]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/rmap.c
mm/sparsemem: fix 'mem_section' will never be NULL gcc 12 warning
[mirror_ubuntu-focal-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * i_pages lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * i_pages lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/huge_mm.h>
65 #include <linux/backing-dev.h>
66 #include <linux/page_idle.h>
67 #include <linux/memremap.h>
68 #include <linux/userfaultfd_k.h>
69
70 #include <asm/tlbflush.h>
71
72 #include <trace/events/tlb.h>
73
74 #include "internal.h"
75
76 static struct kmem_cache *anon_vma_cachep;
77 static struct kmem_cache *anon_vma_chain_cachep;
78
79 static inline struct anon_vma *anon_vma_alloc(void)
80 {
81 struct anon_vma *anon_vma;
82
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
84 if (anon_vma) {
85 atomic_set(&anon_vma->refcount, 1);
86 anon_vma->degree = 1; /* Reference for first vma */
87 anon_vma->parent = anon_vma;
88 /*
89 * Initialise the anon_vma root to point to itself. If called
90 * from fork, the root will be reset to the parents anon_vma.
91 */
92 anon_vma->root = anon_vma;
93 }
94
95 return anon_vma;
96 }
97
98 static inline void anon_vma_free(struct anon_vma *anon_vma)
99 {
100 VM_BUG_ON(atomic_read(&anon_vma->refcount));
101
102 /*
103 * Synchronize against page_lock_anon_vma_read() such that
104 * we can safely hold the lock without the anon_vma getting
105 * freed.
106 *
107 * Relies on the full mb implied by the atomic_dec_and_test() from
108 * put_anon_vma() against the acquire barrier implied by
109 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
110 *
111 * page_lock_anon_vma_read() VS put_anon_vma()
112 * down_read_trylock() atomic_dec_and_test()
113 * LOCK MB
114 * atomic_read() rwsem_is_locked()
115 *
116 * LOCK should suffice since the actual taking of the lock must
117 * happen _before_ what follows.
118 */
119 might_sleep();
120 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
121 anon_vma_lock_write(anon_vma);
122 anon_vma_unlock_write(anon_vma);
123 }
124
125 kmem_cache_free(anon_vma_cachep, anon_vma);
126 }
127
128 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
129 {
130 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
131 }
132
133 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
134 {
135 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
136 }
137
138 static void anon_vma_chain_link(struct vm_area_struct *vma,
139 struct anon_vma_chain *avc,
140 struct anon_vma *anon_vma)
141 {
142 avc->vma = vma;
143 avc->anon_vma = anon_vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
146 }
147
148 /**
149 * __anon_vma_prepare - attach an anon_vma to a memory region
150 * @vma: the memory region in question
151 *
152 * This makes sure the memory mapping described by 'vma' has
153 * an 'anon_vma' attached to it, so that we can associate the
154 * anonymous pages mapped into it with that anon_vma.
155 *
156 * The common case will be that we already have one, which
157 * is handled inline by anon_vma_prepare(). But if
158 * not we either need to find an adjacent mapping that we
159 * can re-use the anon_vma from (very common when the only
160 * reason for splitting a vma has been mprotect()), or we
161 * allocate a new one.
162 *
163 * Anon-vma allocations are very subtle, because we may have
164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
165 * and that may actually touch the spinlock even in the newly
166 * allocated vma (it depends on RCU to make sure that the
167 * anon_vma isn't actually destroyed).
168 *
169 * As a result, we need to do proper anon_vma locking even
170 * for the new allocation. At the same time, we do not want
171 * to do any locking for the common case of already having
172 * an anon_vma.
173 *
174 * This must be called with the mmap_sem held for reading.
175 */
176 int __anon_vma_prepare(struct vm_area_struct *vma)
177 {
178 struct mm_struct *mm = vma->vm_mm;
179 struct anon_vma *anon_vma, *allocated;
180 struct anon_vma_chain *avc;
181
182 might_sleep();
183
184 avc = anon_vma_chain_alloc(GFP_KERNEL);
185 if (!avc)
186 goto out_enomem;
187
188 anon_vma = find_mergeable_anon_vma(vma);
189 allocated = NULL;
190 if (!anon_vma) {
191 anon_vma = anon_vma_alloc();
192 if (unlikely(!anon_vma))
193 goto out_enomem_free_avc;
194 allocated = anon_vma;
195 }
196
197 anon_vma_lock_write(anon_vma);
198 /* page_table_lock to protect against threads */
199 spin_lock(&mm->page_table_lock);
200 if (likely(!vma->anon_vma)) {
201 vma->anon_vma = anon_vma;
202 anon_vma_chain_link(vma, avc, anon_vma);
203 /* vma reference or self-parent link for new root */
204 anon_vma->degree++;
205 allocated = NULL;
206 avc = NULL;
207 }
208 spin_unlock(&mm->page_table_lock);
209 anon_vma_unlock_write(anon_vma);
210
211 if (unlikely(allocated))
212 put_anon_vma(allocated);
213 if (unlikely(avc))
214 anon_vma_chain_free(avc);
215
216 return 0;
217
218 out_enomem_free_avc:
219 anon_vma_chain_free(avc);
220 out_enomem:
221 return -ENOMEM;
222 }
223
224 /*
225 * This is a useful helper function for locking the anon_vma root as
226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227 * have the same vma.
228 *
229 * Such anon_vma's should have the same root, so you'd expect to see
230 * just a single mutex_lock for the whole traversal.
231 */
232 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
233 {
234 struct anon_vma *new_root = anon_vma->root;
235 if (new_root != root) {
236 if (WARN_ON_ONCE(root))
237 up_write(&root->rwsem);
238 root = new_root;
239 down_write(&root->rwsem);
240 }
241 return root;
242 }
243
244 static inline void unlock_anon_vma_root(struct anon_vma *root)
245 {
246 if (root)
247 up_write(&root->rwsem);
248 }
249
250 /*
251 * Attach the anon_vmas from src to dst.
252 * Returns 0 on success, -ENOMEM on failure.
253 *
254 * If dst->anon_vma is NULL this function tries to find and reuse existing
255 * anon_vma which has no vmas and only one child anon_vma. This prevents
256 * degradation of anon_vma hierarchy to endless linear chain in case of
257 * constantly forking task. On the other hand, an anon_vma with more than one
258 * child isn't reused even if there was no alive vma, thus rmap walker has a
259 * good chance of avoiding scanning the whole hierarchy when it searches where
260 * page is mapped.
261 */
262 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
263 {
264 struct anon_vma_chain *avc, *pavc;
265 struct anon_vma *root = NULL;
266
267 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
268 struct anon_vma *anon_vma;
269
270 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
271 if (unlikely(!avc)) {
272 unlock_anon_vma_root(root);
273 root = NULL;
274 avc = anon_vma_chain_alloc(GFP_KERNEL);
275 if (!avc)
276 goto enomem_failure;
277 }
278 anon_vma = pavc->anon_vma;
279 root = lock_anon_vma_root(root, anon_vma);
280 anon_vma_chain_link(dst, avc, anon_vma);
281
282 /*
283 * Reuse existing anon_vma if its degree lower than two,
284 * that means it has no vma and only one anon_vma child.
285 *
286 * Do not chose parent anon_vma, otherwise first child
287 * will always reuse it. Root anon_vma is never reused:
288 * it has self-parent reference and at least one child.
289 */
290 if (!dst->anon_vma && anon_vma != src->anon_vma &&
291 anon_vma->degree < 2)
292 dst->anon_vma = anon_vma;
293 }
294 if (dst->anon_vma)
295 dst->anon_vma->degree++;
296 unlock_anon_vma_root(root);
297 return 0;
298
299 enomem_failure:
300 /*
301 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
302 * decremented in unlink_anon_vmas().
303 * We can safely do this because callers of anon_vma_clone() don't care
304 * about dst->anon_vma if anon_vma_clone() failed.
305 */
306 dst->anon_vma = NULL;
307 unlink_anon_vmas(dst);
308 return -ENOMEM;
309 }
310
311 /*
312 * Attach vma to its own anon_vma, as well as to the anon_vmas that
313 * the corresponding VMA in the parent process is attached to.
314 * Returns 0 on success, non-zero on failure.
315 */
316 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
317 {
318 struct anon_vma_chain *avc;
319 struct anon_vma *anon_vma;
320 int error;
321
322 /* Don't bother if the parent process has no anon_vma here. */
323 if (!pvma->anon_vma)
324 return 0;
325
326 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
327 vma->anon_vma = NULL;
328
329 /*
330 * First, attach the new VMA to the parent VMA's anon_vmas,
331 * so rmap can find non-COWed pages in child processes.
332 */
333 error = anon_vma_clone(vma, pvma);
334 if (error)
335 return error;
336
337 /* An existing anon_vma has been reused, all done then. */
338 if (vma->anon_vma)
339 return 0;
340
341 /* Then add our own anon_vma. */
342 anon_vma = anon_vma_alloc();
343 if (!anon_vma)
344 goto out_error;
345 avc = anon_vma_chain_alloc(GFP_KERNEL);
346 if (!avc)
347 goto out_error_free_anon_vma;
348
349 /*
350 * The root anon_vma's spinlock is the lock actually used when we
351 * lock any of the anon_vmas in this anon_vma tree.
352 */
353 anon_vma->root = pvma->anon_vma->root;
354 anon_vma->parent = pvma->anon_vma;
355 /*
356 * With refcounts, an anon_vma can stay around longer than the
357 * process it belongs to. The root anon_vma needs to be pinned until
358 * this anon_vma is freed, because the lock lives in the root.
359 */
360 get_anon_vma(anon_vma->root);
361 /* Mark this anon_vma as the one where our new (COWed) pages go. */
362 vma->anon_vma = anon_vma;
363 anon_vma_lock_write(anon_vma);
364 anon_vma_chain_link(vma, avc, anon_vma);
365 anon_vma->parent->degree++;
366 anon_vma_unlock_write(anon_vma);
367
368 return 0;
369
370 out_error_free_anon_vma:
371 put_anon_vma(anon_vma);
372 out_error:
373 unlink_anon_vmas(vma);
374 return -ENOMEM;
375 }
376
377 void unlink_anon_vmas(struct vm_area_struct *vma)
378 {
379 struct anon_vma_chain *avc, *next;
380 struct anon_vma *root = NULL;
381
382 /*
383 * Unlink each anon_vma chained to the VMA. This list is ordered
384 * from newest to oldest, ensuring the root anon_vma gets freed last.
385 */
386 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
387 struct anon_vma *anon_vma = avc->anon_vma;
388
389 root = lock_anon_vma_root(root, anon_vma);
390 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
391
392 /*
393 * Leave empty anon_vmas on the list - we'll need
394 * to free them outside the lock.
395 */
396 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
397 anon_vma->parent->degree--;
398 continue;
399 }
400
401 list_del(&avc->same_vma);
402 anon_vma_chain_free(avc);
403 }
404 if (vma->anon_vma)
405 vma->anon_vma->degree--;
406 unlock_anon_vma_root(root);
407
408 /*
409 * Iterate the list once more, it now only contains empty and unlinked
410 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
411 * needing to write-acquire the anon_vma->root->rwsem.
412 */
413 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
414 struct anon_vma *anon_vma = avc->anon_vma;
415
416 VM_WARN_ON(anon_vma->degree);
417 put_anon_vma(anon_vma);
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422 }
423
424 static void anon_vma_ctor(void *data)
425 {
426 struct anon_vma *anon_vma = data;
427
428 init_rwsem(&anon_vma->rwsem);
429 atomic_set(&anon_vma->refcount, 0);
430 anon_vma->rb_root = RB_ROOT_CACHED;
431 }
432
433 void __init anon_vma_init(void)
434 {
435 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
436 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
437 anon_vma_ctor);
438 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
439 SLAB_PANIC|SLAB_ACCOUNT);
440 }
441
442 /*
443 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
444 *
445 * Since there is no serialization what so ever against page_remove_rmap()
446 * the best this function can do is return a locked anon_vma that might
447 * have been relevant to this page.
448 *
449 * The page might have been remapped to a different anon_vma or the anon_vma
450 * returned may already be freed (and even reused).
451 *
452 * In case it was remapped to a different anon_vma, the new anon_vma will be a
453 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
454 * ensure that any anon_vma obtained from the page will still be valid for as
455 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
456 *
457 * All users of this function must be very careful when walking the anon_vma
458 * chain and verify that the page in question is indeed mapped in it
459 * [ something equivalent to page_mapped_in_vma() ].
460 *
461 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
462 * that the anon_vma pointer from page->mapping is valid if there is a
463 * mapcount, we can dereference the anon_vma after observing those.
464 */
465 struct anon_vma *page_get_anon_vma(struct page *page)
466 {
467 struct anon_vma *anon_vma = NULL;
468 unsigned long anon_mapping;
469
470 rcu_read_lock();
471 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
472 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
473 goto out;
474 if (!page_mapped(page))
475 goto out;
476
477 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
482
483 /*
484 * If this page is still mapped, then its anon_vma cannot have been
485 * freed. But if it has been unmapped, we have no security against the
486 * anon_vma structure being freed and reused (for another anon_vma:
487 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
488 * above cannot corrupt).
489 */
490 if (!page_mapped(page)) {
491 rcu_read_unlock();
492 put_anon_vma(anon_vma);
493 return NULL;
494 }
495 out:
496 rcu_read_unlock();
497
498 return anon_vma;
499 }
500
501 /*
502 * Similar to page_get_anon_vma() except it locks the anon_vma.
503 *
504 * Its a little more complex as it tries to keep the fast path to a single
505 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
506 * reference like with page_get_anon_vma() and then block on the mutex.
507 */
508 struct anon_vma *page_lock_anon_vma_read(struct page *page)
509 {
510 struct anon_vma *anon_vma = NULL;
511 struct anon_vma *root_anon_vma;
512 unsigned long anon_mapping;
513
514 rcu_read_lock();
515 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
516 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
517 goto out;
518 if (!page_mapped(page))
519 goto out;
520
521 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
522 root_anon_vma = READ_ONCE(anon_vma->root);
523 if (down_read_trylock(&root_anon_vma->rwsem)) {
524 /*
525 * If the page is still mapped, then this anon_vma is still
526 * its anon_vma, and holding the mutex ensures that it will
527 * not go away, see anon_vma_free().
528 */
529 if (!page_mapped(page)) {
530 up_read(&root_anon_vma->rwsem);
531 anon_vma = NULL;
532 }
533 goto out;
534 }
535
536 /* trylock failed, we got to sleep */
537 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
538 anon_vma = NULL;
539 goto out;
540 }
541
542 if (!page_mapped(page)) {
543 rcu_read_unlock();
544 put_anon_vma(anon_vma);
545 return NULL;
546 }
547
548 /* we pinned the anon_vma, its safe to sleep */
549 rcu_read_unlock();
550 anon_vma_lock_read(anon_vma);
551
552 if (atomic_dec_and_test(&anon_vma->refcount)) {
553 /*
554 * Oops, we held the last refcount, release the lock
555 * and bail -- can't simply use put_anon_vma() because
556 * we'll deadlock on the anon_vma_lock_write() recursion.
557 */
558 anon_vma_unlock_read(anon_vma);
559 __put_anon_vma(anon_vma);
560 anon_vma = NULL;
561 }
562
563 return anon_vma;
564
565 out:
566 rcu_read_unlock();
567 return anon_vma;
568 }
569
570 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
571 {
572 anon_vma_unlock_read(anon_vma);
573 }
574
575 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
576 /*
577 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
578 * important if a PTE was dirty when it was unmapped that it's flushed
579 * before any IO is initiated on the page to prevent lost writes. Similarly,
580 * it must be flushed before freeing to prevent data leakage.
581 */
582 void try_to_unmap_flush(void)
583 {
584 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
585
586 if (!tlb_ubc->flush_required)
587 return;
588
589 arch_tlbbatch_flush(&tlb_ubc->arch);
590 tlb_ubc->flush_required = false;
591 tlb_ubc->writable = false;
592 }
593
594 /* Flush iff there are potentially writable TLB entries that can race with IO */
595 void try_to_unmap_flush_dirty(void)
596 {
597 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
598
599 if (tlb_ubc->writable)
600 try_to_unmap_flush();
601 }
602
603 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
604 {
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606
607 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
608 tlb_ubc->flush_required = true;
609
610 /*
611 * Ensure compiler does not re-order the setting of tlb_flush_batched
612 * before the PTE is cleared.
613 */
614 barrier();
615 mm->tlb_flush_batched = true;
616
617 /*
618 * If the PTE was dirty then it's best to assume it's writable. The
619 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
620 * before the page is queued for IO.
621 */
622 if (writable)
623 tlb_ubc->writable = true;
624 }
625
626 /*
627 * Returns true if the TLB flush should be deferred to the end of a batch of
628 * unmap operations to reduce IPIs.
629 */
630 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
631 {
632 bool should_defer = false;
633
634 if (!(flags & TTU_BATCH_FLUSH))
635 return false;
636
637 /* If remote CPUs need to be flushed then defer batch the flush */
638 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
639 should_defer = true;
640 put_cpu();
641
642 return should_defer;
643 }
644
645 /*
646 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
647 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
648 * operation such as mprotect or munmap to race between reclaim unmapping
649 * the page and flushing the page. If this race occurs, it potentially allows
650 * access to data via a stale TLB entry. Tracking all mm's that have TLB
651 * batching in flight would be expensive during reclaim so instead track
652 * whether TLB batching occurred in the past and if so then do a flush here
653 * if required. This will cost one additional flush per reclaim cycle paid
654 * by the first operation at risk such as mprotect and mumap.
655 *
656 * This must be called under the PTL so that an access to tlb_flush_batched
657 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
658 * via the PTL.
659 */
660 void flush_tlb_batched_pending(struct mm_struct *mm)
661 {
662 if (mm->tlb_flush_batched) {
663 flush_tlb_mm(mm);
664
665 /*
666 * Do not allow the compiler to re-order the clearing of
667 * tlb_flush_batched before the tlb is flushed.
668 */
669 barrier();
670 mm->tlb_flush_batched = false;
671 }
672 }
673 #else
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
675 {
676 }
677
678 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
679 {
680 return false;
681 }
682 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
683
684 /*
685 * At what user virtual address is page expected in vma?
686 * Caller should check the page is actually part of the vma.
687 */
688 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
689 {
690 if (PageAnon(page)) {
691 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 /*
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
695 */
696 if (!vma->anon_vma || !page__anon_vma ||
697 vma->anon_vma->root != page__anon_vma->root)
698 return -EFAULT;
699 } else if (!vma->vm_file) {
700 return -EFAULT;
701 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
702 return -EFAULT;
703 }
704
705 return vma_address(page, vma);
706 }
707
708 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
709 {
710 pgd_t *pgd;
711 p4d_t *p4d;
712 pud_t *pud;
713 pmd_t *pmd = NULL;
714 pmd_t pmde;
715
716 pgd = pgd_offset(mm, address);
717 if (!pgd_present(*pgd))
718 goto out;
719
720 p4d = p4d_offset(pgd, address);
721 if (!p4d_present(*p4d))
722 goto out;
723
724 pud = pud_offset(p4d, address);
725 if (!pud_present(*pud))
726 goto out;
727
728 pmd = pmd_offset(pud, address);
729 /*
730 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
731 * without holding anon_vma lock for write. So when looking for a
732 * genuine pmde (in which to find pte), test present and !THP together.
733 */
734 pmde = *pmd;
735 barrier();
736 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
737 pmd = NULL;
738 out:
739 return pmd;
740 }
741
742 struct page_referenced_arg {
743 int mapcount;
744 int referenced;
745 unsigned long vm_flags;
746 struct mem_cgroup *memcg;
747 };
748 /*
749 * arg: page_referenced_arg will be passed
750 */
751 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
752 unsigned long address, void *arg)
753 {
754 struct page_referenced_arg *pra = arg;
755 struct page_vma_mapped_walk pvmw = {
756 .page = page,
757 .vma = vma,
758 .address = address,
759 };
760 int referenced = 0;
761
762 while (page_vma_mapped_walk(&pvmw)) {
763 address = pvmw.address;
764
765 if (vma->vm_flags & VM_LOCKED) {
766 page_vma_mapped_walk_done(&pvmw);
767 pra->vm_flags |= VM_LOCKED;
768 return false; /* To break the loop */
769 }
770
771 if (pvmw.pte) {
772 if (ptep_clear_flush_young_notify(vma, address,
773 pvmw.pte)) {
774 /*
775 * Don't treat a reference through
776 * a sequentially read mapping as such.
777 * If the page has been used in another mapping,
778 * we will catch it; if this other mapping is
779 * already gone, the unmap path will have set
780 * PG_referenced or activated the page.
781 */
782 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 referenced++;
784 }
785 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
786 if (pmdp_clear_flush_young_notify(vma, address,
787 pvmw.pmd))
788 referenced++;
789 } else {
790 /* unexpected pmd-mapped page? */
791 WARN_ON_ONCE(1);
792 }
793
794 pra->mapcount--;
795 }
796
797 if (referenced)
798 clear_page_idle(page);
799 if (test_and_clear_page_young(page))
800 referenced++;
801
802 if (referenced) {
803 pra->referenced++;
804 pra->vm_flags |= vma->vm_flags;
805 }
806
807 if (!pra->mapcount)
808 return false; /* To break the loop */
809
810 return true;
811 }
812
813 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
814 {
815 struct page_referenced_arg *pra = arg;
816 struct mem_cgroup *memcg = pra->memcg;
817
818 if (!mm_match_cgroup(vma->vm_mm, memcg))
819 return true;
820
821 return false;
822 }
823
824 /**
825 * page_referenced - test if the page was referenced
826 * @page: the page to test
827 * @is_locked: caller holds lock on the page
828 * @memcg: target memory cgroup
829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
830 *
831 * Quick test_and_clear_referenced for all mappings to a page,
832 * returns the number of ptes which referenced the page.
833 */
834 int page_referenced(struct page *page,
835 int is_locked,
836 struct mem_cgroup *memcg,
837 unsigned long *vm_flags)
838 {
839 int we_locked = 0;
840 struct page_referenced_arg pra = {
841 .mapcount = total_mapcount(page),
842 .memcg = memcg,
843 };
844 struct rmap_walk_control rwc = {
845 .rmap_one = page_referenced_one,
846 .arg = (void *)&pra,
847 .anon_lock = page_lock_anon_vma_read,
848 };
849
850 *vm_flags = 0;
851 if (!pra.mapcount)
852 return 0;
853
854 if (!page_rmapping(page))
855 return 0;
856
857 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
858 we_locked = trylock_page(page);
859 if (!we_locked)
860 return 1;
861 }
862
863 /*
864 * If we are reclaiming on behalf of a cgroup, skip
865 * counting on behalf of references from different
866 * cgroups
867 */
868 if (memcg) {
869 rwc.invalid_vma = invalid_page_referenced_vma;
870 }
871
872 rmap_walk(page, &rwc);
873 *vm_flags = pra.vm_flags;
874
875 if (we_locked)
876 unlock_page(page);
877
878 return pra.referenced;
879 }
880
881 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
882 unsigned long address, void *arg)
883 {
884 struct page_vma_mapped_walk pvmw = {
885 .page = page,
886 .vma = vma,
887 .address = address,
888 .flags = PVMW_SYNC,
889 };
890 struct mmu_notifier_range range;
891 int *cleaned = arg;
892
893 /*
894 * We have to assume the worse case ie pmd for invalidation. Note that
895 * the page can not be free from this function.
896 */
897 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
898 0, vma, vma->vm_mm, address,
899 vma_address_end(page, vma));
900 mmu_notifier_invalidate_range_start(&range);
901
902 while (page_vma_mapped_walk(&pvmw)) {
903 int ret = 0;
904
905 address = pvmw.address;
906 if (pvmw.pte) {
907 pte_t entry;
908 pte_t *pte = pvmw.pte;
909
910 if (!pte_dirty(*pte) && !pte_write(*pte))
911 continue;
912
913 flush_cache_page(vma, address, pte_pfn(*pte));
914 entry = ptep_clear_flush(vma, address, pte);
915 entry = pte_wrprotect(entry);
916 entry = pte_mkclean(entry);
917 set_pte_at(vma->vm_mm, address, pte, entry);
918 ret = 1;
919 } else {
920 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
921 pmd_t *pmd = pvmw.pmd;
922 pmd_t entry;
923
924 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
925 continue;
926
927 flush_cache_page(vma, address, page_to_pfn(page));
928 entry = pmdp_invalidate(vma, address, pmd);
929 entry = pmd_wrprotect(entry);
930 entry = pmd_mkclean(entry);
931 set_pmd_at(vma->vm_mm, address, pmd, entry);
932 ret = 1;
933 #else
934 /* unexpected pmd-mapped page? */
935 WARN_ON_ONCE(1);
936 #endif
937 }
938
939 /*
940 * No need to call mmu_notifier_invalidate_range() as we are
941 * downgrading page table protection not changing it to point
942 * to a new page.
943 *
944 * See Documentation/vm/mmu_notifier.rst
945 */
946 if (ret)
947 (*cleaned)++;
948 }
949
950 mmu_notifier_invalidate_range_end(&range);
951
952 return true;
953 }
954
955 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
956 {
957 if (vma->vm_flags & VM_SHARED)
958 return false;
959
960 return true;
961 }
962
963 int page_mkclean(struct page *page)
964 {
965 int cleaned = 0;
966 struct address_space *mapping;
967 struct rmap_walk_control rwc = {
968 .arg = (void *)&cleaned,
969 .rmap_one = page_mkclean_one,
970 .invalid_vma = invalid_mkclean_vma,
971 };
972
973 BUG_ON(!PageLocked(page));
974
975 if (!page_mapped(page))
976 return 0;
977
978 mapping = page_mapping(page);
979 if (!mapping)
980 return 0;
981
982 rmap_walk(page, &rwc);
983
984 return cleaned;
985 }
986 EXPORT_SYMBOL_GPL(page_mkclean);
987
988 /**
989 * page_move_anon_rmap - move a page to our anon_vma
990 * @page: the page to move to our anon_vma
991 * @vma: the vma the page belongs to
992 *
993 * When a page belongs exclusively to one process after a COW event,
994 * that page can be moved into the anon_vma that belongs to just that
995 * process, so the rmap code will not search the parent or sibling
996 * processes.
997 */
998 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
999 {
1000 struct anon_vma *anon_vma = vma->anon_vma;
1001
1002 page = compound_head(page);
1003
1004 VM_BUG_ON_PAGE(!PageLocked(page), page);
1005 VM_BUG_ON_VMA(!anon_vma, vma);
1006
1007 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1008 /*
1009 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1010 * simultaneously, so a concurrent reader (eg page_referenced()'s
1011 * PageAnon()) will not see one without the other.
1012 */
1013 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1014 }
1015
1016 /**
1017 * __page_set_anon_rmap - set up new anonymous rmap
1018 * @page: Page or Hugepage to add to rmap
1019 * @vma: VM area to add page to.
1020 * @address: User virtual address of the mapping
1021 * @exclusive: the page is exclusively owned by the current process
1022 */
1023 static void __page_set_anon_rmap(struct page *page,
1024 struct vm_area_struct *vma, unsigned long address, int exclusive)
1025 {
1026 struct anon_vma *anon_vma = vma->anon_vma;
1027
1028 BUG_ON(!anon_vma);
1029
1030 if (PageAnon(page))
1031 return;
1032
1033 /*
1034 * If the page isn't exclusively mapped into this vma,
1035 * we must use the _oldest_ possible anon_vma for the
1036 * page mapping!
1037 */
1038 if (!exclusive)
1039 anon_vma = anon_vma->root;
1040
1041 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1042 page->mapping = (struct address_space *) anon_vma;
1043 page->index = linear_page_index(vma, address);
1044 }
1045
1046 /**
1047 * __page_check_anon_rmap - sanity check anonymous rmap addition
1048 * @page: the page to add the mapping to
1049 * @vma: the vm area in which the mapping is added
1050 * @address: the user virtual address mapped
1051 */
1052 static void __page_check_anon_rmap(struct page *page,
1053 struct vm_area_struct *vma, unsigned long address)
1054 {
1055 #ifdef CONFIG_DEBUG_VM
1056 /*
1057 * The page's anon-rmap details (mapping and index) are guaranteed to
1058 * be set up correctly at this point.
1059 *
1060 * We have exclusion against page_add_anon_rmap because the caller
1061 * always holds the page locked, except if called from page_dup_rmap,
1062 * in which case the page is already known to be setup.
1063 *
1064 * We have exclusion against page_add_new_anon_rmap because those pages
1065 * are initially only visible via the pagetables, and the pte is locked
1066 * over the call to page_add_new_anon_rmap.
1067 */
1068 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1069 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1070 #endif
1071 }
1072
1073 /**
1074 * page_add_anon_rmap - add pte mapping to an anonymous page
1075 * @page: the page to add the mapping to
1076 * @vma: the vm area in which the mapping is added
1077 * @address: the user virtual address mapped
1078 * @compound: charge the page as compound or small page
1079 *
1080 * The caller needs to hold the pte lock, and the page must be locked in
1081 * the anon_vma case: to serialize mapping,index checking after setting,
1082 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1083 * (but PageKsm is never downgraded to PageAnon).
1084 */
1085 void page_add_anon_rmap(struct page *page,
1086 struct vm_area_struct *vma, unsigned long address, bool compound)
1087 {
1088 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1089 }
1090
1091 /*
1092 * Special version of the above for do_swap_page, which often runs
1093 * into pages that are exclusively owned by the current process.
1094 * Everybody else should continue to use page_add_anon_rmap above.
1095 */
1096 void do_page_add_anon_rmap(struct page *page,
1097 struct vm_area_struct *vma, unsigned long address, int flags)
1098 {
1099 bool compound = flags & RMAP_COMPOUND;
1100 bool first;
1101
1102 if (compound) {
1103 atomic_t *mapcount;
1104 VM_BUG_ON_PAGE(!PageLocked(page), page);
1105 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1106 mapcount = compound_mapcount_ptr(page);
1107 first = atomic_inc_and_test(mapcount);
1108 } else {
1109 first = atomic_inc_and_test(&page->_mapcount);
1110 }
1111
1112 if (first) {
1113 int nr = compound ? hpage_nr_pages(page) : 1;
1114 /*
1115 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1116 * these counters are not modified in interrupt context, and
1117 * pte lock(a spinlock) is held, which implies preemption
1118 * disabled.
1119 */
1120 if (compound)
1121 __inc_node_page_state(page, NR_ANON_THPS);
1122 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1123 }
1124 if (unlikely(PageKsm(page)))
1125 return;
1126
1127 VM_BUG_ON_PAGE(!PageLocked(page), page);
1128
1129 /* address might be in next vma when migration races vma_adjust */
1130 if (first)
1131 __page_set_anon_rmap(page, vma, address,
1132 flags & RMAP_EXCLUSIVE);
1133 else
1134 __page_check_anon_rmap(page, vma, address);
1135 }
1136
1137 /**
1138 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1139 * @page: the page to add the mapping to
1140 * @vma: the vm area in which the mapping is added
1141 * @address: the user virtual address mapped
1142 * @compound: charge the page as compound or small page
1143 *
1144 * Same as page_add_anon_rmap but must only be called on *new* pages.
1145 * This means the inc-and-test can be bypassed.
1146 * Page does not have to be locked.
1147 */
1148 void page_add_new_anon_rmap(struct page *page,
1149 struct vm_area_struct *vma, unsigned long address, bool compound)
1150 {
1151 int nr = compound ? hpage_nr_pages(page) : 1;
1152
1153 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1154 __SetPageSwapBacked(page);
1155 if (compound) {
1156 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1157 /* increment count (starts at -1) */
1158 atomic_set(compound_mapcount_ptr(page), 0);
1159 __inc_node_page_state(page, NR_ANON_THPS);
1160 } else {
1161 /* Anon THP always mapped first with PMD */
1162 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1163 /* increment count (starts at -1) */
1164 atomic_set(&page->_mapcount, 0);
1165 }
1166 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1167 __page_set_anon_rmap(page, vma, address, 1);
1168 }
1169
1170 /**
1171 * page_add_file_rmap - add pte mapping to a file page
1172 * @page: the page to add the mapping to
1173 * @compound: charge the page as compound or small page
1174 *
1175 * The caller needs to hold the pte lock.
1176 */
1177 void page_add_file_rmap(struct page *page, bool compound)
1178 {
1179 int i, nr = 1;
1180
1181 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1182 lock_page_memcg(page);
1183 if (compound && PageTransHuge(page)) {
1184 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1185 if (atomic_inc_and_test(&page[i]._mapcount))
1186 nr++;
1187 }
1188 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1189 goto out;
1190 if (PageSwapBacked(page))
1191 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1192 else
1193 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1194 } else {
1195 if (PageTransCompound(page) && page_mapping(page)) {
1196 VM_WARN_ON_ONCE(!PageLocked(page));
1197
1198 SetPageDoubleMap(compound_head(page));
1199 if (PageMlocked(page))
1200 clear_page_mlock(compound_head(page));
1201 }
1202 if (!atomic_inc_and_test(&page->_mapcount))
1203 goto out;
1204 }
1205 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1206 out:
1207 unlock_page_memcg(page);
1208 }
1209
1210 static void page_remove_file_rmap(struct page *page, bool compound)
1211 {
1212 int i, nr = 1;
1213
1214 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1215 lock_page_memcg(page);
1216
1217 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1218 if (unlikely(PageHuge(page))) {
1219 /* hugetlb pages are always mapped with pmds */
1220 atomic_dec(compound_mapcount_ptr(page));
1221 goto out;
1222 }
1223
1224 /* page still mapped by someone else? */
1225 if (compound && PageTransHuge(page)) {
1226 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1227 if (atomic_add_negative(-1, &page[i]._mapcount))
1228 nr++;
1229 }
1230 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1231 goto out;
1232 if (PageSwapBacked(page))
1233 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1234 else
1235 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1236 } else {
1237 if (!atomic_add_negative(-1, &page->_mapcount))
1238 goto out;
1239 }
1240
1241 /*
1242 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1243 * these counters are not modified in interrupt context, and
1244 * pte lock(a spinlock) is held, which implies preemption disabled.
1245 */
1246 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1247
1248 if (unlikely(PageMlocked(page)))
1249 clear_page_mlock(page);
1250 out:
1251 unlock_page_memcg(page);
1252 }
1253
1254 static void page_remove_anon_compound_rmap(struct page *page)
1255 {
1256 int i, nr;
1257
1258 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1259 return;
1260
1261 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1262 if (unlikely(PageHuge(page)))
1263 return;
1264
1265 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1266 return;
1267
1268 __dec_node_page_state(page, NR_ANON_THPS);
1269
1270 if (TestClearPageDoubleMap(page)) {
1271 /*
1272 * Subpages can be mapped with PTEs too. Check how many of
1273 * themi are still mapped.
1274 */
1275 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1276 if (atomic_add_negative(-1, &page[i]._mapcount))
1277 nr++;
1278 }
1279 } else {
1280 nr = HPAGE_PMD_NR;
1281 }
1282
1283 if (unlikely(PageMlocked(page)))
1284 clear_page_mlock(page);
1285
1286 if (nr) {
1287 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1288 deferred_split_huge_page(page);
1289 }
1290 }
1291
1292 /**
1293 * page_remove_rmap - take down pte mapping from a page
1294 * @page: page to remove mapping from
1295 * @compound: uncharge the page as compound or small page
1296 *
1297 * The caller needs to hold the pte lock.
1298 */
1299 void page_remove_rmap(struct page *page, bool compound)
1300 {
1301 if (!PageAnon(page))
1302 return page_remove_file_rmap(page, compound);
1303
1304 if (compound)
1305 return page_remove_anon_compound_rmap(page);
1306
1307 /* page still mapped by someone else? */
1308 if (!atomic_add_negative(-1, &page->_mapcount))
1309 return;
1310
1311 /*
1312 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1313 * these counters are not modified in interrupt context, and
1314 * pte lock(a spinlock) is held, which implies preemption disabled.
1315 */
1316 __dec_node_page_state(page, NR_ANON_MAPPED);
1317
1318 if (unlikely(PageMlocked(page)))
1319 clear_page_mlock(page);
1320
1321 if (PageTransCompound(page))
1322 deferred_split_huge_page(compound_head(page));
1323
1324 /*
1325 * It would be tidy to reset the PageAnon mapping here,
1326 * but that might overwrite a racing page_add_anon_rmap
1327 * which increments mapcount after us but sets mapping
1328 * before us: so leave the reset to free_unref_page,
1329 * and remember that it's only reliable while mapped.
1330 * Leaving it set also helps swapoff to reinstate ptes
1331 * faster for those pages still in swapcache.
1332 */
1333 }
1334
1335 /*
1336 * @arg: enum ttu_flags will be passed to this argument
1337 */
1338 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1339 unsigned long address, void *arg)
1340 {
1341 struct mm_struct *mm = vma->vm_mm;
1342 struct page_vma_mapped_walk pvmw = {
1343 .page = page,
1344 .vma = vma,
1345 .address = address,
1346 };
1347 pte_t pteval;
1348 struct page *subpage;
1349 bool ret = true;
1350 struct mmu_notifier_range range;
1351 enum ttu_flags flags = (enum ttu_flags)arg;
1352
1353 /*
1354 * When racing against e.g. zap_pte_range() on another cpu,
1355 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1356 * try_to_unmap() may return false when it is about to become true,
1357 * if page table locking is skipped: use TTU_SYNC to wait for that.
1358 */
1359 if (flags & TTU_SYNC)
1360 pvmw.flags = PVMW_SYNC;
1361
1362 /* munlock has nothing to gain from examining un-locked vmas */
1363 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1364 return true;
1365
1366 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1367 is_zone_device_page(page) && !is_device_private_page(page))
1368 return true;
1369
1370 if (flags & TTU_SPLIT_HUGE_PMD) {
1371 split_huge_pmd_address(vma, address,
1372 flags & TTU_SPLIT_FREEZE, page);
1373 }
1374
1375 /*
1376 * For THP, we have to assume the worse case ie pmd for invalidation.
1377 * For hugetlb, it could be much worse if we need to do pud
1378 * invalidation in the case of pmd sharing.
1379 *
1380 * Note that the page can not be free in this function as call of
1381 * try_to_unmap() must hold a reference on the page.
1382 */
1383 range.end = PageKsm(page) ?
1384 address + PAGE_SIZE : vma_address_end(page, vma);
1385 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1386 address, range.end);
1387 if (PageHuge(page)) {
1388 /*
1389 * If sharing is possible, start and end will be adjusted
1390 * accordingly.
1391 */
1392 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1393 &range.end);
1394 }
1395 mmu_notifier_invalidate_range_start(&range);
1396
1397 while (page_vma_mapped_walk(&pvmw)) {
1398 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1399 /* PMD-mapped THP migration entry */
1400 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1401 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1402
1403 set_pmd_migration_entry(&pvmw, page);
1404 continue;
1405 }
1406 #endif
1407
1408 /*
1409 * If the page is mlock()d, we cannot swap it out.
1410 * If it's recently referenced (perhaps page_referenced
1411 * skipped over this mm) then we should reactivate it.
1412 */
1413 if (!(flags & TTU_IGNORE_MLOCK)) {
1414 if (vma->vm_flags & VM_LOCKED) {
1415 /* PTE-mapped THP are never mlocked */
1416 if (!PageTransCompound(page)) {
1417 /*
1418 * Holding pte lock, we do *not* need
1419 * mmap_sem here
1420 */
1421 mlock_vma_page(page);
1422 }
1423 ret = false;
1424 page_vma_mapped_walk_done(&pvmw);
1425 break;
1426 }
1427 if (flags & TTU_MUNLOCK)
1428 continue;
1429 }
1430
1431 /* Unexpected PMD-mapped THP? */
1432 VM_BUG_ON_PAGE(!pvmw.pte, page);
1433
1434 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1435 address = pvmw.address;
1436
1437 if (PageHuge(page)) {
1438 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1439 /*
1440 * huge_pmd_unshare unmapped an entire PMD
1441 * page. There is no way of knowing exactly
1442 * which PMDs may be cached for this mm, so
1443 * we must flush them all. start/end were
1444 * already adjusted above to cover this range.
1445 */
1446 flush_cache_range(vma, range.start, range.end);
1447 flush_tlb_range(vma, range.start, range.end);
1448 mmu_notifier_invalidate_range(mm, range.start,
1449 range.end);
1450
1451 /*
1452 * The ref count of the PMD page was dropped
1453 * which is part of the way map counting
1454 * is done for shared PMDs. Return 'true'
1455 * here. When there is no other sharing,
1456 * huge_pmd_unshare returns false and we will
1457 * unmap the actual page and drop map count
1458 * to zero.
1459 */
1460 page_vma_mapped_walk_done(&pvmw);
1461 break;
1462 }
1463 }
1464
1465 if (IS_ENABLED(CONFIG_MIGRATION) &&
1466 (flags & TTU_MIGRATION) &&
1467 is_zone_device_page(page)) {
1468 swp_entry_t entry;
1469 pte_t swp_pte;
1470
1471 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1472
1473 /*
1474 * Store the pfn of the page in a special migration
1475 * pte. do_swap_page() will wait until the migration
1476 * pte is removed and then restart fault handling.
1477 */
1478 entry = make_migration_entry(page, 0);
1479 swp_pte = swp_entry_to_pte(entry);
1480 if (pte_soft_dirty(pteval))
1481 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1482 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1483 /*
1484 * No need to invalidate here it will synchronize on
1485 * against the special swap migration pte.
1486 *
1487 * The assignment to subpage above was computed from a
1488 * swap PTE which results in an invalid pointer.
1489 * Since only PAGE_SIZE pages can currently be
1490 * migrated, just set it to page. This will need to be
1491 * changed when hugepage migrations to device private
1492 * memory are supported.
1493 */
1494 subpage = page;
1495 goto discard;
1496 }
1497
1498 if (!(flags & TTU_IGNORE_ACCESS)) {
1499 if (ptep_clear_flush_young_notify(vma, address,
1500 pvmw.pte)) {
1501 ret = false;
1502 page_vma_mapped_walk_done(&pvmw);
1503 break;
1504 }
1505 }
1506
1507 /* Nuke the page table entry. */
1508 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1509 if (should_defer_flush(mm, flags)) {
1510 /*
1511 * We clear the PTE but do not flush so potentially
1512 * a remote CPU could still be writing to the page.
1513 * If the entry was previously clean then the
1514 * architecture must guarantee that a clear->dirty
1515 * transition on a cached TLB entry is written through
1516 * and traps if the PTE is unmapped.
1517 */
1518 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1519
1520 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1521 } else {
1522 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1523 }
1524
1525 /* Move the dirty bit to the page. Now the pte is gone. */
1526 if (pte_dirty(pteval))
1527 set_page_dirty(page);
1528
1529 /* Update high watermark before we lower rss */
1530 update_hiwater_rss(mm);
1531
1532 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1533 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1534 if (PageHuge(page)) {
1535 hugetlb_count_sub(compound_nr(page), mm);
1536 set_huge_swap_pte_at(mm, address,
1537 pvmw.pte, pteval,
1538 vma_mmu_pagesize(vma));
1539 } else {
1540 dec_mm_counter(mm, mm_counter(page));
1541 set_pte_at(mm, address, pvmw.pte, pteval);
1542 }
1543
1544 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1545 /*
1546 * The guest indicated that the page content is of no
1547 * interest anymore. Simply discard the pte, vmscan
1548 * will take care of the rest.
1549 * A future reference will then fault in a new zero
1550 * page. When userfaultfd is active, we must not drop
1551 * this page though, as its main user (postcopy
1552 * migration) will not expect userfaults on already
1553 * copied pages.
1554 */
1555 dec_mm_counter(mm, mm_counter(page));
1556 /* We have to invalidate as we cleared the pte */
1557 mmu_notifier_invalidate_range(mm, address,
1558 address + PAGE_SIZE);
1559 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1560 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1561 swp_entry_t entry;
1562 pte_t swp_pte;
1563
1564 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1565 set_pte_at(mm, address, pvmw.pte, pteval);
1566 ret = false;
1567 page_vma_mapped_walk_done(&pvmw);
1568 break;
1569 }
1570
1571 /*
1572 * Store the pfn of the page in a special migration
1573 * pte. do_swap_page() will wait until the migration
1574 * pte is removed and then restart fault handling.
1575 */
1576 entry = make_migration_entry(subpage,
1577 pte_write(pteval));
1578 swp_pte = swp_entry_to_pte(entry);
1579 if (pte_soft_dirty(pteval))
1580 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1581 set_pte_at(mm, address, pvmw.pte, swp_pte);
1582 /*
1583 * No need to invalidate here it will synchronize on
1584 * against the special swap migration pte.
1585 */
1586 } else if (PageAnon(page)) {
1587 swp_entry_t entry = { .val = page_private(subpage) };
1588 pte_t swp_pte;
1589 /*
1590 * Store the swap location in the pte.
1591 * See handle_pte_fault() ...
1592 */
1593 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1594 WARN_ON_ONCE(1);
1595 ret = false;
1596 /* We have to invalidate as we cleared the pte */
1597 mmu_notifier_invalidate_range(mm, address,
1598 address + PAGE_SIZE);
1599 page_vma_mapped_walk_done(&pvmw);
1600 break;
1601 }
1602
1603 /* MADV_FREE page check */
1604 if (!PageSwapBacked(page)) {
1605 int ref_count, map_count;
1606
1607 /*
1608 * Synchronize with gup_pte_range():
1609 * - clear PTE; barrier; read refcount
1610 * - inc refcount; barrier; read PTE
1611 */
1612 smp_mb();
1613
1614 ref_count = page_ref_count(page);
1615 map_count = page_mapcount(page);
1616
1617 /*
1618 * Order reads for page refcount and dirty flag
1619 * (see comments in __remove_mapping()).
1620 */
1621 smp_rmb();
1622
1623 /*
1624 * The only page refs must be one from isolation
1625 * plus the rmap(s) (dropped by discard:).
1626 */
1627 if (ref_count == 1 + map_count &&
1628 !PageDirty(page)) {
1629 /* Invalidate as we cleared the pte */
1630 mmu_notifier_invalidate_range(mm,
1631 address, address + PAGE_SIZE);
1632 dec_mm_counter(mm, MM_ANONPAGES);
1633 goto discard;
1634 }
1635
1636 /*
1637 * If the page was redirtied, it cannot be
1638 * discarded. Remap the page to page table.
1639 */
1640 set_pte_at(mm, address, pvmw.pte, pteval);
1641 SetPageSwapBacked(page);
1642 ret = false;
1643 page_vma_mapped_walk_done(&pvmw);
1644 break;
1645 }
1646
1647 if (swap_duplicate(entry) < 0) {
1648 set_pte_at(mm, address, pvmw.pte, pteval);
1649 ret = false;
1650 page_vma_mapped_walk_done(&pvmw);
1651 break;
1652 }
1653 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1654 set_pte_at(mm, address, pvmw.pte, pteval);
1655 ret = false;
1656 page_vma_mapped_walk_done(&pvmw);
1657 break;
1658 }
1659 if (list_empty(&mm->mmlist)) {
1660 spin_lock(&mmlist_lock);
1661 if (list_empty(&mm->mmlist))
1662 list_add(&mm->mmlist, &init_mm.mmlist);
1663 spin_unlock(&mmlist_lock);
1664 }
1665 dec_mm_counter(mm, MM_ANONPAGES);
1666 inc_mm_counter(mm, MM_SWAPENTS);
1667 swp_pte = swp_entry_to_pte(entry);
1668 if (pte_soft_dirty(pteval))
1669 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1670 set_pte_at(mm, address, pvmw.pte, swp_pte);
1671 /* Invalidate as we cleared the pte */
1672 mmu_notifier_invalidate_range(mm, address,
1673 address + PAGE_SIZE);
1674 } else {
1675 /*
1676 * This is a locked file-backed page, thus it cannot
1677 * be removed from the page cache and replaced by a new
1678 * page before mmu_notifier_invalidate_range_end, so no
1679 * concurrent thread might update its page table to
1680 * point at new page while a device still is using this
1681 * page.
1682 *
1683 * See Documentation/vm/mmu_notifier.rst
1684 */
1685 dec_mm_counter(mm, mm_counter_file(page));
1686 }
1687 discard:
1688 /*
1689 * No need to call mmu_notifier_invalidate_range() it has be
1690 * done above for all cases requiring it to happen under page
1691 * table lock before mmu_notifier_invalidate_range_end()
1692 *
1693 * See Documentation/vm/mmu_notifier.rst
1694 */
1695 page_remove_rmap(subpage, PageHuge(page));
1696 put_page(page);
1697 }
1698
1699 mmu_notifier_invalidate_range_end(&range);
1700
1701 return ret;
1702 }
1703
1704 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1705 {
1706 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1707
1708 if (!maybe_stack)
1709 return false;
1710
1711 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1712 VM_STACK_INCOMPLETE_SETUP)
1713 return true;
1714
1715 return false;
1716 }
1717
1718 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1719 {
1720 return is_vma_temporary_stack(vma);
1721 }
1722
1723 static int page_not_mapped(struct page *page)
1724 {
1725 return !page_mapped(page);
1726 }
1727
1728 /**
1729 * try_to_unmap - try to remove all page table mappings to a page
1730 * @page: the page to get unmapped
1731 * @flags: action and flags
1732 *
1733 * Tries to remove all the page table entries which are mapping this
1734 * page, used in the pageout path. Caller must hold the page lock.
1735 *
1736 * If unmap is successful, return true. Otherwise, false.
1737 */
1738 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1739 {
1740 struct rmap_walk_control rwc = {
1741 .rmap_one = try_to_unmap_one,
1742 .arg = (void *)flags,
1743 .done = page_not_mapped,
1744 .anon_lock = page_lock_anon_vma_read,
1745 };
1746
1747 /*
1748 * During exec, a temporary VMA is setup and later moved.
1749 * The VMA is moved under the anon_vma lock but not the
1750 * page tables leading to a race where migration cannot
1751 * find the migration ptes. Rather than increasing the
1752 * locking requirements of exec(), migration skips
1753 * temporary VMAs until after exec() completes.
1754 */
1755 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1756 && !PageKsm(page) && PageAnon(page))
1757 rwc.invalid_vma = invalid_migration_vma;
1758
1759 if (flags & TTU_RMAP_LOCKED)
1760 rmap_walk_locked(page, &rwc);
1761 else
1762 rmap_walk(page, &rwc);
1763
1764 /*
1765 * When racing against e.g. zap_pte_range() on another cpu,
1766 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1767 * try_to_unmap() may return false when it is about to become true,
1768 * if page table locking is skipped: use TTU_SYNC to wait for that.
1769 */
1770 return !page_mapcount(page);
1771 }
1772
1773 /**
1774 * try_to_munlock - try to munlock a page
1775 * @page: the page to be munlocked
1776 *
1777 * Called from munlock code. Checks all of the VMAs mapping the page
1778 * to make sure nobody else has this page mlocked. The page will be
1779 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1780 */
1781
1782 void try_to_munlock(struct page *page)
1783 {
1784 struct rmap_walk_control rwc = {
1785 .rmap_one = try_to_unmap_one,
1786 .arg = (void *)TTU_MUNLOCK,
1787 .done = page_not_mapped,
1788 .anon_lock = page_lock_anon_vma_read,
1789
1790 };
1791
1792 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1793 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1794
1795 rmap_walk(page, &rwc);
1796 }
1797
1798 void __put_anon_vma(struct anon_vma *anon_vma)
1799 {
1800 struct anon_vma *root = anon_vma->root;
1801
1802 anon_vma_free(anon_vma);
1803 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1804 anon_vma_free(root);
1805 }
1806
1807 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1808 struct rmap_walk_control *rwc)
1809 {
1810 struct anon_vma *anon_vma;
1811
1812 if (rwc->anon_lock)
1813 return rwc->anon_lock(page);
1814
1815 /*
1816 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1817 * because that depends on page_mapped(); but not all its usages
1818 * are holding mmap_sem. Users without mmap_sem are required to
1819 * take a reference count to prevent the anon_vma disappearing
1820 */
1821 anon_vma = page_anon_vma(page);
1822 if (!anon_vma)
1823 return NULL;
1824
1825 anon_vma_lock_read(anon_vma);
1826 return anon_vma;
1827 }
1828
1829 /*
1830 * rmap_walk_anon - do something to anonymous page using the object-based
1831 * rmap method
1832 * @page: the page to be handled
1833 * @rwc: control variable according to each walk type
1834 *
1835 * Find all the mappings of a page using the mapping pointer and the vma chains
1836 * contained in the anon_vma struct it points to.
1837 *
1838 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1839 * where the page was found will be held for write. So, we won't recheck
1840 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1841 * LOCKED.
1842 */
1843 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1844 bool locked)
1845 {
1846 struct anon_vma *anon_vma;
1847 pgoff_t pgoff_start, pgoff_end;
1848 struct anon_vma_chain *avc;
1849
1850 if (locked) {
1851 anon_vma = page_anon_vma(page);
1852 /* anon_vma disappear under us? */
1853 VM_BUG_ON_PAGE(!anon_vma, page);
1854 } else {
1855 anon_vma = rmap_walk_anon_lock(page, rwc);
1856 }
1857 if (!anon_vma)
1858 return;
1859
1860 pgoff_start = page_to_pgoff(page);
1861 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1862 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1863 pgoff_start, pgoff_end) {
1864 struct vm_area_struct *vma = avc->vma;
1865 unsigned long address = vma_address(page, vma);
1866
1867 VM_BUG_ON_VMA(address == -EFAULT, vma);
1868 cond_resched();
1869
1870 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1871 continue;
1872
1873 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1874 break;
1875 if (rwc->done && rwc->done(page))
1876 break;
1877 }
1878
1879 if (!locked)
1880 anon_vma_unlock_read(anon_vma);
1881 }
1882
1883 /*
1884 * rmap_walk_file - do something to file page using the object-based rmap method
1885 * @page: the page to be handled
1886 * @rwc: control variable according to each walk type
1887 *
1888 * Find all the mappings of a page using the mapping pointer and the vma chains
1889 * contained in the address_space struct it points to.
1890 *
1891 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1892 * where the page was found will be held for write. So, we won't recheck
1893 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1894 * LOCKED.
1895 */
1896 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1897 bool locked)
1898 {
1899 struct address_space *mapping = page_mapping(page);
1900 pgoff_t pgoff_start, pgoff_end;
1901 struct vm_area_struct *vma;
1902
1903 /*
1904 * The page lock not only makes sure that page->mapping cannot
1905 * suddenly be NULLified by truncation, it makes sure that the
1906 * structure at mapping cannot be freed and reused yet,
1907 * so we can safely take mapping->i_mmap_rwsem.
1908 */
1909 VM_BUG_ON_PAGE(!PageLocked(page), page);
1910
1911 if (!mapping)
1912 return;
1913
1914 pgoff_start = page_to_pgoff(page);
1915 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1916 if (!locked)
1917 i_mmap_lock_read(mapping);
1918 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1919 pgoff_start, pgoff_end) {
1920 unsigned long address = vma_address(page, vma);
1921
1922 VM_BUG_ON_VMA(address == -EFAULT, vma);
1923 cond_resched();
1924
1925 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1926 continue;
1927
1928 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1929 goto done;
1930 if (rwc->done && rwc->done(page))
1931 goto done;
1932 }
1933
1934 done:
1935 if (!locked)
1936 i_mmap_unlock_read(mapping);
1937 }
1938
1939 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1940 {
1941 if (unlikely(PageKsm(page)))
1942 rmap_walk_ksm(page, rwc);
1943 else if (PageAnon(page))
1944 rmap_walk_anon(page, rwc, false);
1945 else
1946 rmap_walk_file(page, rwc, false);
1947 }
1948
1949 /* Like rmap_walk, but caller holds relevant rmap lock */
1950 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1951 {
1952 /* no ksm support for now */
1953 VM_BUG_ON_PAGE(PageKsm(page), page);
1954 if (PageAnon(page))
1955 rmap_walk_anon(page, rwc, true);
1956 else
1957 rmap_walk_file(page, rwc, true);
1958 }
1959
1960 #ifdef CONFIG_HUGETLB_PAGE
1961 /*
1962 * The following two functions are for anonymous (private mapped) hugepages.
1963 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1964 * and no lru code, because we handle hugepages differently from common pages.
1965 */
1966 void hugepage_add_anon_rmap(struct page *page,
1967 struct vm_area_struct *vma, unsigned long address)
1968 {
1969 struct anon_vma *anon_vma = vma->anon_vma;
1970 int first;
1971
1972 BUG_ON(!PageLocked(page));
1973 BUG_ON(!anon_vma);
1974 /* address might be in next vma when migration races vma_adjust */
1975 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1976 if (first)
1977 __page_set_anon_rmap(page, vma, address, 0);
1978 }
1979
1980 void hugepage_add_new_anon_rmap(struct page *page,
1981 struct vm_area_struct *vma, unsigned long address)
1982 {
1983 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1984 atomic_set(compound_mapcount_ptr(page), 0);
1985 __page_set_anon_rmap(page, vma, address, 1);
1986 }
1987 #endif /* CONFIG_HUGETLB_PAGE */