]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/rmap.c
Revert "rmap: do not call mmu_notifier_invalidate_page() under ptl"
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66
67 #include <asm/tlbflush.h>
68
69 #include <trace/events/tlb.h>
70
71 #include "internal.h"
72
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 struct anon_vma *anon_vma;
79
80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 if (anon_vma) {
82 atomic_set(&anon_vma->refcount, 1);
83 anon_vma->degree = 1; /* Reference for first vma */
84 anon_vma->parent = anon_vma;
85 /*
86 * Initialise the anon_vma root to point to itself. If called
87 * from fork, the root will be reset to the parents anon_vma.
88 */
89 anon_vma->root = anon_vma;
90 }
91
92 return anon_vma;
93 }
94
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 VM_BUG_ON(atomic_read(&anon_vma->refcount));
98
99 /*
100 * Synchronize against page_lock_anon_vma_read() such that
101 * we can safely hold the lock without the anon_vma getting
102 * freed.
103 *
104 * Relies on the full mb implied by the atomic_dec_and_test() from
105 * put_anon_vma() against the acquire barrier implied by
106 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 *
108 * page_lock_anon_vma_read() VS put_anon_vma()
109 * down_read_trylock() atomic_dec_and_test()
110 * LOCK MB
111 * atomic_read() rwsem_is_locked()
112 *
113 * LOCK should suffice since the actual taking of the lock must
114 * happen _before_ what follows.
115 */
116 might_sleep();
117 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 anon_vma_lock_write(anon_vma);
119 anon_vma_unlock_write(anon_vma);
120 }
121
122 kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 struct anon_vma_chain *avc,
137 struct anon_vma *anon_vma)
138 {
139 avc->vma = vma;
140 avc->anon_vma = anon_vma;
141 list_add(&avc->same_vma, &vma->anon_vma_chain);
142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144
145 /**
146 * __anon_vma_prepare - attach an anon_vma to a memory region
147 * @vma: the memory region in question
148 *
149 * This makes sure the memory mapping described by 'vma' has
150 * an 'anon_vma' attached to it, so that we can associate the
151 * anonymous pages mapped into it with that anon_vma.
152 *
153 * The common case will be that we already have one, which
154 * is handled inline by anon_vma_prepare(). But if
155 * not we either need to find an adjacent mapping that we
156 * can re-use the anon_vma from (very common when the only
157 * reason for splitting a vma has been mprotect()), or we
158 * allocate a new one.
159 *
160 * Anon-vma allocations are very subtle, because we may have
161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162 * and that may actually touch the spinlock even in the newly
163 * allocated vma (it depends on RCU to make sure that the
164 * anon_vma isn't actually destroyed).
165 *
166 * As a result, we need to do proper anon_vma locking even
167 * for the new allocation. At the same time, we do not want
168 * to do any locking for the common case of already having
169 * an anon_vma.
170 *
171 * This must be called with the mmap_sem held for reading.
172 */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 struct mm_struct *mm = vma->vm_mm;
176 struct anon_vma *anon_vma, *allocated;
177 struct anon_vma_chain *avc;
178
179 might_sleep();
180
181 avc = anon_vma_chain_alloc(GFP_KERNEL);
182 if (!avc)
183 goto out_enomem;
184
185 anon_vma = find_mergeable_anon_vma(vma);
186 allocated = NULL;
187 if (!anon_vma) {
188 anon_vma = anon_vma_alloc();
189 if (unlikely(!anon_vma))
190 goto out_enomem_free_avc;
191 allocated = anon_vma;
192 }
193
194 anon_vma_lock_write(anon_vma);
195 /* page_table_lock to protect against threads */
196 spin_lock(&mm->page_table_lock);
197 if (likely(!vma->anon_vma)) {
198 vma->anon_vma = anon_vma;
199 anon_vma_chain_link(vma, avc, anon_vma);
200 /* vma reference or self-parent link for new root */
201 anon_vma->degree++;
202 allocated = NULL;
203 avc = NULL;
204 }
205 spin_unlock(&mm->page_table_lock);
206 anon_vma_unlock_write(anon_vma);
207
208 if (unlikely(allocated))
209 put_anon_vma(allocated);
210 if (unlikely(avc))
211 anon_vma_chain_free(avc);
212
213 return 0;
214
215 out_enomem_free_avc:
216 anon_vma_chain_free(avc);
217 out_enomem:
218 return -ENOMEM;
219 }
220
221 /*
222 * This is a useful helper function for locking the anon_vma root as
223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224 * have the same vma.
225 *
226 * Such anon_vma's should have the same root, so you'd expect to see
227 * just a single mutex_lock for the whole traversal.
228 */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 struct anon_vma *new_root = anon_vma->root;
232 if (new_root != root) {
233 if (WARN_ON_ONCE(root))
234 up_write(&root->rwsem);
235 root = new_root;
236 down_write(&root->rwsem);
237 }
238 return root;
239 }
240
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 if (root)
244 up_write(&root->rwsem);
245 }
246
247 /*
248 * Attach the anon_vmas from src to dst.
249 * Returns 0 on success, -ENOMEM on failure.
250 *
251 * If dst->anon_vma is NULL this function tries to find and reuse existing
252 * anon_vma which has no vmas and only one child anon_vma. This prevents
253 * degradation of anon_vma hierarchy to endless linear chain in case of
254 * constantly forking task. On the other hand, an anon_vma with more than one
255 * child isn't reused even if there was no alive vma, thus rmap walker has a
256 * good chance of avoiding scanning the whole hierarchy when it searches where
257 * page is mapped.
258 */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 struct anon_vma_chain *avc, *pavc;
262 struct anon_vma *root = NULL;
263
264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 struct anon_vma *anon_vma;
266
267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 if (unlikely(!avc)) {
269 unlock_anon_vma_root(root);
270 root = NULL;
271 avc = anon_vma_chain_alloc(GFP_KERNEL);
272 if (!avc)
273 goto enomem_failure;
274 }
275 anon_vma = pavc->anon_vma;
276 root = lock_anon_vma_root(root, anon_vma);
277 anon_vma_chain_link(dst, avc, anon_vma);
278
279 /*
280 * Reuse existing anon_vma if its degree lower than two,
281 * that means it has no vma and only one anon_vma child.
282 *
283 * Do not chose parent anon_vma, otherwise first child
284 * will always reuse it. Root anon_vma is never reused:
285 * it has self-parent reference and at least one child.
286 */
287 if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 anon_vma->degree < 2)
289 dst->anon_vma = anon_vma;
290 }
291 if (dst->anon_vma)
292 dst->anon_vma->degree++;
293 unlock_anon_vma_root(root);
294 return 0;
295
296 enomem_failure:
297 /*
298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 * decremented in unlink_anon_vmas().
300 * We can safely do this because callers of anon_vma_clone() don't care
301 * about dst->anon_vma if anon_vma_clone() failed.
302 */
303 dst->anon_vma = NULL;
304 unlink_anon_vmas(dst);
305 return -ENOMEM;
306 }
307
308 /*
309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
310 * the corresponding VMA in the parent process is attached to.
311 * Returns 0 on success, non-zero on failure.
312 */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 struct anon_vma_chain *avc;
316 struct anon_vma *anon_vma;
317 int error;
318
319 /* Don't bother if the parent process has no anon_vma here. */
320 if (!pvma->anon_vma)
321 return 0;
322
323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 vma->anon_vma = NULL;
325
326 /*
327 * First, attach the new VMA to the parent VMA's anon_vmas,
328 * so rmap can find non-COWed pages in child processes.
329 */
330 error = anon_vma_clone(vma, pvma);
331 if (error)
332 return error;
333
334 /* An existing anon_vma has been reused, all done then. */
335 if (vma->anon_vma)
336 return 0;
337
338 /* Then add our own anon_vma. */
339 anon_vma = anon_vma_alloc();
340 if (!anon_vma)
341 goto out_error;
342 avc = anon_vma_chain_alloc(GFP_KERNEL);
343 if (!avc)
344 goto out_error_free_anon_vma;
345
346 /*
347 * The root anon_vma's spinlock is the lock actually used when we
348 * lock any of the anon_vmas in this anon_vma tree.
349 */
350 anon_vma->root = pvma->anon_vma->root;
351 anon_vma->parent = pvma->anon_vma;
352 /*
353 * With refcounts, an anon_vma can stay around longer than the
354 * process it belongs to. The root anon_vma needs to be pinned until
355 * this anon_vma is freed, because the lock lives in the root.
356 */
357 get_anon_vma(anon_vma->root);
358 /* Mark this anon_vma as the one where our new (COWed) pages go. */
359 vma->anon_vma = anon_vma;
360 anon_vma_lock_write(anon_vma);
361 anon_vma_chain_link(vma, avc, anon_vma);
362 anon_vma->parent->degree++;
363 anon_vma_unlock_write(anon_vma);
364
365 return 0;
366
367 out_error_free_anon_vma:
368 put_anon_vma(anon_vma);
369 out_error:
370 unlink_anon_vmas(vma);
371 return -ENOMEM;
372 }
373
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 struct anon_vma_chain *avc, *next;
377 struct anon_vma *root = NULL;
378
379 /*
380 * Unlink each anon_vma chained to the VMA. This list is ordered
381 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 */
383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 struct anon_vma *anon_vma = avc->anon_vma;
385
386 root = lock_anon_vma_root(root, anon_vma);
387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388
389 /*
390 * Leave empty anon_vmas on the list - we'll need
391 * to free them outside the lock.
392 */
393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 anon_vma->parent->degree--;
395 continue;
396 }
397
398 list_del(&avc->same_vma);
399 anon_vma_chain_free(avc);
400 }
401 if (vma->anon_vma)
402 vma->anon_vma->degree--;
403 unlock_anon_vma_root(root);
404
405 /*
406 * Iterate the list once more, it now only contains empty and unlinked
407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 * needing to write-acquire the anon_vma->root->rwsem.
409 */
410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 struct anon_vma *anon_vma = avc->anon_vma;
412
413 VM_WARN_ON(anon_vma->degree);
414 put_anon_vma(anon_vma);
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 }
420
421 static void anon_vma_ctor(void *data)
422 {
423 struct anon_vma *anon_vma = data;
424
425 init_rwsem(&anon_vma->rwsem);
426 atomic_set(&anon_vma->refcount, 0);
427 anon_vma->rb_root = RB_ROOT;
428 }
429
430 void __init anon_vma_init(void)
431 {
432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 anon_vma_ctor);
435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 SLAB_PANIC|SLAB_ACCOUNT);
437 }
438
439 /*
440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 *
442 * Since there is no serialization what so ever against page_remove_rmap()
443 * the best this function can do is return a locked anon_vma that might
444 * have been relevant to this page.
445 *
446 * The page might have been remapped to a different anon_vma or the anon_vma
447 * returned may already be freed (and even reused).
448 *
449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451 * ensure that any anon_vma obtained from the page will still be valid for as
452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 *
454 * All users of this function must be very careful when walking the anon_vma
455 * chain and verify that the page in question is indeed mapped in it
456 * [ something equivalent to page_mapped_in_vma() ].
457 *
458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459 * that the anon_vma pointer from page->mapping is valid if there is a
460 * mapcount, we can dereference the anon_vma after observing those.
461 */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 struct anon_vma *anon_vma = NULL;
465 unsigned long anon_mapping;
466
467 rcu_read_lock();
468 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 goto out;
471 if (!page_mapped(page))
472 goto out;
473
474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 anon_vma = NULL;
477 goto out;
478 }
479
480 /*
481 * If this page is still mapped, then its anon_vma cannot have been
482 * freed. But if it has been unmapped, we have no security against the
483 * anon_vma structure being freed and reused (for another anon_vma:
484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 * above cannot corrupt).
486 */
487 if (!page_mapped(page)) {
488 rcu_read_unlock();
489 put_anon_vma(anon_vma);
490 return NULL;
491 }
492 out:
493 rcu_read_unlock();
494
495 return anon_vma;
496 }
497
498 /*
499 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 *
501 * Its a little more complex as it tries to keep the fast path to a single
502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503 * reference like with page_get_anon_vma() and then block on the mutex.
504 */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 struct anon_vma *anon_vma = NULL;
508 struct anon_vma *root_anon_vma;
509 unsigned long anon_mapping;
510
511 rcu_read_lock();
512 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 goto out;
515 if (!page_mapped(page))
516 goto out;
517
518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 root_anon_vma = READ_ONCE(anon_vma->root);
520 if (down_read_trylock(&root_anon_vma->rwsem)) {
521 /*
522 * If the page is still mapped, then this anon_vma is still
523 * its anon_vma, and holding the mutex ensures that it will
524 * not go away, see anon_vma_free().
525 */
526 if (!page_mapped(page)) {
527 up_read(&root_anon_vma->rwsem);
528 anon_vma = NULL;
529 }
530 goto out;
531 }
532
533 /* trylock failed, we got to sleep */
534 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 anon_vma = NULL;
536 goto out;
537 }
538
539 if (!page_mapped(page)) {
540 rcu_read_unlock();
541 put_anon_vma(anon_vma);
542 return NULL;
543 }
544
545 /* we pinned the anon_vma, its safe to sleep */
546 rcu_read_unlock();
547 anon_vma_lock_read(anon_vma);
548
549 if (atomic_dec_and_test(&anon_vma->refcount)) {
550 /*
551 * Oops, we held the last refcount, release the lock
552 * and bail -- can't simply use put_anon_vma() because
553 * we'll deadlock on the anon_vma_lock_write() recursion.
554 */
555 anon_vma_unlock_read(anon_vma);
556 __put_anon_vma(anon_vma);
557 anon_vma = NULL;
558 }
559
560 return anon_vma;
561
562 out:
563 rcu_read_unlock();
564 return anon_vma;
565 }
566
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 anon_vma_unlock_read(anon_vma);
570 }
571
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575 * important if a PTE was dirty when it was unmapped that it's flushed
576 * before any IO is initiated on the page to prevent lost writes. Similarly,
577 * it must be flushed before freeing to prevent data leakage.
578 */
579 void try_to_unmap_flush(void)
580 {
581 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582
583 if (!tlb_ubc->flush_required)
584 return;
585
586 arch_tlbbatch_flush(&tlb_ubc->arch);
587 tlb_ubc->flush_required = false;
588 tlb_ubc->writable = false;
589 }
590
591 /* Flush iff there are potentially writable TLB entries that can race with IO */
592 void try_to_unmap_flush_dirty(void)
593 {
594 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
595
596 if (tlb_ubc->writable)
597 try_to_unmap_flush();
598 }
599
600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
601 {
602 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
603
604 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
605 tlb_ubc->flush_required = true;
606
607 /*
608 * Ensure compiler does not re-order the setting of tlb_flush_batched
609 * before the PTE is cleared.
610 */
611 barrier();
612 mm->tlb_flush_batched = true;
613
614 /*
615 * If the PTE was dirty then it's best to assume it's writable. The
616 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
617 * before the page is queued for IO.
618 */
619 if (writable)
620 tlb_ubc->writable = true;
621 }
622
623 /*
624 * Returns true if the TLB flush should be deferred to the end of a batch of
625 * unmap operations to reduce IPIs.
626 */
627 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
628 {
629 bool should_defer = false;
630
631 if (!(flags & TTU_BATCH_FLUSH))
632 return false;
633
634 /* If remote CPUs need to be flushed then defer batch the flush */
635 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
636 should_defer = true;
637 put_cpu();
638
639 return should_defer;
640 }
641
642 /*
643 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
644 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
645 * operation such as mprotect or munmap to race between reclaim unmapping
646 * the page and flushing the page. If this race occurs, it potentially allows
647 * access to data via a stale TLB entry. Tracking all mm's that have TLB
648 * batching in flight would be expensive during reclaim so instead track
649 * whether TLB batching occurred in the past and if so then do a flush here
650 * if required. This will cost one additional flush per reclaim cycle paid
651 * by the first operation at risk such as mprotect and mumap.
652 *
653 * This must be called under the PTL so that an access to tlb_flush_batched
654 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
655 * via the PTL.
656 */
657 void flush_tlb_batched_pending(struct mm_struct *mm)
658 {
659 if (mm->tlb_flush_batched) {
660 flush_tlb_mm(mm);
661
662 /*
663 * Do not allow the compiler to re-order the clearing of
664 * tlb_flush_batched before the tlb is flushed.
665 */
666 barrier();
667 mm->tlb_flush_batched = false;
668 }
669 }
670 #else
671 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
672 {
673 }
674
675 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
676 {
677 return false;
678 }
679 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
680
681 /*
682 * At what user virtual address is page expected in vma?
683 * Caller should check the page is actually part of the vma.
684 */
685 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
686 {
687 unsigned long address;
688 if (PageAnon(page)) {
689 struct anon_vma *page__anon_vma = page_anon_vma(page);
690 /*
691 * Note: swapoff's unuse_vma() is more efficient with this
692 * check, and needs it to match anon_vma when KSM is active.
693 */
694 if (!vma->anon_vma || !page__anon_vma ||
695 vma->anon_vma->root != page__anon_vma->root)
696 return -EFAULT;
697 } else if (page->mapping) {
698 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
699 return -EFAULT;
700 } else
701 return -EFAULT;
702 address = __vma_address(page, vma);
703 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
704 return -EFAULT;
705 return address;
706 }
707
708 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
709 {
710 pgd_t *pgd;
711 p4d_t *p4d;
712 pud_t *pud;
713 pmd_t *pmd = NULL;
714 pmd_t pmde;
715
716 pgd = pgd_offset(mm, address);
717 if (!pgd_present(*pgd))
718 goto out;
719
720 p4d = p4d_offset(pgd, address);
721 if (!p4d_present(*p4d))
722 goto out;
723
724 pud = pud_offset(p4d, address);
725 if (!pud_present(*pud))
726 goto out;
727
728 pmd = pmd_offset(pud, address);
729 /*
730 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
731 * without holding anon_vma lock for write. So when looking for a
732 * genuine pmde (in which to find pte), test present and !THP together.
733 */
734 pmde = *pmd;
735 barrier();
736 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
737 pmd = NULL;
738 out:
739 return pmd;
740 }
741
742 struct page_referenced_arg {
743 int mapcount;
744 int referenced;
745 unsigned long vm_flags;
746 struct mem_cgroup *memcg;
747 };
748 /*
749 * arg: page_referenced_arg will be passed
750 */
751 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
752 unsigned long address, void *arg)
753 {
754 struct page_referenced_arg *pra = arg;
755 struct page_vma_mapped_walk pvmw = {
756 .page = page,
757 .vma = vma,
758 .address = address,
759 };
760 int referenced = 0;
761
762 while (page_vma_mapped_walk(&pvmw)) {
763 address = pvmw.address;
764
765 if (vma->vm_flags & VM_LOCKED) {
766 page_vma_mapped_walk_done(&pvmw);
767 pra->vm_flags |= VM_LOCKED;
768 return false; /* To break the loop */
769 }
770
771 if (pvmw.pte) {
772 if (ptep_clear_flush_young_notify(vma, address,
773 pvmw.pte)) {
774 /*
775 * Don't treat a reference through
776 * a sequentially read mapping as such.
777 * If the page has been used in another mapping,
778 * we will catch it; if this other mapping is
779 * already gone, the unmap path will have set
780 * PG_referenced or activated the page.
781 */
782 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 referenced++;
784 }
785 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
786 if (pmdp_clear_flush_young_notify(vma, address,
787 pvmw.pmd))
788 referenced++;
789 } else {
790 /* unexpected pmd-mapped page? */
791 WARN_ON_ONCE(1);
792 }
793
794 pra->mapcount--;
795 }
796
797 if (referenced)
798 clear_page_idle(page);
799 if (test_and_clear_page_young(page))
800 referenced++;
801
802 if (referenced) {
803 pra->referenced++;
804 pra->vm_flags |= vma->vm_flags;
805 }
806
807 if (!pra->mapcount)
808 return false; /* To break the loop */
809
810 return true;
811 }
812
813 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
814 {
815 struct page_referenced_arg *pra = arg;
816 struct mem_cgroup *memcg = pra->memcg;
817
818 if (!mm_match_cgroup(vma->vm_mm, memcg))
819 return true;
820
821 return false;
822 }
823
824 /**
825 * page_referenced - test if the page was referenced
826 * @page: the page to test
827 * @is_locked: caller holds lock on the page
828 * @memcg: target memory cgroup
829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
830 *
831 * Quick test_and_clear_referenced for all mappings to a page,
832 * returns the number of ptes which referenced the page.
833 */
834 int page_referenced(struct page *page,
835 int is_locked,
836 struct mem_cgroup *memcg,
837 unsigned long *vm_flags)
838 {
839 int we_locked = 0;
840 struct page_referenced_arg pra = {
841 .mapcount = total_mapcount(page),
842 .memcg = memcg,
843 };
844 struct rmap_walk_control rwc = {
845 .rmap_one = page_referenced_one,
846 .arg = (void *)&pra,
847 .anon_lock = page_lock_anon_vma_read,
848 };
849
850 *vm_flags = 0;
851 if (!page_mapped(page))
852 return 0;
853
854 if (!page_rmapping(page))
855 return 0;
856
857 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
858 we_locked = trylock_page(page);
859 if (!we_locked)
860 return 1;
861 }
862
863 /*
864 * If we are reclaiming on behalf of a cgroup, skip
865 * counting on behalf of references from different
866 * cgroups
867 */
868 if (memcg) {
869 rwc.invalid_vma = invalid_page_referenced_vma;
870 }
871
872 rmap_walk(page, &rwc);
873 *vm_flags = pra.vm_flags;
874
875 if (we_locked)
876 unlock_page(page);
877
878 return pra.referenced;
879 }
880
881 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
882 unsigned long address, void *arg)
883 {
884 struct page_vma_mapped_walk pvmw = {
885 .page = page,
886 .vma = vma,
887 .address = address,
888 .flags = PVMW_SYNC,
889 };
890 int *cleaned = arg;
891
892 while (page_vma_mapped_walk(&pvmw)) {
893 int ret = 0;
894 address = pvmw.address;
895 if (pvmw.pte) {
896 pte_t entry;
897 pte_t *pte = pvmw.pte;
898
899 if (!pte_dirty(*pte) && !pte_write(*pte))
900 continue;
901
902 flush_cache_page(vma, address, pte_pfn(*pte));
903 entry = ptep_clear_flush(vma, address, pte);
904 entry = pte_wrprotect(entry);
905 entry = pte_mkclean(entry);
906 set_pte_at(vma->vm_mm, address, pte, entry);
907 ret = 1;
908 } else {
909 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
910 pmd_t *pmd = pvmw.pmd;
911 pmd_t entry;
912
913 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
914 continue;
915
916 flush_cache_page(vma, address, page_to_pfn(page));
917 entry = pmdp_huge_clear_flush(vma, address, pmd);
918 entry = pmd_wrprotect(entry);
919 entry = pmd_mkclean(entry);
920 set_pmd_at(vma->vm_mm, address, pmd, entry);
921 ret = 1;
922 #else
923 /* unexpected pmd-mapped page? */
924 WARN_ON_ONCE(1);
925 #endif
926 }
927
928 if (ret) {
929 mmu_notifier_invalidate_page(vma->vm_mm, address);
930 (*cleaned)++;
931 }
932 }
933
934 return true;
935 }
936
937 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
938 {
939 if (vma->vm_flags & VM_SHARED)
940 return false;
941
942 return true;
943 }
944
945 int page_mkclean(struct page *page)
946 {
947 int cleaned = 0;
948 struct address_space *mapping;
949 struct rmap_walk_control rwc = {
950 .arg = (void *)&cleaned,
951 .rmap_one = page_mkclean_one,
952 .invalid_vma = invalid_mkclean_vma,
953 };
954
955 BUG_ON(!PageLocked(page));
956
957 if (!page_mapped(page))
958 return 0;
959
960 mapping = page_mapping(page);
961 if (!mapping)
962 return 0;
963
964 rmap_walk(page, &rwc);
965
966 return cleaned;
967 }
968 EXPORT_SYMBOL_GPL(page_mkclean);
969
970 /**
971 * page_move_anon_rmap - move a page to our anon_vma
972 * @page: the page to move to our anon_vma
973 * @vma: the vma the page belongs to
974 *
975 * When a page belongs exclusively to one process after a COW event,
976 * that page can be moved into the anon_vma that belongs to just that
977 * process, so the rmap code will not search the parent or sibling
978 * processes.
979 */
980 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
981 {
982 struct anon_vma *anon_vma = vma->anon_vma;
983
984 page = compound_head(page);
985
986 VM_BUG_ON_PAGE(!PageLocked(page), page);
987 VM_BUG_ON_VMA(!anon_vma, vma);
988
989 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
990 /*
991 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
992 * simultaneously, so a concurrent reader (eg page_referenced()'s
993 * PageAnon()) will not see one without the other.
994 */
995 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
996 }
997
998 /**
999 * __page_set_anon_rmap - set up new anonymous rmap
1000 * @page: Page to add to rmap
1001 * @vma: VM area to add page to.
1002 * @address: User virtual address of the mapping
1003 * @exclusive: the page is exclusively owned by the current process
1004 */
1005 static void __page_set_anon_rmap(struct page *page,
1006 struct vm_area_struct *vma, unsigned long address, int exclusive)
1007 {
1008 struct anon_vma *anon_vma = vma->anon_vma;
1009
1010 BUG_ON(!anon_vma);
1011
1012 if (PageAnon(page))
1013 return;
1014
1015 /*
1016 * If the page isn't exclusively mapped into this vma,
1017 * we must use the _oldest_ possible anon_vma for the
1018 * page mapping!
1019 */
1020 if (!exclusive)
1021 anon_vma = anon_vma->root;
1022
1023 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1024 page->mapping = (struct address_space *) anon_vma;
1025 page->index = linear_page_index(vma, address);
1026 }
1027
1028 /**
1029 * __page_check_anon_rmap - sanity check anonymous rmap addition
1030 * @page: the page to add the mapping to
1031 * @vma: the vm area in which the mapping is added
1032 * @address: the user virtual address mapped
1033 */
1034 static void __page_check_anon_rmap(struct page *page,
1035 struct vm_area_struct *vma, unsigned long address)
1036 {
1037 #ifdef CONFIG_DEBUG_VM
1038 /*
1039 * The page's anon-rmap details (mapping and index) are guaranteed to
1040 * be set up correctly at this point.
1041 *
1042 * We have exclusion against page_add_anon_rmap because the caller
1043 * always holds the page locked, except if called from page_dup_rmap,
1044 * in which case the page is already known to be setup.
1045 *
1046 * We have exclusion against page_add_new_anon_rmap because those pages
1047 * are initially only visible via the pagetables, and the pte is locked
1048 * over the call to page_add_new_anon_rmap.
1049 */
1050 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1051 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1052 #endif
1053 }
1054
1055 /**
1056 * page_add_anon_rmap - add pte mapping to an anonymous page
1057 * @page: the page to add the mapping to
1058 * @vma: the vm area in which the mapping is added
1059 * @address: the user virtual address mapped
1060 * @compound: charge the page as compound or small page
1061 *
1062 * The caller needs to hold the pte lock, and the page must be locked in
1063 * the anon_vma case: to serialize mapping,index checking after setting,
1064 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1065 * (but PageKsm is never downgraded to PageAnon).
1066 */
1067 void page_add_anon_rmap(struct page *page,
1068 struct vm_area_struct *vma, unsigned long address, bool compound)
1069 {
1070 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1071 }
1072
1073 /*
1074 * Special version of the above for do_swap_page, which often runs
1075 * into pages that are exclusively owned by the current process.
1076 * Everybody else should continue to use page_add_anon_rmap above.
1077 */
1078 void do_page_add_anon_rmap(struct page *page,
1079 struct vm_area_struct *vma, unsigned long address, int flags)
1080 {
1081 bool compound = flags & RMAP_COMPOUND;
1082 bool first;
1083
1084 if (compound) {
1085 atomic_t *mapcount;
1086 VM_BUG_ON_PAGE(!PageLocked(page), page);
1087 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1088 mapcount = compound_mapcount_ptr(page);
1089 first = atomic_inc_and_test(mapcount);
1090 } else {
1091 first = atomic_inc_and_test(&page->_mapcount);
1092 }
1093
1094 if (first) {
1095 int nr = compound ? hpage_nr_pages(page) : 1;
1096 /*
1097 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1098 * these counters are not modified in interrupt context, and
1099 * pte lock(a spinlock) is held, which implies preemption
1100 * disabled.
1101 */
1102 if (compound)
1103 __inc_node_page_state(page, NR_ANON_THPS);
1104 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1105 }
1106 if (unlikely(PageKsm(page)))
1107 return;
1108
1109 VM_BUG_ON_PAGE(!PageLocked(page), page);
1110
1111 /* address might be in next vma when migration races vma_adjust */
1112 if (first)
1113 __page_set_anon_rmap(page, vma, address,
1114 flags & RMAP_EXCLUSIVE);
1115 else
1116 __page_check_anon_rmap(page, vma, address);
1117 }
1118
1119 /**
1120 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1121 * @page: the page to add the mapping to
1122 * @vma: the vm area in which the mapping is added
1123 * @address: the user virtual address mapped
1124 * @compound: charge the page as compound or small page
1125 *
1126 * Same as page_add_anon_rmap but must only be called on *new* pages.
1127 * This means the inc-and-test can be bypassed.
1128 * Page does not have to be locked.
1129 */
1130 void page_add_new_anon_rmap(struct page *page,
1131 struct vm_area_struct *vma, unsigned long address, bool compound)
1132 {
1133 int nr = compound ? hpage_nr_pages(page) : 1;
1134
1135 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1136 __SetPageSwapBacked(page);
1137 if (compound) {
1138 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1139 /* increment count (starts at -1) */
1140 atomic_set(compound_mapcount_ptr(page), 0);
1141 __inc_node_page_state(page, NR_ANON_THPS);
1142 } else {
1143 /* Anon THP always mapped first with PMD */
1144 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1145 /* increment count (starts at -1) */
1146 atomic_set(&page->_mapcount, 0);
1147 }
1148 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1149 __page_set_anon_rmap(page, vma, address, 1);
1150 }
1151
1152 /**
1153 * page_add_file_rmap - add pte mapping to a file page
1154 * @page: the page to add the mapping to
1155 *
1156 * The caller needs to hold the pte lock.
1157 */
1158 void page_add_file_rmap(struct page *page, bool compound)
1159 {
1160 int i, nr = 1;
1161
1162 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1163 lock_page_memcg(page);
1164 if (compound && PageTransHuge(page)) {
1165 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1166 if (atomic_inc_and_test(&page[i]._mapcount))
1167 nr++;
1168 }
1169 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1170 goto out;
1171 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1172 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1173 } else {
1174 if (PageTransCompound(page) && page_mapping(page)) {
1175 VM_WARN_ON_ONCE(!PageLocked(page));
1176
1177 SetPageDoubleMap(compound_head(page));
1178 if (PageMlocked(page))
1179 clear_page_mlock(compound_head(page));
1180 }
1181 if (!atomic_inc_and_test(&page->_mapcount))
1182 goto out;
1183 }
1184 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1185 out:
1186 unlock_page_memcg(page);
1187 }
1188
1189 static void page_remove_file_rmap(struct page *page, bool compound)
1190 {
1191 int i, nr = 1;
1192
1193 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1194 lock_page_memcg(page);
1195
1196 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1197 if (unlikely(PageHuge(page))) {
1198 /* hugetlb pages are always mapped with pmds */
1199 atomic_dec(compound_mapcount_ptr(page));
1200 goto out;
1201 }
1202
1203 /* page still mapped by someone else? */
1204 if (compound && PageTransHuge(page)) {
1205 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1206 if (atomic_add_negative(-1, &page[i]._mapcount))
1207 nr++;
1208 }
1209 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1210 goto out;
1211 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1212 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1213 } else {
1214 if (!atomic_add_negative(-1, &page->_mapcount))
1215 goto out;
1216 }
1217
1218 /*
1219 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1220 * these counters are not modified in interrupt context, and
1221 * pte lock(a spinlock) is held, which implies preemption disabled.
1222 */
1223 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1224
1225 if (unlikely(PageMlocked(page)))
1226 clear_page_mlock(page);
1227 out:
1228 unlock_page_memcg(page);
1229 }
1230
1231 static void page_remove_anon_compound_rmap(struct page *page)
1232 {
1233 int i, nr;
1234
1235 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1236 return;
1237
1238 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1239 if (unlikely(PageHuge(page)))
1240 return;
1241
1242 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1243 return;
1244
1245 __dec_node_page_state(page, NR_ANON_THPS);
1246
1247 if (TestClearPageDoubleMap(page)) {
1248 /*
1249 * Subpages can be mapped with PTEs too. Check how many of
1250 * themi are still mapped.
1251 */
1252 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1253 if (atomic_add_negative(-1, &page[i]._mapcount))
1254 nr++;
1255 }
1256 } else {
1257 nr = HPAGE_PMD_NR;
1258 }
1259
1260 if (unlikely(PageMlocked(page)))
1261 clear_page_mlock(page);
1262
1263 if (nr) {
1264 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1265 deferred_split_huge_page(page);
1266 }
1267 }
1268
1269 /**
1270 * page_remove_rmap - take down pte mapping from a page
1271 * @page: page to remove mapping from
1272 * @compound: uncharge the page as compound or small page
1273 *
1274 * The caller needs to hold the pte lock.
1275 */
1276 void page_remove_rmap(struct page *page, bool compound)
1277 {
1278 if (!PageAnon(page))
1279 return page_remove_file_rmap(page, compound);
1280
1281 if (compound)
1282 return page_remove_anon_compound_rmap(page);
1283
1284 /* page still mapped by someone else? */
1285 if (!atomic_add_negative(-1, &page->_mapcount))
1286 return;
1287
1288 /*
1289 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1290 * these counters are not modified in interrupt context, and
1291 * pte lock(a spinlock) is held, which implies preemption disabled.
1292 */
1293 __dec_node_page_state(page, NR_ANON_MAPPED);
1294
1295 if (unlikely(PageMlocked(page)))
1296 clear_page_mlock(page);
1297
1298 if (PageTransCompound(page))
1299 deferred_split_huge_page(compound_head(page));
1300
1301 /*
1302 * It would be tidy to reset the PageAnon mapping here,
1303 * but that might overwrite a racing page_add_anon_rmap
1304 * which increments mapcount after us but sets mapping
1305 * before us: so leave the reset to free_hot_cold_page,
1306 * and remember that it's only reliable while mapped.
1307 * Leaving it set also helps swapoff to reinstate ptes
1308 * faster for those pages still in swapcache.
1309 */
1310 }
1311
1312 /*
1313 * @arg: enum ttu_flags will be passed to this argument
1314 */
1315 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1316 unsigned long address, void *arg)
1317 {
1318 struct mm_struct *mm = vma->vm_mm;
1319 struct page_vma_mapped_walk pvmw = {
1320 .page = page,
1321 .vma = vma,
1322 .address = address,
1323 };
1324 pte_t pteval;
1325 struct page *subpage;
1326 bool ret = true;
1327 enum ttu_flags flags = (enum ttu_flags)arg;
1328
1329 /* munlock has nothing to gain from examining un-locked vmas */
1330 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1331 return true;
1332
1333 if (flags & TTU_SPLIT_HUGE_PMD) {
1334 split_huge_pmd_address(vma, address,
1335 flags & TTU_MIGRATION, page);
1336 }
1337
1338 while (page_vma_mapped_walk(&pvmw)) {
1339 /*
1340 * If the page is mlock()d, we cannot swap it out.
1341 * If it's recently referenced (perhaps page_referenced
1342 * skipped over this mm) then we should reactivate it.
1343 */
1344 if (!(flags & TTU_IGNORE_MLOCK)) {
1345 if (vma->vm_flags & VM_LOCKED) {
1346 /* PTE-mapped THP are never mlocked */
1347 if (!PageTransCompound(page)) {
1348 /*
1349 * Holding pte lock, we do *not* need
1350 * mmap_sem here
1351 */
1352 mlock_vma_page(page);
1353 }
1354 ret = false;
1355 page_vma_mapped_walk_done(&pvmw);
1356 break;
1357 }
1358 if (flags & TTU_MUNLOCK)
1359 continue;
1360 }
1361
1362 /* Unexpected PMD-mapped THP? */
1363 VM_BUG_ON_PAGE(!pvmw.pte, page);
1364
1365 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1366 address = pvmw.address;
1367
1368
1369 if (!(flags & TTU_IGNORE_ACCESS)) {
1370 if (ptep_clear_flush_young_notify(vma, address,
1371 pvmw.pte)) {
1372 ret = false;
1373 page_vma_mapped_walk_done(&pvmw);
1374 break;
1375 }
1376 }
1377
1378 /* Nuke the page table entry. */
1379 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1380 if (should_defer_flush(mm, flags)) {
1381 /*
1382 * We clear the PTE but do not flush so potentially
1383 * a remote CPU could still be writing to the page.
1384 * If the entry was previously clean then the
1385 * architecture must guarantee that a clear->dirty
1386 * transition on a cached TLB entry is written through
1387 * and traps if the PTE is unmapped.
1388 */
1389 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1390
1391 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1392 } else {
1393 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1394 }
1395
1396 /* Move the dirty bit to the page. Now the pte is gone. */
1397 if (pte_dirty(pteval))
1398 set_page_dirty(page);
1399
1400 /* Update high watermark before we lower rss */
1401 update_hiwater_rss(mm);
1402
1403 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1404 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1405 if (PageHuge(page)) {
1406 int nr = 1 << compound_order(page);
1407 hugetlb_count_sub(nr, mm);
1408 set_huge_swap_pte_at(mm, address,
1409 pvmw.pte, pteval,
1410 vma_mmu_pagesize(vma));
1411 } else {
1412 dec_mm_counter(mm, mm_counter(page));
1413 set_pte_at(mm, address, pvmw.pte, pteval);
1414 }
1415
1416 } else if (pte_unused(pteval)) {
1417 /*
1418 * The guest indicated that the page content is of no
1419 * interest anymore. Simply discard the pte, vmscan
1420 * will take care of the rest.
1421 */
1422 dec_mm_counter(mm, mm_counter(page));
1423 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1424 (flags & TTU_MIGRATION)) {
1425 swp_entry_t entry;
1426 pte_t swp_pte;
1427 /*
1428 * Store the pfn of the page in a special migration
1429 * pte. do_swap_page() will wait until the migration
1430 * pte is removed and then restart fault handling.
1431 */
1432 entry = make_migration_entry(subpage,
1433 pte_write(pteval));
1434 swp_pte = swp_entry_to_pte(entry);
1435 if (pte_soft_dirty(pteval))
1436 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1437 set_pte_at(mm, address, pvmw.pte, swp_pte);
1438 } else if (PageAnon(page)) {
1439 swp_entry_t entry = { .val = page_private(subpage) };
1440 pte_t swp_pte;
1441 /*
1442 * Store the swap location in the pte.
1443 * See handle_pte_fault() ...
1444 */
1445 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1446 WARN_ON_ONCE(1);
1447 ret = false;
1448 page_vma_mapped_walk_done(&pvmw);
1449 break;
1450 }
1451
1452 /* MADV_FREE page check */
1453 if (!PageSwapBacked(page)) {
1454 if (!PageDirty(page)) {
1455 dec_mm_counter(mm, MM_ANONPAGES);
1456 goto discard;
1457 }
1458
1459 /*
1460 * If the page was redirtied, it cannot be
1461 * discarded. Remap the page to page table.
1462 */
1463 set_pte_at(mm, address, pvmw.pte, pteval);
1464 SetPageSwapBacked(page);
1465 ret = false;
1466 page_vma_mapped_walk_done(&pvmw);
1467 break;
1468 }
1469
1470 if (swap_duplicate(entry) < 0) {
1471 set_pte_at(mm, address, pvmw.pte, pteval);
1472 ret = false;
1473 page_vma_mapped_walk_done(&pvmw);
1474 break;
1475 }
1476 if (list_empty(&mm->mmlist)) {
1477 spin_lock(&mmlist_lock);
1478 if (list_empty(&mm->mmlist))
1479 list_add(&mm->mmlist, &init_mm.mmlist);
1480 spin_unlock(&mmlist_lock);
1481 }
1482 dec_mm_counter(mm, MM_ANONPAGES);
1483 inc_mm_counter(mm, MM_SWAPENTS);
1484 swp_pte = swp_entry_to_pte(entry);
1485 if (pte_soft_dirty(pteval))
1486 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1487 set_pte_at(mm, address, pvmw.pte, swp_pte);
1488 } else
1489 dec_mm_counter(mm, mm_counter_file(page));
1490 discard:
1491 page_remove_rmap(subpage, PageHuge(page));
1492 put_page(page);
1493 mmu_notifier_invalidate_page(mm, address);
1494 }
1495 return ret;
1496 }
1497
1498 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1499 {
1500 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1501
1502 if (!maybe_stack)
1503 return false;
1504
1505 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1506 VM_STACK_INCOMPLETE_SETUP)
1507 return true;
1508
1509 return false;
1510 }
1511
1512 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1513 {
1514 return is_vma_temporary_stack(vma);
1515 }
1516
1517 static int page_mapcount_is_zero(struct page *page)
1518 {
1519 return !total_mapcount(page);
1520 }
1521
1522 /**
1523 * try_to_unmap - try to remove all page table mappings to a page
1524 * @page: the page to get unmapped
1525 * @flags: action and flags
1526 *
1527 * Tries to remove all the page table entries which are mapping this
1528 * page, used in the pageout path. Caller must hold the page lock.
1529 *
1530 * If unmap is successful, return true. Otherwise, false.
1531 */
1532 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1533 {
1534 struct rmap_walk_control rwc = {
1535 .rmap_one = try_to_unmap_one,
1536 .arg = (void *)flags,
1537 .done = page_mapcount_is_zero,
1538 .anon_lock = page_lock_anon_vma_read,
1539 };
1540
1541 /*
1542 * During exec, a temporary VMA is setup and later moved.
1543 * The VMA is moved under the anon_vma lock but not the
1544 * page tables leading to a race where migration cannot
1545 * find the migration ptes. Rather than increasing the
1546 * locking requirements of exec(), migration skips
1547 * temporary VMAs until after exec() completes.
1548 */
1549 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1550 rwc.invalid_vma = invalid_migration_vma;
1551
1552 if (flags & TTU_RMAP_LOCKED)
1553 rmap_walk_locked(page, &rwc);
1554 else
1555 rmap_walk(page, &rwc);
1556
1557 return !page_mapcount(page) ? true : false;
1558 }
1559
1560 static int page_not_mapped(struct page *page)
1561 {
1562 return !page_mapped(page);
1563 };
1564
1565 /**
1566 * try_to_munlock - try to munlock a page
1567 * @page: the page to be munlocked
1568 *
1569 * Called from munlock code. Checks all of the VMAs mapping the page
1570 * to make sure nobody else has this page mlocked. The page will be
1571 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1572 */
1573
1574 void try_to_munlock(struct page *page)
1575 {
1576 struct rmap_walk_control rwc = {
1577 .rmap_one = try_to_unmap_one,
1578 .arg = (void *)TTU_MUNLOCK,
1579 .done = page_not_mapped,
1580 .anon_lock = page_lock_anon_vma_read,
1581
1582 };
1583
1584 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1585 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1586
1587 rmap_walk(page, &rwc);
1588 }
1589
1590 void __put_anon_vma(struct anon_vma *anon_vma)
1591 {
1592 struct anon_vma *root = anon_vma->root;
1593
1594 anon_vma_free(anon_vma);
1595 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1596 anon_vma_free(root);
1597 }
1598
1599 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1600 struct rmap_walk_control *rwc)
1601 {
1602 struct anon_vma *anon_vma;
1603
1604 if (rwc->anon_lock)
1605 return rwc->anon_lock(page);
1606
1607 /*
1608 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1609 * because that depends on page_mapped(); but not all its usages
1610 * are holding mmap_sem. Users without mmap_sem are required to
1611 * take a reference count to prevent the anon_vma disappearing
1612 */
1613 anon_vma = page_anon_vma(page);
1614 if (!anon_vma)
1615 return NULL;
1616
1617 anon_vma_lock_read(anon_vma);
1618 return anon_vma;
1619 }
1620
1621 /*
1622 * rmap_walk_anon - do something to anonymous page using the object-based
1623 * rmap method
1624 * @page: the page to be handled
1625 * @rwc: control variable according to each walk type
1626 *
1627 * Find all the mappings of a page using the mapping pointer and the vma chains
1628 * contained in the anon_vma struct it points to.
1629 *
1630 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1631 * where the page was found will be held for write. So, we won't recheck
1632 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1633 * LOCKED.
1634 */
1635 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1636 bool locked)
1637 {
1638 struct anon_vma *anon_vma;
1639 pgoff_t pgoff_start, pgoff_end;
1640 struct anon_vma_chain *avc;
1641
1642 if (locked) {
1643 anon_vma = page_anon_vma(page);
1644 /* anon_vma disappear under us? */
1645 VM_BUG_ON_PAGE(!anon_vma, page);
1646 } else {
1647 anon_vma = rmap_walk_anon_lock(page, rwc);
1648 }
1649 if (!anon_vma)
1650 return;
1651
1652 pgoff_start = page_to_pgoff(page);
1653 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1654 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1655 pgoff_start, pgoff_end) {
1656 struct vm_area_struct *vma = avc->vma;
1657 unsigned long address = vma_address(page, vma);
1658
1659 cond_resched();
1660
1661 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1662 continue;
1663
1664 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1665 break;
1666 if (rwc->done && rwc->done(page))
1667 break;
1668 }
1669
1670 if (!locked)
1671 anon_vma_unlock_read(anon_vma);
1672 }
1673
1674 /*
1675 * rmap_walk_file - do something to file page using the object-based rmap method
1676 * @page: the page to be handled
1677 * @rwc: control variable according to each walk type
1678 *
1679 * Find all the mappings of a page using the mapping pointer and the vma chains
1680 * contained in the address_space struct it points to.
1681 *
1682 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1683 * where the page was found will be held for write. So, we won't recheck
1684 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1685 * LOCKED.
1686 */
1687 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1688 bool locked)
1689 {
1690 struct address_space *mapping = page_mapping(page);
1691 pgoff_t pgoff_start, pgoff_end;
1692 struct vm_area_struct *vma;
1693
1694 /*
1695 * The page lock not only makes sure that page->mapping cannot
1696 * suddenly be NULLified by truncation, it makes sure that the
1697 * structure at mapping cannot be freed and reused yet,
1698 * so we can safely take mapping->i_mmap_rwsem.
1699 */
1700 VM_BUG_ON_PAGE(!PageLocked(page), page);
1701
1702 if (!mapping)
1703 return;
1704
1705 pgoff_start = page_to_pgoff(page);
1706 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1707 if (!locked)
1708 i_mmap_lock_read(mapping);
1709 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1710 pgoff_start, pgoff_end) {
1711 unsigned long address = vma_address(page, vma);
1712
1713 cond_resched();
1714
1715 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1716 continue;
1717
1718 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1719 goto done;
1720 if (rwc->done && rwc->done(page))
1721 goto done;
1722 }
1723
1724 done:
1725 if (!locked)
1726 i_mmap_unlock_read(mapping);
1727 }
1728
1729 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1730 {
1731 if (unlikely(PageKsm(page)))
1732 rmap_walk_ksm(page, rwc);
1733 else if (PageAnon(page))
1734 rmap_walk_anon(page, rwc, false);
1735 else
1736 rmap_walk_file(page, rwc, false);
1737 }
1738
1739 /* Like rmap_walk, but caller holds relevant rmap lock */
1740 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1741 {
1742 /* no ksm support for now */
1743 VM_BUG_ON_PAGE(PageKsm(page), page);
1744 if (PageAnon(page))
1745 rmap_walk_anon(page, rwc, true);
1746 else
1747 rmap_walk_file(page, rwc, true);
1748 }
1749
1750 #ifdef CONFIG_HUGETLB_PAGE
1751 /*
1752 * The following three functions are for anonymous (private mapped) hugepages.
1753 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1754 * and no lru code, because we handle hugepages differently from common pages.
1755 */
1756 static void __hugepage_set_anon_rmap(struct page *page,
1757 struct vm_area_struct *vma, unsigned long address, int exclusive)
1758 {
1759 struct anon_vma *anon_vma = vma->anon_vma;
1760
1761 BUG_ON(!anon_vma);
1762
1763 if (PageAnon(page))
1764 return;
1765 if (!exclusive)
1766 anon_vma = anon_vma->root;
1767
1768 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1769 page->mapping = (struct address_space *) anon_vma;
1770 page->index = linear_page_index(vma, address);
1771 }
1772
1773 void hugepage_add_anon_rmap(struct page *page,
1774 struct vm_area_struct *vma, unsigned long address)
1775 {
1776 struct anon_vma *anon_vma = vma->anon_vma;
1777 int first;
1778
1779 BUG_ON(!PageLocked(page));
1780 BUG_ON(!anon_vma);
1781 /* address might be in next vma when migration races vma_adjust */
1782 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1783 if (first)
1784 __hugepage_set_anon_rmap(page, vma, address, 0);
1785 }
1786
1787 void hugepage_add_new_anon_rmap(struct page *page,
1788 struct vm_area_struct *vma, unsigned long address)
1789 {
1790 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1791 atomic_set(compound_mapcount_ptr(page), 0);
1792 __hugepage_set_anon_rmap(page, vma, address, 1);
1793 }
1794 #endif /* CONFIG_HUGETLB_PAGE */