]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/borntraeger...
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
43 */
44
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60
61 #include <asm/tlbflush.h>
62
63 #include "internal.h"
64
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 struct anon_vma *anon_vma;
71
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 /*
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
78 */
79 anon_vma->root = anon_vma;
80 }
81
82 return anon_vma;
83 }
84
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89 /*
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
93 *
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97 *
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() rwsem_is_locked()
102 *
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
105 */
106 might_sleep();
107 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108 anon_vma_lock_write(anon_vma);
109 anon_vma_unlock_write(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 static void anon_vma_chain_link(struct vm_area_struct *vma,
126 struct anon_vma_chain *avc,
127 struct anon_vma *anon_vma)
128 {
129 avc->vma = vma;
130 avc->anon_vma = anon_vma;
131 list_add(&avc->same_vma, &vma->anon_vma_chain);
132 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133 }
134
135 /**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
162 int anon_vma_prepare(struct vm_area_struct *vma)
163 {
164 struct anon_vma *anon_vma = vma->anon_vma;
165 struct anon_vma_chain *avc;
166
167 might_sleep();
168 if (unlikely(!anon_vma)) {
169 struct mm_struct *mm = vma->vm_mm;
170 struct anon_vma *allocated;
171
172 avc = anon_vma_chain_alloc(GFP_KERNEL);
173 if (!avc)
174 goto out_enomem;
175
176 anon_vma = find_mergeable_anon_vma(vma);
177 allocated = NULL;
178 if (!anon_vma) {
179 anon_vma = anon_vma_alloc();
180 if (unlikely(!anon_vma))
181 goto out_enomem_free_avc;
182 allocated = anon_vma;
183 }
184
185 anon_vma_lock_write(anon_vma);
186 /* page_table_lock to protect against threads */
187 spin_lock(&mm->page_table_lock);
188 if (likely(!vma->anon_vma)) {
189 vma->anon_vma = anon_vma;
190 anon_vma_chain_link(vma, avc, anon_vma);
191 allocated = NULL;
192 avc = NULL;
193 }
194 spin_unlock(&mm->page_table_lock);
195 anon_vma_unlock_write(anon_vma);
196
197 if (unlikely(allocated))
198 put_anon_vma(allocated);
199 if (unlikely(avc))
200 anon_vma_chain_free(avc);
201 }
202 return 0;
203
204 out_enomem_free_avc:
205 anon_vma_chain_free(avc);
206 out_enomem:
207 return -ENOMEM;
208 }
209
210 /*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 {
220 struct anon_vma *new_root = anon_vma->root;
221 if (new_root != root) {
222 if (WARN_ON_ONCE(root))
223 up_write(&root->rwsem);
224 root = new_root;
225 down_write(&root->rwsem);
226 }
227 return root;
228 }
229
230 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 {
232 if (root)
233 up_write(&root->rwsem);
234 }
235
236 /*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 {
242 struct anon_vma_chain *avc, *pavc;
243 struct anon_vma *root = NULL;
244
245 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246 struct anon_vma *anon_vma;
247
248 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249 if (unlikely(!avc)) {
250 unlock_anon_vma_root(root);
251 root = NULL;
252 avc = anon_vma_chain_alloc(GFP_KERNEL);
253 if (!avc)
254 goto enomem_failure;
255 }
256 anon_vma = pavc->anon_vma;
257 root = lock_anon_vma_root(root, anon_vma);
258 anon_vma_chain_link(dst, avc, anon_vma);
259 }
260 unlock_anon_vma_root(root);
261 return 0;
262
263 enomem_failure:
264 unlink_anon_vmas(dst);
265 return -ENOMEM;
266 }
267
268 /*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 {
275 struct anon_vma_chain *avc;
276 struct anon_vma *anon_vma;
277 int error;
278
279 /* Don't bother if the parent process has no anon_vma here. */
280 if (!pvma->anon_vma)
281 return 0;
282
283 /*
284 * First, attach the new VMA to the parent VMA's anon_vmas,
285 * so rmap can find non-COWed pages in child processes.
286 */
287 error = anon_vma_clone(vma, pvma);
288 if (error)
289 return error;
290
291 /* Then add our own anon_vma. */
292 anon_vma = anon_vma_alloc();
293 if (!anon_vma)
294 goto out_error;
295 avc = anon_vma_chain_alloc(GFP_KERNEL);
296 if (!avc)
297 goto out_error_free_anon_vma;
298
299 /*
300 * The root anon_vma's spinlock is the lock actually used when we
301 * lock any of the anon_vmas in this anon_vma tree.
302 */
303 anon_vma->root = pvma->anon_vma->root;
304 /*
305 * With refcounts, an anon_vma can stay around longer than the
306 * process it belongs to. The root anon_vma needs to be pinned until
307 * this anon_vma is freed, because the lock lives in the root.
308 */
309 get_anon_vma(anon_vma->root);
310 /* Mark this anon_vma as the one where our new (COWed) pages go. */
311 vma->anon_vma = anon_vma;
312 anon_vma_lock_write(anon_vma);
313 anon_vma_chain_link(vma, avc, anon_vma);
314 anon_vma_unlock_write(anon_vma);
315
316 return 0;
317
318 out_error_free_anon_vma:
319 put_anon_vma(anon_vma);
320 out_error:
321 unlink_anon_vmas(vma);
322 return -ENOMEM;
323 }
324
325 void unlink_anon_vmas(struct vm_area_struct *vma)
326 {
327 struct anon_vma_chain *avc, *next;
328 struct anon_vma *root = NULL;
329
330 /*
331 * Unlink each anon_vma chained to the VMA. This list is ordered
332 * from newest to oldest, ensuring the root anon_vma gets freed last.
333 */
334 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
335 struct anon_vma *anon_vma = avc->anon_vma;
336
337 root = lock_anon_vma_root(root, anon_vma);
338 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
339
340 /*
341 * Leave empty anon_vmas on the list - we'll need
342 * to free them outside the lock.
343 */
344 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
345 continue;
346
347 list_del(&avc->same_vma);
348 anon_vma_chain_free(avc);
349 }
350 unlock_anon_vma_root(root);
351
352 /*
353 * Iterate the list once more, it now only contains empty and unlinked
354 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
355 * needing to write-acquire the anon_vma->root->rwsem.
356 */
357 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
358 struct anon_vma *anon_vma = avc->anon_vma;
359
360 put_anon_vma(anon_vma);
361
362 list_del(&avc->same_vma);
363 anon_vma_chain_free(avc);
364 }
365 }
366
367 static void anon_vma_ctor(void *data)
368 {
369 struct anon_vma *anon_vma = data;
370
371 init_rwsem(&anon_vma->rwsem);
372 atomic_set(&anon_vma->refcount, 0);
373 anon_vma->rb_root = RB_ROOT;
374 }
375
376 void __init anon_vma_init(void)
377 {
378 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
379 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
380 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
381 }
382
383 /*
384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
385 *
386 * Since there is no serialization what so ever against page_remove_rmap()
387 * the best this function can do is return a locked anon_vma that might
388 * have been relevant to this page.
389 *
390 * The page might have been remapped to a different anon_vma or the anon_vma
391 * returned may already be freed (and even reused).
392 *
393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395 * ensure that any anon_vma obtained from the page will still be valid for as
396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
397 *
398 * All users of this function must be very careful when walking the anon_vma
399 * chain and verify that the page in question is indeed mapped in it
400 * [ something equivalent to page_mapped_in_vma() ].
401 *
402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403 * that the anon_vma pointer from page->mapping is valid if there is a
404 * mapcount, we can dereference the anon_vma after observing those.
405 */
406 struct anon_vma *page_get_anon_vma(struct page *page)
407 {
408 struct anon_vma *anon_vma = NULL;
409 unsigned long anon_mapping;
410
411 rcu_read_lock();
412 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
413 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
414 goto out;
415 if (!page_mapped(page))
416 goto out;
417
418 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
419 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
420 anon_vma = NULL;
421 goto out;
422 }
423
424 /*
425 * If this page is still mapped, then its anon_vma cannot have been
426 * freed. But if it has been unmapped, we have no security against the
427 * anon_vma structure being freed and reused (for another anon_vma:
428 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429 * above cannot corrupt).
430 */
431 if (!page_mapped(page)) {
432 rcu_read_unlock();
433 put_anon_vma(anon_vma);
434 return NULL;
435 }
436 out:
437 rcu_read_unlock();
438
439 return anon_vma;
440 }
441
442 /*
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
444 *
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
448 */
449 struct anon_vma *page_lock_anon_vma_read(struct page *page)
450 {
451 struct anon_vma *anon_vma = NULL;
452 struct anon_vma *root_anon_vma;
453 unsigned long anon_mapping;
454
455 rcu_read_lock();
456 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458 goto out;
459 if (!page_mapped(page))
460 goto out;
461
462 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
463 root_anon_vma = ACCESS_ONCE(anon_vma->root);
464 if (down_read_trylock(&root_anon_vma->rwsem)) {
465 /*
466 * If the page is still mapped, then this anon_vma is still
467 * its anon_vma, and holding the mutex ensures that it will
468 * not go away, see anon_vma_free().
469 */
470 if (!page_mapped(page)) {
471 up_read(&root_anon_vma->rwsem);
472 anon_vma = NULL;
473 }
474 goto out;
475 }
476
477 /* trylock failed, we got to sleep */
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479 anon_vma = NULL;
480 goto out;
481 }
482
483 if (!page_mapped(page)) {
484 rcu_read_unlock();
485 put_anon_vma(anon_vma);
486 return NULL;
487 }
488
489 /* we pinned the anon_vma, its safe to sleep */
490 rcu_read_unlock();
491 anon_vma_lock_read(anon_vma);
492
493 if (atomic_dec_and_test(&anon_vma->refcount)) {
494 /*
495 * Oops, we held the last refcount, release the lock
496 * and bail -- can't simply use put_anon_vma() because
497 * we'll deadlock on the anon_vma_lock_write() recursion.
498 */
499 anon_vma_unlock_read(anon_vma);
500 __put_anon_vma(anon_vma);
501 anon_vma = NULL;
502 }
503
504 return anon_vma;
505
506 out:
507 rcu_read_unlock();
508 return anon_vma;
509 }
510
511 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
512 {
513 anon_vma_unlock_read(anon_vma);
514 }
515
516 /*
517 * At what user virtual address is page expected in @vma?
518 */
519 static inline unsigned long
520 __vma_address(struct page *page, struct vm_area_struct *vma)
521 {
522 pgoff_t pgoff = page_to_pgoff(page);
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 unsigned long address = __vma_address(page, vma);
530
531 /* page should be within @vma mapping range */
532 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
533
534 return address;
535 }
536
537 /*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 unsigned long address;
544 if (PageAnon(page)) {
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
546 /*
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
549 */
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
563 }
564
565 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566 {
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd = NULL;
570 pmd_t pmde;
571
572 pgd = pgd_offset(mm, address);
573 if (!pgd_present(*pgd))
574 goto out;
575
576 pud = pud_offset(pgd, address);
577 if (!pud_present(*pud))
578 goto out;
579
580 pmd = pmd_offset(pud, address);
581 /*
582 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
583 * without holding anon_vma lock for write. So when looking for a
584 * genuine pmde (in which to find pte), test present and !THP together.
585 */
586 pmde = *pmd;
587 barrier();
588 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
589 pmd = NULL;
590 out:
591 return pmd;
592 }
593
594 /*
595 * Check that @page is mapped at @address into @mm.
596 *
597 * If @sync is false, page_check_address may perform a racy check to avoid
598 * the page table lock when the pte is not present (helpful when reclaiming
599 * highly shared pages).
600 *
601 * On success returns with pte mapped and locked.
602 */
603 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
604 unsigned long address, spinlock_t **ptlp, int sync)
605 {
606 pmd_t *pmd;
607 pte_t *pte;
608 spinlock_t *ptl;
609
610 if (unlikely(PageHuge(page))) {
611 /* when pud is not present, pte will be NULL */
612 pte = huge_pte_offset(mm, address);
613 if (!pte)
614 return NULL;
615
616 ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
617 goto check;
618 }
619
620 pmd = mm_find_pmd(mm, address);
621 if (!pmd)
622 return NULL;
623
624 pte = pte_offset_map(pmd, address);
625 /* Make a quick check before getting the lock */
626 if (!sync && !pte_present(*pte)) {
627 pte_unmap(pte);
628 return NULL;
629 }
630
631 ptl = pte_lockptr(mm, pmd);
632 check:
633 spin_lock(ptl);
634 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
635 *ptlp = ptl;
636 return pte;
637 }
638 pte_unmap_unlock(pte, ptl);
639 return NULL;
640 }
641
642 /**
643 * page_mapped_in_vma - check whether a page is really mapped in a VMA
644 * @page: the page to test
645 * @vma: the VMA to test
646 *
647 * Returns 1 if the page is mapped into the page tables of the VMA, 0
648 * if the page is not mapped into the page tables of this VMA. Only
649 * valid for normal file or anonymous VMAs.
650 */
651 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
652 {
653 unsigned long address;
654 pte_t *pte;
655 spinlock_t *ptl;
656
657 address = __vma_address(page, vma);
658 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
659 return 0;
660 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
661 if (!pte) /* the page is not in this mm */
662 return 0;
663 pte_unmap_unlock(pte, ptl);
664
665 return 1;
666 }
667
668 struct page_referenced_arg {
669 int mapcount;
670 int referenced;
671 unsigned long vm_flags;
672 struct mem_cgroup *memcg;
673 };
674 /*
675 * arg: page_referenced_arg will be passed
676 */
677 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
678 unsigned long address, void *arg)
679 {
680 struct mm_struct *mm = vma->vm_mm;
681 spinlock_t *ptl;
682 int referenced = 0;
683 struct page_referenced_arg *pra = arg;
684
685 if (unlikely(PageTransHuge(page))) {
686 pmd_t *pmd;
687
688 /*
689 * rmap might return false positives; we must filter
690 * these out using page_check_address_pmd().
691 */
692 pmd = page_check_address_pmd(page, mm, address,
693 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
694 if (!pmd)
695 return SWAP_AGAIN;
696
697 if (vma->vm_flags & VM_LOCKED) {
698 spin_unlock(ptl);
699 pra->vm_flags |= VM_LOCKED;
700 return SWAP_FAIL; /* To break the loop */
701 }
702
703 /* go ahead even if the pmd is pmd_trans_splitting() */
704 if (pmdp_clear_flush_young_notify(vma, address, pmd))
705 referenced++;
706 spin_unlock(ptl);
707 } else {
708 pte_t *pte;
709
710 /*
711 * rmap might return false positives; we must filter
712 * these out using page_check_address().
713 */
714 pte = page_check_address(page, mm, address, &ptl, 0);
715 if (!pte)
716 return SWAP_AGAIN;
717
718 if (vma->vm_flags & VM_LOCKED) {
719 pte_unmap_unlock(pte, ptl);
720 pra->vm_flags |= VM_LOCKED;
721 return SWAP_FAIL; /* To break the loop */
722 }
723
724 if (ptep_clear_flush_young_notify(vma, address, pte)) {
725 /*
726 * Don't treat a reference through a sequentially read
727 * mapping as such. If the page has been used in
728 * another mapping, we will catch it; if this other
729 * mapping is already gone, the unmap path will have
730 * set PG_referenced or activated the page.
731 */
732 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
733 referenced++;
734 }
735 pte_unmap_unlock(pte, ptl);
736 }
737
738 if (referenced) {
739 pra->referenced++;
740 pra->vm_flags |= vma->vm_flags;
741 }
742
743 pra->mapcount--;
744 if (!pra->mapcount)
745 return SWAP_SUCCESS; /* To break the loop */
746
747 return SWAP_AGAIN;
748 }
749
750 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
751 {
752 struct page_referenced_arg *pra = arg;
753 struct mem_cgroup *memcg = pra->memcg;
754
755 if (!mm_match_cgroup(vma->vm_mm, memcg))
756 return true;
757
758 return false;
759 }
760
761 /**
762 * page_referenced - test if the page was referenced
763 * @page: the page to test
764 * @is_locked: caller holds lock on the page
765 * @memcg: target memory cgroup
766 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
767 *
768 * Quick test_and_clear_referenced for all mappings to a page,
769 * returns the number of ptes which referenced the page.
770 */
771 int page_referenced(struct page *page,
772 int is_locked,
773 struct mem_cgroup *memcg,
774 unsigned long *vm_flags)
775 {
776 int ret;
777 int we_locked = 0;
778 struct page_referenced_arg pra = {
779 .mapcount = page_mapcount(page),
780 .memcg = memcg,
781 };
782 struct rmap_walk_control rwc = {
783 .rmap_one = page_referenced_one,
784 .arg = (void *)&pra,
785 .anon_lock = page_lock_anon_vma_read,
786 };
787
788 *vm_flags = 0;
789 if (!page_mapped(page))
790 return 0;
791
792 if (!page_rmapping(page))
793 return 0;
794
795 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
796 we_locked = trylock_page(page);
797 if (!we_locked)
798 return 1;
799 }
800
801 /*
802 * If we are reclaiming on behalf of a cgroup, skip
803 * counting on behalf of references from different
804 * cgroups
805 */
806 if (memcg) {
807 rwc.invalid_vma = invalid_page_referenced_vma;
808 }
809
810 ret = rmap_walk(page, &rwc);
811 *vm_flags = pra.vm_flags;
812
813 if (we_locked)
814 unlock_page(page);
815
816 return pra.referenced;
817 }
818
819 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
820 unsigned long address, void *arg)
821 {
822 struct mm_struct *mm = vma->vm_mm;
823 pte_t *pte;
824 spinlock_t *ptl;
825 int ret = 0;
826 int *cleaned = arg;
827
828 pte = page_check_address(page, mm, address, &ptl, 1);
829 if (!pte)
830 goto out;
831
832 if (pte_dirty(*pte) || pte_write(*pte)) {
833 pte_t entry;
834
835 flush_cache_page(vma, address, pte_pfn(*pte));
836 entry = ptep_clear_flush(vma, address, pte);
837 entry = pte_wrprotect(entry);
838 entry = pte_mkclean(entry);
839 set_pte_at(mm, address, pte, entry);
840 ret = 1;
841 }
842
843 pte_unmap_unlock(pte, ptl);
844
845 if (ret) {
846 mmu_notifier_invalidate_page(mm, address);
847 (*cleaned)++;
848 }
849 out:
850 return SWAP_AGAIN;
851 }
852
853 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
854 {
855 if (vma->vm_flags & VM_SHARED)
856 return false;
857
858 return true;
859 }
860
861 int page_mkclean(struct page *page)
862 {
863 int cleaned = 0;
864 struct address_space *mapping;
865 struct rmap_walk_control rwc = {
866 .arg = (void *)&cleaned,
867 .rmap_one = page_mkclean_one,
868 .invalid_vma = invalid_mkclean_vma,
869 };
870
871 BUG_ON(!PageLocked(page));
872
873 if (!page_mapped(page))
874 return 0;
875
876 mapping = page_mapping(page);
877 if (!mapping)
878 return 0;
879
880 rmap_walk(page, &rwc);
881
882 return cleaned;
883 }
884 EXPORT_SYMBOL_GPL(page_mkclean);
885
886 /**
887 * page_move_anon_rmap - move a page to our anon_vma
888 * @page: the page to move to our anon_vma
889 * @vma: the vma the page belongs to
890 * @address: the user virtual address mapped
891 *
892 * When a page belongs exclusively to one process after a COW event,
893 * that page can be moved into the anon_vma that belongs to just that
894 * process, so the rmap code will not search the parent or sibling
895 * processes.
896 */
897 void page_move_anon_rmap(struct page *page,
898 struct vm_area_struct *vma, unsigned long address)
899 {
900 struct anon_vma *anon_vma = vma->anon_vma;
901
902 VM_BUG_ON_PAGE(!PageLocked(page), page);
903 VM_BUG_ON_VMA(!anon_vma, vma);
904 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
905
906 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
907 page->mapping = (struct address_space *) anon_vma;
908 }
909
910 /**
911 * __page_set_anon_rmap - set up new anonymous rmap
912 * @page: Page to add to rmap
913 * @vma: VM area to add page to.
914 * @address: User virtual address of the mapping
915 * @exclusive: the page is exclusively owned by the current process
916 */
917 static void __page_set_anon_rmap(struct page *page,
918 struct vm_area_struct *vma, unsigned long address, int exclusive)
919 {
920 struct anon_vma *anon_vma = vma->anon_vma;
921
922 BUG_ON(!anon_vma);
923
924 if (PageAnon(page))
925 return;
926
927 /*
928 * If the page isn't exclusively mapped into this vma,
929 * we must use the _oldest_ possible anon_vma for the
930 * page mapping!
931 */
932 if (!exclusive)
933 anon_vma = anon_vma->root;
934
935 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
936 page->mapping = (struct address_space *) anon_vma;
937 page->index = linear_page_index(vma, address);
938 }
939
940 /**
941 * __page_check_anon_rmap - sanity check anonymous rmap addition
942 * @page: the page to add the mapping to
943 * @vma: the vm area in which the mapping is added
944 * @address: the user virtual address mapped
945 */
946 static void __page_check_anon_rmap(struct page *page,
947 struct vm_area_struct *vma, unsigned long address)
948 {
949 #ifdef CONFIG_DEBUG_VM
950 /*
951 * The page's anon-rmap details (mapping and index) are guaranteed to
952 * be set up correctly at this point.
953 *
954 * We have exclusion against page_add_anon_rmap because the caller
955 * always holds the page locked, except if called from page_dup_rmap,
956 * in which case the page is already known to be setup.
957 *
958 * We have exclusion against page_add_new_anon_rmap because those pages
959 * are initially only visible via the pagetables, and the pte is locked
960 * over the call to page_add_new_anon_rmap.
961 */
962 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
963 BUG_ON(page->index != linear_page_index(vma, address));
964 #endif
965 }
966
967 /**
968 * page_add_anon_rmap - add pte mapping to an anonymous page
969 * @page: the page to add the mapping to
970 * @vma: the vm area in which the mapping is added
971 * @address: the user virtual address mapped
972 *
973 * The caller needs to hold the pte lock, and the page must be locked in
974 * the anon_vma case: to serialize mapping,index checking after setting,
975 * and to ensure that PageAnon is not being upgraded racily to PageKsm
976 * (but PageKsm is never downgraded to PageAnon).
977 */
978 void page_add_anon_rmap(struct page *page,
979 struct vm_area_struct *vma, unsigned long address)
980 {
981 do_page_add_anon_rmap(page, vma, address, 0);
982 }
983
984 /*
985 * Special version of the above for do_swap_page, which often runs
986 * into pages that are exclusively owned by the current process.
987 * Everybody else should continue to use page_add_anon_rmap above.
988 */
989 void do_page_add_anon_rmap(struct page *page,
990 struct vm_area_struct *vma, unsigned long address, int exclusive)
991 {
992 int first = atomic_inc_and_test(&page->_mapcount);
993 if (first) {
994 /*
995 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
996 * these counters are not modified in interrupt context, and
997 * pte lock(a spinlock) is held, which implies preemption
998 * disabled.
999 */
1000 if (PageTransHuge(page))
1001 __inc_zone_page_state(page,
1002 NR_ANON_TRANSPARENT_HUGEPAGES);
1003 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1004 hpage_nr_pages(page));
1005 }
1006 if (unlikely(PageKsm(page)))
1007 return;
1008
1009 VM_BUG_ON_PAGE(!PageLocked(page), page);
1010 /* address might be in next vma when migration races vma_adjust */
1011 if (first)
1012 __page_set_anon_rmap(page, vma, address, exclusive);
1013 else
1014 __page_check_anon_rmap(page, vma, address);
1015 }
1016
1017 /**
1018 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1019 * @page: the page to add the mapping to
1020 * @vma: the vm area in which the mapping is added
1021 * @address: the user virtual address mapped
1022 *
1023 * Same as page_add_anon_rmap but must only be called on *new* pages.
1024 * This means the inc-and-test can be bypassed.
1025 * Page does not have to be locked.
1026 */
1027 void page_add_new_anon_rmap(struct page *page,
1028 struct vm_area_struct *vma, unsigned long address)
1029 {
1030 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1031 SetPageSwapBacked(page);
1032 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1033 if (PageTransHuge(page))
1034 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1035 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1036 hpage_nr_pages(page));
1037 __page_set_anon_rmap(page, vma, address, 1);
1038 }
1039
1040 /**
1041 * page_add_file_rmap - add pte mapping to a file page
1042 * @page: the page to add the mapping to
1043 *
1044 * The caller needs to hold the pte lock.
1045 */
1046 void page_add_file_rmap(struct page *page)
1047 {
1048 struct mem_cgroup *memcg;
1049 unsigned long flags;
1050 bool locked;
1051
1052 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1053 if (atomic_inc_and_test(&page->_mapcount)) {
1054 __inc_zone_page_state(page, NR_FILE_MAPPED);
1055 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1056 }
1057 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1058 }
1059
1060 static void page_remove_file_rmap(struct page *page)
1061 {
1062 struct mem_cgroup *memcg;
1063 unsigned long flags;
1064 bool locked;
1065
1066 memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1067
1068 /* page still mapped by someone else? */
1069 if (!atomic_add_negative(-1, &page->_mapcount))
1070 goto out;
1071
1072 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1073 if (unlikely(PageHuge(page)))
1074 goto out;
1075
1076 /*
1077 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1078 * these counters are not modified in interrupt context, and
1079 * pte lock(a spinlock) is held, which implies preemption disabled.
1080 */
1081 __dec_zone_page_state(page, NR_FILE_MAPPED);
1082 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1083
1084 if (unlikely(PageMlocked(page)))
1085 clear_page_mlock(page);
1086 out:
1087 mem_cgroup_end_page_stat(memcg, &locked, &flags);
1088 }
1089
1090 /**
1091 * page_remove_rmap - take down pte mapping from a page
1092 * @page: page to remove mapping from
1093 *
1094 * The caller needs to hold the pte lock.
1095 */
1096 void page_remove_rmap(struct page *page)
1097 {
1098 if (!PageAnon(page)) {
1099 page_remove_file_rmap(page);
1100 return;
1101 }
1102
1103 /* page still mapped by someone else? */
1104 if (!atomic_add_negative(-1, &page->_mapcount))
1105 return;
1106
1107 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1108 if (unlikely(PageHuge(page)))
1109 return;
1110
1111 /*
1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 * these counters are not modified in interrupt context, and
1114 * pte lock(a spinlock) is held, which implies preemption disabled.
1115 */
1116 if (PageTransHuge(page))
1117 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1118
1119 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1120 -hpage_nr_pages(page));
1121
1122 if (unlikely(PageMlocked(page)))
1123 clear_page_mlock(page);
1124
1125 /*
1126 * It would be tidy to reset the PageAnon mapping here,
1127 * but that might overwrite a racing page_add_anon_rmap
1128 * which increments mapcount after us but sets mapping
1129 * before us: so leave the reset to free_hot_cold_page,
1130 * and remember that it's only reliable while mapped.
1131 * Leaving it set also helps swapoff to reinstate ptes
1132 * faster for those pages still in swapcache.
1133 */
1134 }
1135
1136 /*
1137 * @arg: enum ttu_flags will be passed to this argument
1138 */
1139 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1140 unsigned long address, void *arg)
1141 {
1142 struct mm_struct *mm = vma->vm_mm;
1143 pte_t *pte;
1144 pte_t pteval;
1145 spinlock_t *ptl;
1146 int ret = SWAP_AGAIN;
1147 enum ttu_flags flags = (enum ttu_flags)arg;
1148
1149 pte = page_check_address(page, mm, address, &ptl, 0);
1150 if (!pte)
1151 goto out;
1152
1153 /*
1154 * If the page is mlock()d, we cannot swap it out.
1155 * If it's recently referenced (perhaps page_referenced
1156 * skipped over this mm) then we should reactivate it.
1157 */
1158 if (!(flags & TTU_IGNORE_MLOCK)) {
1159 if (vma->vm_flags & VM_LOCKED)
1160 goto out_mlock;
1161
1162 if (flags & TTU_MUNLOCK)
1163 goto out_unmap;
1164 }
1165 if (!(flags & TTU_IGNORE_ACCESS)) {
1166 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1167 ret = SWAP_FAIL;
1168 goto out_unmap;
1169 }
1170 }
1171
1172 /* Nuke the page table entry. */
1173 flush_cache_page(vma, address, page_to_pfn(page));
1174 pteval = ptep_clear_flush(vma, address, pte);
1175
1176 /* Move the dirty bit to the physical page now the pte is gone. */
1177 if (pte_dirty(pteval))
1178 set_page_dirty(page);
1179
1180 /* Update high watermark before we lower rss */
1181 update_hiwater_rss(mm);
1182
1183 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1184 if (!PageHuge(page)) {
1185 if (PageAnon(page))
1186 dec_mm_counter(mm, MM_ANONPAGES);
1187 else
1188 dec_mm_counter(mm, MM_FILEPAGES);
1189 }
1190 set_pte_at(mm, address, pte,
1191 swp_entry_to_pte(make_hwpoison_entry(page)));
1192 } else if (pte_unused(pteval)) {
1193 /*
1194 * The guest indicated that the page content is of no
1195 * interest anymore. Simply discard the pte, vmscan
1196 * will take care of the rest.
1197 */
1198 if (PageAnon(page))
1199 dec_mm_counter(mm, MM_ANONPAGES);
1200 else
1201 dec_mm_counter(mm, MM_FILEPAGES);
1202 } else if (PageAnon(page)) {
1203 swp_entry_t entry = { .val = page_private(page) };
1204 pte_t swp_pte;
1205
1206 if (PageSwapCache(page)) {
1207 /*
1208 * Store the swap location in the pte.
1209 * See handle_pte_fault() ...
1210 */
1211 if (swap_duplicate(entry) < 0) {
1212 set_pte_at(mm, address, pte, pteval);
1213 ret = SWAP_FAIL;
1214 goto out_unmap;
1215 }
1216 if (list_empty(&mm->mmlist)) {
1217 spin_lock(&mmlist_lock);
1218 if (list_empty(&mm->mmlist))
1219 list_add(&mm->mmlist, &init_mm.mmlist);
1220 spin_unlock(&mmlist_lock);
1221 }
1222 dec_mm_counter(mm, MM_ANONPAGES);
1223 inc_mm_counter(mm, MM_SWAPENTS);
1224 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1225 /*
1226 * Store the pfn of the page in a special migration
1227 * pte. do_swap_page() will wait until the migration
1228 * pte is removed and then restart fault handling.
1229 */
1230 BUG_ON(!(flags & TTU_MIGRATION));
1231 entry = make_migration_entry(page, pte_write(pteval));
1232 }
1233 swp_pte = swp_entry_to_pte(entry);
1234 if (pte_soft_dirty(pteval))
1235 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1236 set_pte_at(mm, address, pte, swp_pte);
1237 BUG_ON(pte_file(*pte));
1238 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1239 (flags & TTU_MIGRATION)) {
1240 /* Establish migration entry for a file page */
1241 swp_entry_t entry;
1242 entry = make_migration_entry(page, pte_write(pteval));
1243 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1244 } else
1245 dec_mm_counter(mm, MM_FILEPAGES);
1246
1247 page_remove_rmap(page);
1248 page_cache_release(page);
1249
1250 out_unmap:
1251 pte_unmap_unlock(pte, ptl);
1252 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1253 mmu_notifier_invalidate_page(mm, address);
1254 out:
1255 return ret;
1256
1257 out_mlock:
1258 pte_unmap_unlock(pte, ptl);
1259
1260
1261 /*
1262 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1263 * unstable result and race. Plus, We can't wait here because
1264 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1265 * if trylock failed, the page remain in evictable lru and later
1266 * vmscan could retry to move the page to unevictable lru if the
1267 * page is actually mlocked.
1268 */
1269 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1270 if (vma->vm_flags & VM_LOCKED) {
1271 mlock_vma_page(page);
1272 ret = SWAP_MLOCK;
1273 }
1274 up_read(&vma->vm_mm->mmap_sem);
1275 }
1276 return ret;
1277 }
1278
1279 /*
1280 * objrmap doesn't work for nonlinear VMAs because the assumption that
1281 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1282 * Consequently, given a particular page and its ->index, we cannot locate the
1283 * ptes which are mapping that page without an exhaustive linear search.
1284 *
1285 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1286 * maps the file to which the target page belongs. The ->vm_private_data field
1287 * holds the current cursor into that scan. Successive searches will circulate
1288 * around the vma's virtual address space.
1289 *
1290 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1291 * more scanning pressure is placed against them as well. Eventually pages
1292 * will become fully unmapped and are eligible for eviction.
1293 *
1294 * For very sparsely populated VMAs this is a little inefficient - chances are
1295 * there there won't be many ptes located within the scan cluster. In this case
1296 * maybe we could scan further - to the end of the pte page, perhaps.
1297 *
1298 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1299 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1300 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1301 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1302 */
1303 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1304 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1305
1306 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1307 struct vm_area_struct *vma, struct page *check_page)
1308 {
1309 struct mm_struct *mm = vma->vm_mm;
1310 pmd_t *pmd;
1311 pte_t *pte;
1312 pte_t pteval;
1313 spinlock_t *ptl;
1314 struct page *page;
1315 unsigned long address;
1316 unsigned long mmun_start; /* For mmu_notifiers */
1317 unsigned long mmun_end; /* For mmu_notifiers */
1318 unsigned long end;
1319 int ret = SWAP_AGAIN;
1320 int locked_vma = 0;
1321
1322 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1323 end = address + CLUSTER_SIZE;
1324 if (address < vma->vm_start)
1325 address = vma->vm_start;
1326 if (end > vma->vm_end)
1327 end = vma->vm_end;
1328
1329 pmd = mm_find_pmd(mm, address);
1330 if (!pmd)
1331 return ret;
1332
1333 mmun_start = address;
1334 mmun_end = end;
1335 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1336
1337 /*
1338 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1339 * keep the sem while scanning the cluster for mlocking pages.
1340 */
1341 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1342 locked_vma = (vma->vm_flags & VM_LOCKED);
1343 if (!locked_vma)
1344 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1345 }
1346
1347 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1348
1349 /* Update high watermark before we lower rss */
1350 update_hiwater_rss(mm);
1351
1352 for (; address < end; pte++, address += PAGE_SIZE) {
1353 if (!pte_present(*pte))
1354 continue;
1355 page = vm_normal_page(vma, address, *pte);
1356 BUG_ON(!page || PageAnon(page));
1357
1358 if (locked_vma) {
1359 if (page == check_page) {
1360 /* we know we have check_page locked */
1361 mlock_vma_page(page);
1362 ret = SWAP_MLOCK;
1363 } else if (trylock_page(page)) {
1364 /*
1365 * If we can lock the page, perform mlock.
1366 * Otherwise leave the page alone, it will be
1367 * eventually encountered again later.
1368 */
1369 mlock_vma_page(page);
1370 unlock_page(page);
1371 }
1372 continue; /* don't unmap */
1373 }
1374
1375 /*
1376 * No need for _notify because we're within an
1377 * mmu_notifier_invalidate_range_ {start|end} scope.
1378 */
1379 if (ptep_clear_flush_young(vma, address, pte))
1380 continue;
1381
1382 /* Nuke the page table entry. */
1383 flush_cache_page(vma, address, pte_pfn(*pte));
1384 pteval = ptep_clear_flush_notify(vma, address, pte);
1385
1386 /* If nonlinear, store the file page offset in the pte. */
1387 if (page->index != linear_page_index(vma, address)) {
1388 pte_t ptfile = pgoff_to_pte(page->index);
1389 if (pte_soft_dirty(pteval))
1390 ptfile = pte_file_mksoft_dirty(ptfile);
1391 set_pte_at(mm, address, pte, ptfile);
1392 }
1393
1394 /* Move the dirty bit to the physical page now the pte is gone. */
1395 if (pte_dirty(pteval))
1396 set_page_dirty(page);
1397
1398 page_remove_rmap(page);
1399 page_cache_release(page);
1400 dec_mm_counter(mm, MM_FILEPAGES);
1401 (*mapcount)--;
1402 }
1403 pte_unmap_unlock(pte - 1, ptl);
1404 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1405 if (locked_vma)
1406 up_read(&vma->vm_mm->mmap_sem);
1407 return ret;
1408 }
1409
1410 static int try_to_unmap_nonlinear(struct page *page,
1411 struct address_space *mapping, void *arg)
1412 {
1413 struct vm_area_struct *vma;
1414 int ret = SWAP_AGAIN;
1415 unsigned long cursor;
1416 unsigned long max_nl_cursor = 0;
1417 unsigned long max_nl_size = 0;
1418 unsigned int mapcount;
1419
1420 list_for_each_entry(vma,
1421 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1422
1423 cursor = (unsigned long) vma->vm_private_data;
1424 if (cursor > max_nl_cursor)
1425 max_nl_cursor = cursor;
1426 cursor = vma->vm_end - vma->vm_start;
1427 if (cursor > max_nl_size)
1428 max_nl_size = cursor;
1429 }
1430
1431 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1432 return SWAP_FAIL;
1433 }
1434
1435 /*
1436 * We don't try to search for this page in the nonlinear vmas,
1437 * and page_referenced wouldn't have found it anyway. Instead
1438 * just walk the nonlinear vmas trying to age and unmap some.
1439 * The mapcount of the page we came in with is irrelevant,
1440 * but even so use it as a guide to how hard we should try?
1441 */
1442 mapcount = page_mapcount(page);
1443 if (!mapcount)
1444 return ret;
1445
1446 cond_resched();
1447
1448 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1449 if (max_nl_cursor == 0)
1450 max_nl_cursor = CLUSTER_SIZE;
1451
1452 do {
1453 list_for_each_entry(vma,
1454 &mapping->i_mmap_nonlinear, shared.nonlinear) {
1455
1456 cursor = (unsigned long) vma->vm_private_data;
1457 while (cursor < max_nl_cursor &&
1458 cursor < vma->vm_end - vma->vm_start) {
1459 if (try_to_unmap_cluster(cursor, &mapcount,
1460 vma, page) == SWAP_MLOCK)
1461 ret = SWAP_MLOCK;
1462 cursor += CLUSTER_SIZE;
1463 vma->vm_private_data = (void *) cursor;
1464 if ((int)mapcount <= 0)
1465 return ret;
1466 }
1467 vma->vm_private_data = (void *) max_nl_cursor;
1468 }
1469 cond_resched();
1470 max_nl_cursor += CLUSTER_SIZE;
1471 } while (max_nl_cursor <= max_nl_size);
1472
1473 /*
1474 * Don't loop forever (perhaps all the remaining pages are
1475 * in locked vmas). Reset cursor on all unreserved nonlinear
1476 * vmas, now forgetting on which ones it had fallen behind.
1477 */
1478 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1479 vma->vm_private_data = NULL;
1480
1481 return ret;
1482 }
1483
1484 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1485 {
1486 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1487
1488 if (!maybe_stack)
1489 return false;
1490
1491 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1492 VM_STACK_INCOMPLETE_SETUP)
1493 return true;
1494
1495 return false;
1496 }
1497
1498 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1499 {
1500 return is_vma_temporary_stack(vma);
1501 }
1502
1503 static int page_not_mapped(struct page *page)
1504 {
1505 return !page_mapped(page);
1506 };
1507
1508 /**
1509 * try_to_unmap - try to remove all page table mappings to a page
1510 * @page: the page to get unmapped
1511 * @flags: action and flags
1512 *
1513 * Tries to remove all the page table entries which are mapping this
1514 * page, used in the pageout path. Caller must hold the page lock.
1515 * Return values are:
1516 *
1517 * SWAP_SUCCESS - we succeeded in removing all mappings
1518 * SWAP_AGAIN - we missed a mapping, try again later
1519 * SWAP_FAIL - the page is unswappable
1520 * SWAP_MLOCK - page is mlocked.
1521 */
1522 int try_to_unmap(struct page *page, enum ttu_flags flags)
1523 {
1524 int ret;
1525 struct rmap_walk_control rwc = {
1526 .rmap_one = try_to_unmap_one,
1527 .arg = (void *)flags,
1528 .done = page_not_mapped,
1529 .file_nonlinear = try_to_unmap_nonlinear,
1530 .anon_lock = page_lock_anon_vma_read,
1531 };
1532
1533 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1534
1535 /*
1536 * During exec, a temporary VMA is setup and later moved.
1537 * The VMA is moved under the anon_vma lock but not the
1538 * page tables leading to a race where migration cannot
1539 * find the migration ptes. Rather than increasing the
1540 * locking requirements of exec(), migration skips
1541 * temporary VMAs until after exec() completes.
1542 */
1543 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1544 rwc.invalid_vma = invalid_migration_vma;
1545
1546 ret = rmap_walk(page, &rwc);
1547
1548 if (ret != SWAP_MLOCK && !page_mapped(page))
1549 ret = SWAP_SUCCESS;
1550 return ret;
1551 }
1552
1553 /**
1554 * try_to_munlock - try to munlock a page
1555 * @page: the page to be munlocked
1556 *
1557 * Called from munlock code. Checks all of the VMAs mapping the page
1558 * to make sure nobody else has this page mlocked. The page will be
1559 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1560 *
1561 * Return values are:
1562 *
1563 * SWAP_AGAIN - no vma is holding page mlocked, or,
1564 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1565 * SWAP_FAIL - page cannot be located at present
1566 * SWAP_MLOCK - page is now mlocked.
1567 */
1568 int try_to_munlock(struct page *page)
1569 {
1570 int ret;
1571 struct rmap_walk_control rwc = {
1572 .rmap_one = try_to_unmap_one,
1573 .arg = (void *)TTU_MUNLOCK,
1574 .done = page_not_mapped,
1575 /*
1576 * We don't bother to try to find the munlocked page in
1577 * nonlinears. It's costly. Instead, later, page reclaim logic
1578 * may call try_to_unmap() and recover PG_mlocked lazily.
1579 */
1580 .file_nonlinear = NULL,
1581 .anon_lock = page_lock_anon_vma_read,
1582
1583 };
1584
1585 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1586
1587 ret = rmap_walk(page, &rwc);
1588 return ret;
1589 }
1590
1591 void __put_anon_vma(struct anon_vma *anon_vma)
1592 {
1593 struct anon_vma *root = anon_vma->root;
1594
1595 anon_vma_free(anon_vma);
1596 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1597 anon_vma_free(root);
1598 }
1599
1600 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1601 struct rmap_walk_control *rwc)
1602 {
1603 struct anon_vma *anon_vma;
1604
1605 if (rwc->anon_lock)
1606 return rwc->anon_lock(page);
1607
1608 /*
1609 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1610 * because that depends on page_mapped(); but not all its usages
1611 * are holding mmap_sem. Users without mmap_sem are required to
1612 * take a reference count to prevent the anon_vma disappearing
1613 */
1614 anon_vma = page_anon_vma(page);
1615 if (!anon_vma)
1616 return NULL;
1617
1618 anon_vma_lock_read(anon_vma);
1619 return anon_vma;
1620 }
1621
1622 /*
1623 * rmap_walk_anon - do something to anonymous page using the object-based
1624 * rmap method
1625 * @page: the page to be handled
1626 * @rwc: control variable according to each walk type
1627 *
1628 * Find all the mappings of a page using the mapping pointer and the vma chains
1629 * contained in the anon_vma struct it points to.
1630 *
1631 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1632 * where the page was found will be held for write. So, we won't recheck
1633 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1634 * LOCKED.
1635 */
1636 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1637 {
1638 struct anon_vma *anon_vma;
1639 pgoff_t pgoff;
1640 struct anon_vma_chain *avc;
1641 int ret = SWAP_AGAIN;
1642
1643 anon_vma = rmap_walk_anon_lock(page, rwc);
1644 if (!anon_vma)
1645 return ret;
1646
1647 pgoff = page_to_pgoff(page);
1648 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1649 struct vm_area_struct *vma = avc->vma;
1650 unsigned long address = vma_address(page, vma);
1651
1652 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1653 continue;
1654
1655 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1656 if (ret != SWAP_AGAIN)
1657 break;
1658 if (rwc->done && rwc->done(page))
1659 break;
1660 }
1661 anon_vma_unlock_read(anon_vma);
1662 return ret;
1663 }
1664
1665 /*
1666 * rmap_walk_file - do something to file page using the object-based rmap method
1667 * @page: the page to be handled
1668 * @rwc: control variable according to each walk type
1669 *
1670 * Find all the mappings of a page using the mapping pointer and the vma chains
1671 * contained in the address_space struct it points to.
1672 *
1673 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1674 * where the page was found will be held for write. So, we won't recheck
1675 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1676 * LOCKED.
1677 */
1678 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1679 {
1680 struct address_space *mapping = page->mapping;
1681 pgoff_t pgoff;
1682 struct vm_area_struct *vma;
1683 int ret = SWAP_AGAIN;
1684
1685 /*
1686 * The page lock not only makes sure that page->mapping cannot
1687 * suddenly be NULLified by truncation, it makes sure that the
1688 * structure at mapping cannot be freed and reused yet,
1689 * so we can safely take mapping->i_mmap_rwsem.
1690 */
1691 VM_BUG_ON_PAGE(!PageLocked(page), page);
1692
1693 if (!mapping)
1694 return ret;
1695
1696 pgoff = page_to_pgoff(page);
1697 i_mmap_lock_read(mapping);
1698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1699 unsigned long address = vma_address(page, vma);
1700
1701 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1702 continue;
1703
1704 ret = rwc->rmap_one(page, vma, address, rwc->arg);
1705 if (ret != SWAP_AGAIN)
1706 goto done;
1707 if (rwc->done && rwc->done(page))
1708 goto done;
1709 }
1710
1711 if (!rwc->file_nonlinear)
1712 goto done;
1713
1714 if (list_empty(&mapping->i_mmap_nonlinear))
1715 goto done;
1716
1717 ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1718 done:
1719 i_mmap_unlock_read(mapping);
1720 return ret;
1721 }
1722
1723 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1724 {
1725 if (unlikely(PageKsm(page)))
1726 return rmap_walk_ksm(page, rwc);
1727 else if (PageAnon(page))
1728 return rmap_walk_anon(page, rwc);
1729 else
1730 return rmap_walk_file(page, rwc);
1731 }
1732
1733 #ifdef CONFIG_HUGETLB_PAGE
1734 /*
1735 * The following three functions are for anonymous (private mapped) hugepages.
1736 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1737 * and no lru code, because we handle hugepages differently from common pages.
1738 */
1739 static void __hugepage_set_anon_rmap(struct page *page,
1740 struct vm_area_struct *vma, unsigned long address, int exclusive)
1741 {
1742 struct anon_vma *anon_vma = vma->anon_vma;
1743
1744 BUG_ON(!anon_vma);
1745
1746 if (PageAnon(page))
1747 return;
1748 if (!exclusive)
1749 anon_vma = anon_vma->root;
1750
1751 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1752 page->mapping = (struct address_space *) anon_vma;
1753 page->index = linear_page_index(vma, address);
1754 }
1755
1756 void hugepage_add_anon_rmap(struct page *page,
1757 struct vm_area_struct *vma, unsigned long address)
1758 {
1759 struct anon_vma *anon_vma = vma->anon_vma;
1760 int first;
1761
1762 BUG_ON(!PageLocked(page));
1763 BUG_ON(!anon_vma);
1764 /* address might be in next vma when migration races vma_adjust */
1765 first = atomic_inc_and_test(&page->_mapcount);
1766 if (first)
1767 __hugepage_set_anon_rmap(page, vma, address, 0);
1768 }
1769
1770 void hugepage_add_new_anon_rmap(struct page *page,
1771 struct vm_area_struct *vma, unsigned long address)
1772 {
1773 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1774 atomic_set(&page->_mapcount, 0);
1775 __hugepage_set_anon_rmap(page, vma, address, 1);
1776 }
1777 #endif /* CONFIG_HUGETLB_PAGE */