]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/rmap.c
netfilter: nft_exthdr: check for IPv6 packet before further processing
[mirror_ubuntu-jammy-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in lock_page_lruvec_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
52 */
53
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/tlb.h>
79
80 #include "internal.h"
81
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 struct anon_vma *anon_vma;
88
89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 if (anon_vma) {
91 atomic_set(&anon_vma->refcount, 1);
92 anon_vma->degree = 1; /* Reference for first vma */
93 anon_vma->parent = anon_vma;
94 /*
95 * Initialise the anon_vma root to point to itself. If called
96 * from fork, the root will be reset to the parents anon_vma.
97 */
98 anon_vma->root = anon_vma;
99 }
100
101 return anon_vma;
102 }
103
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 VM_BUG_ON(atomic_read(&anon_vma->refcount));
107
108 /*
109 * Synchronize against page_lock_anon_vma_read() such that
110 * we can safely hold the lock without the anon_vma getting
111 * freed.
112 *
113 * Relies on the full mb implied by the atomic_dec_and_test() from
114 * put_anon_vma() against the acquire barrier implied by
115 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 *
117 * page_lock_anon_vma_read() VS put_anon_vma()
118 * down_read_trylock() atomic_dec_and_test()
119 * LOCK MB
120 * atomic_read() rwsem_is_locked()
121 *
122 * LOCK should suffice since the actual taking of the lock must
123 * happen _before_ what follows.
124 */
125 might_sleep();
126 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 anon_vma_lock_write(anon_vma);
128 anon_vma_unlock_write(anon_vma);
129 }
130
131 kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 struct anon_vma_chain *avc,
146 struct anon_vma *anon_vma)
147 {
148 avc->vma = vma;
149 avc->anon_vma = anon_vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153
154 /**
155 * __anon_vma_prepare - attach an anon_vma to a memory region
156 * @vma: the memory region in question
157 *
158 * This makes sure the memory mapping described by 'vma' has
159 * an 'anon_vma' attached to it, so that we can associate the
160 * anonymous pages mapped into it with that anon_vma.
161 *
162 * The common case will be that we already have one, which
163 * is handled inline by anon_vma_prepare(). But if
164 * not we either need to find an adjacent mapping that we
165 * can re-use the anon_vma from (very common when the only
166 * reason for splitting a vma has been mprotect()), or we
167 * allocate a new one.
168 *
169 * Anon-vma allocations are very subtle, because we may have
170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171 * and that may actually touch the rwsem even in the newly
172 * allocated vma (it depends on RCU to make sure that the
173 * anon_vma isn't actually destroyed).
174 *
175 * As a result, we need to do proper anon_vma locking even
176 * for the new allocation. At the same time, we do not want
177 * to do any locking for the common case of already having
178 * an anon_vma.
179 *
180 * This must be called with the mmap_lock held for reading.
181 */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 struct mm_struct *mm = vma->vm_mm;
185 struct anon_vma *anon_vma, *allocated;
186 struct anon_vma_chain *avc;
187
188 might_sleep();
189
190 avc = anon_vma_chain_alloc(GFP_KERNEL);
191 if (!avc)
192 goto out_enomem;
193
194 anon_vma = find_mergeable_anon_vma(vma);
195 allocated = NULL;
196 if (!anon_vma) {
197 anon_vma = anon_vma_alloc();
198 if (unlikely(!anon_vma))
199 goto out_enomem_free_avc;
200 allocated = anon_vma;
201 }
202
203 anon_vma_lock_write(anon_vma);
204 /* page_table_lock to protect against threads */
205 spin_lock(&mm->page_table_lock);
206 if (likely(!vma->anon_vma)) {
207 vma->anon_vma = anon_vma;
208 anon_vma_chain_link(vma, avc, anon_vma);
209 /* vma reference or self-parent link for new root */
210 anon_vma->degree++;
211 allocated = NULL;
212 avc = NULL;
213 }
214 spin_unlock(&mm->page_table_lock);
215 anon_vma_unlock_write(anon_vma);
216
217 if (unlikely(allocated))
218 put_anon_vma(allocated);
219 if (unlikely(avc))
220 anon_vma_chain_free(avc);
221
222 return 0;
223
224 out_enomem_free_avc:
225 anon_vma_chain_free(avc);
226 out_enomem:
227 return -ENOMEM;
228 }
229
230 /*
231 * This is a useful helper function for locking the anon_vma root as
232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233 * have the same vma.
234 *
235 * Such anon_vma's should have the same root, so you'd expect to see
236 * just a single mutex_lock for the whole traversal.
237 */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 struct anon_vma *new_root = anon_vma->root;
241 if (new_root != root) {
242 if (WARN_ON_ONCE(root))
243 up_write(&root->rwsem);
244 root = new_root;
245 down_write(&root->rwsem);
246 }
247 return root;
248 }
249
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 if (root)
253 up_write(&root->rwsem);
254 }
255
256 /*
257 * Attach the anon_vmas from src to dst.
258 * Returns 0 on success, -ENOMEM on failure.
259 *
260 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
261 * anon_vma_fork(). The first three want an exact copy of src, while the last
262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265 *
266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
269 * case of constantly forking task. On the other hand, an anon_vma with more
270 * than one child isn't reused even if there was no alive vma, thus rmap
271 * walker has a good chance of avoiding scanning the whole hierarchy when it
272 * searches where page is mapped.
273 */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 struct anon_vma_chain *avc, *pavc;
277 struct anon_vma *root = NULL;
278
279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 struct anon_vma *anon_vma;
281
282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 if (unlikely(!avc)) {
284 unlock_anon_vma_root(root);
285 root = NULL;
286 avc = anon_vma_chain_alloc(GFP_KERNEL);
287 if (!avc)
288 goto enomem_failure;
289 }
290 anon_vma = pavc->anon_vma;
291 root = lock_anon_vma_root(root, anon_vma);
292 anon_vma_chain_link(dst, avc, anon_vma);
293
294 /*
295 * Reuse existing anon_vma if its degree lower than two,
296 * that means it has no vma and only one anon_vma child.
297 *
298 * Do not chose parent anon_vma, otherwise first child
299 * will always reuse it. Root anon_vma is never reused:
300 * it has self-parent reference and at least one child.
301 */
302 if (!dst->anon_vma && src->anon_vma &&
303 anon_vma != src->anon_vma && anon_vma->degree < 2)
304 dst->anon_vma = anon_vma;
305 }
306 if (dst->anon_vma)
307 dst->anon_vma->degree++;
308 unlock_anon_vma_root(root);
309 return 0;
310
311 enomem_failure:
312 /*
313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 * decremented in unlink_anon_vmas().
315 * We can safely do this because callers of anon_vma_clone() don't care
316 * about dst->anon_vma if anon_vma_clone() failed.
317 */
318 dst->anon_vma = NULL;
319 unlink_anon_vmas(dst);
320 return -ENOMEM;
321 }
322
323 /*
324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
325 * the corresponding VMA in the parent process is attached to.
326 * Returns 0 on success, non-zero on failure.
327 */
328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329 {
330 struct anon_vma_chain *avc;
331 struct anon_vma *anon_vma;
332 int error;
333
334 /* Don't bother if the parent process has no anon_vma here. */
335 if (!pvma->anon_vma)
336 return 0;
337
338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 vma->anon_vma = NULL;
340
341 /*
342 * First, attach the new VMA to the parent VMA's anon_vmas,
343 * so rmap can find non-COWed pages in child processes.
344 */
345 error = anon_vma_clone(vma, pvma);
346 if (error)
347 return error;
348
349 /* An existing anon_vma has been reused, all done then. */
350 if (vma->anon_vma)
351 return 0;
352
353 /* Then add our own anon_vma. */
354 anon_vma = anon_vma_alloc();
355 if (!anon_vma)
356 goto out_error;
357 avc = anon_vma_chain_alloc(GFP_KERNEL);
358 if (!avc)
359 goto out_error_free_anon_vma;
360
361 /*
362 * The root anon_vma's rwsem is the lock actually used when we
363 * lock any of the anon_vmas in this anon_vma tree.
364 */
365 anon_vma->root = pvma->anon_vma->root;
366 anon_vma->parent = pvma->anon_vma;
367 /*
368 * With refcounts, an anon_vma can stay around longer than the
369 * process it belongs to. The root anon_vma needs to be pinned until
370 * this anon_vma is freed, because the lock lives in the root.
371 */
372 get_anon_vma(anon_vma->root);
373 /* Mark this anon_vma as the one where our new (COWed) pages go. */
374 vma->anon_vma = anon_vma;
375 anon_vma_lock_write(anon_vma);
376 anon_vma_chain_link(vma, avc, anon_vma);
377 anon_vma->parent->degree++;
378 anon_vma_unlock_write(anon_vma);
379
380 return 0;
381
382 out_error_free_anon_vma:
383 put_anon_vma(anon_vma);
384 out_error:
385 unlink_anon_vmas(vma);
386 return -ENOMEM;
387 }
388
389 void unlink_anon_vmas(struct vm_area_struct *vma)
390 {
391 struct anon_vma_chain *avc, *next;
392 struct anon_vma *root = NULL;
393
394 /*
395 * Unlink each anon_vma chained to the VMA. This list is ordered
396 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 */
398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 struct anon_vma *anon_vma = avc->anon_vma;
400
401 root = lock_anon_vma_root(root, anon_vma);
402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403
404 /*
405 * Leave empty anon_vmas on the list - we'll need
406 * to free them outside the lock.
407 */
408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 anon_vma->parent->degree--;
410 continue;
411 }
412
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
416 if (vma->anon_vma) {
417 vma->anon_vma->degree--;
418
419 /*
420 * vma would still be needed after unlink, and anon_vma will be prepared
421 * when handle fault.
422 */
423 vma->anon_vma = NULL;
424 }
425 unlock_anon_vma_root(root);
426
427 /*
428 * Iterate the list once more, it now only contains empty and unlinked
429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
430 * needing to write-acquire the anon_vma->root->rwsem.
431 */
432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 struct anon_vma *anon_vma = avc->anon_vma;
434
435 VM_WARN_ON(anon_vma->degree);
436 put_anon_vma(anon_vma);
437
438 list_del(&avc->same_vma);
439 anon_vma_chain_free(avc);
440 }
441 }
442
443 static void anon_vma_ctor(void *data)
444 {
445 struct anon_vma *anon_vma = data;
446
447 init_rwsem(&anon_vma->rwsem);
448 atomic_set(&anon_vma->refcount, 0);
449 anon_vma->rb_root = RB_ROOT_CACHED;
450 }
451
452 void __init anon_vma_init(void)
453 {
454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
456 anon_vma_ctor);
457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 SLAB_PANIC|SLAB_ACCOUNT);
459 }
460
461 /*
462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463 *
464 * Since there is no serialization what so ever against page_remove_rmap()
465 * the best this function can do is return a refcount increased anon_vma
466 * that might have been relevant to this page.
467 *
468 * The page might have been remapped to a different anon_vma or the anon_vma
469 * returned may already be freed (and even reused).
470 *
471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473 * ensure that any anon_vma obtained from the page will still be valid for as
474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475 *
476 * All users of this function must be very careful when walking the anon_vma
477 * chain and verify that the page in question is indeed mapped in it
478 * [ something equivalent to page_mapped_in_vma() ].
479 *
480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482 * if there is a mapcount, we can dereference the anon_vma after observing
483 * those.
484 */
485 struct anon_vma *page_get_anon_vma(struct page *page)
486 {
487 struct anon_vma *anon_vma = NULL;
488 unsigned long anon_mapping;
489
490 rcu_read_lock();
491 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 goto out;
494 if (!page_mapped(page))
495 goto out;
496
497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
498 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 anon_vma = NULL;
500 goto out;
501 }
502
503 /*
504 * If this page is still mapped, then its anon_vma cannot have been
505 * freed. But if it has been unmapped, we have no security against the
506 * anon_vma structure being freed and reused (for another anon_vma:
507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
508 * above cannot corrupt).
509 */
510 if (!page_mapped(page)) {
511 rcu_read_unlock();
512 put_anon_vma(anon_vma);
513 return NULL;
514 }
515 out:
516 rcu_read_unlock();
517
518 return anon_vma;
519 }
520
521 /*
522 * Similar to page_get_anon_vma() except it locks the anon_vma.
523 *
524 * Its a little more complex as it tries to keep the fast path to a single
525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526 * reference like with page_get_anon_vma() and then block on the mutex.
527 */
528 struct anon_vma *page_lock_anon_vma_read(struct page *page)
529 {
530 struct anon_vma *anon_vma = NULL;
531 struct anon_vma *root_anon_vma;
532 unsigned long anon_mapping;
533
534 rcu_read_lock();
535 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 goto out;
538 if (!page_mapped(page))
539 goto out;
540
541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
542 root_anon_vma = READ_ONCE(anon_vma->root);
543 if (down_read_trylock(&root_anon_vma->rwsem)) {
544 /*
545 * If the page is still mapped, then this anon_vma is still
546 * its anon_vma, and holding the mutex ensures that it will
547 * not go away, see anon_vma_free().
548 */
549 if (!page_mapped(page)) {
550 up_read(&root_anon_vma->rwsem);
551 anon_vma = NULL;
552 }
553 goto out;
554 }
555
556 /* trylock failed, we got to sleep */
557 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 anon_vma = NULL;
559 goto out;
560 }
561
562 if (!page_mapped(page)) {
563 rcu_read_unlock();
564 put_anon_vma(anon_vma);
565 return NULL;
566 }
567
568 /* we pinned the anon_vma, its safe to sleep */
569 rcu_read_unlock();
570 anon_vma_lock_read(anon_vma);
571
572 if (atomic_dec_and_test(&anon_vma->refcount)) {
573 /*
574 * Oops, we held the last refcount, release the lock
575 * and bail -- can't simply use put_anon_vma() because
576 * we'll deadlock on the anon_vma_lock_write() recursion.
577 */
578 anon_vma_unlock_read(anon_vma);
579 __put_anon_vma(anon_vma);
580 anon_vma = NULL;
581 }
582
583 return anon_vma;
584
585 out:
586 rcu_read_unlock();
587 return anon_vma;
588 }
589
590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
591 {
592 anon_vma_unlock_read(anon_vma);
593 }
594
595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
596 /*
597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598 * important if a PTE was dirty when it was unmapped that it's flushed
599 * before any IO is initiated on the page to prevent lost writes. Similarly,
600 * it must be flushed before freeing to prevent data leakage.
601 */
602 void try_to_unmap_flush(void)
603 {
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
606 if (!tlb_ubc->flush_required)
607 return;
608
609 arch_tlbbatch_flush(&tlb_ubc->arch);
610 tlb_ubc->flush_required = false;
611 tlb_ubc->writable = false;
612 }
613
614 /* Flush iff there are potentially writable TLB entries that can race with IO */
615 void try_to_unmap_flush_dirty(void)
616 {
617 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618
619 if (tlb_ubc->writable)
620 try_to_unmap_flush();
621 }
622
623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
624 {
625 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626
627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
628 tlb_ubc->flush_required = true;
629
630 /*
631 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 * before the PTE is cleared.
633 */
634 barrier();
635 mm->tlb_flush_batched = true;
636
637 /*
638 * If the PTE was dirty then it's best to assume it's writable. The
639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 * before the page is queued for IO.
641 */
642 if (writable)
643 tlb_ubc->writable = true;
644 }
645
646 /*
647 * Returns true if the TLB flush should be deferred to the end of a batch of
648 * unmap operations to reduce IPIs.
649 */
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651 {
652 bool should_defer = false;
653
654 if (!(flags & TTU_BATCH_FLUSH))
655 return false;
656
657 /* If remote CPUs need to be flushed then defer batch the flush */
658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 should_defer = true;
660 put_cpu();
661
662 return should_defer;
663 }
664
665 /*
666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668 * operation such as mprotect or munmap to race between reclaim unmapping
669 * the page and flushing the page. If this race occurs, it potentially allows
670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
671 * batching in flight would be expensive during reclaim so instead track
672 * whether TLB batching occurred in the past and if so then do a flush here
673 * if required. This will cost one additional flush per reclaim cycle paid
674 * by the first operation at risk such as mprotect and mumap.
675 *
676 * This must be called under the PTL so that an access to tlb_flush_batched
677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678 * via the PTL.
679 */
680 void flush_tlb_batched_pending(struct mm_struct *mm)
681 {
682 if (data_race(mm->tlb_flush_batched)) {
683 flush_tlb_mm(mm);
684
685 /*
686 * Do not allow the compiler to re-order the clearing of
687 * tlb_flush_batched before the tlb is flushed.
688 */
689 barrier();
690 mm->tlb_flush_batched = false;
691 }
692 }
693 #else
694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
695 {
696 }
697
698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699 {
700 return false;
701 }
702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703
704 /*
705 * At what user virtual address is page expected in vma?
706 * Caller should check the page is actually part of the vma.
707 */
708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709 {
710 unsigned long address;
711 if (PageAnon(page)) {
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
713 /*
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
716 */
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
719 return -EFAULT;
720 } else if (page->mapping) {
721 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
722 return -EFAULT;
723 } else
724 return -EFAULT;
725 address = __vma_address(page, vma);
726 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
727 return -EFAULT;
728 return address;
729 }
730
731 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
732 {
733 pgd_t *pgd;
734 p4d_t *p4d;
735 pud_t *pud;
736 pmd_t *pmd = NULL;
737 pmd_t pmde;
738
739 pgd = pgd_offset(mm, address);
740 if (!pgd_present(*pgd))
741 goto out;
742
743 p4d = p4d_offset(pgd, address);
744 if (!p4d_present(*p4d))
745 goto out;
746
747 pud = pud_offset(p4d, address);
748 if (!pud_present(*pud))
749 goto out;
750
751 pmd = pmd_offset(pud, address);
752 /*
753 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
754 * without holding anon_vma lock for write. So when looking for a
755 * genuine pmde (in which to find pte), test present and !THP together.
756 */
757 pmde = *pmd;
758 barrier();
759 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
760 pmd = NULL;
761 out:
762 return pmd;
763 }
764
765 struct page_referenced_arg {
766 int mapcount;
767 int referenced;
768 unsigned long vm_flags;
769 struct mem_cgroup *memcg;
770 };
771 /*
772 * arg: page_referenced_arg will be passed
773 */
774 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
775 unsigned long address, void *arg)
776 {
777 struct page_referenced_arg *pra = arg;
778 struct page_vma_mapped_walk pvmw = {
779 .page = page,
780 .vma = vma,
781 .address = address,
782 };
783 int referenced = 0;
784
785 while (page_vma_mapped_walk(&pvmw)) {
786 address = pvmw.address;
787
788 if (vma->vm_flags & VM_LOCKED) {
789 page_vma_mapped_walk_done(&pvmw);
790 pra->vm_flags |= VM_LOCKED;
791 return false; /* To break the loop */
792 }
793
794 if (pvmw.pte) {
795 if (ptep_clear_flush_young_notify(vma, address,
796 pvmw.pte)) {
797 /*
798 * Don't treat a reference through
799 * a sequentially read mapping as such.
800 * If the page has been used in another mapping,
801 * we will catch it; if this other mapping is
802 * already gone, the unmap path will have set
803 * PG_referenced or activated the page.
804 */
805 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
806 referenced++;
807 }
808 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
809 if (pmdp_clear_flush_young_notify(vma, address,
810 pvmw.pmd))
811 referenced++;
812 } else {
813 /* unexpected pmd-mapped page? */
814 WARN_ON_ONCE(1);
815 }
816
817 pra->mapcount--;
818 }
819
820 if (referenced)
821 clear_page_idle(page);
822 if (test_and_clear_page_young(page))
823 referenced++;
824
825 if (referenced) {
826 pra->referenced++;
827 pra->vm_flags |= vma->vm_flags;
828 }
829
830 if (!pra->mapcount)
831 return false; /* To break the loop */
832
833 return true;
834 }
835
836 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
837 {
838 struct page_referenced_arg *pra = arg;
839 struct mem_cgroup *memcg = pra->memcg;
840
841 if (!mm_match_cgroup(vma->vm_mm, memcg))
842 return true;
843
844 return false;
845 }
846
847 /**
848 * page_referenced - test if the page was referenced
849 * @page: the page to test
850 * @is_locked: caller holds lock on the page
851 * @memcg: target memory cgroup
852 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
853 *
854 * Quick test_and_clear_referenced for all mappings to a page,
855 * returns the number of ptes which referenced the page.
856 */
857 int page_referenced(struct page *page,
858 int is_locked,
859 struct mem_cgroup *memcg,
860 unsigned long *vm_flags)
861 {
862 int we_locked = 0;
863 struct page_referenced_arg pra = {
864 .mapcount = total_mapcount(page),
865 .memcg = memcg,
866 };
867 struct rmap_walk_control rwc = {
868 .rmap_one = page_referenced_one,
869 .arg = (void *)&pra,
870 .anon_lock = page_lock_anon_vma_read,
871 };
872
873 *vm_flags = 0;
874 if (!pra.mapcount)
875 return 0;
876
877 if (!page_rmapping(page))
878 return 0;
879
880 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
881 we_locked = trylock_page(page);
882 if (!we_locked)
883 return 1;
884 }
885
886 /*
887 * If we are reclaiming on behalf of a cgroup, skip
888 * counting on behalf of references from different
889 * cgroups
890 */
891 if (memcg) {
892 rwc.invalid_vma = invalid_page_referenced_vma;
893 }
894
895 rmap_walk(page, &rwc);
896 *vm_flags = pra.vm_flags;
897
898 if (we_locked)
899 unlock_page(page);
900
901 return pra.referenced;
902 }
903
904 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
905 unsigned long address, void *arg)
906 {
907 struct page_vma_mapped_walk pvmw = {
908 .page = page,
909 .vma = vma,
910 .address = address,
911 .flags = PVMW_SYNC,
912 };
913 struct mmu_notifier_range range;
914 int *cleaned = arg;
915
916 /*
917 * We have to assume the worse case ie pmd for invalidation. Note that
918 * the page can not be free from this function.
919 */
920 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
921 0, vma, vma->vm_mm, address,
922 min(vma->vm_end, address + page_size(page)));
923 mmu_notifier_invalidate_range_start(&range);
924
925 while (page_vma_mapped_walk(&pvmw)) {
926 int ret = 0;
927
928 address = pvmw.address;
929 if (pvmw.pte) {
930 pte_t entry;
931 pte_t *pte = pvmw.pte;
932
933 if (!pte_dirty(*pte) && !pte_write(*pte))
934 continue;
935
936 flush_cache_page(vma, address, pte_pfn(*pte));
937 entry = ptep_clear_flush(vma, address, pte);
938 entry = pte_wrprotect(entry);
939 entry = pte_mkclean(entry);
940 set_pte_at(vma->vm_mm, address, pte, entry);
941 ret = 1;
942 } else {
943 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
944 pmd_t *pmd = pvmw.pmd;
945 pmd_t entry;
946
947 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
948 continue;
949
950 flush_cache_page(vma, address, page_to_pfn(page));
951 entry = pmdp_invalidate(vma, address, pmd);
952 entry = pmd_wrprotect(entry);
953 entry = pmd_mkclean(entry);
954 set_pmd_at(vma->vm_mm, address, pmd, entry);
955 ret = 1;
956 #else
957 /* unexpected pmd-mapped page? */
958 WARN_ON_ONCE(1);
959 #endif
960 }
961
962 /*
963 * No need to call mmu_notifier_invalidate_range() as we are
964 * downgrading page table protection not changing it to point
965 * to a new page.
966 *
967 * See Documentation/vm/mmu_notifier.rst
968 */
969 if (ret)
970 (*cleaned)++;
971 }
972
973 mmu_notifier_invalidate_range_end(&range);
974
975 return true;
976 }
977
978 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
979 {
980 if (vma->vm_flags & VM_SHARED)
981 return false;
982
983 return true;
984 }
985
986 int page_mkclean(struct page *page)
987 {
988 int cleaned = 0;
989 struct address_space *mapping;
990 struct rmap_walk_control rwc = {
991 .arg = (void *)&cleaned,
992 .rmap_one = page_mkclean_one,
993 .invalid_vma = invalid_mkclean_vma,
994 };
995
996 BUG_ON(!PageLocked(page));
997
998 if (!page_mapped(page))
999 return 0;
1000
1001 mapping = page_mapping(page);
1002 if (!mapping)
1003 return 0;
1004
1005 rmap_walk(page, &rwc);
1006
1007 return cleaned;
1008 }
1009 EXPORT_SYMBOL_GPL(page_mkclean);
1010
1011 /**
1012 * page_move_anon_rmap - move a page to our anon_vma
1013 * @page: the page to move to our anon_vma
1014 * @vma: the vma the page belongs to
1015 *
1016 * When a page belongs exclusively to one process after a COW event,
1017 * that page can be moved into the anon_vma that belongs to just that
1018 * process, so the rmap code will not search the parent or sibling
1019 * processes.
1020 */
1021 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1022 {
1023 struct anon_vma *anon_vma = vma->anon_vma;
1024
1025 page = compound_head(page);
1026
1027 VM_BUG_ON_PAGE(!PageLocked(page), page);
1028 VM_BUG_ON_VMA(!anon_vma, vma);
1029
1030 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1031 /*
1032 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033 * simultaneously, so a concurrent reader (eg page_referenced()'s
1034 * PageAnon()) will not see one without the other.
1035 */
1036 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1037 }
1038
1039 /**
1040 * __page_set_anon_rmap - set up new anonymous rmap
1041 * @page: Page or Hugepage to add to rmap
1042 * @vma: VM area to add page to.
1043 * @address: User virtual address of the mapping
1044 * @exclusive: the page is exclusively owned by the current process
1045 */
1046 static void __page_set_anon_rmap(struct page *page,
1047 struct vm_area_struct *vma, unsigned long address, int exclusive)
1048 {
1049 struct anon_vma *anon_vma = vma->anon_vma;
1050
1051 BUG_ON(!anon_vma);
1052
1053 if (PageAnon(page))
1054 return;
1055
1056 /*
1057 * If the page isn't exclusively mapped into this vma,
1058 * we must use the _oldest_ possible anon_vma for the
1059 * page mapping!
1060 */
1061 if (!exclusive)
1062 anon_vma = anon_vma->root;
1063
1064 /*
1065 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1066 * Make sure the compiler doesn't split the stores of anon_vma and
1067 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1068 * could mistake the mapping for a struct address_space and crash.
1069 */
1070 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1071 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1072 page->index = linear_page_index(vma, address);
1073 }
1074
1075 /**
1076 * __page_check_anon_rmap - sanity check anonymous rmap addition
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
1080 */
1081 static void __page_check_anon_rmap(struct page *page,
1082 struct vm_area_struct *vma, unsigned long address)
1083 {
1084 /*
1085 * The page's anon-rmap details (mapping and index) are guaranteed to
1086 * be set up correctly at this point.
1087 *
1088 * We have exclusion against page_add_anon_rmap because the caller
1089 * always holds the page locked.
1090 *
1091 * We have exclusion against page_add_new_anon_rmap because those pages
1092 * are initially only visible via the pagetables, and the pte is locked
1093 * over the call to page_add_new_anon_rmap.
1094 */
1095 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1096 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1097 page);
1098 }
1099
1100 /**
1101 * page_add_anon_rmap - add pte mapping to an anonymous page
1102 * @page: the page to add the mapping to
1103 * @vma: the vm area in which the mapping is added
1104 * @address: the user virtual address mapped
1105 * @compound: charge the page as compound or small page
1106 *
1107 * The caller needs to hold the pte lock, and the page must be locked in
1108 * the anon_vma case: to serialize mapping,index checking after setting,
1109 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1110 * (but PageKsm is never downgraded to PageAnon).
1111 */
1112 void page_add_anon_rmap(struct page *page,
1113 struct vm_area_struct *vma, unsigned long address, bool compound)
1114 {
1115 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1116 }
1117
1118 /*
1119 * Special version of the above for do_swap_page, which often runs
1120 * into pages that are exclusively owned by the current process.
1121 * Everybody else should continue to use page_add_anon_rmap above.
1122 */
1123 void do_page_add_anon_rmap(struct page *page,
1124 struct vm_area_struct *vma, unsigned long address, int flags)
1125 {
1126 bool compound = flags & RMAP_COMPOUND;
1127 bool first;
1128
1129 if (unlikely(PageKsm(page)))
1130 lock_page_memcg(page);
1131 else
1132 VM_BUG_ON_PAGE(!PageLocked(page), page);
1133
1134 if (compound) {
1135 atomic_t *mapcount;
1136 VM_BUG_ON_PAGE(!PageLocked(page), page);
1137 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1138 mapcount = compound_mapcount_ptr(page);
1139 first = atomic_inc_and_test(mapcount);
1140 } else {
1141 first = atomic_inc_and_test(&page->_mapcount);
1142 }
1143
1144 if (first) {
1145 int nr = compound ? thp_nr_pages(page) : 1;
1146 /*
1147 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1148 * these counters are not modified in interrupt context, and
1149 * pte lock(a spinlock) is held, which implies preemption
1150 * disabled.
1151 */
1152 if (compound)
1153 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1154 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1155 }
1156
1157 if (unlikely(PageKsm(page))) {
1158 unlock_page_memcg(page);
1159 return;
1160 }
1161
1162 /* address might be in next vma when migration races vma_adjust */
1163 if (first)
1164 __page_set_anon_rmap(page, vma, address,
1165 flags & RMAP_EXCLUSIVE);
1166 else
1167 __page_check_anon_rmap(page, vma, address);
1168 }
1169
1170 /**
1171 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1172 * @page: the page to add the mapping to
1173 * @vma: the vm area in which the mapping is added
1174 * @address: the user virtual address mapped
1175 * @compound: charge the page as compound or small page
1176 *
1177 * Same as page_add_anon_rmap but must only be called on *new* pages.
1178 * This means the inc-and-test can be bypassed.
1179 * Page does not have to be locked.
1180 */
1181 void page_add_new_anon_rmap(struct page *page,
1182 struct vm_area_struct *vma, unsigned long address, bool compound)
1183 {
1184 int nr = compound ? thp_nr_pages(page) : 1;
1185
1186 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1187 __SetPageSwapBacked(page);
1188 if (compound) {
1189 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1190 /* increment count (starts at -1) */
1191 atomic_set(compound_mapcount_ptr(page), 0);
1192 if (hpage_pincount_available(page))
1193 atomic_set(compound_pincount_ptr(page), 0);
1194
1195 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1196 } else {
1197 /* Anon THP always mapped first with PMD */
1198 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1199 /* increment count (starts at -1) */
1200 atomic_set(&page->_mapcount, 0);
1201 }
1202 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1203 __page_set_anon_rmap(page, vma, address, 1);
1204 }
1205
1206 /**
1207 * page_add_file_rmap - add pte mapping to a file page
1208 * @page: the page to add the mapping to
1209 * @compound: charge the page as compound or small page
1210 *
1211 * The caller needs to hold the pte lock.
1212 */
1213 void page_add_file_rmap(struct page *page, bool compound)
1214 {
1215 int i, nr = 1;
1216
1217 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1218 lock_page_memcg(page);
1219 if (compound && PageTransHuge(page)) {
1220 int nr_pages = thp_nr_pages(page);
1221
1222 for (i = 0, nr = 0; i < nr_pages; i++) {
1223 if (atomic_inc_and_test(&page[i]._mapcount))
1224 nr++;
1225 }
1226 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1227 goto out;
1228 if (PageSwapBacked(page))
1229 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1230 nr_pages);
1231 else
1232 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1233 nr_pages);
1234 } else {
1235 if (PageTransCompound(page) && page_mapping(page)) {
1236 VM_WARN_ON_ONCE(!PageLocked(page));
1237
1238 SetPageDoubleMap(compound_head(page));
1239 if (PageMlocked(page))
1240 clear_page_mlock(compound_head(page));
1241 }
1242 if (!atomic_inc_and_test(&page->_mapcount))
1243 goto out;
1244 }
1245 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1246 out:
1247 unlock_page_memcg(page);
1248 }
1249
1250 static void page_remove_file_rmap(struct page *page, bool compound)
1251 {
1252 int i, nr = 1;
1253
1254 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1255
1256 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1257 if (unlikely(PageHuge(page))) {
1258 /* hugetlb pages are always mapped with pmds */
1259 atomic_dec(compound_mapcount_ptr(page));
1260 return;
1261 }
1262
1263 /* page still mapped by someone else? */
1264 if (compound && PageTransHuge(page)) {
1265 int nr_pages = thp_nr_pages(page);
1266
1267 for (i = 0, nr = 0; i < nr_pages; i++) {
1268 if (atomic_add_negative(-1, &page[i]._mapcount))
1269 nr++;
1270 }
1271 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1272 return;
1273 if (PageSwapBacked(page))
1274 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1275 -nr_pages);
1276 else
1277 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1278 -nr_pages);
1279 } else {
1280 if (!atomic_add_negative(-1, &page->_mapcount))
1281 return;
1282 }
1283
1284 /*
1285 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1286 * these counters are not modified in interrupt context, and
1287 * pte lock(a spinlock) is held, which implies preemption disabled.
1288 */
1289 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1290
1291 if (unlikely(PageMlocked(page)))
1292 clear_page_mlock(page);
1293 }
1294
1295 static void page_remove_anon_compound_rmap(struct page *page)
1296 {
1297 int i, nr;
1298
1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1300 return;
1301
1302 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1303 if (unlikely(PageHuge(page)))
1304 return;
1305
1306 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1307 return;
1308
1309 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1310
1311 if (TestClearPageDoubleMap(page)) {
1312 /*
1313 * Subpages can be mapped with PTEs too. Check how many of
1314 * them are still mapped.
1315 */
1316 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1317 if (atomic_add_negative(-1, &page[i]._mapcount))
1318 nr++;
1319 }
1320
1321 /*
1322 * Queue the page for deferred split if at least one small
1323 * page of the compound page is unmapped, but at least one
1324 * small page is still mapped.
1325 */
1326 if (nr && nr < thp_nr_pages(page))
1327 deferred_split_huge_page(page);
1328 } else {
1329 nr = thp_nr_pages(page);
1330 }
1331
1332 if (unlikely(PageMlocked(page)))
1333 clear_page_mlock(page);
1334
1335 if (nr)
1336 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1337 }
1338
1339 /**
1340 * page_remove_rmap - take down pte mapping from a page
1341 * @page: page to remove mapping from
1342 * @compound: uncharge the page as compound or small page
1343 *
1344 * The caller needs to hold the pte lock.
1345 */
1346 void page_remove_rmap(struct page *page, bool compound)
1347 {
1348 lock_page_memcg(page);
1349
1350 if (!PageAnon(page)) {
1351 page_remove_file_rmap(page, compound);
1352 goto out;
1353 }
1354
1355 if (compound) {
1356 page_remove_anon_compound_rmap(page);
1357 goto out;
1358 }
1359
1360 /* page still mapped by someone else? */
1361 if (!atomic_add_negative(-1, &page->_mapcount))
1362 goto out;
1363
1364 /*
1365 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1366 * these counters are not modified in interrupt context, and
1367 * pte lock(a spinlock) is held, which implies preemption disabled.
1368 */
1369 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1370
1371 if (unlikely(PageMlocked(page)))
1372 clear_page_mlock(page);
1373
1374 if (PageTransCompound(page))
1375 deferred_split_huge_page(compound_head(page));
1376
1377 /*
1378 * It would be tidy to reset the PageAnon mapping here,
1379 * but that might overwrite a racing page_add_anon_rmap
1380 * which increments mapcount after us but sets mapping
1381 * before us: so leave the reset to free_unref_page,
1382 * and remember that it's only reliable while mapped.
1383 * Leaving it set also helps swapoff to reinstate ptes
1384 * faster for those pages still in swapcache.
1385 */
1386 out:
1387 unlock_page_memcg(page);
1388 }
1389
1390 /*
1391 * @arg: enum ttu_flags will be passed to this argument
1392 */
1393 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1394 unsigned long address, void *arg)
1395 {
1396 struct mm_struct *mm = vma->vm_mm;
1397 struct page_vma_mapped_walk pvmw = {
1398 .page = page,
1399 .vma = vma,
1400 .address = address,
1401 };
1402 pte_t pteval;
1403 struct page *subpage;
1404 bool ret = true;
1405 struct mmu_notifier_range range;
1406 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1407
1408 /* munlock has nothing to gain from examining un-locked vmas */
1409 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1410 return true;
1411
1412 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1413 is_zone_device_page(page) && !is_device_private_page(page))
1414 return true;
1415
1416 if (flags & TTU_SPLIT_HUGE_PMD) {
1417 split_huge_pmd_address(vma, address,
1418 flags & TTU_SPLIT_FREEZE, page);
1419 }
1420
1421 /*
1422 * For THP, we have to assume the worse case ie pmd for invalidation.
1423 * For hugetlb, it could be much worse if we need to do pud
1424 * invalidation in the case of pmd sharing.
1425 *
1426 * Note that the page can not be free in this function as call of
1427 * try_to_unmap() must hold a reference on the page.
1428 */
1429 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1430 address,
1431 min(vma->vm_end, address + page_size(page)));
1432 if (PageHuge(page)) {
1433 /*
1434 * If sharing is possible, start and end will be adjusted
1435 * accordingly.
1436 */
1437 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1438 &range.end);
1439 }
1440 mmu_notifier_invalidate_range_start(&range);
1441
1442 while (page_vma_mapped_walk(&pvmw)) {
1443 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1444 /* PMD-mapped THP migration entry */
1445 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1446 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1447
1448 set_pmd_migration_entry(&pvmw, page);
1449 continue;
1450 }
1451 #endif
1452
1453 /*
1454 * If the page is mlock()d, we cannot swap it out.
1455 * If it's recently referenced (perhaps page_referenced
1456 * skipped over this mm) then we should reactivate it.
1457 */
1458 if (!(flags & TTU_IGNORE_MLOCK)) {
1459 if (vma->vm_flags & VM_LOCKED) {
1460 /* PTE-mapped THP are never mlocked */
1461 if (!PageTransCompound(page)) {
1462 /*
1463 * Holding pte lock, we do *not* need
1464 * mmap_lock here
1465 */
1466 mlock_vma_page(page);
1467 }
1468 ret = false;
1469 page_vma_mapped_walk_done(&pvmw);
1470 break;
1471 }
1472 if (flags & TTU_MUNLOCK)
1473 continue;
1474 }
1475
1476 /* Unexpected PMD-mapped THP? */
1477 VM_BUG_ON_PAGE(!pvmw.pte, page);
1478
1479 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1480 address = pvmw.address;
1481
1482 if (PageHuge(page) && !PageAnon(page)) {
1483 /*
1484 * To call huge_pmd_unshare, i_mmap_rwsem must be
1485 * held in write mode. Caller needs to explicitly
1486 * do this outside rmap routines.
1487 */
1488 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1489 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1490 /*
1491 * huge_pmd_unshare unmapped an entire PMD
1492 * page. There is no way of knowing exactly
1493 * which PMDs may be cached for this mm, so
1494 * we must flush them all. start/end were
1495 * already adjusted above to cover this range.
1496 */
1497 flush_cache_range(vma, range.start, range.end);
1498 flush_tlb_range(vma, range.start, range.end);
1499 mmu_notifier_invalidate_range(mm, range.start,
1500 range.end);
1501
1502 /*
1503 * The ref count of the PMD page was dropped
1504 * which is part of the way map counting
1505 * is done for shared PMDs. Return 'true'
1506 * here. When there is no other sharing,
1507 * huge_pmd_unshare returns false and we will
1508 * unmap the actual page and drop map count
1509 * to zero.
1510 */
1511 page_vma_mapped_walk_done(&pvmw);
1512 break;
1513 }
1514 }
1515
1516 if (IS_ENABLED(CONFIG_MIGRATION) &&
1517 (flags & TTU_MIGRATION) &&
1518 is_zone_device_page(page)) {
1519 swp_entry_t entry;
1520 pte_t swp_pte;
1521
1522 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1523
1524 /*
1525 * Store the pfn of the page in a special migration
1526 * pte. do_swap_page() will wait until the migration
1527 * pte is removed and then restart fault handling.
1528 */
1529 entry = make_migration_entry(page, 0);
1530 swp_pte = swp_entry_to_pte(entry);
1531
1532 /*
1533 * pteval maps a zone device page and is therefore
1534 * a swap pte.
1535 */
1536 if (pte_swp_soft_dirty(pteval))
1537 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1538 if (pte_swp_uffd_wp(pteval))
1539 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1540 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1541 /*
1542 * No need to invalidate here it will synchronize on
1543 * against the special swap migration pte.
1544 *
1545 * The assignment to subpage above was computed from a
1546 * swap PTE which results in an invalid pointer.
1547 * Since only PAGE_SIZE pages can currently be
1548 * migrated, just set it to page. This will need to be
1549 * changed when hugepage migrations to device private
1550 * memory are supported.
1551 */
1552 subpage = page;
1553 goto discard;
1554 }
1555
1556 /* Nuke the page table entry. */
1557 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1558 if (should_defer_flush(mm, flags)) {
1559 /*
1560 * We clear the PTE but do not flush so potentially
1561 * a remote CPU could still be writing to the page.
1562 * If the entry was previously clean then the
1563 * architecture must guarantee that a clear->dirty
1564 * transition on a cached TLB entry is written through
1565 * and traps if the PTE is unmapped.
1566 */
1567 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1568
1569 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1570 } else {
1571 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1572 }
1573
1574 /* Move the dirty bit to the page. Now the pte is gone. */
1575 if (pte_dirty(pteval))
1576 set_page_dirty(page);
1577
1578 /* Update high watermark before we lower rss */
1579 update_hiwater_rss(mm);
1580
1581 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1582 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1583 if (PageHuge(page)) {
1584 hugetlb_count_sub(compound_nr(page), mm);
1585 set_huge_swap_pte_at(mm, address,
1586 pvmw.pte, pteval,
1587 vma_mmu_pagesize(vma));
1588 } else {
1589 dec_mm_counter(mm, mm_counter(page));
1590 set_pte_at(mm, address, pvmw.pte, pteval);
1591 }
1592
1593 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1594 /*
1595 * The guest indicated that the page content is of no
1596 * interest anymore. Simply discard the pte, vmscan
1597 * will take care of the rest.
1598 * A future reference will then fault in a new zero
1599 * page. When userfaultfd is active, we must not drop
1600 * this page though, as its main user (postcopy
1601 * migration) will not expect userfaults on already
1602 * copied pages.
1603 */
1604 dec_mm_counter(mm, mm_counter(page));
1605 /* We have to invalidate as we cleared the pte */
1606 mmu_notifier_invalidate_range(mm, address,
1607 address + PAGE_SIZE);
1608 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1609 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1610 swp_entry_t entry;
1611 pte_t swp_pte;
1612
1613 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1614 set_pte_at(mm, address, pvmw.pte, pteval);
1615 ret = false;
1616 page_vma_mapped_walk_done(&pvmw);
1617 break;
1618 }
1619
1620 /*
1621 * Store the pfn of the page in a special migration
1622 * pte. do_swap_page() will wait until the migration
1623 * pte is removed and then restart fault handling.
1624 */
1625 entry = make_migration_entry(subpage,
1626 pte_write(pteval));
1627 swp_pte = swp_entry_to_pte(entry);
1628 if (pte_soft_dirty(pteval))
1629 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1630 if (pte_uffd_wp(pteval))
1631 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1632 set_pte_at(mm, address, pvmw.pte, swp_pte);
1633 /*
1634 * No need to invalidate here it will synchronize on
1635 * against the special swap migration pte.
1636 */
1637 } else if (PageAnon(page)) {
1638 swp_entry_t entry = { .val = page_private(subpage) };
1639 pte_t swp_pte;
1640 /*
1641 * Store the swap location in the pte.
1642 * See handle_pte_fault() ...
1643 */
1644 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1645 WARN_ON_ONCE(1);
1646 ret = false;
1647 /* We have to invalidate as we cleared the pte */
1648 mmu_notifier_invalidate_range(mm, address,
1649 address + PAGE_SIZE);
1650 page_vma_mapped_walk_done(&pvmw);
1651 break;
1652 }
1653
1654 /* MADV_FREE page check */
1655 if (!PageSwapBacked(page)) {
1656 if (!PageDirty(page)) {
1657 /* Invalidate as we cleared the pte */
1658 mmu_notifier_invalidate_range(mm,
1659 address, address + PAGE_SIZE);
1660 dec_mm_counter(mm, MM_ANONPAGES);
1661 goto discard;
1662 }
1663
1664 /*
1665 * If the page was redirtied, it cannot be
1666 * discarded. Remap the page to page table.
1667 */
1668 set_pte_at(mm, address, pvmw.pte, pteval);
1669 SetPageSwapBacked(page);
1670 ret = false;
1671 page_vma_mapped_walk_done(&pvmw);
1672 break;
1673 }
1674
1675 if (swap_duplicate(entry) < 0) {
1676 set_pte_at(mm, address, pvmw.pte, pteval);
1677 ret = false;
1678 page_vma_mapped_walk_done(&pvmw);
1679 break;
1680 }
1681 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1682 set_pte_at(mm, address, pvmw.pte, pteval);
1683 ret = false;
1684 page_vma_mapped_walk_done(&pvmw);
1685 break;
1686 }
1687 if (list_empty(&mm->mmlist)) {
1688 spin_lock(&mmlist_lock);
1689 if (list_empty(&mm->mmlist))
1690 list_add(&mm->mmlist, &init_mm.mmlist);
1691 spin_unlock(&mmlist_lock);
1692 }
1693 dec_mm_counter(mm, MM_ANONPAGES);
1694 inc_mm_counter(mm, MM_SWAPENTS);
1695 swp_pte = swp_entry_to_pte(entry);
1696 if (pte_soft_dirty(pteval))
1697 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1698 if (pte_uffd_wp(pteval))
1699 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1700 set_pte_at(mm, address, pvmw.pte, swp_pte);
1701 /* Invalidate as we cleared the pte */
1702 mmu_notifier_invalidate_range(mm, address,
1703 address + PAGE_SIZE);
1704 } else {
1705 /*
1706 * This is a locked file-backed page, thus it cannot
1707 * be removed from the page cache and replaced by a new
1708 * page before mmu_notifier_invalidate_range_end, so no
1709 * concurrent thread might update its page table to
1710 * point at new page while a device still is using this
1711 * page.
1712 *
1713 * See Documentation/vm/mmu_notifier.rst
1714 */
1715 dec_mm_counter(mm, mm_counter_file(page));
1716 }
1717 discard:
1718 /*
1719 * No need to call mmu_notifier_invalidate_range() it has be
1720 * done above for all cases requiring it to happen under page
1721 * table lock before mmu_notifier_invalidate_range_end()
1722 *
1723 * See Documentation/vm/mmu_notifier.rst
1724 */
1725 page_remove_rmap(subpage, PageHuge(page));
1726 put_page(page);
1727 }
1728
1729 mmu_notifier_invalidate_range_end(&range);
1730
1731 return ret;
1732 }
1733
1734 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1735 {
1736 return vma_is_temporary_stack(vma);
1737 }
1738
1739 static int page_not_mapped(struct page *page)
1740 {
1741 return !page_mapped(page);
1742 }
1743
1744 /**
1745 * try_to_unmap - try to remove all page table mappings to a page
1746 * @page: the page to get unmapped
1747 * @flags: action and flags
1748 *
1749 * Tries to remove all the page table entries which are mapping this
1750 * page, used in the pageout path. Caller must hold the page lock.
1751 *
1752 * If unmap is successful, return true. Otherwise, false.
1753 */
1754 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1755 {
1756 struct rmap_walk_control rwc = {
1757 .rmap_one = try_to_unmap_one,
1758 .arg = (void *)flags,
1759 .done = page_not_mapped,
1760 .anon_lock = page_lock_anon_vma_read,
1761 };
1762
1763 /*
1764 * During exec, a temporary VMA is setup and later moved.
1765 * The VMA is moved under the anon_vma lock but not the
1766 * page tables leading to a race where migration cannot
1767 * find the migration ptes. Rather than increasing the
1768 * locking requirements of exec(), migration skips
1769 * temporary VMAs until after exec() completes.
1770 */
1771 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1772 && !PageKsm(page) && PageAnon(page))
1773 rwc.invalid_vma = invalid_migration_vma;
1774
1775 if (flags & TTU_RMAP_LOCKED)
1776 rmap_walk_locked(page, &rwc);
1777 else
1778 rmap_walk(page, &rwc);
1779
1780 return !page_mapcount(page) ? true : false;
1781 }
1782
1783 /**
1784 * try_to_munlock - try to munlock a page
1785 * @page: the page to be munlocked
1786 *
1787 * Called from munlock code. Checks all of the VMAs mapping the page
1788 * to make sure nobody else has this page mlocked. The page will be
1789 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1790 */
1791
1792 void try_to_munlock(struct page *page)
1793 {
1794 struct rmap_walk_control rwc = {
1795 .rmap_one = try_to_unmap_one,
1796 .arg = (void *)TTU_MUNLOCK,
1797 .done = page_not_mapped,
1798 .anon_lock = page_lock_anon_vma_read,
1799
1800 };
1801
1802 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1803 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1804
1805 rmap_walk(page, &rwc);
1806 }
1807
1808 void __put_anon_vma(struct anon_vma *anon_vma)
1809 {
1810 struct anon_vma *root = anon_vma->root;
1811
1812 anon_vma_free(anon_vma);
1813 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1814 anon_vma_free(root);
1815 }
1816
1817 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1818 struct rmap_walk_control *rwc)
1819 {
1820 struct anon_vma *anon_vma;
1821
1822 if (rwc->anon_lock)
1823 return rwc->anon_lock(page);
1824
1825 /*
1826 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1827 * because that depends on page_mapped(); but not all its usages
1828 * are holding mmap_lock. Users without mmap_lock are required to
1829 * take a reference count to prevent the anon_vma disappearing
1830 */
1831 anon_vma = page_anon_vma(page);
1832 if (!anon_vma)
1833 return NULL;
1834
1835 anon_vma_lock_read(anon_vma);
1836 return anon_vma;
1837 }
1838
1839 /*
1840 * rmap_walk_anon - do something to anonymous page using the object-based
1841 * rmap method
1842 * @page: the page to be handled
1843 * @rwc: control variable according to each walk type
1844 *
1845 * Find all the mappings of a page using the mapping pointer and the vma chains
1846 * contained in the anon_vma struct it points to.
1847 *
1848 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1849 * where the page was found will be held for write. So, we won't recheck
1850 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1851 * LOCKED.
1852 */
1853 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1854 bool locked)
1855 {
1856 struct anon_vma *anon_vma;
1857 pgoff_t pgoff_start, pgoff_end;
1858 struct anon_vma_chain *avc;
1859
1860 if (locked) {
1861 anon_vma = page_anon_vma(page);
1862 /* anon_vma disappear under us? */
1863 VM_BUG_ON_PAGE(!anon_vma, page);
1864 } else {
1865 anon_vma = rmap_walk_anon_lock(page, rwc);
1866 }
1867 if (!anon_vma)
1868 return;
1869
1870 pgoff_start = page_to_pgoff(page);
1871 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1872 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1873 pgoff_start, pgoff_end) {
1874 struct vm_area_struct *vma = avc->vma;
1875 unsigned long address = vma_address(page, vma);
1876
1877 cond_resched();
1878
1879 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1880 continue;
1881
1882 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1883 break;
1884 if (rwc->done && rwc->done(page))
1885 break;
1886 }
1887
1888 if (!locked)
1889 anon_vma_unlock_read(anon_vma);
1890 }
1891
1892 /*
1893 * rmap_walk_file - do something to file page using the object-based rmap method
1894 * @page: the page to be handled
1895 * @rwc: control variable according to each walk type
1896 *
1897 * Find all the mappings of a page using the mapping pointer and the vma chains
1898 * contained in the address_space struct it points to.
1899 *
1900 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1901 * where the page was found will be held for write. So, we won't recheck
1902 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1903 * LOCKED.
1904 */
1905 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1906 bool locked)
1907 {
1908 struct address_space *mapping = page_mapping(page);
1909 pgoff_t pgoff_start, pgoff_end;
1910 struct vm_area_struct *vma;
1911
1912 /*
1913 * The page lock not only makes sure that page->mapping cannot
1914 * suddenly be NULLified by truncation, it makes sure that the
1915 * structure at mapping cannot be freed and reused yet,
1916 * so we can safely take mapping->i_mmap_rwsem.
1917 */
1918 VM_BUG_ON_PAGE(!PageLocked(page), page);
1919
1920 if (!mapping)
1921 return;
1922
1923 pgoff_start = page_to_pgoff(page);
1924 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1925 if (!locked)
1926 i_mmap_lock_read(mapping);
1927 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1928 pgoff_start, pgoff_end) {
1929 unsigned long address = vma_address(page, vma);
1930
1931 cond_resched();
1932
1933 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1934 continue;
1935
1936 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1937 goto done;
1938 if (rwc->done && rwc->done(page))
1939 goto done;
1940 }
1941
1942 done:
1943 if (!locked)
1944 i_mmap_unlock_read(mapping);
1945 }
1946
1947 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1948 {
1949 if (unlikely(PageKsm(page)))
1950 rmap_walk_ksm(page, rwc);
1951 else if (PageAnon(page))
1952 rmap_walk_anon(page, rwc, false);
1953 else
1954 rmap_walk_file(page, rwc, false);
1955 }
1956
1957 /* Like rmap_walk, but caller holds relevant rmap lock */
1958 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1959 {
1960 /* no ksm support for now */
1961 VM_BUG_ON_PAGE(PageKsm(page), page);
1962 if (PageAnon(page))
1963 rmap_walk_anon(page, rwc, true);
1964 else
1965 rmap_walk_file(page, rwc, true);
1966 }
1967
1968 #ifdef CONFIG_HUGETLB_PAGE
1969 /*
1970 * The following two functions are for anonymous (private mapped) hugepages.
1971 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1972 * and no lru code, because we handle hugepages differently from common pages.
1973 */
1974 void hugepage_add_anon_rmap(struct page *page,
1975 struct vm_area_struct *vma, unsigned long address)
1976 {
1977 struct anon_vma *anon_vma = vma->anon_vma;
1978 int first;
1979
1980 BUG_ON(!PageLocked(page));
1981 BUG_ON(!anon_vma);
1982 /* address might be in next vma when migration races vma_adjust */
1983 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1984 if (first)
1985 __page_set_anon_rmap(page, vma, address, 0);
1986 }
1987
1988 void hugepage_add_new_anon_rmap(struct page *page,
1989 struct vm_area_struct *vma, unsigned long address)
1990 {
1991 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1992 atomic_set(compound_mapcount_ptr(page), 0);
1993 if (hpage_pincount_available(page))
1994 atomic_set(compound_pincount_ptr(page), 0);
1995
1996 __page_set_anon_rmap(page, vma, address, 1);
1997 }
1998 #endif /* CONFIG_HUGETLB_PAGE */