]>
git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
42 * anon_vma->lock (memory_failure, collect_procs_anon)
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/module.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
59 #include <asm/tlbflush.h>
63 static struct kmem_cache
*anon_vma_cachep
;
65 static inline struct anon_vma
*anon_vma_alloc(void)
67 return kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
70 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
72 kmem_cache_free(anon_vma_cachep
, anon_vma
);
76 * anon_vma_prepare - attach an anon_vma to a memory region
77 * @vma: the memory region in question
79 * This makes sure the memory mapping described by 'vma' has
80 * an 'anon_vma' attached to it, so that we can associate the
81 * anonymous pages mapped into it with that anon_vma.
83 * The common case will be that we already have one, but if
84 * if not we either need to find an adjacent mapping that we
85 * can re-use the anon_vma from (very common when the only
86 * reason for splitting a vma has been mprotect()), or we
89 * Anon-vma allocations are very subtle, because we may have
90 * optimistically looked up an anon_vma in page_lock_anon_vma()
91 * and that may actually touch the spinlock even in the newly
92 * allocated vma (it depends on RCU to make sure that the
93 * anon_vma isn't actually destroyed).
95 * As a result, we need to do proper anon_vma locking even
96 * for the new allocation. At the same time, we do not want
97 * to do any locking for the common case of already having
100 * This must be called with the mmap_sem held for reading.
102 int anon_vma_prepare(struct vm_area_struct
*vma
)
104 struct anon_vma
*anon_vma
= vma
->anon_vma
;
107 if (unlikely(!anon_vma
)) {
108 struct mm_struct
*mm
= vma
->vm_mm
;
109 struct anon_vma
*allocated
;
111 anon_vma
= find_mergeable_anon_vma(vma
);
114 anon_vma
= anon_vma_alloc();
115 if (unlikely(!anon_vma
))
117 allocated
= anon_vma
;
119 spin_lock(&anon_vma
->lock
);
121 /* page_table_lock to protect against threads */
122 spin_lock(&mm
->page_table_lock
);
123 if (likely(!vma
->anon_vma
)) {
124 vma
->anon_vma
= anon_vma
;
125 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
128 spin_unlock(&mm
->page_table_lock
);
130 spin_unlock(&anon_vma
->lock
);
131 if (unlikely(allocated
))
132 anon_vma_free(allocated
);
137 void __anon_vma_merge(struct vm_area_struct
*vma
, struct vm_area_struct
*next
)
139 BUG_ON(vma
->anon_vma
!= next
->anon_vma
);
140 list_del(&next
->anon_vma_node
);
143 void __anon_vma_link(struct vm_area_struct
*vma
)
145 struct anon_vma
*anon_vma
= vma
->anon_vma
;
148 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
151 void anon_vma_link(struct vm_area_struct
*vma
)
153 struct anon_vma
*anon_vma
= vma
->anon_vma
;
156 spin_lock(&anon_vma
->lock
);
157 list_add_tail(&vma
->anon_vma_node
, &anon_vma
->head
);
158 spin_unlock(&anon_vma
->lock
);
162 void anon_vma_unlink(struct vm_area_struct
*vma
)
164 struct anon_vma
*anon_vma
= vma
->anon_vma
;
170 spin_lock(&anon_vma
->lock
);
171 list_del(&vma
->anon_vma_node
);
173 /* We must garbage collect the anon_vma if it's empty */
174 empty
= list_empty(&anon_vma
->head
);
175 spin_unlock(&anon_vma
->lock
);
178 anon_vma_free(anon_vma
);
181 static void anon_vma_ctor(void *data
)
183 struct anon_vma
*anon_vma
= data
;
185 spin_lock_init(&anon_vma
->lock
);
186 INIT_LIST_HEAD(&anon_vma
->head
);
189 void __init
anon_vma_init(void)
191 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
192 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
196 * Getting a lock on a stable anon_vma from a page off the LRU is
197 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
199 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
201 struct anon_vma
*anon_vma
;
202 unsigned long anon_mapping
;
205 anon_mapping
= (unsigned long) page
->mapping
;
206 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
208 if (!page_mapped(page
))
211 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
212 spin_lock(&anon_vma
->lock
);
219 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
221 spin_unlock(&anon_vma
->lock
);
226 * At what user virtual address is page expected in @vma?
227 * Returns virtual address or -EFAULT if page's index/offset is not
228 * within the range mapped the @vma.
230 static inline unsigned long
231 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
233 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
234 unsigned long address
;
236 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
237 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
238 /* page should be within @vma mapping range */
245 * At what user virtual address is page expected in vma?
246 * checking that the page matches the vma.
248 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
250 if (PageAnon(page
)) {
251 if (vma
->anon_vma
!= page_anon_vma(page
))
253 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
255 vma
->vm_file
->f_mapping
!= page
->mapping
)
259 return vma_address(page
, vma
);
263 * Check that @page is mapped at @address into @mm.
265 * If @sync is false, page_check_address may perform a racy check to avoid
266 * the page table lock when the pte is not present (helpful when reclaiming
267 * highly shared pages).
269 * On success returns with pte mapped and locked.
271 pte_t
*page_check_address(struct page
*page
, struct mm_struct
*mm
,
272 unsigned long address
, spinlock_t
**ptlp
, int sync
)
280 pgd
= pgd_offset(mm
, address
);
281 if (!pgd_present(*pgd
))
284 pud
= pud_offset(pgd
, address
);
285 if (!pud_present(*pud
))
288 pmd
= pmd_offset(pud
, address
);
289 if (!pmd_present(*pmd
))
292 pte
= pte_offset_map(pmd
, address
);
293 /* Make a quick check before getting the lock */
294 if (!sync
&& !pte_present(*pte
)) {
299 ptl
= pte_lockptr(mm
, pmd
);
301 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
305 pte_unmap_unlock(pte
, ptl
);
310 * page_mapped_in_vma - check whether a page is really mapped in a VMA
311 * @page: the page to test
312 * @vma: the VMA to test
314 * Returns 1 if the page is mapped into the page tables of the VMA, 0
315 * if the page is not mapped into the page tables of this VMA. Only
316 * valid for normal file or anonymous VMAs.
318 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
320 unsigned long address
;
324 address
= vma_address(page
, vma
);
325 if (address
== -EFAULT
) /* out of vma range */
327 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
328 if (!pte
) /* the page is not in this mm */
330 pte_unmap_unlock(pte
, ptl
);
336 * Subfunctions of page_referenced: page_referenced_one called
337 * repeatedly from either page_referenced_anon or page_referenced_file.
339 static int page_referenced_one(struct page
*page
,
340 struct vm_area_struct
*vma
,
341 unsigned int *mapcount
,
342 unsigned long *vm_flags
)
344 struct mm_struct
*mm
= vma
->vm_mm
;
345 unsigned long address
;
350 address
= vma_address(page
, vma
);
351 if (address
== -EFAULT
)
354 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
359 * Don't want to elevate referenced for mlocked page that gets this far,
360 * in order that it progresses to try_to_unmap and is moved to the
363 if (vma
->vm_flags
& VM_LOCKED
) {
364 *mapcount
= 1; /* break early from loop */
365 *vm_flags
|= VM_LOCKED
;
369 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
371 * Don't treat a reference through a sequentially read
372 * mapping as such. If the page has been used in
373 * another mapping, we will catch it; if this other
374 * mapping is already gone, the unmap path will have
375 * set PG_referenced or activated the page.
377 if (likely(!VM_SequentialReadHint(vma
)))
381 /* Pretend the page is referenced if the task has the
382 swap token and is in the middle of a page fault. */
383 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
384 rwsem_is_locked(&mm
->mmap_sem
))
389 pte_unmap_unlock(pte
, ptl
);
392 *vm_flags
|= vma
->vm_flags
;
397 static int page_referenced_anon(struct page
*page
,
398 struct mem_cgroup
*mem_cont
,
399 unsigned long *vm_flags
)
401 unsigned int mapcount
;
402 struct anon_vma
*anon_vma
;
403 struct vm_area_struct
*vma
;
406 anon_vma
= page_lock_anon_vma(page
);
410 mapcount
= page_mapcount(page
);
411 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
413 * If we are reclaiming on behalf of a cgroup, skip
414 * counting on behalf of references from different
417 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
419 referenced
+= page_referenced_one(page
, vma
,
420 &mapcount
, vm_flags
);
425 page_unlock_anon_vma(anon_vma
);
430 * page_referenced_file - referenced check for object-based rmap
431 * @page: the page we're checking references on.
432 * @mem_cont: target memory controller
433 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
435 * For an object-based mapped page, find all the places it is mapped and
436 * check/clear the referenced flag. This is done by following the page->mapping
437 * pointer, then walking the chain of vmas it holds. It returns the number
438 * of references it found.
440 * This function is only called from page_referenced for object-based pages.
442 static int page_referenced_file(struct page
*page
,
443 struct mem_cgroup
*mem_cont
,
444 unsigned long *vm_flags
)
446 unsigned int mapcount
;
447 struct address_space
*mapping
= page
->mapping
;
448 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
449 struct vm_area_struct
*vma
;
450 struct prio_tree_iter iter
;
454 * The caller's checks on page->mapping and !PageAnon have made
455 * sure that this is a file page: the check for page->mapping
456 * excludes the case just before it gets set on an anon page.
458 BUG_ON(PageAnon(page
));
461 * The page lock not only makes sure that page->mapping cannot
462 * suddenly be NULLified by truncation, it makes sure that the
463 * structure at mapping cannot be freed and reused yet,
464 * so we can safely take mapping->i_mmap_lock.
466 BUG_ON(!PageLocked(page
));
468 spin_lock(&mapping
->i_mmap_lock
);
471 * i_mmap_lock does not stabilize mapcount at all, but mapcount
472 * is more likely to be accurate if we note it after spinning.
474 mapcount
= page_mapcount(page
);
476 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
478 * If we are reclaiming on behalf of a cgroup, skip
479 * counting on behalf of references from different
482 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
484 referenced
+= page_referenced_one(page
, vma
,
485 &mapcount
, vm_flags
);
490 spin_unlock(&mapping
->i_mmap_lock
);
495 * page_referenced - test if the page was referenced
496 * @page: the page to test
497 * @is_locked: caller holds lock on the page
498 * @mem_cont: target memory controller
499 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
501 * Quick test_and_clear_referenced for all mappings to a page,
502 * returns the number of ptes which referenced the page.
504 int page_referenced(struct page
*page
,
506 struct mem_cgroup
*mem_cont
,
507 unsigned long *vm_flags
)
511 if (TestClearPageReferenced(page
))
515 if (page_mapped(page
) && page_rmapping(page
)) {
517 referenced
+= page_referenced_anon(page
, mem_cont
,
520 referenced
+= page_referenced_file(page
, mem_cont
,
522 else if (!trylock_page(page
))
526 referenced
+= page_referenced_file(page
,
532 if (page_test_and_clear_young(page
))
538 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
)
540 struct mm_struct
*mm
= vma
->vm_mm
;
541 unsigned long address
;
546 address
= vma_address(page
, vma
);
547 if (address
== -EFAULT
)
550 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
554 if (pte_dirty(*pte
) || pte_write(*pte
)) {
557 flush_cache_page(vma
, address
, pte_pfn(*pte
));
558 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
559 entry
= pte_wrprotect(entry
);
560 entry
= pte_mkclean(entry
);
561 set_pte_at(mm
, address
, pte
, entry
);
565 pte_unmap_unlock(pte
, ptl
);
570 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
572 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
573 struct vm_area_struct
*vma
;
574 struct prio_tree_iter iter
;
577 BUG_ON(PageAnon(page
));
579 spin_lock(&mapping
->i_mmap_lock
);
580 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
581 if (vma
->vm_flags
& VM_SHARED
)
582 ret
+= page_mkclean_one(page
, vma
);
584 spin_unlock(&mapping
->i_mmap_lock
);
588 int page_mkclean(struct page
*page
)
592 BUG_ON(!PageLocked(page
));
594 if (page_mapped(page
)) {
595 struct address_space
*mapping
= page_mapping(page
);
597 ret
= page_mkclean_file(mapping
, page
);
598 if (page_test_dirty(page
)) {
599 page_clear_dirty(page
);
607 EXPORT_SYMBOL_GPL(page_mkclean
);
610 * __page_set_anon_rmap - setup new anonymous rmap
611 * @page: the page to add the mapping to
612 * @vma: the vm area in which the mapping is added
613 * @address: the user virtual address mapped
615 static void __page_set_anon_rmap(struct page
*page
,
616 struct vm_area_struct
*vma
, unsigned long address
)
618 struct anon_vma
*anon_vma
= vma
->anon_vma
;
621 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
622 page
->mapping
= (struct address_space
*) anon_vma
;
624 page
->index
= linear_page_index(vma
, address
);
627 * nr_mapped state can be updated without turning off
628 * interrupts because it is not modified via interrupt.
630 __inc_zone_page_state(page
, NR_ANON_PAGES
);
634 * __page_check_anon_rmap - sanity check anonymous rmap addition
635 * @page: the page to add the mapping to
636 * @vma: the vm area in which the mapping is added
637 * @address: the user virtual address mapped
639 static void __page_check_anon_rmap(struct page
*page
,
640 struct vm_area_struct
*vma
, unsigned long address
)
642 #ifdef CONFIG_DEBUG_VM
644 * The page's anon-rmap details (mapping and index) are guaranteed to
645 * be set up correctly at this point.
647 * We have exclusion against page_add_anon_rmap because the caller
648 * always holds the page locked, except if called from page_dup_rmap,
649 * in which case the page is already known to be setup.
651 * We have exclusion against page_add_new_anon_rmap because those pages
652 * are initially only visible via the pagetables, and the pte is locked
653 * over the call to page_add_new_anon_rmap.
655 struct anon_vma
*anon_vma
= vma
->anon_vma
;
656 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
657 BUG_ON(page
->mapping
!= (struct address_space
*)anon_vma
);
658 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
663 * page_add_anon_rmap - add pte mapping to an anonymous page
664 * @page: the page to add the mapping to
665 * @vma: the vm area in which the mapping is added
666 * @address: the user virtual address mapped
668 * The caller needs to hold the pte lock and the page must be locked.
670 void page_add_anon_rmap(struct page
*page
,
671 struct vm_area_struct
*vma
, unsigned long address
)
673 VM_BUG_ON(!PageLocked(page
));
674 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
675 if (atomic_inc_and_test(&page
->_mapcount
))
676 __page_set_anon_rmap(page
, vma
, address
);
678 __page_check_anon_rmap(page
, vma
, address
);
682 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
683 * @page: the page to add the mapping to
684 * @vma: the vm area in which the mapping is added
685 * @address: the user virtual address mapped
687 * Same as page_add_anon_rmap but must only be called on *new* pages.
688 * This means the inc-and-test can be bypassed.
689 * Page does not have to be locked.
691 void page_add_new_anon_rmap(struct page
*page
,
692 struct vm_area_struct
*vma
, unsigned long address
)
694 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
695 SetPageSwapBacked(page
);
696 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
697 __page_set_anon_rmap(page
, vma
, address
);
698 if (page_evictable(page
, vma
))
699 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
701 add_page_to_unevictable_list(page
);
705 * page_add_file_rmap - add pte mapping to a file page
706 * @page: the page to add the mapping to
708 * The caller needs to hold the pte lock.
710 void page_add_file_rmap(struct page
*page
)
712 if (atomic_inc_and_test(&page
->_mapcount
)) {
713 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
714 mem_cgroup_update_mapped_file_stat(page
, 1);
719 * page_remove_rmap - take down pte mapping from a page
720 * @page: page to remove mapping from
722 * The caller needs to hold the pte lock.
724 void page_remove_rmap(struct page
*page
)
726 /* page still mapped by someone else? */
727 if (!atomic_add_negative(-1, &page
->_mapcount
))
731 * Now that the last pte has gone, s390 must transfer dirty
732 * flag from storage key to struct page. We can usually skip
733 * this if the page is anon, so about to be freed; but perhaps
734 * not if it's in swapcache - there might be another pte slot
735 * containing the swap entry, but page not yet written to swap.
737 if ((!PageAnon(page
) || PageSwapCache(page
)) && page_test_dirty(page
)) {
738 page_clear_dirty(page
);
739 set_page_dirty(page
);
741 if (PageAnon(page
)) {
742 mem_cgroup_uncharge_page(page
);
743 __dec_zone_page_state(page
, NR_ANON_PAGES
);
745 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
747 mem_cgroup_update_mapped_file_stat(page
, -1);
749 * It would be tidy to reset the PageAnon mapping here,
750 * but that might overwrite a racing page_add_anon_rmap
751 * which increments mapcount after us but sets mapping
752 * before us: so leave the reset to free_hot_cold_page,
753 * and remember that it's only reliable while mapped.
754 * Leaving it set also helps swapoff to reinstate ptes
755 * faster for those pages still in swapcache.
760 * Subfunctions of try_to_unmap: try_to_unmap_one called
761 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
763 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
764 enum ttu_flags flags
)
766 struct mm_struct
*mm
= vma
->vm_mm
;
767 unsigned long address
;
771 int ret
= SWAP_AGAIN
;
773 address
= vma_address(page
, vma
);
774 if (address
== -EFAULT
)
777 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
782 * If the page is mlock()d, we cannot swap it out.
783 * If it's recently referenced (perhaps page_referenced
784 * skipped over this mm) then we should reactivate it.
786 if (!(flags
& TTU_IGNORE_MLOCK
)) {
787 if (vma
->vm_flags
& VM_LOCKED
) {
791 if (MLOCK_PAGES
&& TTU_ACTION(flags
) == TTU_MUNLOCK
)
794 if (!(flags
& TTU_IGNORE_ACCESS
)) {
795 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
801 /* Nuke the page table entry. */
802 flush_cache_page(vma
, address
, page_to_pfn(page
));
803 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
805 /* Move the dirty bit to the physical page now the pte is gone. */
806 if (pte_dirty(pteval
))
807 set_page_dirty(page
);
809 /* Update high watermark before we lower rss */
810 update_hiwater_rss(mm
);
812 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
814 dec_mm_counter(mm
, anon_rss
);
816 dec_mm_counter(mm
, file_rss
);
817 set_pte_at(mm
, address
, pte
,
818 swp_entry_to_pte(make_hwpoison_entry(page
)));
819 } else if (PageAnon(page
)) {
820 swp_entry_t entry
= { .val
= page_private(page
) };
822 if (PageSwapCache(page
)) {
824 * Store the swap location in the pte.
825 * See handle_pte_fault() ...
827 if (swap_duplicate(entry
) < 0) {
828 set_pte_at(mm
, address
, pte
, pteval
);
832 if (list_empty(&mm
->mmlist
)) {
833 spin_lock(&mmlist_lock
);
834 if (list_empty(&mm
->mmlist
))
835 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
836 spin_unlock(&mmlist_lock
);
838 dec_mm_counter(mm
, anon_rss
);
839 } else if (PAGE_MIGRATION
) {
841 * Store the pfn of the page in a special migration
842 * pte. do_swap_page() will wait until the migration
843 * pte is removed and then restart fault handling.
845 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
846 entry
= make_migration_entry(page
, pte_write(pteval
));
848 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
849 BUG_ON(pte_file(*pte
));
850 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
851 /* Establish migration entry for a file page */
853 entry
= make_migration_entry(page
, pte_write(pteval
));
854 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
856 dec_mm_counter(mm
, file_rss
);
858 page_remove_rmap(page
);
859 page_cache_release(page
);
862 pte_unmap_unlock(pte
, ptl
);
864 if (MLOCK_PAGES
&& ret
== SWAP_MLOCK
) {
866 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
867 if (vma
->vm_flags
& VM_LOCKED
) {
868 mlock_vma_page(page
);
871 up_read(&vma
->vm_mm
->mmap_sem
);
879 * objrmap doesn't work for nonlinear VMAs because the assumption that
880 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
881 * Consequently, given a particular page and its ->index, we cannot locate the
882 * ptes which are mapping that page without an exhaustive linear search.
884 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
885 * maps the file to which the target page belongs. The ->vm_private_data field
886 * holds the current cursor into that scan. Successive searches will circulate
887 * around the vma's virtual address space.
889 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
890 * more scanning pressure is placed against them as well. Eventually pages
891 * will become fully unmapped and are eligible for eviction.
893 * For very sparsely populated VMAs this is a little inefficient - chances are
894 * there there won't be many ptes located within the scan cluster. In this case
895 * maybe we could scan further - to the end of the pte page, perhaps.
897 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
898 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
899 * rather than unmapping them. If we encounter the "check_page" that vmscan is
900 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
902 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
903 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
905 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
906 struct vm_area_struct
*vma
, struct page
*check_page
)
908 struct mm_struct
*mm
= vma
->vm_mm
;
916 unsigned long address
;
918 int ret
= SWAP_AGAIN
;
921 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
922 end
= address
+ CLUSTER_SIZE
;
923 if (address
< vma
->vm_start
)
924 address
= vma
->vm_start
;
925 if (end
> vma
->vm_end
)
928 pgd
= pgd_offset(mm
, address
);
929 if (!pgd_present(*pgd
))
932 pud
= pud_offset(pgd
, address
);
933 if (!pud_present(*pud
))
936 pmd
= pmd_offset(pud
, address
);
937 if (!pmd_present(*pmd
))
941 * MLOCK_PAGES => feature is configured.
942 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
943 * keep the sem while scanning the cluster for mlocking pages.
945 if (MLOCK_PAGES
&& down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
946 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
948 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
951 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
953 /* Update high watermark before we lower rss */
954 update_hiwater_rss(mm
);
956 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
957 if (!pte_present(*pte
))
959 page
= vm_normal_page(vma
, address
, *pte
);
960 BUG_ON(!page
|| PageAnon(page
));
963 mlock_vma_page(page
); /* no-op if already mlocked */
964 if (page
== check_page
)
966 continue; /* don't unmap */
969 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
972 /* Nuke the page table entry. */
973 flush_cache_page(vma
, address
, pte_pfn(*pte
));
974 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
976 /* If nonlinear, store the file page offset in the pte. */
977 if (page
->index
!= linear_page_index(vma
, address
))
978 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
980 /* Move the dirty bit to the physical page now the pte is gone. */
981 if (pte_dirty(pteval
))
982 set_page_dirty(page
);
984 page_remove_rmap(page
);
985 page_cache_release(page
);
986 dec_mm_counter(mm
, file_rss
);
989 pte_unmap_unlock(pte
- 1, ptl
);
991 up_read(&vma
->vm_mm
->mmap_sem
);
996 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
998 * @page: the page to unmap/unlock
999 * @flags: action and flags
1001 * Find all the mappings of a page using the mapping pointer and the vma chains
1002 * contained in the anon_vma struct it points to.
1004 * This function is only called from try_to_unmap/try_to_munlock for
1006 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1007 * where the page was found will be held for write. So, we won't recheck
1008 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1011 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1013 struct anon_vma
*anon_vma
;
1014 struct vm_area_struct
*vma
;
1015 int ret
= SWAP_AGAIN
;
1017 anon_vma
= page_lock_anon_vma(page
);
1021 list_for_each_entry(vma
, &anon_vma
->head
, anon_vma_node
) {
1022 ret
= try_to_unmap_one(page
, vma
, flags
);
1023 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1027 page_unlock_anon_vma(anon_vma
);
1032 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1033 * @page: the page to unmap/unlock
1034 * @flags: action and flags
1036 * Find all the mappings of a page using the mapping pointer and the vma chains
1037 * contained in the address_space struct it points to.
1039 * This function is only called from try_to_unmap/try_to_munlock for
1040 * object-based pages.
1041 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1042 * where the page was found will be held for write. So, we won't recheck
1043 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1046 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1048 struct address_space
*mapping
= page
->mapping
;
1049 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1050 struct vm_area_struct
*vma
;
1051 struct prio_tree_iter iter
;
1052 int ret
= SWAP_AGAIN
;
1053 unsigned long cursor
;
1054 unsigned long max_nl_cursor
= 0;
1055 unsigned long max_nl_size
= 0;
1056 unsigned int mapcount
;
1058 spin_lock(&mapping
->i_mmap_lock
);
1059 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1060 ret
= try_to_unmap_one(page
, vma
, flags
);
1061 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1065 if (list_empty(&mapping
->i_mmap_nonlinear
))
1069 * We don't bother to try to find the munlocked page in nonlinears.
1070 * It's costly. Instead, later, page reclaim logic may call
1071 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1073 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1076 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1077 shared
.vm_set
.list
) {
1078 if (!MLOCK_PAGES
&& !(flags
& TTU_IGNORE_MLOCK
) &&
1079 (vma
->vm_flags
& VM_LOCKED
))
1081 cursor
= (unsigned long) vma
->vm_private_data
;
1082 if (cursor
> max_nl_cursor
)
1083 max_nl_cursor
= cursor
;
1084 cursor
= vma
->vm_end
- vma
->vm_start
;
1085 if (cursor
> max_nl_size
)
1086 max_nl_size
= cursor
;
1089 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1095 * We don't try to search for this page in the nonlinear vmas,
1096 * and page_referenced wouldn't have found it anyway. Instead
1097 * just walk the nonlinear vmas trying to age and unmap some.
1098 * The mapcount of the page we came in with is irrelevant,
1099 * but even so use it as a guide to how hard we should try?
1101 mapcount
= page_mapcount(page
);
1104 cond_resched_lock(&mapping
->i_mmap_lock
);
1106 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1107 if (max_nl_cursor
== 0)
1108 max_nl_cursor
= CLUSTER_SIZE
;
1111 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1112 shared
.vm_set
.list
) {
1113 if (!MLOCK_PAGES
&& !(flags
& TTU_IGNORE_MLOCK
) &&
1114 (vma
->vm_flags
& VM_LOCKED
))
1116 cursor
= (unsigned long) vma
->vm_private_data
;
1117 while ( cursor
< max_nl_cursor
&&
1118 cursor
< vma
->vm_end
- vma
->vm_start
) {
1119 if (try_to_unmap_cluster(cursor
, &mapcount
,
1120 vma
, page
) == SWAP_MLOCK
)
1122 cursor
+= CLUSTER_SIZE
;
1123 vma
->vm_private_data
= (void *) cursor
;
1124 if ((int)mapcount
<= 0)
1127 vma
->vm_private_data
= (void *) max_nl_cursor
;
1129 cond_resched_lock(&mapping
->i_mmap_lock
);
1130 max_nl_cursor
+= CLUSTER_SIZE
;
1131 } while (max_nl_cursor
<= max_nl_size
);
1134 * Don't loop forever (perhaps all the remaining pages are
1135 * in locked vmas). Reset cursor on all unreserved nonlinear
1136 * vmas, now forgetting on which ones it had fallen behind.
1138 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1139 vma
->vm_private_data
= NULL
;
1141 spin_unlock(&mapping
->i_mmap_lock
);
1146 * try_to_unmap - try to remove all page table mappings to a page
1147 * @page: the page to get unmapped
1148 * @flags: action and flags
1150 * Tries to remove all the page table entries which are mapping this
1151 * page, used in the pageout path. Caller must hold the page lock.
1152 * Return values are:
1154 * SWAP_SUCCESS - we succeeded in removing all mappings
1155 * SWAP_AGAIN - we missed a mapping, try again later
1156 * SWAP_FAIL - the page is unswappable
1157 * SWAP_MLOCK - page is mlocked.
1159 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1163 BUG_ON(!PageLocked(page
));
1166 ret
= try_to_unmap_anon(page
, flags
);
1168 ret
= try_to_unmap_file(page
, flags
);
1169 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1175 * try_to_munlock - try to munlock a page
1176 * @page: the page to be munlocked
1178 * Called from munlock code. Checks all of the VMAs mapping the page
1179 * to make sure nobody else has this page mlocked. The page will be
1180 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1182 * Return values are:
1184 * SWAP_AGAIN - no vma is holding page mlocked, or,
1185 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1186 * SWAP_MLOCK - page is now mlocked.
1188 int try_to_munlock(struct page
*page
)
1190 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1193 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1195 return try_to_unmap_file(page
, TTU_MUNLOCK
);