkclean(struct page *page)
980 {
981 int cleaned = 0;
982 struct address_space *mapping;
983 struct rmap_walk_control rwc = {
984 .arg = (void *)&cleaned,
985 .rmap_one = page_mkclean_one,
986 .invalid_vma = invalid_mkclean_vma,
987 };
988
989 BUG_ON(!PageLocked(page));
990
991 if (!page_mapped(page))
992 return 0;
993
994 mapping = page_mapping(page);
995 if (!mapping)
996 return 0;
997
998 rmap_walk(page, &rwc);
999
1000 return cleaned;
1001 }
1002 EXPORT_SYMBOL_GPL(page_mkclean);
1003
1004 /**
1005 * page_move_anon_rmap - move a page to our anon_vma
1006 * @page: the page to move to our anon_vma
1007 * @vma: the vma the page belongs to
1008 *
1009 * When a page belongs exclusively to one process after a COW event,
1010 * that page can be moved into the anon_vma that belongs to just that
1011 * process, so the rmap code will not search the parent or sibling
1012 * processes.
1013 */
1014 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1015 {
1016 struct anon_vma *anon_vma = vma->anon_vma;
1017
1018 page = compound_head(page);
1019
1020 VM_BUG_ON_PAGE(!PageLocked(page), page);
1021 VM_BUG_ON_VMA(!anon_vma, vma);
1022
1023 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1024 /*
1025 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1026 * simultaneously, so a concurrent reader (eg page_referenced()'s
1027 * PageAnon()) will not see one without the other.
1028 */
1029 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1030 }
1031
1032 /**
1033 * __page_set_anon_rmap - set up new anonymous rmap
1034 * @page: Page or Hugepage to add to rmap
1035 * @vma: VM area to add page to.
1036 * @address: User virtual address of the mapping
1037 * @exclusive: the page is exclusively owned by the current process
1038 */
1039 static void __page_set_anon_rmap(struct page *page,
1040 struct vm_area_struct *vma, unsigned long address, int exclusive)
1041 {
1042 struct anon_vma *anon_vma = vma->anon_vma;
1043
1044 BUG_ON(!anon_vma);
1045
1046 if (PageAnon(page))
1047 return;
1048
1049 /*
1050 * If the page isn't exclusively mapped into this vma,
1051 * we must use the _oldest_ possible anon_vma for the
1052 * page mapping!
1053 */
1054 if (!exclusive)
1055 anon_vma = anon_vma->root;
1056
1057 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1058 page->mapping = (struct address_space *) anon_vma;
1059 page->index = linear_page_index(vma, address);
1060 }
1061
1062 /**
1063 * __page_check_anon_rmap - sanity check anonymous rmap addition
1064 * @page: the page to add the mapping to
1065 * @vma: the vm area in which the mapping is added
1066 * @address: the user virtual address mapped
1067 */
1068 static void __page_check_anon_rmap(struct page *page,
1069 struct vm_area_struct *vma, unsigned long address)
1070 {
1071 /*
1072 * The page's anon-rmap details (mapping and index) are guaranteed to
1073 * be set up correctly at this point.
1074 *
1075 * We have exclusion against page_add_anon_rmap because the caller
1076 * always holds the page locked, except if called from page_dup_rmap,
1077 * in which case the page is already known to be setup.
1078 *
1079 * We have exclusion against page_add_new_anon_rmap because those pages
1080 * are initially only visible via the pagetables, and the pte is locked
1081 * over the call to page_add_new_anon_rmap.
1082 */
1083 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1084 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1085 page);
1086 }
1087
1088 /**
1089 * page_add_anon_rmap - add pte mapping to an anonymous page
1090 * @page: the page to add the mapping to
1091 * @vma: the vm area in which the mapping is added
1092 * @address: the user virtual address mapped
1093 * @compound: charge the page as compound or small page
1094 *
1095 * The caller needs to hold the pte lock, and the page must be locked in
1096 * the anon_vma case: to serialize mapping,index checking after setting,
1097 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1098 * (but PageKsm is never downgraded to PageAnon).
1099 */
1100 void page_add_anon_rmap(struct page *page,
1101 struct vm_area_struct *vma, unsigned long address, bool compound)
1102 {
1103 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1104 }
1105
1106 /*
1107 * Special version of the above for do_swap_page, which often runs
1108 * into pages that are exclusively owned by the current process.
1109 * Everybody else should continue to use page_add_anon_rmap above.
1110 */
1111 void do_page_add_anon_rmap(struct page *page,
1112 struct vm_area_struct *vma, unsigned long address, int flags)
1113 {
1114 bool compound = flags & RMAP_COMPOUND;
1115 bool first;
1116
1117 if (unlikely(PageKsm(page)))
1118 lock_page_memcg(page);
1119 else
1120 VM_BUG_ON_PAGE(!PageLocked(page), page);
1121
1122 if (compound) {
1123 atomic_t *mapcount;
1124 VM_BUG_ON_PAGE(!PageLocked(page), page);
1125 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1126 mapcount = compound_mapcount_ptr(page);
1127 first = atomic_inc_and_test(mapcount);
1128 } else {
1129 first = atomic_inc_and_test(&page->_mapcount);
1130 }
1131
1132 if (first) {
1133 int nr = compound ? hpage_nr_pages(page) : 1;
1134 /*
1135 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1136 * these counters are not modified in interrupt context, and
1137 * pte lock(a spinlock) is held, which implies preemption
1138 * disabled.
1139 */
1140 if (compound)
1141 __inc_lruvec_page_state(page, NR_ANON_THPS);
1142 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1143 }
1144
1145 if (unlikely(PageKsm(page))) {
1146 unlock_page_memcg(page);
1147 return;
1148 }
1149
1150 /* address might be in next vma when migration races vma_adjust */
1151 if (first)
1152 __page_set_anon_rmap(page, vma, address,
1153 flags & RMAP_EXCLUSIVE);
1154 else
1155 __page_check_anon_rmap(page, vma, address);
1156 }
1157
1158 /**
1159 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1160 * @page: the page to add the mapping to
1161 * @vma: the vm area in which the mapping is added
1162 * @address: the user virtual address mapped
1163 * @compound: charge the page as compound or small page
1164 *
1165 * Same as page_add_anon_rmap but must only be called on *new* pages.
1166 * This means the inc-and-test can be bypassed.
1167 * Page does not have to be locked.
1168 */
1169 void page_add_new_anon_rmap(struct page *page,
1170 struct vm_area_struct *vma, unsigned long address, bool compound)
1171 {
1172 int nr = compound ? hpage_nr_pages(page) : 1;
1173
1174 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1175 __SetPageSwapBacked(page);
1176 if (compound) {
1177 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1178 /* increment count (starts at -1) */
1179 atomic_set(compound_mapcount_ptr(page), 0);
1180 if (hpage_pincount_available(page))
1181 atomic_set(compound_pincount_ptr(page), 0);
1182
1183 __inc_lruvec_page_state(page, NR_ANON_THPS);
1184 } else {
1185 /* Anon THP always mapped first with PMD */
1186 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1187 /* increment count (starts at -1) */
1188 atomic_set(&page->_mapcount, 0);
1189 }
1190 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1191 __page_set_anon_rmap(page, vma, address, 1);
1192 }
1193
1194 /**
1195 * page_add_file_rmap - add pte mapping to a file page
1196 * @page: the page to add the mapping to
1197 * @compound: charge the page as compound or small page
1198 *
1199 * The caller needs to hold the pte lock.
1200 */
1201 void page_add_file_rmap(struct page *page, bool compound)
1202 {
1203 int i, nr = 1;
1204
1205 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1206 lock_page_memcg(page);
1207 if (compound && PageTransHuge(page)) {
1208 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1209 if (atomic_inc_and_test(&page[i]._mapcount))
1210 nr++;
1211 }
1212 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1213 goto out;
1214 if (PageSwapBacked(page))
1215 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1216 else
1217 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1218 } else {
1219 if (PageTransCompound(page) && page_mapping(page)) {
1220 VM_WARN_ON_ONCE(!PageLocked(page));
1221
1222 SetPageDoubleMap(compound_head(page));
1223 if (PageMlocked(page))
1224 clear_page_mlock(compound_head(page));
1225 }
1226 if (!atomic_inc_and_test(&page->_mapcount))
1227 goto out;
1228 }
1229 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1230 out:
1231 unlock_page_memcg(page);
1232 }
1233
1234 static void page_remove_file_rmap(struct page *page, bool compound)
1235 {
1236 int i, nr = 1;
1237
1238 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1239
1240 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1241 if (unlikely(PageHuge(page))) {
1242 /* hugetlb pages are always mapped with pmds */
1243 atomic_dec(compound_mapcount_ptr(page));
1244 return;
1245 }
1246
1247 /* page still mapped by someone else? */
1248 if (compound && PageTransHuge(page)) {
1249 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1250 if (atomic_add_negative(-1, &page[i]._mapcount))
1251 nr++;
1252 }
1253 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1254 return;
1255 if (PageSwapBacked(page))
1256 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1257 else
1258 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1259 } else {
1260 if (!atomic_add_negative(-1, &page->_mapcount))
1261 return;
1262 }
1263
1264 /*
1265 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1266 * these counters are not modified in interrupt context, and
1267 * pte lock(a spinlock) is held, which implies preemption disabled.
1268 */
1269 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1270
1271 if (unlikely(PageMlocked(page)))
1272 clear_page_mlock(page);
1273 }
1274
1275 static void page_remove_anon_compound_rmap(struct page *page)
1276 {
1277 int i, nr;
1278
1279 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1280 return;
1281
1282 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1283 if (unlikely(PageHuge(page)))
1284 return;
1285
1286 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1287 return;
1288
1289 __dec_lruvec_page_state(page, NR_ANON_THPS);
1290
1291 if (TestClearPageDoubleMap(page)) {
1292 /*
1293 * Subpages can be mapped with PTEs too. Check how many of
1294 * them are still mapped.
1295 */
1296 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1297 if (atomic_add_negative(-1, &page[i]._mapcount))
1298 nr++;
1299 }
1300
1301 /*
1302 * Queue the page for deferred split if at least one small
1303 * page of the compound page is unmapped, but at least one
1304 * small page is still mapped.
1305 */
1306 if (nr && nr < HPAGE_PMD_NR)
1307 deferred_split_huge_page(page);
1308 } else {
1309 nr = HPAGE_PMD_NR;
1310 }
1311
1312 if (unlikely(PageMlocked(page)))
1313 clear_page_mlock(page);
1314
1315 if (nr)
1316 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1317 }
1318
1319 /**
1320 * page_remove_rmap - take down pte mapping from a page
1321 * @page: page to remove mapping from
1322 * @compound: uncharge the page as compound or small page
1323 *
1324 * The caller needs to hold the pte lock.
1325 */
1326 void page_remove_rmap(struct page *page, bool compound)
1327 {
1328 lock_page_memcg(page);
1329
1330 if (!PageAnon(page)) {
1331 page_remove_file_rmap(page, compound);
1332 goto out;
1333 }
1334
1335 if (compound) {
1336 page_remove_anon_compound_rmap(page);
1337 goto out;
1338 }
1339
1340 /* page still mapped by someone else? */
1341 if (!atomic_add_negative(-1, &page->_mapcount))
1342 goto out;
1343
1344 /*
1345 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1346 * these counters are not modified in interrupt context, and
1347 * pte lock(a spinlock) is held, which implies preemption disabled.
1348 */
1349 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1350
1351 if (unlikely(PageMlocked(page)))
1352 clear_page_mlock(page);
1353
1354 if (PageTransCompound(page))
1355 deferred_split_huge_page(compound_head(page));
1356
1357 /*
1358 * It would be tidy to reset the PageAnon mapping here,
1359 * but that might overwrite a racing page_add_anon_rmap
1360 * which increments mapcount after us but sets mapping
1361 * before us: so leave the reset to free_unref_page,
1362 * and remember that it's only reliable while mapped.
1363 * Leaving it set also helps swapoff to reinstate ptes
1364 * faster for those pages still in swapcache.
1365 */
1366 out:
1367 unlock_page_memcg(page);
1368 }
1369
1370 /*
1371 * @arg: enum ttu_flags will be passed to this argument
1372 */
1373 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1374 unsigned long address, void *arg)
1375 {
1376 struct mm_struct *mm = vma->vm_mm;
1377 struct page_vma_mapped_walk pvmw = {
1378 .page = page,
1379 .vma = vma,
1380 .address = address,
1381 };
1382 pte_t pteval;
1383 struct page *subpage;
1384 bool ret = true;
1385 struct mmu_notifier_range range;
1386 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1387
1388 /* munlock has nothing to gain from examining un-locked vmas */
1389 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1390 return true;
1391
1392 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1393 is_zone_device_page(page) && !is_device_private_page(page))
1394 return true;
1395
1396 if (flags & TTU_SPLIT_HUGE_PMD) {
1397 split_huge_pmd_address(vma, address,
1398 flags & TTU_SPLIT_FREEZE, page);
1399 }
1400
1401 /*
1402 * For THP, we have to assume the worse case ie pmd for invalidation.
1403 * For hugetlb, it could be much worse if we need to do pud
1404 * invalidation in the case of pmd sharing.
1405 *
1406 * Note that the page can not be free in this function as call of
1407 * try_to_unmap() must hold a reference on the page.
1408 */
1409 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1410 address,
1411 min(vma->vm_end, address + page_size(page)));
1412 if (PageHuge(page)) {
1413 /*
1414 * If sharing is possible, start and end will be adjusted
1415 * accordingly.
1416 *
1417 * If called for a huge page, caller must hold i_mmap_rwsem
1418 * in write mode as it is possible to call huge_pmd_unshare.
1419 */
1420 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1421 &range.end);
1422 }
1423 mmu_notifier_invalidate_range_start(&range);
1424
1425 while (page_vma_mapped_walk(&pvmw)) {
1426 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1427 /* PMD-mapped THP migration entry */
1428 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1429 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1430
1431 set_pmd_migration_entry(&pvmw, page);
1432 continue;
1433 }
1434 #endif
1435
1436 /*
1437 * If the page is mlock()d, we cannot swap it out.
1438 * If it's recently referenced (perhaps page_referenced
1439 * skipped over this mm) then we should reactivate it.
1440 */
1441 if (!(flags & TTU_IGNORE_MLOCK)) {
1442 if (vma->vm_flags & VM_LOCKED) {
1443 /* PTE-mapped THP are never mlocked */
1444 if (!PageTransCompound(page)) {
1445 /*
1446 * Holding pte lock, we do *not* need
1447 * mmap_lock here
1448 */
1449 mlock_vma_page(page);
1450 }
1451 ret = false;
1452 page_vma_mapped_walk_done(&pvmw);
1453 break;
1454 }
1455 if (flags & TTU_MUNLOCK)
1456 continue;
1457 }
1458
1459 /* Unexpected PMD-mapped THP? */
1460 VM_BUG_ON_PAGE(!pvmw.pte, page);
1461
1462 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1463 address = pvmw.address;
1464
1465 if (PageHuge(page)) {
1466 /*
1467 * To call huge_pmd_unshare, i_mmap_rwsem must be
1468 * held in write mode. Caller needs to explicitly
1469 * do this outside rmap routines.
1470 */
1471 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1472 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1473 /*
1474 * huge_pmd_unshare unmapped an entire PMD
1475 * page. There is no way of knowing exactly
1476 * which PMDs may be cached for this mm, so
1477 * we must flush them all. start/end were
1478 * already adjusted above to cover this range.
1479 */
1480 flush_cache_range(vma, range.start, range.end);
1481 flush_tlb_range(vma, range.start, range.end);
1482 mmu_notifier_invalidate_range(mm, range.start,
1483 range.end);
1484
1485 /*
1486 * The ref count of the PMD page was dropped
1487 * which is part of the way map counting
1488 * is done for shared PMDs. Return 'true'
1489 * here. When there is no other sharing,
1490 * huge_pmd_unshare returns false and we will
1491 * unmap the actual page and drop map count
1492 * to zero.
1493 */
1494 page_vma_mapped_walk_done(&pvmw);
1495 break;
1496 }
1497 }
1498
1499 if (IS_ENABLED(CONFIG_MIGRATION) &&
1500 (flags & TTU_MIGRATION) &&
1501 is_zone_device_page(page)) {
1502 swp_entry_t entry;
1503 pte_t swp_pte;
1504
1505 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1506
1507 /*
1508 * Store the pfn of the page in a special migration
1509 * pte. do_swap_page() will wait until the migration
1510 * pte is removed and then restart fault handling.
1511 */
1512 entry = make_migration_entry(page, 0);
1513 swp_pte = swp_entry_to_pte(entry);
1514 if (pte_soft_dirty(pteval))
1515 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1516 if (pte_uffd_wp(pteval))
1517 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1518 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1519 /*
1520 * No need to invalidate here it will synchronize on
1521 * against the special swap migration pte.
1522 *
1523 * The assignment to subpage above was computed from a
1524 * swap PTE which results in an invalid pointer.
1525 * Since only PAGE_SIZE pages can currently be
1526 * migrated, just set it to page. This will need to be
1527 * changed when hugepage migrations to device private
1528 * memory are supported.
1529 */
1530 subpage = page;
1531 goto discard;
1532 }
1533
1534 if (!(flags & TTU_IGNORE_ACCESS)) {
1535 if (ptep_clear_flush_young_notify(vma, address,
1536 pvmw.pte)) {
1537 ret = false;
1538 page_vma_mapped_walk_done(&pvmw);
1539 break;
1540 }
1541 }
1542
1543 /* Nuke the page table entry. */
1544 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1545 if (should_defer_flush(mm, flags)) {
1546 /*
1547 * We clear the PTE but do not flush so potentially
1548 * a remote CPU could still be writing to the page.
1549 * If the entry was previously clean then the
1550 * architecture must guarantee that a clear->dirty
1551 * transition on a cached TLB entry is written through
1552 * and traps if the PTE is unmapped.
1553 */
1554 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1555
1556 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1557 } else {
1558 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1559 }
1560
1561 /* Move the dirty bit to the page. Now the pte is gone. */
1562 if (pte_dirty(pteval))
1563 set_page_dirty(page);
1564
1565 /* Update high watermark before we lower rss */
1566 update_hiwater_rss(mm);
1567
1568 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1569 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1570 if (PageHuge(page)) {
1571 hugetlb_count_sub(compound_nr(page), mm);
1572 set_huge_swap_pte_at(mm, address,
1573 pvmw.pte, pteval,
1574 vma_mmu_pagesize(vma));
1575 } else {
1576 dec_mm_counter(mm, mm_counter(page));
1577 set_pte_at(mm, address, pvmw.pte, pteval);
1578 }
1579
1580 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1581 /*
1582 * The guest indicated that the page content is of no
1583 * interest anymore. Simply discard the pte, vmscan
1584 * will take care of the rest.
1585 * A future reference will then fault in a new zero
1586 * page. When userfaultfd is active, we must not drop
1587 * this page though, as its main user (postcopy
1588 * migration) will not expect userfaults on already
1589 * copied pages.
1590 */
1591 dec_mm_counter(mm, mm_counter(page));
1592 /* We have to invalidate as we cleared the pte */
1593 mmu_notifier_invalidate_range(mm, address,
1594 address + PAGE_SIZE);
1595 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1596 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1597 swp_entry_t entry;
1598 pte_t swp_pte;
1599
1600 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1601 set_pte_at(mm, address, pvmw.pte, pteval);
1602 ret = false;
1603 page_vma_mapped_walk_done(&pvmw);
1604 break;
1605 }
1606
1607 /*
1608 * Store the pfn of the page in a special migration
1609 * pte. do_swap_page() will wait until the migration
1610 * pte is removed and then restart fault handling.
1611 */
1612 entry = make_migration_entry(subpage,
1613 pte_write(pteval));
1614 swp_pte = swp_entry_to_pte(entry);
1615 if (pte_soft_dirty(pteval))
1616 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1617 if (pte_uffd_wp(pteval))
1618 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1619 set_pte_at(mm, address, pvmw.pte, swp_pte);
1620 /*
1621 * No need to invalidate here it will synchronize on
1622 * against the special swap migration pte.
1623 */
1624 } else if (PageAnon(page)) {
1625 swp_entry_t entry = { .val = page_private(subpage) };
1626 pte_t swp_pte;
1627 /*
1628 * Store the swap location in the pte.
1629 * See handle_pte_fault() ...
1630 */
1631 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1632 WARN_ON_ONCE(1);
1633 ret = false;
1634 /* We have to invalidate as we cleared the pte */
1635 mmu_notifier_invalidate_range(mm, address,
1636 address + PAGE_SIZE);
1637 page_vma_mapped_walk_done(&pvmw);
1638 break;
1639 }
1640
1641 /* MADV_FREE page check */
1642 if (!PageSwapBacked(page)) {
1643 if (!PageDirty(page)) {
1644 /* Invalidate as we cleared the pte */
1645 mmu_notifier_invalidate_range(mm,
1646 address, address + PAGE_SIZE);
1647 dec_mm_counter(mm, MM_ANONPAGES);
1648 goto discard;
1649 }
1650
1651 /*
1652 * If the page was redirtied, it cannot be
1653 * discarded. Remap the page to page table.
1654 */
1655 set_pte_at(mm, address, pvmw.pte, pteval);
1656 SetPageSwapBacked(page);
1657 ret = false;
1658 page_vma_mapped_walk_done(&pvmw);
1659 break;
1660 }
1661
1662 if (swap_duplicate(entry) < 0) {
1663 set_pte_at(mm, address, pvmw.pte, pteval);
1664 ret = false;
1665 page_vma_mapped_walk_done(&pvmw);
1666 break;
1667 }
1668 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1669 set_pte_at(mm, address, pvmw.pte, pteval);
1670 ret = false;
1671 page_vma_mapped_walk_done(&pvmw);
1672 break;
1673 }
1674 if (list_empty(&mm->mmlist)) {
1675 spin_lock(&mmlist_lock);
1676 if (list_empty(&mm->mmlist))
1677 list_add(&mm->mmlist, &init_mm.mmlist);
1678 spin_unlock(&mmlist_lock);
1679 }
1680 dec_mm_counter(mm, MM_ANONPAGES);
1681 inc_mm_counter(mm, MM_SWAPENTS);
1682 swp_pte = swp_entry_to_pte(entry);
1683 if (pte_soft_dirty(pteval))
1684 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1685 if (pte_uffd_wp(pteval))
1686 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1687 set_pte_at(mm, address, pvmw.pte, swp_pte);
1688 /* Invalidate as we cleared the pte */
1689 mmu_notifier_invalidate_range(mm, address,
1690 address + PAGE_SIZE);
1691 } else {
1692 /*
1693 * This is a locked file-backed page, thus it cannot
1694 * be removed from the page cache and replaced by a new
1695 * page before mmu_notifier_invalidate_range_end, so no
1696 * concurrent thread might update its page table to
1697 * point at new page while a device still is using this
1698 * page.
1699 *
1700 * See Documentation/vm/mmu_notifier.rst
1701 */
1702 dec_mm_counter(mm, mm_counter_file(page));
1703 }
1704 discard:
1705 /*
1706 * No need to call mmu_notifier_invalidate_range() it has be
1707 * done above for all cases requiring it to happen under page
1708 * table lock before mmu_notifier_invalidate_range_end()
1709 *
1710 * See Documentation/vm/mmu_notifier.rst
1711 */
1712 page_remove_rmap(subpage, PageHuge(page));
1713 put_page(page);
1714 }
1715
1716 mmu_notifier_invalidate_range_end(&range);
1717
1718 return ret;
1719 }
1720
1721 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1722 {
1723 return vma_is_temporary_stack(vma);
1724 }
1725
1726 static int page_mapcount_is_zero(struct page *page)
1727 {
1728 return !total_mapcount(page);
1729 }
1730
1731 /**
1732 * try_to_unmap - try to remove all page table mappings to a page
1733 * @page: the page to get unmapped
1734 * @flags: action and flags
1735 *
1736 * Tries to remove all the page table entries which are mapping this
1737 * page, used in the pageout path. Caller must hold the page lock.
1738 *
1739 * If unmap is successful, return true. Otherwise, false.
1740 */
1741 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1742 {
1743 struct rmap_walk_control rwc = {
1744 .rmap_one = try_to_unmap_one,
1745 .arg = (void *)flags,
1746 .done = page_mapcount_is_zero,
1747 .anon_lock = page_lock_anon_vma_read,
1748 };
1749
1750 /*
1751 * During exec, a temporary VMA is setup and later moved.
1752 * The VMA is moved under the anon_vma lock but not the
1753 * page tables leading to a race where migration cannot
1754 * find the migration ptes. Rather than increasing the
1755 * locking requirements of exec(), migration skips
1756 * temporary VMAs until after exec() completes.
1757 */
1758 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1759 && !PageKsm(page) && PageAnon(page))
1760 rwc.invalid_vma = invalid_migration_vma;
1761
1762 if (flags & TTU_RMAP_LOCKED)
1763 rmap_walk_locked(page, &rwc);
1764 else
1765 rmap_walk(page, &rwc);
1766
1767 return !page_mapcount(page) ? true : false;
1768 }
1769
1770 static int page_not_mapped(struct page *page)
1771 {
1772 return !page_mapped(page);
1773 };
1774
1775 /**
1776 * try_to_munlock - try to munlock a page
1777 * @page: the page to be munlocked
1778 *
1779 * Called from munlock code. Checks all of the VMAs mapping the page
1780 * to make sure nobody else has this page mlocked. The page will be
1781 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1782 */
1783
1784 void try_to_munlock(struct page *page)
1785 {
1786 struct rmap_walk_control rwc = {
1787 .rmap_one = try_to_unmap_one,
1788 .arg = (void *)TTU_MUNLOCK,
1789 .done = page_not_mapped,
1790 .anon_lock = page_lock_anon_vma_read,
1791
1792 };
1793
1794 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1795 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1796
1797 rmap_walk(page, &rwc);
1798 }
1799
1800 void __put_anon_vma(struct anon_vma *anon_vma)
1801 {
1802 struct anon_vma *root = anon_vma->root;
1803
1804 anon_vma_free(anon_vma);
1805 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1806 anon_vma_free(root);
1807 }
1808
1809 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1810 struct rmap_walk_control *rwc)
1811 {
1812 struct anon_vma *anon_vma;
1813
1814 if (rwc->anon_lock)
1815 return rwc->anon_lock(page);
1816
1817 /*
1818 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1819 * because that depends on page_mapped(); but not all its usages
1820 * are holding mmap_lock. Users without mmap_lock are required to
1821 * take a reference count to prevent the anon_vma disappearing
1822 */
1823 anon_vma = page_anon_vma(page);
1824 if (!anon_vma)
1825 return NULL;
1826
1827 anon_vma_lock_read(anon_vma);
1828 return anon_vma;
1829 }
1830
1831 /*
1832 * rmap_walk_anon - do something to anonymous page using the object-based
1833 * rmap method
1834 * @page: the page to be handled
1835 * @rwc: control variable according to each walk type
1836 *
1837 * Find all the mappings of a page using the mapping pointer and the vma chains
1838 * contained in the anon_vma struct it points to.
1839 *
1840 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1841 * where the page was found will be held for write. So, we won't recheck
1842 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1843 * LOCKED.
1844 */
1845 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1846 bool locked)
1847 {
1848 struct anon_vma *anon_vma;
1849 pgoff_t pgoff_start, pgoff_end;
1850 struct anon_vma_chain *avc;
1851
1852 if (locked) {
1853 anon_vma = page_anon_vma(page);
1854 /* anon_vma disappear under us? */
1855 VM_BUG_ON_PAGE(!anon_vma, page);
1856 } else {
1857 anon_vma = rmap_walk_anon_lock(page, rwc);
1858 }
1859 if (!anon_vma)
1860 return;
1861
1862 pgoff_start = page_to_pgoff(page);
1863 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1864 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1865 pgoff_start, pgoff_end) {
1866 struct vm_area_struct *vma = avc->vma;
1867 unsigned long address = vma_address(page, vma);
1868
1869 cond_resched();
1870
1871 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1872 continue;
1873
1874 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1875 break;
1876 if (rwc->done && rwc->done(page))
1877 break;
1878 }
1879
1880 if (!locked)
1881 anon_vma_unlock_read(anon_vma);
1882 }
1883
1884 /*
1885 * rmap_walk_file - do something to file page using the object-based rmap method
1886 * @page: the page to be handled
1887 * @rwc: control variable according to each walk type
1888 *
1889 * Find all the mappings of a page using the mapping pointer and the vma chains
1890 * contained in the address_space struct it points to.
1891 *
1892 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1893 * where the page was found will be held for write. So, we won't recheck
1894 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1895 * LOCKED.
1896 */
1897 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1898 bool locked)
1899 {
1900 struct address_space *mapping = page_mapping(page);
1901 pgoff_t pgoff_start, pgoff_end;
1902 struct vm_area_struct *vma;
1903
1904 /*
1905 * The page lock not only makes sure that page->mapping cannot
1906 * suddenly be NULLified by truncation, it makes sure that the
1907 * structure at mapping cannot be freed and reused yet,
1908 * so we can safely take mapping->i_mmap_rwsem.
1909 */
1910 VM_BUG_ON_PAGE(!PageLocked(page), page);
1911
1912 if (!mapping)
1913 return;
1914
1915 pgoff_start = page_to_pgoff(page);
1916 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1917 if (!locked)
1918 i_mmap_lock_read(mapping);
1919 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1920 pgoff_start, pgoff_end) {
1921 unsigned long address = vma_address(page, vma);
1922
1923 cond_resched();
1924
1925 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1926 continue;
1927
1928 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1929 goto done;
1930 if (rwc->done && rwc->done(page))
1931 goto done;
1932 }
1933
1934 done:
1935 if (!locked)
1936 i_mmap_unlock_read(mapping);
1937 }
1938
1939 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1940 {
1941 if (unlikely(PageKsm(page)))
1942 rmap_walk_ksm(page, rwc);
1943 else if (PageAnon(page))
1944 rmap_walk_anon(page, rwc, false);
1945 else
1946 rmap_walk_file(page, rwc, false);
1947 }
1948
1949 /* Like rmap_walk, but caller holds relevant rmap lock */
1950 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1951 {
1952 /* no ksm support for now */
1953 VM_BUG_ON_PAGE(PageKsm(page), page);
1954 if (PageAnon(page))
1955 rmap_walk_anon(page, rwc, true);
1956 else
1957 rmap_walk_file(page, rwc, true);
1958 }
1959
1960 #ifdef CONFIG_HUGETLB_PAGE
1961 /*
1962 * The following two functions are for anonymous (private mapped) hugepages.
1963 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1964 * and no lru code, because we handle hugepages differently from common pages.
1965 */
1966 void hugepage_add_anon_rmap(struct page *page,
1967 struct vm_area_struct *vma, unsigned long address)
1968 {
1969 struct anon_vma *anon_vma = vma->anon_vma;
1970 int first;
1971
1972 BUG_ON(!PageLocked(page));
1973 BUG_ON(!anon_vma);
1974 /* address might be in next vma when migration races vma_adjust */
1975 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1976 if (first)
1977 __page_set_anon_rmap(page, vma, address, 0);
1978 }
1979
1980 void hugepage_add_new_anon_rmap(struct page *page,
1981 struct vm_area_struct *vma, unsigned long address)
1982 {
1983 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1984 atomic_set(compound_mapcount_ptr(page), 0);
1985 if (hpage_pincount_available(page))
1986 atomic_set(compound_pincount_ptr(page), 0);
1987
1988 __page_set_anon_rmap(page, vma, address, 1);
1989 }
1990 #endif /* CONFIG_HUGETLB_PAGE */