]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/rmap.c
bnxt_en: use link_lock instead of hwrm_cmd_lock to protect link_info
[mirror_ubuntu-jammy-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * page->flags PG_locked (lock_page) * (see huegtlbfs below)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29 * anon_vma->rwsem
30 * mm->page_table_lock or pte_lock
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
35 * i_pages lock (widely used)
36 * lruvec->lru_lock (in lock_page_lruvec_irq)
37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39 * sb_lock (within inode_lock in fs/fs-writeback.c)
40 * i_pages lock (widely used, in set_page_dirty,
41 * in arch-dependent flush_dcache_mmap_lock,
42 * within bdi.wb->list_lock in __sync_single_inode)
43 *
44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
45 * ->tasklist_lock
46 * pte map lock
47 *
48 * * hugetlbfs PageHuge() pages take locks in this order:
49 * mapping->i_mmap_rwsem
50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51 * page->flags PG_locked (lock_page)
52 */
53
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/tlb.h>
79
80 #include "internal.h"
81
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 struct anon_vma *anon_vma;
88
89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 if (anon_vma) {
91 atomic_set(&anon_vma->refcount, 1);
92 anon_vma->degree = 1; /* Reference for first vma */
93 anon_vma->parent = anon_vma;
94 /*
95 * Initialise the anon_vma root to point to itself. If called
96 * from fork, the root will be reset to the parents anon_vma.
97 */
98 anon_vma->root = anon_vma;
99 }
100
101 return anon_vma;
102 }
103
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 VM_BUG_ON(atomic_read(&anon_vma->refcount));
107
108 /*
109 * Synchronize against page_lock_anon_vma_read() such that
110 * we can safely hold the lock without the anon_vma getting
111 * freed.
112 *
113 * Relies on the full mb implied by the atomic_dec_and_test() from
114 * put_anon_vma() against the acquire barrier implied by
115 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 *
117 * page_lock_anon_vma_read() VS put_anon_vma()
118 * down_read_trylock() atomic_dec_and_test()
119 * LOCK MB
120 * atomic_read() rwsem_is_locked()
121 *
122 * LOCK should suffice since the actual taking of the lock must
123 * happen _before_ what follows.
124 */
125 might_sleep();
126 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 anon_vma_lock_write(anon_vma);
128 anon_vma_unlock_write(anon_vma);
129 }
130
131 kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 struct anon_vma_chain *avc,
146 struct anon_vma *anon_vma)
147 {
148 avc->vma = vma;
149 avc->anon_vma = anon_vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153
154 /**
155 * __anon_vma_prepare - attach an anon_vma to a memory region
156 * @vma: the memory region in question
157 *
158 * This makes sure the memory mapping described by 'vma' has
159 * an 'anon_vma' attached to it, so that we can associate the
160 * anonymous pages mapped into it with that anon_vma.
161 *
162 * The common case will be that we already have one, which
163 * is handled inline by anon_vma_prepare(). But if
164 * not we either need to find an adjacent mapping that we
165 * can re-use the anon_vma from (very common when the only
166 * reason for splitting a vma has been mprotect()), or we
167 * allocate a new one.
168 *
169 * Anon-vma allocations are very subtle, because we may have
170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171 * and that may actually touch the rwsem even in the newly
172 * allocated vma (it depends on RCU to make sure that the
173 * anon_vma isn't actually destroyed).
174 *
175 * As a result, we need to do proper anon_vma locking even
176 * for the new allocation. At the same time, we do not want
177 * to do any locking for the common case of already having
178 * an anon_vma.
179 *
180 * This must be called with the mmap_lock held for reading.
181 */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 struct mm_struct *mm = vma->vm_mm;
185 struct anon_vma *anon_vma, *allocated;
186 struct anon_vma_chain *avc;
187
188 might_sleep();
189
190 avc = anon_vma_chain_alloc(GFP_KERNEL);
191 if (!avc)
192 goto out_enomem;
193
194 anon_vma = find_mergeable_anon_vma(vma);
195 allocated = NULL;
196 if (!anon_vma) {
197 anon_vma = anon_vma_alloc();
198 if (unlikely(!anon_vma))
199 goto out_enomem_free_avc;
200 allocated = anon_vma;
201 }
202
203 anon_vma_lock_write(anon_vma);
204 /* page_table_lock to protect against threads */
205 spin_lock(&mm->page_table_lock);
206 if (likely(!vma->anon_vma)) {
207 vma->anon_vma = anon_vma;
208 anon_vma_chain_link(vma, avc, anon_vma);
209 /* vma reference or self-parent link for new root */
210 anon_vma->degree++;
211 allocated = NULL;
212 avc = NULL;
213 }
214 spin_unlock(&mm->page_table_lock);
215 anon_vma_unlock_write(anon_vma);
216
217 if (unlikely(allocated))
218 put_anon_vma(allocated);
219 if (unlikely(avc))
220 anon_vma_chain_free(avc);
221
222 return 0;
223
224 out_enomem_free_avc:
225 anon_vma_chain_free(avc);
226 out_enomem:
227 return -ENOMEM;
228 }
229
230 /*
231 * This is a useful helper function for locking the anon_vma root as
232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233 * have the same vma.
234 *
235 * Such anon_vma's should have the same root, so you'd expect to see
236 * just a single mutex_lock for the whole traversal.
237 */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 struct anon_vma *new_root = anon_vma->root;
241 if (new_root != root) {
242 if (WARN_ON_ONCE(root))
243 up_write(&root->rwsem);
244 root = new_root;
245 down_write(&root->rwsem);
246 }
247 return root;
248 }
249
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 if (root)
253 up_write(&root->rwsem);
254 }
255
256 /*
257 * Attach the anon_vmas from src to dst.
258 * Returns 0 on success, -ENOMEM on failure.
259 *
260 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
261 * anon_vma_fork(). The first three want an exact copy of src, while the last
262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265 *
266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
269 * case of constantly forking task. On the other hand, an anon_vma with more
270 * than one child isn't reused even if there was no alive vma, thus rmap
271 * walker has a good chance of avoiding scanning the whole hierarchy when it
272 * searches where page is mapped.
273 */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 struct anon_vma_chain *avc, *pavc;
277 struct anon_vma *root = NULL;
278
279 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 struct anon_vma *anon_vma;
281
282 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 if (unlikely(!avc)) {
284 unlock_anon_vma_root(root);
285 root = NULL;
286 avc = anon_vma_chain_alloc(GFP_KERNEL);
287 if (!avc)
288 goto enomem_failure;
289 }
290 anon_vma = pavc->anon_vma;
291 root = lock_anon_vma_root(root, anon_vma);
292 anon_vma_chain_link(dst, avc, anon_vma);
293
294 /*
295 * Reuse existing anon_vma if its degree lower than two,
296 * that means it has no vma and only one anon_vma child.
297 *
298 * Do not chose parent anon_vma, otherwise first child
299 * will always reuse it. Root anon_vma is never reused:
300 * it has self-parent reference and at least one child.
301 */
302 if (!dst->anon_vma && src->anon_vma &&
303 anon_vma != src->anon_vma && anon_vma->degree < 2)
304 dst->anon_vma = anon_vma;
305 }
306 if (dst->anon_vma)
307 dst->anon_vma->degree++;
308 unlock_anon_vma_root(root);
309 return 0;
310
311 enomem_failure:
312 /*
313 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 * decremented in unlink_anon_vmas().
315 * We can safely do this because callers of anon_vma_clone() don't care
316 * about dst->anon_vma if anon_vma_clone() failed.
317 */
318 dst->anon_vma = NULL;
319 unlink_anon_vmas(dst);
320 return -ENOMEM;
321 }
322
323 /*
324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
325 * the corresponding VMA in the parent process is attached to.
326 * Returns 0 on success, non-zero on failure.
327 */
328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329 {
330 struct anon_vma_chain *avc;
331 struct anon_vma *anon_vma;
332 int error;
333
334 /* Don't bother if the parent process has no anon_vma here. */
335 if (!pvma->anon_vma)
336 return 0;
337
338 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 vma->anon_vma = NULL;
340
341 /*
342 * First, attach the new VMA to the parent VMA's anon_vmas,
343 * so rmap can find non-COWed pages in child processes.
344 */
345 error = anon_vma_clone(vma, pvma);
346 if (error)
347 return error;
348
349 /* An existing anon_vma has been reused, all done then. */
350 if (vma->anon_vma)
351 return 0;
352
353 /* Then add our own anon_vma. */
354 anon_vma = anon_vma_alloc();
355 if (!anon_vma)
356 goto out_error;
357 avc = anon_vma_chain_alloc(GFP_KERNEL);
358 if (!avc)
359 goto out_error_free_anon_vma;
360
361 /*
362 * The root anon_vma's rwsem is the lock actually used when we
363 * lock any of the anon_vmas in this anon_vma tree.
364 */
365 anon_vma->root = pvma->anon_vma->root;
366 anon_vma->parent = pvma->anon_vma;
367 /*
368 * With refcounts, an anon_vma can stay around longer than the
369 * process it belongs to. The root anon_vma needs to be pinned until
370 * this anon_vma is freed, because the lock lives in the root.
371 */
372 get_anon_vma(anon_vma->root);
373 /* Mark this anon_vma as the one where our new (COWed) pages go. */
374 vma->anon_vma = anon_vma;
375 anon_vma_lock_write(anon_vma);
376 anon_vma_chain_link(vma, avc, anon_vma);
377 anon_vma->parent->degree++;
378 anon_vma_unlock_write(anon_vma);
379
380 return 0;
381
382 out_error_free_anon_vma:
383 put_anon_vma(anon_vma);
384 out_error:
385 unlink_anon_vmas(vma);
386 return -ENOMEM;
387 }
388
389 void unlink_anon_vmas(struct vm_area_struct *vma)
390 {
391 struct anon_vma_chain *avc, *next;
392 struct anon_vma *root = NULL;
393
394 /*
395 * Unlink each anon_vma chained to the VMA. This list is ordered
396 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 */
398 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 struct anon_vma *anon_vma = avc->anon_vma;
400
401 root = lock_anon_vma_root(root, anon_vma);
402 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403
404 /*
405 * Leave empty anon_vmas on the list - we'll need
406 * to free them outside the lock.
407 */
408 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 anon_vma->parent->degree--;
410 continue;
411 }
412
413 list_del(&avc->same_vma);
414 anon_vma_chain_free(avc);
415 }
416 if (vma->anon_vma) {
417 vma->anon_vma->degree--;
418
419 /*
420 * vma would still be needed after unlink, and anon_vma will be prepared
421 * when handle fault.
422 */
423 vma->anon_vma = NULL;
424 }
425 unlock_anon_vma_root(root);
426
427 /*
428 * Iterate the list once more, it now only contains empty and unlinked
429 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
430 * needing to write-acquire the anon_vma->root->rwsem.
431 */
432 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 struct anon_vma *anon_vma = avc->anon_vma;
434
435 VM_WARN_ON(anon_vma->degree);
436 put_anon_vma(anon_vma);
437
438 list_del(&avc->same_vma);
439 anon_vma_chain_free(avc);
440 }
441 }
442
443 static void anon_vma_ctor(void *data)
444 {
445 struct anon_vma *anon_vma = data;
446
447 init_rwsem(&anon_vma->rwsem);
448 atomic_set(&anon_vma->refcount, 0);
449 anon_vma->rb_root = RB_ROOT_CACHED;
450 }
451
452 void __init anon_vma_init(void)
453 {
454 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
455 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
456 anon_vma_ctor);
457 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 SLAB_PANIC|SLAB_ACCOUNT);
459 }
460
461 /*
462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463 *
464 * Since there is no serialization what so ever against page_remove_rmap()
465 * the best this function can do is return a refcount increased anon_vma
466 * that might have been relevant to this page.
467 *
468 * The page might have been remapped to a different anon_vma or the anon_vma
469 * returned may already be freed (and even reused).
470 *
471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473 * ensure that any anon_vma obtained from the page will still be valid for as
474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475 *
476 * All users of this function must be very careful when walking the anon_vma
477 * chain and verify that the page in question is indeed mapped in it
478 * [ something equivalent to page_mapped_in_vma() ].
479 *
480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482 * if there is a mapcount, we can dereference the anon_vma after observing
483 * those.
484 */
485 struct anon_vma *page_get_anon_vma(struct page *page)
486 {
487 struct anon_vma *anon_vma = NULL;
488 unsigned long anon_mapping;
489
490 rcu_read_lock();
491 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
492 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 goto out;
494 if (!page_mapped(page))
495 goto out;
496
497 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
498 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 anon_vma = NULL;
500 goto out;
501 }
502
503 /*
504 * If this page is still mapped, then its anon_vma cannot have been
505 * freed. But if it has been unmapped, we have no security against the
506 * anon_vma structure being freed and reused (for another anon_vma:
507 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
508 * above cannot corrupt).
509 */
510 if (!page_mapped(page)) {
511 rcu_read_unlock();
512 put_anon_vma(anon_vma);
513 return NULL;
514 }
515 out:
516 rcu_read_unlock();
517
518 return anon_vma;
519 }
520
521 /*
522 * Similar to page_get_anon_vma() except it locks the anon_vma.
523 *
524 * Its a little more complex as it tries to keep the fast path to a single
525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526 * reference like with page_get_anon_vma() and then block on the mutex.
527 */
528 struct anon_vma *page_lock_anon_vma_read(struct page *page)
529 {
530 struct anon_vma *anon_vma = NULL;
531 struct anon_vma *root_anon_vma;
532 unsigned long anon_mapping;
533
534 rcu_read_lock();
535 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
536 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 goto out;
538 if (!page_mapped(page))
539 goto out;
540
541 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
542 root_anon_vma = READ_ONCE(anon_vma->root);
543 if (down_read_trylock(&root_anon_vma->rwsem)) {
544 /*
545 * If the page is still mapped, then this anon_vma is still
546 * its anon_vma, and holding the mutex ensures that it will
547 * not go away, see anon_vma_free().
548 */
549 if (!page_mapped(page)) {
550 up_read(&root_anon_vma->rwsem);
551 anon_vma = NULL;
552 }
553 goto out;
554 }
555
556 /* trylock failed, we got to sleep */
557 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 anon_vma = NULL;
559 goto out;
560 }
561
562 if (!page_mapped(page)) {
563 rcu_read_unlock();
564 put_anon_vma(anon_vma);
565 return NULL;
566 }
567
568 /* we pinned the anon_vma, its safe to sleep */
569 rcu_read_unlock();
570 anon_vma_lock_read(anon_vma);
571
572 if (atomic_dec_and_test(&anon_vma->refcount)) {
573 /*
574 * Oops, we held the last refcount, release the lock
575 * and bail -- can't simply use put_anon_vma() because
576 * we'll deadlock on the anon_vma_lock_write() recursion.
577 */
578 anon_vma_unlock_read(anon_vma);
579 __put_anon_vma(anon_vma);
580 anon_vma = NULL;
581 }
582
583 return anon_vma;
584
585 out:
586 rcu_read_unlock();
587 return anon_vma;
588 }
589
590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
591 {
592 anon_vma_unlock_read(anon_vma);
593 }
594
595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
596 /*
597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598 * important if a PTE was dirty when it was unmapped that it's flushed
599 * before any IO is initiated on the page to prevent lost writes. Similarly,
600 * it must be flushed before freeing to prevent data leakage.
601 */
602 void try_to_unmap_flush(void)
603 {
604 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605
606 if (!tlb_ubc->flush_required)
607 return;
608
609 arch_tlbbatch_flush(&tlb_ubc->arch);
610 tlb_ubc->flush_required = false;
611 tlb_ubc->writable = false;
612 }
613
614 /* Flush iff there are potentially writable TLB entries that can race with IO */
615 void try_to_unmap_flush_dirty(void)
616 {
617 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618
619 if (tlb_ubc->writable)
620 try_to_unmap_flush();
621 }
622
623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
624 {
625 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626
627 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
628 tlb_ubc->flush_required = true;
629
630 /*
631 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 * before the PTE is cleared.
633 */
634 barrier();
635 mm->tlb_flush_batched = true;
636
637 /*
638 * If the PTE was dirty then it's best to assume it's writable. The
639 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 * before the page is queued for IO.
641 */
642 if (writable)
643 tlb_ubc->writable = true;
644 }
645
646 /*
647 * Returns true if the TLB flush should be deferred to the end of a batch of
648 * unmap operations to reduce IPIs.
649 */
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651 {
652 bool should_defer = false;
653
654 if (!(flags & TTU_BATCH_FLUSH))
655 return false;
656
657 /* If remote CPUs need to be flushed then defer batch the flush */
658 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 should_defer = true;
660 put_cpu();
661
662 return should_defer;
663 }
664
665 /*
666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668 * operation such as mprotect or munmap to race between reclaim unmapping
669 * the page and flushing the page. If this race occurs, it potentially allows
670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
671 * batching in flight would be expensive during reclaim so instead track
672 * whether TLB batching occurred in the past and if so then do a flush here
673 * if required. This will cost one additional flush per reclaim cycle paid
674 * by the first operation at risk such as mprotect and mumap.
675 *
676 * This must be called under the PTL so that an access to tlb_flush_batched
677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678 * via the PTL.
679 */
680 void flush_tlb_batched_pending(struct mm_struct *mm)
681 {
682 if (data_race(mm->tlb_flush_batched)) {
683 flush_tlb_mm(mm);
684
685 /*
686 * Do not allow the compiler to re-order the clearing of
687 * tlb_flush_batched before the tlb is flushed.
688 */
689 barrier();
690 mm->tlb_flush_batched = false;
691 }
692 }
693 #else
694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
695 {
696 }
697
698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699 {
700 return false;
701 }
702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703
704 /*
705 * At what user virtual address is page expected in vma?
706 * Caller should check the page is actually part of the vma.
707 */
708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709 {
710 if (PageAnon(page)) {
711 struct anon_vma *page__anon_vma = page_anon_vma(page);
712 /*
713 * Note: swapoff's unuse_vma() is more efficient with this
714 * check, and needs it to match anon_vma when KSM is active.
715 */
716 if (!vma->anon_vma || !page__anon_vma ||
717 vma->anon_vma->root != page__anon_vma->root)
718 return -EFAULT;
719 } else if (!vma->vm_file) {
720 return -EFAULT;
721 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
722 return -EFAULT;
723 }
724
725 return vma_address(page, vma);
726 }
727
728 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
729 {
730 pgd_t *pgd;
731 p4d_t *p4d;
732 pud_t *pud;
733 pmd_t *pmd = NULL;
734 pmd_t pmde;
735
736 pgd = pgd_offset(mm, address);
737 if (!pgd_present(*pgd))
738 goto out;
739
740 p4d = p4d_offset(pgd, address);
741 if (!p4d_present(*p4d))
742 goto out;
743
744 pud = pud_offset(p4d, address);
745 if (!pud_present(*pud))
746 goto out;
747
748 pmd = pmd_offset(pud, address);
749 /*
750 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
751 * without holding anon_vma lock for write. So when looking for a
752 * genuine pmde (in which to find pte), test present and !THP together.
753 */
754 pmde = *pmd;
755 barrier();
756 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
757 pmd = NULL;
758 out:
759 return pmd;
760 }
761
762 struct page_referenced_arg {
763 int mapcount;
764 int referenced;
765 unsigned long vm_flags;
766 struct mem_cgroup *memcg;
767 };
768 /*
769 * arg: page_referenced_arg will be passed
770 */
771 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
772 unsigned long address, void *arg)
773 {
774 struct page_referenced_arg *pra = arg;
775 struct page_vma_mapped_walk pvmw = {
776 .page = page,
777 .vma = vma,
778 .address = address,
779 };
780 int referenced = 0;
781
782 while (page_vma_mapped_walk(&pvmw)) {
783 address = pvmw.address;
784
785 if (vma->vm_flags & VM_LOCKED) {
786 page_vma_mapped_walk_done(&pvmw);
787 pra->vm_flags |= VM_LOCKED;
788 return false; /* To break the loop */
789 }
790
791 if (pvmw.pte) {
792 if (ptep_clear_flush_young_notify(vma, address,
793 pvmw.pte)) {
794 /*
795 * Don't treat a reference through
796 * a sequentially read mapping as such.
797 * If the page has been used in another mapping,
798 * we will catch it; if this other mapping is
799 * already gone, the unmap path will have set
800 * PG_referenced or activated the page.
801 */
802 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
803 referenced++;
804 }
805 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
806 if (pmdp_clear_flush_young_notify(vma, address,
807 pvmw.pmd))
808 referenced++;
809 } else {
810 /* unexpected pmd-mapped page? */
811 WARN_ON_ONCE(1);
812 }
813
814 pra->mapcount--;
815 }
816
817 if (referenced)
818 clear_page_idle(page);
819 if (test_and_clear_page_young(page))
820 referenced++;
821
822 if (referenced) {
823 pra->referenced++;
824 pra->vm_flags |= vma->vm_flags;
825 }
826
827 if (!pra->mapcount)
828 return false; /* To break the loop */
829
830 return true;
831 }
832
833 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
834 {
835 struct page_referenced_arg *pra = arg;
836 struct mem_cgroup *memcg = pra->memcg;
837
838 if (!mm_match_cgroup(vma->vm_mm, memcg))
839 return true;
840
841 return false;
842 }
843
844 /**
845 * page_referenced - test if the page was referenced
846 * @page: the page to test
847 * @is_locked: caller holds lock on the page
848 * @memcg: target memory cgroup
849 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
850 *
851 * Quick test_and_clear_referenced for all mappings to a page,
852 * returns the number of ptes which referenced the page.
853 */
854 int page_referenced(struct page *page,
855 int is_locked,
856 struct mem_cgroup *memcg,
857 unsigned long *vm_flags)
858 {
859 int we_locked = 0;
860 struct page_referenced_arg pra = {
861 .mapcount = total_mapcount(page),
862 .memcg = memcg,
863 };
864 struct rmap_walk_control rwc = {
865 .rmap_one = page_referenced_one,
866 .arg = (void *)&pra,
867 .anon_lock = page_lock_anon_vma_read,
868 };
869
870 *vm_flags = 0;
871 if (!pra.mapcount)
872 return 0;
873
874 if (!page_rmapping(page))
875 return 0;
876
877 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
878 we_locked = trylock_page(page);
879 if (!we_locked)
880 return 1;
881 }
882
883 /*
884 * If we are reclaiming on behalf of a cgroup, skip
885 * counting on behalf of references from different
886 * cgroups
887 */
888 if (memcg) {
889 rwc.invalid_vma = invalid_page_referenced_vma;
890 }
891
892 rmap_walk(page, &rwc);
893 *vm_flags = pra.vm_flags;
894
895 if (we_locked)
896 unlock_page(page);
897
898 return pra.referenced;
899 }
900
901 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
902 unsigned long address, void *arg)
903 {
904 struct page_vma_mapped_walk pvmw = {
905 .page = page,
906 .vma = vma,
907 .address = address,
908 .flags = PVMW_SYNC,
909 };
910 struct mmu_notifier_range range;
911 int *cleaned = arg;
912
913 /*
914 * We have to assume the worse case ie pmd for invalidation. Note that
915 * the page can not be free from this function.
916 */
917 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
918 0, vma, vma->vm_mm, address,
919 vma_address_end(page, vma));
920 mmu_notifier_invalidate_range_start(&range);
921
922 while (page_vma_mapped_walk(&pvmw)) {
923 int ret = 0;
924
925 address = pvmw.address;
926 if (pvmw.pte) {
927 pte_t entry;
928 pte_t *pte = pvmw.pte;
929
930 if (!pte_dirty(*pte) && !pte_write(*pte))
931 continue;
932
933 flush_cache_page(vma, address, pte_pfn(*pte));
934 entry = ptep_clear_flush(vma, address, pte);
935 entry = pte_wrprotect(entry);
936 entry = pte_mkclean(entry);
937 set_pte_at(vma->vm_mm, address, pte, entry);
938 ret = 1;
939 } else {
940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
941 pmd_t *pmd = pvmw.pmd;
942 pmd_t entry;
943
944 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
945 continue;
946
947 flush_cache_page(vma, address, page_to_pfn(page));
948 entry = pmdp_invalidate(vma, address, pmd);
949 entry = pmd_wrprotect(entry);
950 entry = pmd_mkclean(entry);
951 set_pmd_at(vma->vm_mm, address, pmd, entry);
952 ret = 1;
953 #else
954 /* unexpected pmd-mapped page? */
955 WARN_ON_ONCE(1);
956 #endif
957 }
958
959 /*
960 * No need to call mmu_notifier_invalidate_range() as we are
961 * downgrading page table protection not changing it to point
962 * to a new page.
963 *
964 * See Documentation/vm/mmu_notifier.rst
965 */
966 if (ret)
967 (*cleaned)++;
968 }
969
970 mmu_notifier_invalidate_range_end(&range);
971
972 return true;
973 }
974
975 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
976 {
977 if (vma->vm_flags & VM_SHARED)
978 return false;
979
980 return true;
981 }
982
983 int page_mkclean(struct page *page)
984 {
985 int cleaned = 0;
986 struct address_space *mapping;
987 struct rmap_walk_control rwc = {
988 .arg = (void *)&cleaned,
989 .rmap_one = page_mkclean_one,
990 .invalid_vma = invalid_mkclean_vma,
991 };
992
993 BUG_ON(!PageLocked(page));
994
995 if (!page_mapped(page))
996 return 0;
997
998 mapping = page_mapping(page);
999 if (!mapping)
1000 return 0;
1001
1002 rmap_walk(page, &rwc);
1003
1004 return cleaned;
1005 }
1006 EXPORT_SYMBOL_GPL(page_mkclean);
1007
1008 /**
1009 * page_move_anon_rmap - move a page to our anon_vma
1010 * @page: the page to move to our anon_vma
1011 * @vma: the vma the page belongs to
1012 *
1013 * When a page belongs exclusively to one process after a COW event,
1014 * that page can be moved into the anon_vma that belongs to just that
1015 * process, so the rmap code will not search the parent or sibling
1016 * processes.
1017 */
1018 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1019 {
1020 struct anon_vma *anon_vma = vma->anon_vma;
1021
1022 page = compound_head(page);
1023
1024 VM_BUG_ON_PAGE(!PageLocked(page), page);
1025 VM_BUG_ON_VMA(!anon_vma, vma);
1026
1027 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1028 /*
1029 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1030 * simultaneously, so a concurrent reader (eg page_referenced()'s
1031 * PageAnon()) will not see one without the other.
1032 */
1033 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1034 }
1035
1036 /**
1037 * __page_set_anon_rmap - set up new anonymous rmap
1038 * @page: Page or Hugepage to add to rmap
1039 * @vma: VM area to add page to.
1040 * @address: User virtual address of the mapping
1041 * @exclusive: the page is exclusively owned by the current process
1042 */
1043 static void __page_set_anon_rmap(struct page *page,
1044 struct vm_area_struct *vma, unsigned long address, int exclusive)
1045 {
1046 struct anon_vma *anon_vma = vma->anon_vma;
1047
1048 BUG_ON(!anon_vma);
1049
1050 if (PageAnon(page))
1051 return;
1052
1053 /*
1054 * If the page isn't exclusively mapped into this vma,
1055 * we must use the _oldest_ possible anon_vma for the
1056 * page mapping!
1057 */
1058 if (!exclusive)
1059 anon_vma = anon_vma->root;
1060
1061 /*
1062 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1063 * Make sure the compiler doesn't split the stores of anon_vma and
1064 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1065 * could mistake the mapping for a struct address_space and crash.
1066 */
1067 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1068 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1069 page->index = linear_page_index(vma, address);
1070 }
1071
1072 /**
1073 * __page_check_anon_rmap - sanity check anonymous rmap addition
1074 * @page: the page to add the mapping to
1075 * @vma: the vm area in which the mapping is added
1076 * @address: the user virtual address mapped
1077 */
1078 static void __page_check_anon_rmap(struct page *page,
1079 struct vm_area_struct *vma, unsigned long address)
1080 {
1081 /*
1082 * The page's anon-rmap details (mapping and index) are guaranteed to
1083 * be set up correctly at this point.
1084 *
1085 * We have exclusion against page_add_anon_rmap because the caller
1086 * always holds the page locked.
1087 *
1088 * We have exclusion against page_add_new_anon_rmap because those pages
1089 * are initially only visible via the pagetables, and the pte is locked
1090 * over the call to page_add_new_anon_rmap.
1091 */
1092 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1093 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1094 page);
1095 }
1096
1097 /**
1098 * page_add_anon_rmap - add pte mapping to an anonymous page
1099 * @page: the page to add the mapping to
1100 * @vma: the vm area in which the mapping is added
1101 * @address: the user virtual address mapped
1102 * @compound: charge the page as compound or small page
1103 *
1104 * The caller needs to hold the pte lock, and the page must be locked in
1105 * the anon_vma case: to serialize mapping,index checking after setting,
1106 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1107 * (but PageKsm is never downgraded to PageAnon).
1108 */
1109 void page_add_anon_rmap(struct page *page,
1110 struct vm_area_struct *vma, unsigned long address, bool compound)
1111 {
1112 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1113 }
1114
1115 /*
1116 * Special version of the above for do_swap_page, which often runs
1117 * into pages that are exclusively owned by the current process.
1118 * Everybody else should continue to use page_add_anon_rmap above.
1119 */
1120 void do_page_add_anon_rmap(struct page *page,
1121 struct vm_area_struct *vma, unsigned long address, int flags)
1122 {
1123 bool compound = flags & RMAP_COMPOUND;
1124 bool first;
1125
1126 if (unlikely(PageKsm(page)))
1127 lock_page_memcg(page);
1128 else
1129 VM_BUG_ON_PAGE(!PageLocked(page), page);
1130
1131 if (compound) {
1132 atomic_t *mapcount;
1133 VM_BUG_ON_PAGE(!PageLocked(page), page);
1134 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1135 mapcount = compound_mapcount_ptr(page);
1136 first = atomic_inc_and_test(mapcount);
1137 } else {
1138 first = atomic_inc_and_test(&page->_mapcount);
1139 }
1140
1141 if (first) {
1142 int nr = compound ? thp_nr_pages(page) : 1;
1143 /*
1144 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1145 * these counters are not modified in interrupt context, and
1146 * pte lock(a spinlock) is held, which implies preemption
1147 * disabled.
1148 */
1149 if (compound)
1150 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1151 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1152 }
1153
1154 if (unlikely(PageKsm(page))) {
1155 unlock_page_memcg(page);
1156 return;
1157 }
1158
1159 /* address might be in next vma when migration races vma_adjust */
1160 if (first)
1161 __page_set_anon_rmap(page, vma, address,
1162 flags & RMAP_EXCLUSIVE);
1163 else
1164 __page_check_anon_rmap(page, vma, address);
1165 }
1166
1167 /**
1168 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1169 * @page: the page to add the mapping to
1170 * @vma: the vm area in which the mapping is added
1171 * @address: the user virtual address mapped
1172 * @compound: charge the page as compound or small page
1173 *
1174 * Same as page_add_anon_rmap but must only be called on *new* pages.
1175 * This means the inc-and-test can be bypassed.
1176 * Page does not have to be locked.
1177 */
1178 void page_add_new_anon_rmap(struct page *page,
1179 struct vm_area_struct *vma, unsigned long address, bool compound)
1180 {
1181 int nr = compound ? thp_nr_pages(page) : 1;
1182
1183 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1184 __SetPageSwapBacked(page);
1185 if (compound) {
1186 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1187 /* increment count (starts at -1) */
1188 atomic_set(compound_mapcount_ptr(page), 0);
1189 if (hpage_pincount_available(page))
1190 atomic_set(compound_pincount_ptr(page), 0);
1191
1192 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1193 } else {
1194 /* Anon THP always mapped first with PMD */
1195 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1196 /* increment count (starts at -1) */
1197 atomic_set(&page->_mapcount, 0);
1198 }
1199 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1200 __page_set_anon_rmap(page, vma, address, 1);
1201 }
1202
1203 /**
1204 * page_add_file_rmap - add pte mapping to a file page
1205 * @page: the page to add the mapping to
1206 * @compound: charge the page as compound or small page
1207 *
1208 * The caller needs to hold the pte lock.
1209 */
1210 void page_add_file_rmap(struct page *page, bool compound)
1211 {
1212 int i, nr = 1;
1213
1214 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1215 lock_page_memcg(page);
1216 if (compound && PageTransHuge(page)) {
1217 int nr_pages = thp_nr_pages(page);
1218
1219 for (i = 0, nr = 0; i < nr_pages; i++) {
1220 if (atomic_inc_and_test(&page[i]._mapcount))
1221 nr++;
1222 }
1223 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1224 goto out;
1225 if (PageSwapBacked(page))
1226 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1227 nr_pages);
1228 else
1229 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1230 nr_pages);
1231 } else {
1232 if (PageTransCompound(page) && page_mapping(page)) {
1233 VM_WARN_ON_ONCE(!PageLocked(page));
1234
1235 SetPageDoubleMap(compound_head(page));
1236 if (PageMlocked(page))
1237 clear_page_mlock(compound_head(page));
1238 }
1239 if (!atomic_inc_and_test(&page->_mapcount))
1240 goto out;
1241 }
1242 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1243 out:
1244 unlock_page_memcg(page);
1245 }
1246
1247 static void page_remove_file_rmap(struct page *page, bool compound)
1248 {
1249 int i, nr = 1;
1250
1251 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1252
1253 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1254 if (unlikely(PageHuge(page))) {
1255 /* hugetlb pages are always mapped with pmds */
1256 atomic_dec(compound_mapcount_ptr(page));
1257 return;
1258 }
1259
1260 /* page still mapped by someone else? */
1261 if (compound && PageTransHuge(page)) {
1262 int nr_pages = thp_nr_pages(page);
1263
1264 for (i = 0, nr = 0; i < nr_pages; i++) {
1265 if (atomic_add_negative(-1, &page[i]._mapcount))
1266 nr++;
1267 }
1268 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1269 return;
1270 if (PageSwapBacked(page))
1271 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1272 -nr_pages);
1273 else
1274 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1275 -nr_pages);
1276 } else {
1277 if (!atomic_add_negative(-1, &page->_mapcount))
1278 return;
1279 }
1280
1281 /*
1282 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1283 * these counters are not modified in interrupt context, and
1284 * pte lock(a spinlock) is held, which implies preemption disabled.
1285 */
1286 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1287
1288 if (unlikely(PageMlocked(page)))
1289 clear_page_mlock(page);
1290 }
1291
1292 static void page_remove_anon_compound_rmap(struct page *page)
1293 {
1294 int i, nr;
1295
1296 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1297 return;
1298
1299 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1300 if (unlikely(PageHuge(page)))
1301 return;
1302
1303 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1304 return;
1305
1306 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1307
1308 if (TestClearPageDoubleMap(page)) {
1309 /*
1310 * Subpages can be mapped with PTEs too. Check how many of
1311 * them are still mapped.
1312 */
1313 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1314 if (atomic_add_negative(-1, &page[i]._mapcount))
1315 nr++;
1316 }
1317
1318 /*
1319 * Queue the page for deferred split if at least one small
1320 * page of the compound page is unmapped, but at least one
1321 * small page is still mapped.
1322 */
1323 if (nr && nr < thp_nr_pages(page))
1324 deferred_split_huge_page(page);
1325 } else {
1326 nr = thp_nr_pages(page);
1327 }
1328
1329 if (unlikely(PageMlocked(page)))
1330 clear_page_mlock(page);
1331
1332 if (nr)
1333 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1334 }
1335
1336 /**
1337 * page_remove_rmap - take down pte mapping from a page
1338 * @page: page to remove mapping from
1339 * @compound: uncharge the page as compound or small page
1340 *
1341 * The caller needs to hold the pte lock.
1342 */
1343 void page_remove_rmap(struct page *page, bool compound)
1344 {
1345 lock_page_memcg(page);
1346
1347 if (!PageAnon(page)) {
1348 page_remove_file_rmap(page, compound);
1349 goto out;
1350 }
1351
1352 if (compound) {
1353 page_remove_anon_compound_rmap(page);
1354 goto out;
1355 }
1356
1357 /* page still mapped by someone else? */
1358 if (!atomic_add_negative(-1, &page->_mapcount))
1359 goto out;
1360
1361 /*
1362 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1363 * these counters are not modified in interrupt context, and
1364 * pte lock(a spinlock) is held, which implies preemption disabled.
1365 */
1366 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1367
1368 if (unlikely(PageMlocked(page)))
1369 clear_page_mlock(page);
1370
1371 if (PageTransCompound(page))
1372 deferred_split_huge_page(compound_head(page));
1373
1374 /*
1375 * It would be tidy to reset the PageAnon mapping here,
1376 * but that might overwrite a racing page_add_anon_rmap
1377 * which increments mapcount after us but sets mapping
1378 * before us: so leave the reset to free_unref_page,
1379 * and remember that it's only reliable while mapped.
1380 * Leaving it set also helps swapoff to reinstate ptes
1381 * faster for those pages still in swapcache.
1382 */
1383 out:
1384 unlock_page_memcg(page);
1385 }
1386
1387 /*
1388 * @arg: enum ttu_flags will be passed to this argument
1389 */
1390 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1391 unsigned long address, void *arg)
1392 {
1393 struct mm_struct *mm = vma->vm_mm;
1394 struct page_vma_mapped_walk pvmw = {
1395 .page = page,
1396 .vma = vma,
1397 .address = address,
1398 };
1399 pte_t pteval;
1400 struct page *subpage;
1401 bool ret = true;
1402 struct mmu_notifier_range range;
1403 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1404
1405 /*
1406 * When racing against e.g. zap_pte_range() on another cpu,
1407 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1408 * try_to_unmap() may return before page_mapped() has become false,
1409 * if page table locking is skipped: use TTU_SYNC to wait for that.
1410 */
1411 if (flags & TTU_SYNC)
1412 pvmw.flags = PVMW_SYNC;
1413
1414 if (flags & TTU_SPLIT_HUGE_PMD)
1415 split_huge_pmd_address(vma, address, false, page);
1416
1417 /*
1418 * For THP, we have to assume the worse case ie pmd for invalidation.
1419 * For hugetlb, it could be much worse if we need to do pud
1420 * invalidation in the case of pmd sharing.
1421 *
1422 * Note that the page can not be free in this function as call of
1423 * try_to_unmap() must hold a reference on the page.
1424 */
1425 range.end = PageKsm(page) ?
1426 address + PAGE_SIZE : vma_address_end(page, vma);
1427 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1428 address, range.end);
1429 if (PageHuge(page)) {
1430 /*
1431 * If sharing is possible, start and end will be adjusted
1432 * accordingly.
1433 */
1434 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1435 &range.end);
1436 }
1437 mmu_notifier_invalidate_range_start(&range);
1438
1439 while (page_vma_mapped_walk(&pvmw)) {
1440 /*
1441 * If the page is mlock()d, we cannot swap it out.
1442 */
1443 if (!(flags & TTU_IGNORE_MLOCK) &&
1444 (vma->vm_flags & VM_LOCKED)) {
1445 /*
1446 * PTE-mapped THP are never marked as mlocked: so do
1447 * not set it on a DoubleMap THP, nor on an Anon THP
1448 * (which may still be PTE-mapped after DoubleMap was
1449 * cleared). But stop unmapping even in those cases.
1450 */
1451 if (!PageTransCompound(page) || (PageHead(page) &&
1452 !PageDoubleMap(page) && !PageAnon(page)))
1453 mlock_vma_page(page);
1454 page_vma_mapped_walk_done(&pvmw);
1455 ret = false;
1456 break;
1457 }
1458
1459 /* Unexpected PMD-mapped THP? */
1460 VM_BUG_ON_PAGE(!pvmw.pte, page);
1461
1462 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1463 address = pvmw.address;
1464
1465 if (PageHuge(page) && !PageAnon(page)) {
1466 /*
1467 * To call huge_pmd_unshare, i_mmap_rwsem must be
1468 * held in write mode. Caller needs to explicitly
1469 * do this outside rmap routines.
1470 */
1471 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1472 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1473 /*
1474 * huge_pmd_unshare unmapped an entire PMD
1475 * page. There is no way of knowing exactly
1476 * which PMDs may be cached for this mm, so
1477 * we must flush them all. start/end were
1478 * already adjusted above to cover this range.
1479 */
1480 flush_cache_range(vma, range.start, range.end);
1481 flush_tlb_range(vma, range.start, range.end);
1482 mmu_notifier_invalidate_range(mm, range.start,
1483 range.end);
1484
1485 /*
1486 * The ref count of the PMD page was dropped
1487 * which is part of the way map counting
1488 * is done for shared PMDs. Return 'true'
1489 * here. When there is no other sharing,
1490 * huge_pmd_unshare returns false and we will
1491 * unmap the actual page and drop map count
1492 * to zero.
1493 */
1494 page_vma_mapped_walk_done(&pvmw);
1495 break;
1496 }
1497 }
1498
1499 /* Nuke the page table entry. */
1500 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1501 if (should_defer_flush(mm, flags)) {
1502 /*
1503 * We clear the PTE but do not flush so potentially
1504 * a remote CPU could still be writing to the page.
1505 * If the entry was previously clean then the
1506 * architecture must guarantee that a clear->dirty
1507 * transition on a cached TLB entry is written through
1508 * and traps if the PTE is unmapped.
1509 */
1510 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1511
1512 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1513 } else {
1514 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1515 }
1516
1517 /* Move the dirty bit to the page. Now the pte is gone. */
1518 if (pte_dirty(pteval))
1519 set_page_dirty(page);
1520
1521 /* Update high watermark before we lower rss */
1522 update_hiwater_rss(mm);
1523
1524 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1525 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1526 if (PageHuge(page)) {
1527 hugetlb_count_sub(compound_nr(page), mm);
1528 set_huge_swap_pte_at(mm, address,
1529 pvmw.pte, pteval,
1530 vma_mmu_pagesize(vma));
1531 } else {
1532 dec_mm_counter(mm, mm_counter(page));
1533 set_pte_at(mm, address, pvmw.pte, pteval);
1534 }
1535
1536 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1537 /*
1538 * The guest indicated that the page content is of no
1539 * interest anymore. Simply discard the pte, vmscan
1540 * will take care of the rest.
1541 * A future reference will then fault in a new zero
1542 * page. When userfaultfd is active, we must not drop
1543 * this page though, as its main user (postcopy
1544 * migration) will not expect userfaults on already
1545 * copied pages.
1546 */
1547 dec_mm_counter(mm, mm_counter(page));
1548 /* We have to invalidate as we cleared the pte */
1549 mmu_notifier_invalidate_range(mm, address,
1550 address + PAGE_SIZE);
1551 } else if (PageAnon(page)) {
1552 swp_entry_t entry = { .val = page_private(subpage) };
1553 pte_t swp_pte;
1554 /*
1555 * Store the swap location in the pte.
1556 * See handle_pte_fault() ...
1557 */
1558 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1559 WARN_ON_ONCE(1);
1560 ret = false;
1561 /* We have to invalidate as we cleared the pte */
1562 mmu_notifier_invalidate_range(mm, address,
1563 address + PAGE_SIZE);
1564 page_vma_mapped_walk_done(&pvmw);
1565 break;
1566 }
1567
1568 /* MADV_FREE page check */
1569 if (!PageSwapBacked(page)) {
1570 if (!PageDirty(page)) {
1571 /* Invalidate as we cleared the pte */
1572 mmu_notifier_invalidate_range(mm,
1573 address, address + PAGE_SIZE);
1574 dec_mm_counter(mm, MM_ANONPAGES);
1575 goto discard;
1576 }
1577
1578 /*
1579 * If the page was redirtied, it cannot be
1580 * discarded. Remap the page to page table.
1581 */
1582 set_pte_at(mm, address, pvmw.pte, pteval);
1583 SetPageSwapBacked(page);
1584 ret = false;
1585 page_vma_mapped_walk_done(&pvmw);
1586 break;
1587 }
1588
1589 if (swap_duplicate(entry) < 0) {
1590 set_pte_at(mm, address, pvmw.pte, pteval);
1591 ret = false;
1592 page_vma_mapped_walk_done(&pvmw);
1593 break;
1594 }
1595 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1596 set_pte_at(mm, address, pvmw.pte, pteval);
1597 ret = false;
1598 page_vma_mapped_walk_done(&pvmw);
1599 break;
1600 }
1601 if (list_empty(&mm->mmlist)) {
1602 spin_lock(&mmlist_lock);
1603 if (list_empty(&mm->mmlist))
1604 list_add(&mm->mmlist, &init_mm.mmlist);
1605 spin_unlock(&mmlist_lock);
1606 }
1607 dec_mm_counter(mm, MM_ANONPAGES);
1608 inc_mm_counter(mm, MM_SWAPENTS);
1609 swp_pte = swp_entry_to_pte(entry);
1610 if (pte_soft_dirty(pteval))
1611 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1612 if (pte_uffd_wp(pteval))
1613 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1614 set_pte_at(mm, address, pvmw.pte, swp_pte);
1615 /* Invalidate as we cleared the pte */
1616 mmu_notifier_invalidate_range(mm, address,
1617 address + PAGE_SIZE);
1618 } else {
1619 /*
1620 * This is a locked file-backed page, thus it cannot
1621 * be removed from the page cache and replaced by a new
1622 * page before mmu_notifier_invalidate_range_end, so no
1623 * concurrent thread might update its page table to
1624 * point at new page while a device still is using this
1625 * page.
1626 *
1627 * See Documentation/vm/mmu_notifier.rst
1628 */
1629 dec_mm_counter(mm, mm_counter_file(page));
1630 }
1631 discard:
1632 /*
1633 * No need to call mmu_notifier_invalidate_range() it has be
1634 * done above for all cases requiring it to happen under page
1635 * table lock before mmu_notifier_invalidate_range_end()
1636 *
1637 * See Documentation/vm/mmu_notifier.rst
1638 */
1639 page_remove_rmap(subpage, PageHuge(page));
1640 put_page(page);
1641 }
1642
1643 mmu_notifier_invalidate_range_end(&range);
1644
1645 return ret;
1646 }
1647
1648 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1649 {
1650 return vma_is_temporary_stack(vma);
1651 }
1652
1653 static int page_not_mapped(struct page *page)
1654 {
1655 return !page_mapped(page);
1656 }
1657
1658 /**
1659 * try_to_unmap - try to remove all page table mappings to a page
1660 * @page: the page to get unmapped
1661 * @flags: action and flags
1662 *
1663 * Tries to remove all the page table entries which are mapping this
1664 * page, used in the pageout path. Caller must hold the page lock.
1665 *
1666 * It is the caller's responsibility to check if the page is still
1667 * mapped when needed (use TTU_SYNC to prevent accounting races).
1668 */
1669 void try_to_unmap(struct page *page, enum ttu_flags flags)
1670 {
1671 struct rmap_walk_control rwc = {
1672 .rmap_one = try_to_unmap_one,
1673 .arg = (void *)flags,
1674 .done = page_not_mapped,
1675 .anon_lock = page_lock_anon_vma_read,
1676 };
1677
1678 if (flags & TTU_RMAP_LOCKED)
1679 rmap_walk_locked(page, &rwc);
1680 else
1681 rmap_walk(page, &rwc);
1682 }
1683
1684 /*
1685 * @arg: enum ttu_flags will be passed to this argument.
1686 *
1687 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1688 * containing migration entries.
1689 */
1690 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1691 unsigned long address, void *arg)
1692 {
1693 struct mm_struct *mm = vma->vm_mm;
1694 struct page_vma_mapped_walk pvmw = {
1695 .page = page,
1696 .vma = vma,
1697 .address = address,
1698 };
1699 pte_t pteval;
1700 struct page *subpage;
1701 bool ret = true;
1702 struct mmu_notifier_range range;
1703 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1704
1705 /*
1706 * When racing against e.g. zap_pte_range() on another cpu,
1707 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1708 * try_to_migrate() may return before page_mapped() has become false,
1709 * if page table locking is skipped: use TTU_SYNC to wait for that.
1710 */
1711 if (flags & TTU_SYNC)
1712 pvmw.flags = PVMW_SYNC;
1713
1714 /*
1715 * unmap_page() in mm/huge_memory.c is the only user of migration with
1716 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1717 */
1718 if (flags & TTU_SPLIT_HUGE_PMD)
1719 split_huge_pmd_address(vma, address, true, page);
1720
1721 /*
1722 * For THP, we have to assume the worse case ie pmd for invalidation.
1723 * For hugetlb, it could be much worse if we need to do pud
1724 * invalidation in the case of pmd sharing.
1725 *
1726 * Note that the page can not be free in this function as call of
1727 * try_to_unmap() must hold a reference on the page.
1728 */
1729 range.end = PageKsm(page) ?
1730 address + PAGE_SIZE : vma_address_end(page, vma);
1731 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1732 address, range.end);
1733 if (PageHuge(page)) {
1734 /*
1735 * If sharing is possible, start and end will be adjusted
1736 * accordingly.
1737 */
1738 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1739 &range.end);
1740 }
1741 mmu_notifier_invalidate_range_start(&range);
1742
1743 while (page_vma_mapped_walk(&pvmw)) {
1744 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1745 /* PMD-mapped THP migration entry */
1746 if (!pvmw.pte) {
1747 VM_BUG_ON_PAGE(PageHuge(page) ||
1748 !PageTransCompound(page), page);
1749
1750 set_pmd_migration_entry(&pvmw, page);
1751 continue;
1752 }
1753 #endif
1754
1755 /* Unexpected PMD-mapped THP? */
1756 VM_BUG_ON_PAGE(!pvmw.pte, page);
1757
1758 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1759 address = pvmw.address;
1760
1761 if (PageHuge(page) && !PageAnon(page)) {
1762 /*
1763 * To call huge_pmd_unshare, i_mmap_rwsem must be
1764 * held in write mode. Caller needs to explicitly
1765 * do this outside rmap routines.
1766 */
1767 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1768 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1769 /*
1770 * huge_pmd_unshare unmapped an entire PMD
1771 * page. There is no way of knowing exactly
1772 * which PMDs may be cached for this mm, so
1773 * we must flush them all. start/end were
1774 * already adjusted above to cover this range.
1775 */
1776 flush_cache_range(vma, range.start, range.end);
1777 flush_tlb_range(vma, range.start, range.end);
1778 mmu_notifier_invalidate_range(mm, range.start,
1779 range.end);
1780
1781 /*
1782 * The ref count of the PMD page was dropped
1783 * which is part of the way map counting
1784 * is done for shared PMDs. Return 'true'
1785 * here. When there is no other sharing,
1786 * huge_pmd_unshare returns false and we will
1787 * unmap the actual page and drop map count
1788 * to zero.
1789 */
1790 page_vma_mapped_walk_done(&pvmw);
1791 break;
1792 }
1793 }
1794
1795 /* Nuke the page table entry. */
1796 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1797 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1798
1799 /* Move the dirty bit to the page. Now the pte is gone. */
1800 if (pte_dirty(pteval))
1801 set_page_dirty(page);
1802
1803 /* Update high watermark before we lower rss */
1804 update_hiwater_rss(mm);
1805
1806 if (is_zone_device_page(page)) {
1807 swp_entry_t entry;
1808 pte_t swp_pte;
1809
1810 /*
1811 * Store the pfn of the page in a special migration
1812 * pte. do_swap_page() will wait until the migration
1813 * pte is removed and then restart fault handling.
1814 */
1815 entry = make_readable_migration_entry(
1816 page_to_pfn(page));
1817 swp_pte = swp_entry_to_pte(entry);
1818
1819 /*
1820 * pteval maps a zone device page and is therefore
1821 * a swap pte.
1822 */
1823 if (pte_swp_soft_dirty(pteval))
1824 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1825 if (pte_swp_uffd_wp(pteval))
1826 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1827 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1828 /*
1829 * No need to invalidate here it will synchronize on
1830 * against the special swap migration pte.
1831 *
1832 * The assignment to subpage above was computed from a
1833 * swap PTE which results in an invalid pointer.
1834 * Since only PAGE_SIZE pages can currently be
1835 * migrated, just set it to page. This will need to be
1836 * changed when hugepage migrations to device private
1837 * memory are supported.
1838 */
1839 subpage = page;
1840 } else if (PageHWPoison(page)) {
1841 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1842 if (PageHuge(page)) {
1843 hugetlb_count_sub(compound_nr(page), mm);
1844 set_huge_swap_pte_at(mm, address,
1845 pvmw.pte, pteval,
1846 vma_mmu_pagesize(vma));
1847 } else {
1848 dec_mm_counter(mm, mm_counter(page));
1849 set_pte_at(mm, address, pvmw.pte, pteval);
1850 }
1851
1852 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1853 /*
1854 * The guest indicated that the page content is of no
1855 * interest anymore. Simply discard the pte, vmscan
1856 * will take care of the rest.
1857 * A future reference will then fault in a new zero
1858 * page. When userfaultfd is active, we must not drop
1859 * this page though, as its main user (postcopy
1860 * migration) will not expect userfaults on already
1861 * copied pages.
1862 */
1863 dec_mm_counter(mm, mm_counter(page));
1864 /* We have to invalidate as we cleared the pte */
1865 mmu_notifier_invalidate_range(mm, address,
1866 address + PAGE_SIZE);
1867 } else {
1868 swp_entry_t entry;
1869 pte_t swp_pte;
1870
1871 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1872 set_pte_at(mm, address, pvmw.pte, pteval);
1873 ret = false;
1874 page_vma_mapped_walk_done(&pvmw);
1875 break;
1876 }
1877
1878 /*
1879 * Store the pfn of the page in a special migration
1880 * pte. do_swap_page() will wait until the migration
1881 * pte is removed and then restart fault handling.
1882 */
1883 if (pte_write(pteval))
1884 entry = make_writable_migration_entry(
1885 page_to_pfn(subpage));
1886 else
1887 entry = make_readable_migration_entry(
1888 page_to_pfn(subpage));
1889
1890 swp_pte = swp_entry_to_pte(entry);
1891 if (pte_soft_dirty(pteval))
1892 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1893 if (pte_uffd_wp(pteval))
1894 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1895 set_pte_at(mm, address, pvmw.pte, swp_pte);
1896 /*
1897 * No need to invalidate here it will synchronize on
1898 * against the special swap migration pte.
1899 */
1900 }
1901
1902 /*
1903 * No need to call mmu_notifier_invalidate_range() it has be
1904 * done above for all cases requiring it to happen under page
1905 * table lock before mmu_notifier_invalidate_range_end()
1906 *
1907 * See Documentation/vm/mmu_notifier.rst
1908 */
1909 page_remove_rmap(subpage, PageHuge(page));
1910 put_page(page);
1911 }
1912
1913 mmu_notifier_invalidate_range_end(&range);
1914
1915 return ret;
1916 }
1917
1918 /**
1919 * try_to_migrate - try to replace all page table mappings with swap entries
1920 * @page: the page to replace page table entries for
1921 * @flags: action and flags
1922 *
1923 * Tries to remove all the page table entries which are mapping this page and
1924 * replace them with special swap entries. Caller must hold the page lock.
1925 */
1926 void try_to_migrate(struct page *page, enum ttu_flags flags)
1927 {
1928 struct rmap_walk_control rwc = {
1929 .rmap_one = try_to_migrate_one,
1930 .arg = (void *)flags,
1931 .done = page_not_mapped,
1932 .anon_lock = page_lock_anon_vma_read,
1933 };
1934
1935 /*
1936 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1937 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1938 */
1939 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1940 TTU_SYNC)))
1941 return;
1942
1943 if (is_zone_device_page(page) && !is_device_private_page(page))
1944 return;
1945
1946 /*
1947 * During exec, a temporary VMA is setup and later moved.
1948 * The VMA is moved under the anon_vma lock but not the
1949 * page tables leading to a race where migration cannot
1950 * find the migration ptes. Rather than increasing the
1951 * locking requirements of exec(), migration skips
1952 * temporary VMAs until after exec() completes.
1953 */
1954 if (!PageKsm(page) && PageAnon(page))
1955 rwc.invalid_vma = invalid_migration_vma;
1956
1957 if (flags & TTU_RMAP_LOCKED)
1958 rmap_walk_locked(page, &rwc);
1959 else
1960 rmap_walk(page, &rwc);
1961 }
1962
1963 /*
1964 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1965 * found. Once one is found the page is locked and the scan can be terminated.
1966 */
1967 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1968 unsigned long address, void *unused)
1969 {
1970 struct page_vma_mapped_walk pvmw = {
1971 .page = page,
1972 .vma = vma,
1973 .address = address,
1974 };
1975
1976 /* An un-locked vma doesn't have any pages to lock, continue the scan */
1977 if (!(vma->vm_flags & VM_LOCKED))
1978 return true;
1979
1980 while (page_vma_mapped_walk(&pvmw)) {
1981 /*
1982 * Need to recheck under the ptl to serialise with
1983 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1984 * munlock_vma_pages_range().
1985 */
1986 if (vma->vm_flags & VM_LOCKED) {
1987 /*
1988 * PTE-mapped THP are never marked as mlocked; but
1989 * this function is never called on a DoubleMap THP,
1990 * nor on an Anon THP (which may still be PTE-mapped
1991 * after DoubleMap was cleared).
1992 */
1993 mlock_vma_page(page);
1994 /*
1995 * No need to scan further once the page is marked
1996 * as mlocked.
1997 */
1998 page_vma_mapped_walk_done(&pvmw);
1999 return false;
2000 }
2001 }
2002
2003 return true;
2004 }
2005
2006 /**
2007 * page_mlock - try to mlock a page
2008 * @page: the page to be mlocked
2009 *
2010 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2011 * the page if any are found. The page will be returned with PG_mlocked cleared
2012 * if it is not mapped by any locked vmas.
2013 */
2014 void page_mlock(struct page *page)
2015 {
2016 struct rmap_walk_control rwc = {
2017 .rmap_one = page_mlock_one,
2018 .done = page_not_mapped,
2019 .anon_lock = page_lock_anon_vma_read,
2020
2021 };
2022
2023 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2024 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2025
2026 /* Anon THP are only marked as mlocked when singly mapped */
2027 if (PageTransCompound(page) && PageAnon(page))
2028 return;
2029
2030 rmap_walk(page, &rwc);
2031 }
2032
2033 #ifdef CONFIG_DEVICE_PRIVATE
2034 struct make_exclusive_args {
2035 struct mm_struct *mm;
2036 unsigned long address;
2037 void *owner;
2038 bool valid;
2039 };
2040
2041 static bool page_make_device_exclusive_one(struct page *page,
2042 struct vm_area_struct *vma, unsigned long address, void *priv)
2043 {
2044 struct mm_struct *mm = vma->vm_mm;
2045 struct page_vma_mapped_walk pvmw = {
2046 .page = page,
2047 .vma = vma,
2048 .address = address,
2049 };
2050 struct make_exclusive_args *args = priv;
2051 pte_t pteval;
2052 struct page *subpage;
2053 bool ret = true;
2054 struct mmu_notifier_range range;
2055 swp_entry_t entry;
2056 pte_t swp_pte;
2057
2058 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2059 vma->vm_mm, address, min(vma->vm_end,
2060 address + page_size(page)), args->owner);
2061 mmu_notifier_invalidate_range_start(&range);
2062
2063 while (page_vma_mapped_walk(&pvmw)) {
2064 /* Unexpected PMD-mapped THP? */
2065 VM_BUG_ON_PAGE(!pvmw.pte, page);
2066
2067 if (!pte_present(*pvmw.pte)) {
2068 ret = false;
2069 page_vma_mapped_walk_done(&pvmw);
2070 break;
2071 }
2072
2073 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2074 address = pvmw.address;
2075
2076 /* Nuke the page table entry. */
2077 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2078 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2079
2080 /* Move the dirty bit to the page. Now the pte is gone. */
2081 if (pte_dirty(pteval))
2082 set_page_dirty(page);
2083
2084 /*
2085 * Check that our target page is still mapped at the expected
2086 * address.
2087 */
2088 if (args->mm == mm && args->address == address &&
2089 pte_write(pteval))
2090 args->valid = true;
2091
2092 /*
2093 * Store the pfn of the page in a special migration
2094 * pte. do_swap_page() will wait until the migration
2095 * pte is removed and then restart fault handling.
2096 */
2097 if (pte_write(pteval))
2098 entry = make_writable_device_exclusive_entry(
2099 page_to_pfn(subpage));
2100 else
2101 entry = make_readable_device_exclusive_entry(
2102 page_to_pfn(subpage));
2103 swp_pte = swp_entry_to_pte(entry);
2104 if (pte_soft_dirty(pteval))
2105 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2106 if (pte_uffd_wp(pteval))
2107 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2108
2109 set_pte_at(mm, address, pvmw.pte, swp_pte);
2110
2111 /*
2112 * There is a reference on the page for the swap entry which has
2113 * been removed, so shouldn't take another.
2114 */
2115 page_remove_rmap(subpage, false);
2116 }
2117
2118 mmu_notifier_invalidate_range_end(&range);
2119
2120 return ret;
2121 }
2122
2123 /**
2124 * page_make_device_exclusive - mark the page exclusively owned by a device
2125 * @page: the page to replace page table entries for
2126 * @mm: the mm_struct where the page is expected to be mapped
2127 * @address: address where the page is expected to be mapped
2128 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2129 *
2130 * Tries to remove all the page table entries which are mapping this page and
2131 * replace them with special device exclusive swap entries to grant a device
2132 * exclusive access to the page. Caller must hold the page lock.
2133 *
2134 * Returns false if the page is still mapped, or if it could not be unmapped
2135 * from the expected address. Otherwise returns true (success).
2136 */
2137 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2138 unsigned long address, void *owner)
2139 {
2140 struct make_exclusive_args args = {
2141 .mm = mm,
2142 .address = address,
2143 .owner = owner,
2144 .valid = false,
2145 };
2146 struct rmap_walk_control rwc = {
2147 .rmap_one = page_make_device_exclusive_one,
2148 .done = page_not_mapped,
2149 .anon_lock = page_lock_anon_vma_read,
2150 .arg = &args,
2151 };
2152
2153 /*
2154 * Restrict to anonymous pages for now to avoid potential writeback
2155 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2156 * those.
2157 */
2158 if (!PageAnon(page) || PageTail(page))
2159 return false;
2160
2161 rmap_walk(page, &rwc);
2162
2163 return args.valid && !page_mapcount(page);
2164 }
2165
2166 /**
2167 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2168 * @mm: mm_struct of assoicated target process
2169 * @start: start of the region to mark for exclusive device access
2170 * @end: end address of region
2171 * @pages: returns the pages which were successfully marked for exclusive access
2172 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2173 *
2174 * Returns: number of pages found in the range by GUP. A page is marked for
2175 * exclusive access only if the page pointer is non-NULL.
2176 *
2177 * This function finds ptes mapping page(s) to the given address range, locks
2178 * them and replaces mappings with special swap entries preventing userspace CPU
2179 * access. On fault these entries are replaced with the original mapping after
2180 * calling MMU notifiers.
2181 *
2182 * A driver using this to program access from a device must use a mmu notifier
2183 * critical section to hold a device specific lock during programming. Once
2184 * programming is complete it should drop the page lock and reference after
2185 * which point CPU access to the page will revoke the exclusive access.
2186 */
2187 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2188 unsigned long end, struct page **pages,
2189 void *owner)
2190 {
2191 long npages = (end - start) >> PAGE_SHIFT;
2192 long i;
2193
2194 npages = get_user_pages_remote(mm, start, npages,
2195 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2196 pages, NULL, NULL);
2197 if (npages < 0)
2198 return npages;
2199
2200 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2201 if (!trylock_page(pages[i])) {
2202 put_page(pages[i]);
2203 pages[i] = NULL;
2204 continue;
2205 }
2206
2207 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2208 unlock_page(pages[i]);
2209 put_page(pages[i]);
2210 pages[i] = NULL;
2211 }
2212 }
2213
2214 return npages;
2215 }
2216 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2217 #endif
2218
2219 void __put_anon_vma(struct anon_vma *anon_vma)
2220 {
2221 struct anon_vma *root = anon_vma->root;
2222
2223 anon_vma_free(anon_vma);
2224 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2225 anon_vma_free(root);
2226 }
2227
2228 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2229 struct rmap_walk_control *rwc)
2230 {
2231 struct anon_vma *anon_vma;
2232
2233 if (rwc->anon_lock)
2234 return rwc->anon_lock(page);
2235
2236 /*
2237 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2238 * because that depends on page_mapped(); but not all its usages
2239 * are holding mmap_lock. Users without mmap_lock are required to
2240 * take a reference count to prevent the anon_vma disappearing
2241 */
2242 anon_vma = page_anon_vma(page);
2243 if (!anon_vma)
2244 return NULL;
2245
2246 anon_vma_lock_read(anon_vma);
2247 return anon_vma;
2248 }
2249
2250 /*
2251 * rmap_walk_anon - do something to anonymous page using the object-based
2252 * rmap method
2253 * @page: the page to be handled
2254 * @rwc: control variable according to each walk type
2255 *
2256 * Find all the mappings of a page using the mapping pointer and the vma chains
2257 * contained in the anon_vma struct it points to.
2258 *
2259 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2260 * where the page was found will be held for write. So, we won't recheck
2261 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2262 * LOCKED.
2263 */
2264 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2265 bool locked)
2266 {
2267 struct anon_vma *anon_vma;
2268 pgoff_t pgoff_start, pgoff_end;
2269 struct anon_vma_chain *avc;
2270
2271 if (locked) {
2272 anon_vma = page_anon_vma(page);
2273 /* anon_vma disappear under us? */
2274 VM_BUG_ON_PAGE(!anon_vma, page);
2275 } else {
2276 anon_vma = rmap_walk_anon_lock(page, rwc);
2277 }
2278 if (!anon_vma)
2279 return;
2280
2281 pgoff_start = page_to_pgoff(page);
2282 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2283 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2284 pgoff_start, pgoff_end) {
2285 struct vm_area_struct *vma = avc->vma;
2286 unsigned long address = vma_address(page, vma);
2287
2288 VM_BUG_ON_VMA(address == -EFAULT, vma);
2289 cond_resched();
2290
2291 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2292 continue;
2293
2294 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2295 break;
2296 if (rwc->done && rwc->done(page))
2297 break;
2298 }
2299
2300 if (!locked)
2301 anon_vma_unlock_read(anon_vma);
2302 }
2303
2304 /*
2305 * rmap_walk_file - do something to file page using the object-based rmap method
2306 * @page: the page to be handled
2307 * @rwc: control variable according to each walk type
2308 *
2309 * Find all the mappings of a page using the mapping pointer and the vma chains
2310 * contained in the address_space struct it points to.
2311 *
2312 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2313 * where the page was found will be held for write. So, we won't recheck
2314 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2315 * LOCKED.
2316 */
2317 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2318 bool locked)
2319 {
2320 struct address_space *mapping = page_mapping(page);
2321 pgoff_t pgoff_start, pgoff_end;
2322 struct vm_area_struct *vma;
2323
2324 /*
2325 * The page lock not only makes sure that page->mapping cannot
2326 * suddenly be NULLified by truncation, it makes sure that the
2327 * structure at mapping cannot be freed and reused yet,
2328 * so we can safely take mapping->i_mmap_rwsem.
2329 */
2330 VM_BUG_ON_PAGE(!PageLocked(page), page);
2331
2332 if (!mapping)
2333 return;
2334
2335 pgoff_start = page_to_pgoff(page);
2336 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2337 if (!locked)
2338 i_mmap_lock_read(mapping);
2339 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2340 pgoff_start, pgoff_end) {
2341 unsigned long address = vma_address(page, vma);
2342
2343 VM_BUG_ON_VMA(address == -EFAULT, vma);
2344 cond_resched();
2345
2346 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2347 continue;
2348
2349 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2350 goto done;
2351 if (rwc->done && rwc->done(page))
2352 goto done;
2353 }
2354
2355 done:
2356 if (!locked)
2357 i_mmap_unlock_read(mapping);
2358 }
2359
2360 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2361 {
2362 if (unlikely(PageKsm(page)))
2363 rmap_walk_ksm(page, rwc);
2364 else if (PageAnon(page))
2365 rmap_walk_anon(page, rwc, false);
2366 else
2367 rmap_walk_file(page, rwc, false);
2368 }
2369
2370 /* Like rmap_walk, but caller holds relevant rmap lock */
2371 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2372 {
2373 /* no ksm support for now */
2374 VM_BUG_ON_PAGE(PageKsm(page), page);
2375 if (PageAnon(page))
2376 rmap_walk_anon(page, rwc, true);
2377 else
2378 rmap_walk_file(page, rwc, true);
2379 }
2380
2381 #ifdef CONFIG_HUGETLB_PAGE
2382 /*
2383 * The following two functions are for anonymous (private mapped) hugepages.
2384 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2385 * and no lru code, because we handle hugepages differently from common pages.
2386 */
2387 void hugepage_add_anon_rmap(struct page *page,
2388 struct vm_area_struct *vma, unsigned long address)
2389 {
2390 struct anon_vma *anon_vma = vma->anon_vma;
2391 int first;
2392
2393 BUG_ON(!PageLocked(page));
2394 BUG_ON(!anon_vma);
2395 /* address might be in next vma when migration races vma_adjust */
2396 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2397 if (first)
2398 __page_set_anon_rmap(page, vma, address, 0);
2399 }
2400
2401 void hugepage_add_new_anon_rmap(struct page *page,
2402 struct vm_area_struct *vma, unsigned long address)
2403 {
2404 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2405 atomic_set(compound_mapcount_ptr(page), 0);
2406 if (hpage_pincount_available(page))
2407 atomic_set(compound_pincount_ptr(page), 0);
2408
2409 __page_set_anon_rmap(page, vma, address, 1);
2410 }
2411 #endif /* CONFIG_HUGETLB_PAGE */