]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
mm: mlocking in try_to_unmap_one
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
44 */
45
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/module.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58
59 #include <asm/tlbflush.h>
60
61 #include "internal.h"
62
63 static struct kmem_cache *anon_vma_cachep;
64
65 static inline struct anon_vma *anon_vma_alloc(void)
66 {
67 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
68 }
69
70 static inline void anon_vma_free(struct anon_vma *anon_vma)
71 {
72 kmem_cache_free(anon_vma_cachep, anon_vma);
73 }
74
75 /**
76 * anon_vma_prepare - attach an anon_vma to a memory region
77 * @vma: the memory region in question
78 *
79 * This makes sure the memory mapping described by 'vma' has
80 * an 'anon_vma' attached to it, so that we can associate the
81 * anonymous pages mapped into it with that anon_vma.
82 *
83 * The common case will be that we already have one, but if
84 * if not we either need to find an adjacent mapping that we
85 * can re-use the anon_vma from (very common when the only
86 * reason for splitting a vma has been mprotect()), or we
87 * allocate a new one.
88 *
89 * Anon-vma allocations are very subtle, because we may have
90 * optimistically looked up an anon_vma in page_lock_anon_vma()
91 * and that may actually touch the spinlock even in the newly
92 * allocated vma (it depends on RCU to make sure that the
93 * anon_vma isn't actually destroyed).
94 *
95 * As a result, we need to do proper anon_vma locking even
96 * for the new allocation. At the same time, we do not want
97 * to do any locking for the common case of already having
98 * an anon_vma.
99 *
100 * This must be called with the mmap_sem held for reading.
101 */
102 int anon_vma_prepare(struct vm_area_struct *vma)
103 {
104 struct anon_vma *anon_vma = vma->anon_vma;
105
106 might_sleep();
107 if (unlikely(!anon_vma)) {
108 struct mm_struct *mm = vma->vm_mm;
109 struct anon_vma *allocated;
110
111 anon_vma = find_mergeable_anon_vma(vma);
112 allocated = NULL;
113 if (!anon_vma) {
114 anon_vma = anon_vma_alloc();
115 if (unlikely(!anon_vma))
116 return -ENOMEM;
117 allocated = anon_vma;
118 }
119 spin_lock(&anon_vma->lock);
120
121 /* page_table_lock to protect against threads */
122 spin_lock(&mm->page_table_lock);
123 if (likely(!vma->anon_vma)) {
124 vma->anon_vma = anon_vma;
125 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 allocated = NULL;
127 }
128 spin_unlock(&mm->page_table_lock);
129
130 spin_unlock(&anon_vma->lock);
131 if (unlikely(allocated))
132 anon_vma_free(allocated);
133 }
134 return 0;
135 }
136
137 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
138 {
139 BUG_ON(vma->anon_vma != next->anon_vma);
140 list_del(&next->anon_vma_node);
141 }
142
143 void __anon_vma_link(struct vm_area_struct *vma)
144 {
145 struct anon_vma *anon_vma = vma->anon_vma;
146
147 if (anon_vma)
148 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
149 }
150
151 void anon_vma_link(struct vm_area_struct *vma)
152 {
153 struct anon_vma *anon_vma = vma->anon_vma;
154
155 if (anon_vma) {
156 spin_lock(&anon_vma->lock);
157 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
158 spin_unlock(&anon_vma->lock);
159 }
160 }
161
162 void anon_vma_unlink(struct vm_area_struct *vma)
163 {
164 struct anon_vma *anon_vma = vma->anon_vma;
165 int empty;
166
167 if (!anon_vma)
168 return;
169
170 spin_lock(&anon_vma->lock);
171 list_del(&vma->anon_vma_node);
172
173 /* We must garbage collect the anon_vma if it's empty */
174 empty = list_empty(&anon_vma->head);
175 spin_unlock(&anon_vma->lock);
176
177 if (empty)
178 anon_vma_free(anon_vma);
179 }
180
181 static void anon_vma_ctor(void *data)
182 {
183 struct anon_vma *anon_vma = data;
184
185 spin_lock_init(&anon_vma->lock);
186 INIT_LIST_HEAD(&anon_vma->head);
187 }
188
189 void __init anon_vma_init(void)
190 {
191 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
192 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
193 }
194
195 /*
196 * Getting a lock on a stable anon_vma from a page off the LRU is
197 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
198 */
199 struct anon_vma *page_lock_anon_vma(struct page *page)
200 {
201 struct anon_vma *anon_vma;
202 unsigned long anon_mapping;
203
204 rcu_read_lock();
205 anon_mapping = (unsigned long) page->mapping;
206 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
207 goto out;
208 if (!page_mapped(page))
209 goto out;
210
211 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
212 spin_lock(&anon_vma->lock);
213 return anon_vma;
214 out:
215 rcu_read_unlock();
216 return NULL;
217 }
218
219 void page_unlock_anon_vma(struct anon_vma *anon_vma)
220 {
221 spin_unlock(&anon_vma->lock);
222 rcu_read_unlock();
223 }
224
225 /*
226 * At what user virtual address is page expected in @vma?
227 * Returns virtual address or -EFAULT if page's index/offset is not
228 * within the range mapped the @vma.
229 */
230 static inline unsigned long
231 vma_address(struct page *page, struct vm_area_struct *vma)
232 {
233 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
234 unsigned long address;
235
236 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
237 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
238 /* page should be within @vma mapping range */
239 return -EFAULT;
240 }
241 return address;
242 }
243
244 /*
245 * At what user virtual address is page expected in vma?
246 * checking that the page matches the vma.
247 */
248 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
249 {
250 if (PageAnon(page)) {
251 if (vma->anon_vma != page_anon_vma(page))
252 return -EFAULT;
253 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
254 if (!vma->vm_file ||
255 vma->vm_file->f_mapping != page->mapping)
256 return -EFAULT;
257 } else
258 return -EFAULT;
259 return vma_address(page, vma);
260 }
261
262 /*
263 * Check that @page is mapped at @address into @mm.
264 *
265 * If @sync is false, page_check_address may perform a racy check to avoid
266 * the page table lock when the pte is not present (helpful when reclaiming
267 * highly shared pages).
268 *
269 * On success returns with pte mapped and locked.
270 */
271 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
272 unsigned long address, spinlock_t **ptlp, int sync)
273 {
274 pgd_t *pgd;
275 pud_t *pud;
276 pmd_t *pmd;
277 pte_t *pte;
278 spinlock_t *ptl;
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 return NULL;
283
284 pud = pud_offset(pgd, address);
285 if (!pud_present(*pud))
286 return NULL;
287
288 pmd = pmd_offset(pud, address);
289 if (!pmd_present(*pmd))
290 return NULL;
291
292 pte = pte_offset_map(pmd, address);
293 /* Make a quick check before getting the lock */
294 if (!sync && !pte_present(*pte)) {
295 pte_unmap(pte);
296 return NULL;
297 }
298
299 ptl = pte_lockptr(mm, pmd);
300 spin_lock(ptl);
301 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
302 *ptlp = ptl;
303 return pte;
304 }
305 pte_unmap_unlock(pte, ptl);
306 return NULL;
307 }
308
309 /**
310 * page_mapped_in_vma - check whether a page is really mapped in a VMA
311 * @page: the page to test
312 * @vma: the VMA to test
313 *
314 * Returns 1 if the page is mapped into the page tables of the VMA, 0
315 * if the page is not mapped into the page tables of this VMA. Only
316 * valid for normal file or anonymous VMAs.
317 */
318 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
319 {
320 unsigned long address;
321 pte_t *pte;
322 spinlock_t *ptl;
323
324 address = vma_address(page, vma);
325 if (address == -EFAULT) /* out of vma range */
326 return 0;
327 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
328 if (!pte) /* the page is not in this mm */
329 return 0;
330 pte_unmap_unlock(pte, ptl);
331
332 return 1;
333 }
334
335 /*
336 * Subfunctions of page_referenced: page_referenced_one called
337 * repeatedly from either page_referenced_anon or page_referenced_file.
338 */
339 static int page_referenced_one(struct page *page,
340 struct vm_area_struct *vma,
341 unsigned int *mapcount,
342 unsigned long *vm_flags)
343 {
344 struct mm_struct *mm = vma->vm_mm;
345 unsigned long address;
346 pte_t *pte;
347 spinlock_t *ptl;
348 int referenced = 0;
349
350 address = vma_address(page, vma);
351 if (address == -EFAULT)
352 goto out;
353
354 pte = page_check_address(page, mm, address, &ptl, 0);
355 if (!pte)
356 goto out;
357
358 /*
359 * Don't want to elevate referenced for mlocked page that gets this far,
360 * in order that it progresses to try_to_unmap and is moved to the
361 * unevictable list.
362 */
363 if (vma->vm_flags & VM_LOCKED) {
364 *mapcount = 1; /* break early from loop */
365 *vm_flags |= VM_LOCKED;
366 goto out_unmap;
367 }
368
369 if (ptep_clear_flush_young_notify(vma, address, pte)) {
370 /*
371 * Don't treat a reference through a sequentially read
372 * mapping as such. If the page has been used in
373 * another mapping, we will catch it; if this other
374 * mapping is already gone, the unmap path will have
375 * set PG_referenced or activated the page.
376 */
377 if (likely(!VM_SequentialReadHint(vma)))
378 referenced++;
379 }
380
381 /* Pretend the page is referenced if the task has the
382 swap token and is in the middle of a page fault. */
383 if (mm != current->mm && has_swap_token(mm) &&
384 rwsem_is_locked(&mm->mmap_sem))
385 referenced++;
386
387 out_unmap:
388 (*mapcount)--;
389 pte_unmap_unlock(pte, ptl);
390
391 if (referenced)
392 *vm_flags |= vma->vm_flags;
393 out:
394 return referenced;
395 }
396
397 static int page_referenced_anon(struct page *page,
398 struct mem_cgroup *mem_cont,
399 unsigned long *vm_flags)
400 {
401 unsigned int mapcount;
402 struct anon_vma *anon_vma;
403 struct vm_area_struct *vma;
404 int referenced = 0;
405
406 anon_vma = page_lock_anon_vma(page);
407 if (!anon_vma)
408 return referenced;
409
410 mapcount = page_mapcount(page);
411 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
412 /*
413 * If we are reclaiming on behalf of a cgroup, skip
414 * counting on behalf of references from different
415 * cgroups
416 */
417 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
418 continue;
419 referenced += page_referenced_one(page, vma,
420 &mapcount, vm_flags);
421 if (!mapcount)
422 break;
423 }
424
425 page_unlock_anon_vma(anon_vma);
426 return referenced;
427 }
428
429 /**
430 * page_referenced_file - referenced check for object-based rmap
431 * @page: the page we're checking references on.
432 * @mem_cont: target memory controller
433 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
434 *
435 * For an object-based mapped page, find all the places it is mapped and
436 * check/clear the referenced flag. This is done by following the page->mapping
437 * pointer, then walking the chain of vmas it holds. It returns the number
438 * of references it found.
439 *
440 * This function is only called from page_referenced for object-based pages.
441 */
442 static int page_referenced_file(struct page *page,
443 struct mem_cgroup *mem_cont,
444 unsigned long *vm_flags)
445 {
446 unsigned int mapcount;
447 struct address_space *mapping = page->mapping;
448 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
449 struct vm_area_struct *vma;
450 struct prio_tree_iter iter;
451 int referenced = 0;
452
453 /*
454 * The caller's checks on page->mapping and !PageAnon have made
455 * sure that this is a file page: the check for page->mapping
456 * excludes the case just before it gets set on an anon page.
457 */
458 BUG_ON(PageAnon(page));
459
460 /*
461 * The page lock not only makes sure that page->mapping cannot
462 * suddenly be NULLified by truncation, it makes sure that the
463 * structure at mapping cannot be freed and reused yet,
464 * so we can safely take mapping->i_mmap_lock.
465 */
466 BUG_ON(!PageLocked(page));
467
468 spin_lock(&mapping->i_mmap_lock);
469
470 /*
471 * i_mmap_lock does not stabilize mapcount at all, but mapcount
472 * is more likely to be accurate if we note it after spinning.
473 */
474 mapcount = page_mapcount(page);
475
476 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
477 /*
478 * If we are reclaiming on behalf of a cgroup, skip
479 * counting on behalf of references from different
480 * cgroups
481 */
482 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
483 continue;
484 referenced += page_referenced_one(page, vma,
485 &mapcount, vm_flags);
486 if (!mapcount)
487 break;
488 }
489
490 spin_unlock(&mapping->i_mmap_lock);
491 return referenced;
492 }
493
494 /**
495 * page_referenced - test if the page was referenced
496 * @page: the page to test
497 * @is_locked: caller holds lock on the page
498 * @mem_cont: target memory controller
499 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
500 *
501 * Quick test_and_clear_referenced for all mappings to a page,
502 * returns the number of ptes which referenced the page.
503 */
504 int page_referenced(struct page *page,
505 int is_locked,
506 struct mem_cgroup *mem_cont,
507 unsigned long *vm_flags)
508 {
509 int referenced = 0;
510
511 if (TestClearPageReferenced(page))
512 referenced++;
513
514 *vm_flags = 0;
515 if (page_mapped(page) && page_rmapping(page)) {
516 if (PageAnon(page))
517 referenced += page_referenced_anon(page, mem_cont,
518 vm_flags);
519 else if (is_locked)
520 referenced += page_referenced_file(page, mem_cont,
521 vm_flags);
522 else if (!trylock_page(page))
523 referenced++;
524 else {
525 if (page->mapping)
526 referenced += page_referenced_file(page,
527 mem_cont, vm_flags);
528 unlock_page(page);
529 }
530 }
531
532 if (page_test_and_clear_young(page))
533 referenced++;
534
535 return referenced;
536 }
537
538 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
539 {
540 struct mm_struct *mm = vma->vm_mm;
541 unsigned long address;
542 pte_t *pte;
543 spinlock_t *ptl;
544 int ret = 0;
545
546 address = vma_address(page, vma);
547 if (address == -EFAULT)
548 goto out;
549
550 pte = page_check_address(page, mm, address, &ptl, 1);
551 if (!pte)
552 goto out;
553
554 if (pte_dirty(*pte) || pte_write(*pte)) {
555 pte_t entry;
556
557 flush_cache_page(vma, address, pte_pfn(*pte));
558 entry = ptep_clear_flush_notify(vma, address, pte);
559 entry = pte_wrprotect(entry);
560 entry = pte_mkclean(entry);
561 set_pte_at(mm, address, pte, entry);
562 ret = 1;
563 }
564
565 pte_unmap_unlock(pte, ptl);
566 out:
567 return ret;
568 }
569
570 static int page_mkclean_file(struct address_space *mapping, struct page *page)
571 {
572 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
573 struct vm_area_struct *vma;
574 struct prio_tree_iter iter;
575 int ret = 0;
576
577 BUG_ON(PageAnon(page));
578
579 spin_lock(&mapping->i_mmap_lock);
580 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
581 if (vma->vm_flags & VM_SHARED)
582 ret += page_mkclean_one(page, vma);
583 }
584 spin_unlock(&mapping->i_mmap_lock);
585 return ret;
586 }
587
588 int page_mkclean(struct page *page)
589 {
590 int ret = 0;
591
592 BUG_ON(!PageLocked(page));
593
594 if (page_mapped(page)) {
595 struct address_space *mapping = page_mapping(page);
596 if (mapping) {
597 ret = page_mkclean_file(mapping, page);
598 if (page_test_dirty(page)) {
599 page_clear_dirty(page);
600 ret = 1;
601 }
602 }
603 }
604
605 return ret;
606 }
607 EXPORT_SYMBOL_GPL(page_mkclean);
608
609 /**
610 * __page_set_anon_rmap - setup new anonymous rmap
611 * @page: the page to add the mapping to
612 * @vma: the vm area in which the mapping is added
613 * @address: the user virtual address mapped
614 */
615 static void __page_set_anon_rmap(struct page *page,
616 struct vm_area_struct *vma, unsigned long address)
617 {
618 struct anon_vma *anon_vma = vma->anon_vma;
619
620 BUG_ON(!anon_vma);
621 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
622 page->mapping = (struct address_space *) anon_vma;
623
624 page->index = linear_page_index(vma, address);
625
626 /*
627 * nr_mapped state can be updated without turning off
628 * interrupts because it is not modified via interrupt.
629 */
630 __inc_zone_page_state(page, NR_ANON_PAGES);
631 }
632
633 /**
634 * __page_check_anon_rmap - sanity check anonymous rmap addition
635 * @page: the page to add the mapping to
636 * @vma: the vm area in which the mapping is added
637 * @address: the user virtual address mapped
638 */
639 static void __page_check_anon_rmap(struct page *page,
640 struct vm_area_struct *vma, unsigned long address)
641 {
642 #ifdef CONFIG_DEBUG_VM
643 /*
644 * The page's anon-rmap details (mapping and index) are guaranteed to
645 * be set up correctly at this point.
646 *
647 * We have exclusion against page_add_anon_rmap because the caller
648 * always holds the page locked, except if called from page_dup_rmap,
649 * in which case the page is already known to be setup.
650 *
651 * We have exclusion against page_add_new_anon_rmap because those pages
652 * are initially only visible via the pagetables, and the pte is locked
653 * over the call to page_add_new_anon_rmap.
654 */
655 struct anon_vma *anon_vma = vma->anon_vma;
656 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
657 BUG_ON(page->mapping != (struct address_space *)anon_vma);
658 BUG_ON(page->index != linear_page_index(vma, address));
659 #endif
660 }
661
662 /**
663 * page_add_anon_rmap - add pte mapping to an anonymous page
664 * @page: the page to add the mapping to
665 * @vma: the vm area in which the mapping is added
666 * @address: the user virtual address mapped
667 *
668 * The caller needs to hold the pte lock and the page must be locked.
669 */
670 void page_add_anon_rmap(struct page *page,
671 struct vm_area_struct *vma, unsigned long address)
672 {
673 VM_BUG_ON(!PageLocked(page));
674 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
675 if (atomic_inc_and_test(&page->_mapcount))
676 __page_set_anon_rmap(page, vma, address);
677 else
678 __page_check_anon_rmap(page, vma, address);
679 }
680
681 /**
682 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
683 * @page: the page to add the mapping to
684 * @vma: the vm area in which the mapping is added
685 * @address: the user virtual address mapped
686 *
687 * Same as page_add_anon_rmap but must only be called on *new* pages.
688 * This means the inc-and-test can be bypassed.
689 * Page does not have to be locked.
690 */
691 void page_add_new_anon_rmap(struct page *page,
692 struct vm_area_struct *vma, unsigned long address)
693 {
694 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
695 SetPageSwapBacked(page);
696 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
697 __page_set_anon_rmap(page, vma, address);
698 if (page_evictable(page, vma))
699 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
700 else
701 add_page_to_unevictable_list(page);
702 }
703
704 /**
705 * page_add_file_rmap - add pte mapping to a file page
706 * @page: the page to add the mapping to
707 *
708 * The caller needs to hold the pte lock.
709 */
710 void page_add_file_rmap(struct page *page)
711 {
712 if (atomic_inc_and_test(&page->_mapcount)) {
713 __inc_zone_page_state(page, NR_FILE_MAPPED);
714 mem_cgroup_update_mapped_file_stat(page, 1);
715 }
716 }
717
718 /**
719 * page_remove_rmap - take down pte mapping from a page
720 * @page: page to remove mapping from
721 *
722 * The caller needs to hold the pte lock.
723 */
724 void page_remove_rmap(struct page *page)
725 {
726 /* page still mapped by someone else? */
727 if (!atomic_add_negative(-1, &page->_mapcount))
728 return;
729
730 /*
731 * Now that the last pte has gone, s390 must transfer dirty
732 * flag from storage key to struct page. We can usually skip
733 * this if the page is anon, so about to be freed; but perhaps
734 * not if it's in swapcache - there might be another pte slot
735 * containing the swap entry, but page not yet written to swap.
736 */
737 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
738 page_clear_dirty(page);
739 set_page_dirty(page);
740 }
741 if (PageAnon(page)) {
742 mem_cgroup_uncharge_page(page);
743 __dec_zone_page_state(page, NR_ANON_PAGES);
744 } else {
745 __dec_zone_page_state(page, NR_FILE_MAPPED);
746 }
747 mem_cgroup_update_mapped_file_stat(page, -1);
748 /*
749 * It would be tidy to reset the PageAnon mapping here,
750 * but that might overwrite a racing page_add_anon_rmap
751 * which increments mapcount after us but sets mapping
752 * before us: so leave the reset to free_hot_cold_page,
753 * and remember that it's only reliable while mapped.
754 * Leaving it set also helps swapoff to reinstate ptes
755 * faster for those pages still in swapcache.
756 */
757 }
758
759 /*
760 * Subfunctions of try_to_unmap: try_to_unmap_one called
761 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
762 */
763 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
764 enum ttu_flags flags)
765 {
766 struct mm_struct *mm = vma->vm_mm;
767 unsigned long address;
768 pte_t *pte;
769 pte_t pteval;
770 spinlock_t *ptl;
771 int ret = SWAP_AGAIN;
772
773 address = vma_address(page, vma);
774 if (address == -EFAULT)
775 goto out;
776
777 pte = page_check_address(page, mm, address, &ptl, 0);
778 if (!pte)
779 goto out;
780
781 /*
782 * If the page is mlock()d, we cannot swap it out.
783 * If it's recently referenced (perhaps page_referenced
784 * skipped over this mm) then we should reactivate it.
785 */
786 if (!(flags & TTU_IGNORE_MLOCK)) {
787 if (vma->vm_flags & VM_LOCKED) {
788 ret = SWAP_MLOCK;
789 goto out_unmap;
790 }
791 if (MLOCK_PAGES && TTU_ACTION(flags) == TTU_MUNLOCK)
792 goto out_unmap;
793 }
794 if (!(flags & TTU_IGNORE_ACCESS)) {
795 if (ptep_clear_flush_young_notify(vma, address, pte)) {
796 ret = SWAP_FAIL;
797 goto out_unmap;
798 }
799 }
800
801 /* Nuke the page table entry. */
802 flush_cache_page(vma, address, page_to_pfn(page));
803 pteval = ptep_clear_flush_notify(vma, address, pte);
804
805 /* Move the dirty bit to the physical page now the pte is gone. */
806 if (pte_dirty(pteval))
807 set_page_dirty(page);
808
809 /* Update high watermark before we lower rss */
810 update_hiwater_rss(mm);
811
812 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
813 if (PageAnon(page))
814 dec_mm_counter(mm, anon_rss);
815 else
816 dec_mm_counter(mm, file_rss);
817 set_pte_at(mm, address, pte,
818 swp_entry_to_pte(make_hwpoison_entry(page)));
819 } else if (PageAnon(page)) {
820 swp_entry_t entry = { .val = page_private(page) };
821
822 if (PageSwapCache(page)) {
823 /*
824 * Store the swap location in the pte.
825 * See handle_pte_fault() ...
826 */
827 if (swap_duplicate(entry) < 0) {
828 set_pte_at(mm, address, pte, pteval);
829 ret = SWAP_FAIL;
830 goto out_unmap;
831 }
832 if (list_empty(&mm->mmlist)) {
833 spin_lock(&mmlist_lock);
834 if (list_empty(&mm->mmlist))
835 list_add(&mm->mmlist, &init_mm.mmlist);
836 spin_unlock(&mmlist_lock);
837 }
838 dec_mm_counter(mm, anon_rss);
839 } else if (PAGE_MIGRATION) {
840 /*
841 * Store the pfn of the page in a special migration
842 * pte. do_swap_page() will wait until the migration
843 * pte is removed and then restart fault handling.
844 */
845 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
846 entry = make_migration_entry(page, pte_write(pteval));
847 }
848 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
849 BUG_ON(pte_file(*pte));
850 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
851 /* Establish migration entry for a file page */
852 swp_entry_t entry;
853 entry = make_migration_entry(page, pte_write(pteval));
854 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
855 } else
856 dec_mm_counter(mm, file_rss);
857
858 page_remove_rmap(page);
859 page_cache_release(page);
860
861 out_unmap:
862 pte_unmap_unlock(pte, ptl);
863
864 if (MLOCK_PAGES && ret == SWAP_MLOCK) {
865 ret = SWAP_AGAIN;
866 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
867 if (vma->vm_flags & VM_LOCKED) {
868 mlock_vma_page(page);
869 ret = SWAP_MLOCK;
870 }
871 up_read(&vma->vm_mm->mmap_sem);
872 }
873 }
874 out:
875 return ret;
876 }
877
878 /*
879 * objrmap doesn't work for nonlinear VMAs because the assumption that
880 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
881 * Consequently, given a particular page and its ->index, we cannot locate the
882 * ptes which are mapping that page without an exhaustive linear search.
883 *
884 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
885 * maps the file to which the target page belongs. The ->vm_private_data field
886 * holds the current cursor into that scan. Successive searches will circulate
887 * around the vma's virtual address space.
888 *
889 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
890 * more scanning pressure is placed against them as well. Eventually pages
891 * will become fully unmapped and are eligible for eviction.
892 *
893 * For very sparsely populated VMAs this is a little inefficient - chances are
894 * there there won't be many ptes located within the scan cluster. In this case
895 * maybe we could scan further - to the end of the pte page, perhaps.
896 *
897 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
898 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
899 * rather than unmapping them. If we encounter the "check_page" that vmscan is
900 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
901 */
902 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
903 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
904
905 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
906 struct vm_area_struct *vma, struct page *check_page)
907 {
908 struct mm_struct *mm = vma->vm_mm;
909 pgd_t *pgd;
910 pud_t *pud;
911 pmd_t *pmd;
912 pte_t *pte;
913 pte_t pteval;
914 spinlock_t *ptl;
915 struct page *page;
916 unsigned long address;
917 unsigned long end;
918 int ret = SWAP_AGAIN;
919 int locked_vma = 0;
920
921 address = (vma->vm_start + cursor) & CLUSTER_MASK;
922 end = address + CLUSTER_SIZE;
923 if (address < vma->vm_start)
924 address = vma->vm_start;
925 if (end > vma->vm_end)
926 end = vma->vm_end;
927
928 pgd = pgd_offset(mm, address);
929 if (!pgd_present(*pgd))
930 return ret;
931
932 pud = pud_offset(pgd, address);
933 if (!pud_present(*pud))
934 return ret;
935
936 pmd = pmd_offset(pud, address);
937 if (!pmd_present(*pmd))
938 return ret;
939
940 /*
941 * MLOCK_PAGES => feature is configured.
942 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
943 * keep the sem while scanning the cluster for mlocking pages.
944 */
945 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
946 locked_vma = (vma->vm_flags & VM_LOCKED);
947 if (!locked_vma)
948 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
949 }
950
951 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
952
953 /* Update high watermark before we lower rss */
954 update_hiwater_rss(mm);
955
956 for (; address < end; pte++, address += PAGE_SIZE) {
957 if (!pte_present(*pte))
958 continue;
959 page = vm_normal_page(vma, address, *pte);
960 BUG_ON(!page || PageAnon(page));
961
962 if (locked_vma) {
963 mlock_vma_page(page); /* no-op if already mlocked */
964 if (page == check_page)
965 ret = SWAP_MLOCK;
966 continue; /* don't unmap */
967 }
968
969 if (ptep_clear_flush_young_notify(vma, address, pte))
970 continue;
971
972 /* Nuke the page table entry. */
973 flush_cache_page(vma, address, pte_pfn(*pte));
974 pteval = ptep_clear_flush_notify(vma, address, pte);
975
976 /* If nonlinear, store the file page offset in the pte. */
977 if (page->index != linear_page_index(vma, address))
978 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
979
980 /* Move the dirty bit to the physical page now the pte is gone. */
981 if (pte_dirty(pteval))
982 set_page_dirty(page);
983
984 page_remove_rmap(page);
985 page_cache_release(page);
986 dec_mm_counter(mm, file_rss);
987 (*mapcount)--;
988 }
989 pte_unmap_unlock(pte - 1, ptl);
990 if (locked_vma)
991 up_read(&vma->vm_mm->mmap_sem);
992 return ret;
993 }
994
995 /**
996 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
997 * rmap method
998 * @page: the page to unmap/unlock
999 * @flags: action and flags
1000 *
1001 * Find all the mappings of a page using the mapping pointer and the vma chains
1002 * contained in the anon_vma struct it points to.
1003 *
1004 * This function is only called from try_to_unmap/try_to_munlock for
1005 * anonymous pages.
1006 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1007 * where the page was found will be held for write. So, we won't recheck
1008 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1009 * 'LOCKED.
1010 */
1011 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1012 {
1013 struct anon_vma *anon_vma;
1014 struct vm_area_struct *vma;
1015 int ret = SWAP_AGAIN;
1016
1017 anon_vma = page_lock_anon_vma(page);
1018 if (!anon_vma)
1019 return ret;
1020
1021 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
1022 ret = try_to_unmap_one(page, vma, flags);
1023 if (ret != SWAP_AGAIN || !page_mapped(page))
1024 break;
1025 }
1026
1027 page_unlock_anon_vma(anon_vma);
1028 return ret;
1029 }
1030
1031 /**
1032 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1033 * @page: the page to unmap/unlock
1034 * @flags: action and flags
1035 *
1036 * Find all the mappings of a page using the mapping pointer and the vma chains
1037 * contained in the address_space struct it points to.
1038 *
1039 * This function is only called from try_to_unmap/try_to_munlock for
1040 * object-based pages.
1041 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1042 * where the page was found will be held for write. So, we won't recheck
1043 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1044 * 'LOCKED.
1045 */
1046 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1047 {
1048 struct address_space *mapping = page->mapping;
1049 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1050 struct vm_area_struct *vma;
1051 struct prio_tree_iter iter;
1052 int ret = SWAP_AGAIN;
1053 unsigned long cursor;
1054 unsigned long max_nl_cursor = 0;
1055 unsigned long max_nl_size = 0;
1056 unsigned int mapcount;
1057
1058 spin_lock(&mapping->i_mmap_lock);
1059 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1060 ret = try_to_unmap_one(page, vma, flags);
1061 if (ret != SWAP_AGAIN || !page_mapped(page))
1062 goto out;
1063 }
1064
1065 if (list_empty(&mapping->i_mmap_nonlinear))
1066 goto out;
1067
1068 /*
1069 * We don't bother to try to find the munlocked page in nonlinears.
1070 * It's costly. Instead, later, page reclaim logic may call
1071 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1072 */
1073 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1074 goto out;
1075
1076 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1077 shared.vm_set.list) {
1078 if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1079 (vma->vm_flags & VM_LOCKED))
1080 continue;
1081 cursor = (unsigned long) vma->vm_private_data;
1082 if (cursor > max_nl_cursor)
1083 max_nl_cursor = cursor;
1084 cursor = vma->vm_end - vma->vm_start;
1085 if (cursor > max_nl_size)
1086 max_nl_size = cursor;
1087 }
1088
1089 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1090 ret = SWAP_FAIL;
1091 goto out;
1092 }
1093
1094 /*
1095 * We don't try to search for this page in the nonlinear vmas,
1096 * and page_referenced wouldn't have found it anyway. Instead
1097 * just walk the nonlinear vmas trying to age and unmap some.
1098 * The mapcount of the page we came in with is irrelevant,
1099 * but even so use it as a guide to how hard we should try?
1100 */
1101 mapcount = page_mapcount(page);
1102 if (!mapcount)
1103 goto out;
1104 cond_resched_lock(&mapping->i_mmap_lock);
1105
1106 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1107 if (max_nl_cursor == 0)
1108 max_nl_cursor = CLUSTER_SIZE;
1109
1110 do {
1111 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1112 shared.vm_set.list) {
1113 if (!MLOCK_PAGES && !(flags & TTU_IGNORE_MLOCK) &&
1114 (vma->vm_flags & VM_LOCKED))
1115 continue;
1116 cursor = (unsigned long) vma->vm_private_data;
1117 while ( cursor < max_nl_cursor &&
1118 cursor < vma->vm_end - vma->vm_start) {
1119 if (try_to_unmap_cluster(cursor, &mapcount,
1120 vma, page) == SWAP_MLOCK)
1121 ret = SWAP_MLOCK;
1122 cursor += CLUSTER_SIZE;
1123 vma->vm_private_data = (void *) cursor;
1124 if ((int)mapcount <= 0)
1125 goto out;
1126 }
1127 vma->vm_private_data = (void *) max_nl_cursor;
1128 }
1129 cond_resched_lock(&mapping->i_mmap_lock);
1130 max_nl_cursor += CLUSTER_SIZE;
1131 } while (max_nl_cursor <= max_nl_size);
1132
1133 /*
1134 * Don't loop forever (perhaps all the remaining pages are
1135 * in locked vmas). Reset cursor on all unreserved nonlinear
1136 * vmas, now forgetting on which ones it had fallen behind.
1137 */
1138 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1139 vma->vm_private_data = NULL;
1140 out:
1141 spin_unlock(&mapping->i_mmap_lock);
1142 return ret;
1143 }
1144
1145 /**
1146 * try_to_unmap - try to remove all page table mappings to a page
1147 * @page: the page to get unmapped
1148 * @flags: action and flags
1149 *
1150 * Tries to remove all the page table entries which are mapping this
1151 * page, used in the pageout path. Caller must hold the page lock.
1152 * Return values are:
1153 *
1154 * SWAP_SUCCESS - we succeeded in removing all mappings
1155 * SWAP_AGAIN - we missed a mapping, try again later
1156 * SWAP_FAIL - the page is unswappable
1157 * SWAP_MLOCK - page is mlocked.
1158 */
1159 int try_to_unmap(struct page *page, enum ttu_flags flags)
1160 {
1161 int ret;
1162
1163 BUG_ON(!PageLocked(page));
1164
1165 if (PageAnon(page))
1166 ret = try_to_unmap_anon(page, flags);
1167 else
1168 ret = try_to_unmap_file(page, flags);
1169 if (ret != SWAP_MLOCK && !page_mapped(page))
1170 ret = SWAP_SUCCESS;
1171 return ret;
1172 }
1173
1174 /**
1175 * try_to_munlock - try to munlock a page
1176 * @page: the page to be munlocked
1177 *
1178 * Called from munlock code. Checks all of the VMAs mapping the page
1179 * to make sure nobody else has this page mlocked. The page will be
1180 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1181 *
1182 * Return values are:
1183 *
1184 * SWAP_AGAIN - no vma is holding page mlocked, or,
1185 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1186 * SWAP_MLOCK - page is now mlocked.
1187 */
1188 int try_to_munlock(struct page *page)
1189 {
1190 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1191
1192 if (PageAnon(page))
1193 return try_to_unmap_anon(page, TTU_MUNLOCK);
1194 else
1195 return try_to_unmap_file(page, TTU_MUNLOCK);
1196 }
1197