]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/rmap.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66
67 #include <asm/tlbflush.h>
68
69 #include <trace/events/tlb.h>
70
71 #include "internal.h"
72
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 struct anon_vma *anon_vma;
79
80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 if (anon_vma) {
82 atomic_set(&anon_vma->refcount, 1);
83 anon_vma->degree = 1; /* Reference for first vma */
84 anon_vma->parent = anon_vma;
85 /*
86 * Initialise the anon_vma root to point to itself. If called
87 * from fork, the root will be reset to the parents anon_vma.
88 */
89 anon_vma->root = anon_vma;
90 }
91
92 return anon_vma;
93 }
94
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 VM_BUG_ON(atomic_read(&anon_vma->refcount));
98
99 /*
100 * Synchronize against page_lock_anon_vma_read() such that
101 * we can safely hold the lock without the anon_vma getting
102 * freed.
103 *
104 * Relies on the full mb implied by the atomic_dec_and_test() from
105 * put_anon_vma() against the acquire barrier implied by
106 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 *
108 * page_lock_anon_vma_read() VS put_anon_vma()
109 * down_read_trylock() atomic_dec_and_test()
110 * LOCK MB
111 * atomic_read() rwsem_is_locked()
112 *
113 * LOCK should suffice since the actual taking of the lock must
114 * happen _before_ what follows.
115 */
116 might_sleep();
117 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 anon_vma_lock_write(anon_vma);
119 anon_vma_unlock_write(anon_vma);
120 }
121
122 kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 struct anon_vma_chain *avc,
137 struct anon_vma *anon_vma)
138 {
139 avc->vma = vma;
140 avc->anon_vma = anon_vma;
141 list_add(&avc->same_vma, &vma->anon_vma_chain);
142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144
145 /**
146 * __anon_vma_prepare - attach an anon_vma to a memory region
147 * @vma: the memory region in question
148 *
149 * This makes sure the memory mapping described by 'vma' has
150 * an 'anon_vma' attached to it, so that we can associate the
151 * anonymous pages mapped into it with that anon_vma.
152 *
153 * The common case will be that we already have one, which
154 * is handled inline by anon_vma_prepare(). But if
155 * not we either need to find an adjacent mapping that we
156 * can re-use the anon_vma from (very common when the only
157 * reason for splitting a vma has been mprotect()), or we
158 * allocate a new one.
159 *
160 * Anon-vma allocations are very subtle, because we may have
161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162 * and that may actually touch the spinlock even in the newly
163 * allocated vma (it depends on RCU to make sure that the
164 * anon_vma isn't actually destroyed).
165 *
166 * As a result, we need to do proper anon_vma locking even
167 * for the new allocation. At the same time, we do not want
168 * to do any locking for the common case of already having
169 * an anon_vma.
170 *
171 * This must be called with the mmap_sem held for reading.
172 */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 struct mm_struct *mm = vma->vm_mm;
176 struct anon_vma *anon_vma, *allocated;
177 struct anon_vma_chain *avc;
178
179 might_sleep();
180
181 avc = anon_vma_chain_alloc(GFP_KERNEL);
182 if (!avc)
183 goto out_enomem;
184
185 anon_vma = find_mergeable_anon_vma(vma);
186 allocated = NULL;
187 if (!anon_vma) {
188 anon_vma = anon_vma_alloc();
189 if (unlikely(!anon_vma))
190 goto out_enomem_free_avc;
191 allocated = anon_vma;
192 }
193
194 anon_vma_lock_write(anon_vma);
195 /* page_table_lock to protect against threads */
196 spin_lock(&mm->page_table_lock);
197 if (likely(!vma->anon_vma)) {
198 vma->anon_vma = anon_vma;
199 anon_vma_chain_link(vma, avc, anon_vma);
200 /* vma reference or self-parent link for new root */
201 anon_vma->degree++;
202 allocated = NULL;
203 avc = NULL;
204 }
205 spin_unlock(&mm->page_table_lock);
206 anon_vma_unlock_write(anon_vma);
207
208 if (unlikely(allocated))
209 put_anon_vma(allocated);
210 if (unlikely(avc))
211 anon_vma_chain_free(avc);
212
213 return 0;
214
215 out_enomem_free_avc:
216 anon_vma_chain_free(avc);
217 out_enomem:
218 return -ENOMEM;
219 }
220
221 /*
222 * This is a useful helper function for locking the anon_vma root as
223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224 * have the same vma.
225 *
226 * Such anon_vma's should have the same root, so you'd expect to see
227 * just a single mutex_lock for the whole traversal.
228 */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 struct anon_vma *new_root = anon_vma->root;
232 if (new_root != root) {
233 if (WARN_ON_ONCE(root))
234 up_write(&root->rwsem);
235 root = new_root;
236 down_write(&root->rwsem);
237 }
238 return root;
239 }
240
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 if (root)
244 up_write(&root->rwsem);
245 }
246
247 /*
248 * Attach the anon_vmas from src to dst.
249 * Returns 0 on success, -ENOMEM on failure.
250 *
251 * If dst->anon_vma is NULL this function tries to find and reuse existing
252 * anon_vma which has no vmas and only one child anon_vma. This prevents
253 * degradation of anon_vma hierarchy to endless linear chain in case of
254 * constantly forking task. On the other hand, an anon_vma with more than one
255 * child isn't reused even if there was no alive vma, thus rmap walker has a
256 * good chance of avoiding scanning the whole hierarchy when it searches where
257 * page is mapped.
258 */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 struct anon_vma_chain *avc, *pavc;
262 struct anon_vma *root = NULL;
263
264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 struct anon_vma *anon_vma;
266
267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 if (unlikely(!avc)) {
269 unlock_anon_vma_root(root);
270 root = NULL;
271 avc = anon_vma_chain_alloc(GFP_KERNEL);
272 if (!avc)
273 goto enomem_failure;
274 }
275 anon_vma = pavc->anon_vma;
276 root = lock_anon_vma_root(root, anon_vma);
277 anon_vma_chain_link(dst, avc, anon_vma);
278
279 /*
280 * Reuse existing anon_vma if its degree lower than two,
281 * that means it has no vma and only one anon_vma child.
282 *
283 * Do not chose parent anon_vma, otherwise first child
284 * will always reuse it. Root anon_vma is never reused:
285 * it has self-parent reference and at least one child.
286 */
287 if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 anon_vma->degree < 2)
289 dst->anon_vma = anon_vma;
290 }
291 if (dst->anon_vma)
292 dst->anon_vma->degree++;
293 unlock_anon_vma_root(root);
294 return 0;
295
296 enomem_failure:
297 /*
298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 * decremented in unlink_anon_vmas().
300 * We can safely do this because callers of anon_vma_clone() don't care
301 * about dst->anon_vma if anon_vma_clone() failed.
302 */
303 dst->anon_vma = NULL;
304 unlink_anon_vmas(dst);
305 return -ENOMEM;
306 }
307
308 /*
309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
310 * the corresponding VMA in the parent process is attached to.
311 * Returns 0 on success, non-zero on failure.
312 */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 struct anon_vma_chain *avc;
316 struct anon_vma *anon_vma;
317 int error;
318
319 /* Don't bother if the parent process has no anon_vma here. */
320 if (!pvma->anon_vma)
321 return 0;
322
323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 vma->anon_vma = NULL;
325
326 /*
327 * First, attach the new VMA to the parent VMA's anon_vmas,
328 * so rmap can find non-COWed pages in child processes.
329 */
330 error = anon_vma_clone(vma, pvma);
331 if (error)
332 return error;
333
334 /* An existing anon_vma has been reused, all done then. */
335 if (vma->anon_vma)
336 return 0;
337
338 /* Then add our own anon_vma. */
339 anon_vma = anon_vma_alloc();
340 if (!anon_vma)
341 goto out_error;
342 avc = anon_vma_chain_alloc(GFP_KERNEL);
343 if (!avc)
344 goto out_error_free_anon_vma;
345
346 /*
347 * The root anon_vma's spinlock is the lock actually used when we
348 * lock any of the anon_vmas in this anon_vma tree.
349 */
350 anon_vma->root = pvma->anon_vma->root;
351 anon_vma->parent = pvma->anon_vma;
352 /*
353 * With refcounts, an anon_vma can stay around longer than the
354 * process it belongs to. The root anon_vma needs to be pinned until
355 * this anon_vma is freed, because the lock lives in the root.
356 */
357 get_anon_vma(anon_vma->root);
358 /* Mark this anon_vma as the one where our new (COWed) pages go. */
359 vma->anon_vma = anon_vma;
360 anon_vma_lock_write(anon_vma);
361 anon_vma_chain_link(vma, avc, anon_vma);
362 anon_vma->parent->degree++;
363 anon_vma_unlock_write(anon_vma);
364
365 return 0;
366
367 out_error_free_anon_vma:
368 put_anon_vma(anon_vma);
369 out_error:
370 unlink_anon_vmas(vma);
371 return -ENOMEM;
372 }
373
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 struct anon_vma_chain *avc, *next;
377 struct anon_vma *root = NULL;
378
379 /*
380 * Unlink each anon_vma chained to the VMA. This list is ordered
381 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 */
383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 struct anon_vma *anon_vma = avc->anon_vma;
385
386 root = lock_anon_vma_root(root, anon_vma);
387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388
389 /*
390 * Leave empty anon_vmas on the list - we'll need
391 * to free them outside the lock.
392 */
393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 anon_vma->parent->degree--;
395 continue;
396 }
397
398 list_del(&avc->same_vma);
399 anon_vma_chain_free(avc);
400 }
401 if (vma->anon_vma)
402 vma->anon_vma->degree--;
403 unlock_anon_vma_root(root);
404
405 /*
406 * Iterate the list once more, it now only contains empty and unlinked
407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 * needing to write-acquire the anon_vma->root->rwsem.
409 */
410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 struct anon_vma *anon_vma = avc->anon_vma;
412
413 VM_WARN_ON(anon_vma->degree);
414 put_anon_vma(anon_vma);
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 }
420
421 static void anon_vma_ctor(void *data)
422 {
423 struct anon_vma *anon_vma = data;
424
425 init_rwsem(&anon_vma->rwsem);
426 atomic_set(&anon_vma->refcount, 0);
427 anon_vma->rb_root = RB_ROOT;
428 }
429
430 void __init anon_vma_init(void)
431 {
432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 anon_vma_ctor);
435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 SLAB_PANIC|SLAB_ACCOUNT);
437 }
438
439 /*
440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 *
442 * Since there is no serialization what so ever against page_remove_rmap()
443 * the best this function can do is return a locked anon_vma that might
444 * have been relevant to this page.
445 *
446 * The page might have been remapped to a different anon_vma or the anon_vma
447 * returned may already be freed (and even reused).
448 *
449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451 * ensure that any anon_vma obtained from the page will still be valid for as
452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 *
454 * All users of this function must be very careful when walking the anon_vma
455 * chain and verify that the page in question is indeed mapped in it
456 * [ something equivalent to page_mapped_in_vma() ].
457 *
458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459 * that the anon_vma pointer from page->mapping is valid if there is a
460 * mapcount, we can dereference the anon_vma after observing those.
461 */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 struct anon_vma *anon_vma = NULL;
465 unsigned long anon_mapping;
466
467 rcu_read_lock();
468 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 goto out;
471 if (!page_mapped(page))
472 goto out;
473
474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 anon_vma = NULL;
477 goto out;
478 }
479
480 /*
481 * If this page is still mapped, then its anon_vma cannot have been
482 * freed. But if it has been unmapped, we have no security against the
483 * anon_vma structure being freed and reused (for another anon_vma:
484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 * above cannot corrupt).
486 */
487 if (!page_mapped(page)) {
488 rcu_read_unlock();
489 put_anon_vma(anon_vma);
490 return NULL;
491 }
492 out:
493 rcu_read_unlock();
494
495 return anon_vma;
496 }
497
498 /*
499 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 *
501 * Its a little more complex as it tries to keep the fast path to a single
502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503 * reference like with page_get_anon_vma() and then block on the mutex.
504 */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 struct anon_vma *anon_vma = NULL;
508 struct anon_vma *root_anon_vma;
509 unsigned long anon_mapping;
510
511 rcu_read_lock();
512 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 goto out;
515 if (!page_mapped(page))
516 goto out;
517
518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 root_anon_vma = READ_ONCE(anon_vma->root);
520 if (down_read_trylock(&root_anon_vma->rwsem)) {
521 /*
522 * If the page is still mapped, then this anon_vma is still
523 * its anon_vma, and holding the mutex ensures that it will
524 * not go away, see anon_vma_free().
525 */
526 if (!page_mapped(page)) {
527 up_read(&root_anon_vma->rwsem);
528 anon_vma = NULL;
529 }
530 goto out;
531 }
532
533 /* trylock failed, we got to sleep */
534 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 anon_vma = NULL;
536 goto out;
537 }
538
539 if (!page_mapped(page)) {
540 rcu_read_unlock();
541 put_anon_vma(anon_vma);
542 return NULL;
543 }
544
545 /* we pinned the anon_vma, its safe to sleep */
546 rcu_read_unlock();
547 anon_vma_lock_read(anon_vma);
548
549 if (atomic_dec_and_test(&anon_vma->refcount)) {
550 /*
551 * Oops, we held the last refcount, release the lock
552 * and bail -- can't simply use put_anon_vma() because
553 * we'll deadlock on the anon_vma_lock_write() recursion.
554 */
555 anon_vma_unlock_read(anon_vma);
556 __put_anon_vma(anon_vma);
557 anon_vma = NULL;
558 }
559
560 return anon_vma;
561
562 out:
563 rcu_read_unlock();
564 return anon_vma;
565 }
566
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 anon_vma_unlock_read(anon_vma);
570 }
571
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575 * important if a PTE was dirty when it was unmapped that it's flushed
576 * before any IO is initiated on the page to prevent lost writes. Similarly,
577 * it must be flushed before freeing to prevent data leakage.
578 */
579 void try_to_unmap_flush(void)
580 {
581 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582
583 if (!tlb_ubc->flush_required)
584 return;
585
586 arch_tlbbatch_flush(&tlb_ubc->arch);
587 tlb_ubc->flush_required = false;
588 tlb_ubc->writable = false;
589 }
590
591 /* Flush iff there are potentially writable TLB entries that can race with IO */
592 void try_to_unmap_flush_dirty(void)
593 {
594 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
595
596 if (tlb_ubc->writable)
597 try_to_unmap_flush();
598 }
599
600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
601 {
602 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
603
604 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
605 tlb_ubc->flush_required = true;
606
607 /*
608 * If the PTE was dirty then it's best to assume it's writable. The
609 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
610 * before the page is queued for IO.
611 */
612 if (writable)
613 tlb_ubc->writable = true;
614 }
615
616 /*
617 * Returns true if the TLB flush should be deferred to the end of a batch of
618 * unmap operations to reduce IPIs.
619 */
620 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
621 {
622 bool should_defer = false;
623
624 if (!(flags & TTU_BATCH_FLUSH))
625 return false;
626
627 /* If remote CPUs need to be flushed then defer batch the flush */
628 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
629 should_defer = true;
630 put_cpu();
631
632 return should_defer;
633 }
634 #else
635 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
636 {
637 }
638
639 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
640 {
641 return false;
642 }
643 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
644
645 /*
646 * At what user virtual address is page expected in vma?
647 * Caller should check the page is actually part of the vma.
648 */
649 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
650 {
651 unsigned long address;
652 if (PageAnon(page)) {
653 struct anon_vma *page__anon_vma = page_anon_vma(page);
654 /*
655 * Note: swapoff's unuse_vma() is more efficient with this
656 * check, and needs it to match anon_vma when KSM is active.
657 */
658 if (!vma->anon_vma || !page__anon_vma ||
659 vma->anon_vma->root != page__anon_vma->root)
660 return -EFAULT;
661 } else if (page->mapping) {
662 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
663 return -EFAULT;
664 } else
665 return -EFAULT;
666 address = __vma_address(page, vma);
667 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
668 return -EFAULT;
669 return address;
670 }
671
672 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
673 {
674 pgd_t *pgd;
675 p4d_t *p4d;
676 pud_t *pud;
677 pmd_t *pmd = NULL;
678 pmd_t pmde;
679
680 pgd = pgd_offset(mm, address);
681 if (!pgd_present(*pgd))
682 goto out;
683
684 p4d = p4d_offset(pgd, address);
685 if (!p4d_present(*p4d))
686 goto out;
687
688 pud = pud_offset(p4d, address);
689 if (!pud_present(*pud))
690 goto out;
691
692 pmd = pmd_offset(pud, address);
693 /*
694 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
695 * without holding anon_vma lock for write. So when looking for a
696 * genuine pmde (in which to find pte), test present and !THP together.
697 */
698 pmde = *pmd;
699 barrier();
700 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
701 pmd = NULL;
702 out:
703 return pmd;
704 }
705
706 struct page_referenced_arg {
707 int mapcount;
708 int referenced;
709 unsigned long vm_flags;
710 struct mem_cgroup *memcg;
711 };
712 /*
713 * arg: page_referenced_arg will be passed
714 */
715 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
716 unsigned long address, void *arg)
717 {
718 struct page_referenced_arg *pra = arg;
719 struct page_vma_mapped_walk pvmw = {
720 .page = page,
721 .vma = vma,
722 .address = address,
723 };
724 int referenced = 0;
725
726 while (page_vma_mapped_walk(&pvmw)) {
727 address = pvmw.address;
728
729 if (vma->vm_flags & VM_LOCKED) {
730 page_vma_mapped_walk_done(&pvmw);
731 pra->vm_flags |= VM_LOCKED;
732 return false; /* To break the loop */
733 }
734
735 if (pvmw.pte) {
736 if (ptep_clear_flush_young_notify(vma, address,
737 pvmw.pte)) {
738 /*
739 * Don't treat a reference through
740 * a sequentially read mapping as such.
741 * If the page has been used in another mapping,
742 * we will catch it; if this other mapping is
743 * already gone, the unmap path will have set
744 * PG_referenced or activated the page.
745 */
746 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
747 referenced++;
748 }
749 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
750 if (pmdp_clear_flush_young_notify(vma, address,
751 pvmw.pmd))
752 referenced++;
753 } else {
754 /* unexpected pmd-mapped page? */
755 WARN_ON_ONCE(1);
756 }
757
758 pra->mapcount--;
759 }
760
761 if (referenced)
762 clear_page_idle(page);
763 if (test_and_clear_page_young(page))
764 referenced++;
765
766 if (referenced) {
767 pra->referenced++;
768 pra->vm_flags |= vma->vm_flags;
769 }
770
771 if (!pra->mapcount)
772 return false; /* To break the loop */
773
774 return true;
775 }
776
777 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
778 {
779 struct page_referenced_arg *pra = arg;
780 struct mem_cgroup *memcg = pra->memcg;
781
782 if (!mm_match_cgroup(vma->vm_mm, memcg))
783 return true;
784
785 return false;
786 }
787
788 /**
789 * page_referenced - test if the page was referenced
790 * @page: the page to test
791 * @is_locked: caller holds lock on the page
792 * @memcg: target memory cgroup
793 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
794 *
795 * Quick test_and_clear_referenced for all mappings to a page,
796 * returns the number of ptes which referenced the page.
797 */
798 int page_referenced(struct page *page,
799 int is_locked,
800 struct mem_cgroup *memcg,
801 unsigned long *vm_flags)
802 {
803 int we_locked = 0;
804 struct page_referenced_arg pra = {
805 .mapcount = total_mapcount(page),
806 .memcg = memcg,
807 };
808 struct rmap_walk_control rwc = {
809 .rmap_one = page_referenced_one,
810 .arg = (void *)&pra,
811 .anon_lock = page_lock_anon_vma_read,
812 };
813
814 *vm_flags = 0;
815 if (!page_mapped(page))
816 return 0;
817
818 if (!page_rmapping(page))
819 return 0;
820
821 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
822 we_locked = trylock_page(page);
823 if (!we_locked)
824 return 1;
825 }
826
827 /*
828 * If we are reclaiming on behalf of a cgroup, skip
829 * counting on behalf of references from different
830 * cgroups
831 */
832 if (memcg) {
833 rwc.invalid_vma = invalid_page_referenced_vma;
834 }
835
836 rmap_walk(page, &rwc);
837 *vm_flags = pra.vm_flags;
838
839 if (we_locked)
840 unlock_page(page);
841
842 return pra.referenced;
843 }
844
845 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
846 unsigned long address, void *arg)
847 {
848 struct page_vma_mapped_walk pvmw = {
849 .page = page,
850 .vma = vma,
851 .address = address,
852 .flags = PVMW_SYNC,
853 };
854 int *cleaned = arg;
855
856 while (page_vma_mapped_walk(&pvmw)) {
857 int ret = 0;
858 address = pvmw.address;
859 if (pvmw.pte) {
860 pte_t entry;
861 pte_t *pte = pvmw.pte;
862
863 if (!pte_dirty(*pte) && !pte_write(*pte))
864 continue;
865
866 flush_cache_page(vma, address, pte_pfn(*pte));
867 entry = ptep_clear_flush(vma, address, pte);
868 entry = pte_wrprotect(entry);
869 entry = pte_mkclean(entry);
870 set_pte_at(vma->vm_mm, address, pte, entry);
871 ret = 1;
872 } else {
873 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
874 pmd_t *pmd = pvmw.pmd;
875 pmd_t entry;
876
877 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
878 continue;
879
880 flush_cache_page(vma, address, page_to_pfn(page));
881 entry = pmdp_huge_clear_flush(vma, address, pmd);
882 entry = pmd_wrprotect(entry);
883 entry = pmd_mkclean(entry);
884 set_pmd_at(vma->vm_mm, address, pmd, entry);
885 ret = 1;
886 #else
887 /* unexpected pmd-mapped page? */
888 WARN_ON_ONCE(1);
889 #endif
890 }
891
892 if (ret) {
893 mmu_notifier_invalidate_page(vma->vm_mm, address);
894 (*cleaned)++;
895 }
896 }
897
898 return true;
899 }
900
901 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
902 {
903 if (vma->vm_flags & VM_SHARED)
904 return false;
905
906 return true;
907 }
908
909 int page_mkclean(struct page *page)
910 {
911 int cleaned = 0;
912 struct address_space *mapping;
913 struct rmap_walk_control rwc = {
914 .arg = (void *)&cleaned,
915 .rmap_one = page_mkclean_one,
916 .invalid_vma = invalid_mkclean_vma,
917 };
918
919 BUG_ON(!PageLocked(page));
920
921 if (!page_mapped(page))
922 return 0;
923
924 mapping = page_mapping(page);
925 if (!mapping)
926 return 0;
927
928 rmap_walk(page, &rwc);
929
930 return cleaned;
931 }
932 EXPORT_SYMBOL_GPL(page_mkclean);
933
934 /**
935 * page_move_anon_rmap - move a page to our anon_vma
936 * @page: the page to move to our anon_vma
937 * @vma: the vma the page belongs to
938 *
939 * When a page belongs exclusively to one process after a COW event,
940 * that page can be moved into the anon_vma that belongs to just that
941 * process, so the rmap code will not search the parent or sibling
942 * processes.
943 */
944 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
945 {
946 struct anon_vma *anon_vma = vma->anon_vma;
947
948 page = compound_head(page);
949
950 VM_BUG_ON_PAGE(!PageLocked(page), page);
951 VM_BUG_ON_VMA(!anon_vma, vma);
952
953 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
954 /*
955 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
956 * simultaneously, so a concurrent reader (eg page_referenced()'s
957 * PageAnon()) will not see one without the other.
958 */
959 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
960 }
961
962 /**
963 * __page_set_anon_rmap - set up new anonymous rmap
964 * @page: Page to add to rmap
965 * @vma: VM area to add page to.
966 * @address: User virtual address of the mapping
967 * @exclusive: the page is exclusively owned by the current process
968 */
969 static void __page_set_anon_rmap(struct page *page,
970 struct vm_area_struct *vma, unsigned long address, int exclusive)
971 {
972 struct anon_vma *anon_vma = vma->anon_vma;
973
974 BUG_ON(!anon_vma);
975
976 if (PageAnon(page))
977 return;
978
979 /*
980 * If the page isn't exclusively mapped into this vma,
981 * we must use the _oldest_ possible anon_vma for the
982 * page mapping!
983 */
984 if (!exclusive)
985 anon_vma = anon_vma->root;
986
987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
988 page->mapping = (struct address_space *) anon_vma;
989 page->index = linear_page_index(vma, address);
990 }
991
992 /**
993 * __page_check_anon_rmap - sanity check anonymous rmap addition
994 * @page: the page to add the mapping to
995 * @vma: the vm area in which the mapping is added
996 * @address: the user virtual address mapped
997 */
998 static void __page_check_anon_rmap(struct page *page,
999 struct vm_area_struct *vma, unsigned long address)
1000 {
1001 #ifdef CONFIG_DEBUG_VM
1002 /*
1003 * The page's anon-rmap details (mapping and index) are guaranteed to
1004 * be set up correctly at this point.
1005 *
1006 * We have exclusion against page_add_anon_rmap because the caller
1007 * always holds the page locked, except if called from page_dup_rmap,
1008 * in which case the page is already known to be setup.
1009 *
1010 * We have exclusion against page_add_new_anon_rmap because those pages
1011 * are initially only visible via the pagetables, and the pte is locked
1012 * over the call to page_add_new_anon_rmap.
1013 */
1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1015 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1016 #endif
1017 }
1018
1019 /**
1020 * page_add_anon_rmap - add pte mapping to an anonymous page
1021 * @page: the page to add the mapping to
1022 * @vma: the vm area in which the mapping is added
1023 * @address: the user virtual address mapped
1024 * @compound: charge the page as compound or small page
1025 *
1026 * The caller needs to hold the pte lock, and the page must be locked in
1027 * the anon_vma case: to serialize mapping,index checking after setting,
1028 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1029 * (but PageKsm is never downgraded to PageAnon).
1030 */
1031 void page_add_anon_rmap(struct page *page,
1032 struct vm_area_struct *vma, unsigned long address, bool compound)
1033 {
1034 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1035 }
1036
1037 /*
1038 * Special version of the above for do_swap_page, which often runs
1039 * into pages that are exclusively owned by the current process.
1040 * Everybody else should continue to use page_add_anon_rmap above.
1041 */
1042 void do_page_add_anon_rmap(struct page *page,
1043 struct vm_area_struct *vma, unsigned long address, int flags)
1044 {
1045 bool compound = flags & RMAP_COMPOUND;
1046 bool first;
1047
1048 if (compound) {
1049 atomic_t *mapcount;
1050 VM_BUG_ON_PAGE(!PageLocked(page), page);
1051 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1052 mapcount = compound_mapcount_ptr(page);
1053 first = atomic_inc_and_test(mapcount);
1054 } else {
1055 first = atomic_inc_and_test(&page->_mapcount);
1056 }
1057
1058 if (first) {
1059 int nr = compound ? hpage_nr_pages(page) : 1;
1060 /*
1061 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1062 * these counters are not modified in interrupt context, and
1063 * pte lock(a spinlock) is held, which implies preemption
1064 * disabled.
1065 */
1066 if (compound)
1067 __inc_node_page_state(page, NR_ANON_THPS);
1068 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1069 }
1070 if (unlikely(PageKsm(page)))
1071 return;
1072
1073 VM_BUG_ON_PAGE(!PageLocked(page), page);
1074
1075 /* address might be in next vma when migration races vma_adjust */
1076 if (first)
1077 __page_set_anon_rmap(page, vma, address,
1078 flags & RMAP_EXCLUSIVE);
1079 else
1080 __page_check_anon_rmap(page, vma, address);
1081 }
1082
1083 /**
1084 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1085 * @page: the page to add the mapping to
1086 * @vma: the vm area in which the mapping is added
1087 * @address: the user virtual address mapped
1088 * @compound: charge the page as compound or small page
1089 *
1090 * Same as page_add_anon_rmap but must only be called on *new* pages.
1091 * This means the inc-and-test can be bypassed.
1092 * Page does not have to be locked.
1093 */
1094 void page_add_new_anon_rmap(struct page *page,
1095 struct vm_area_struct *vma, unsigned long address, bool compound)
1096 {
1097 int nr = compound ? hpage_nr_pages(page) : 1;
1098
1099 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1100 __SetPageSwapBacked(page);
1101 if (compound) {
1102 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1103 /* increment count (starts at -1) */
1104 atomic_set(compound_mapcount_ptr(page), 0);
1105 __inc_node_page_state(page, NR_ANON_THPS);
1106 } else {
1107 /* Anon THP always mapped first with PMD */
1108 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1109 /* increment count (starts at -1) */
1110 atomic_set(&page->_mapcount, 0);
1111 }
1112 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1113 __page_set_anon_rmap(page, vma, address, 1);
1114 }
1115
1116 /**
1117 * page_add_file_rmap - add pte mapping to a file page
1118 * @page: the page to add the mapping to
1119 *
1120 * The caller needs to hold the pte lock.
1121 */
1122 void page_add_file_rmap(struct page *page, bool compound)
1123 {
1124 int i, nr = 1;
1125
1126 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1127 lock_page_memcg(page);
1128 if (compound && PageTransHuge(page)) {
1129 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1130 if (atomic_inc_and_test(&page[i]._mapcount))
1131 nr++;
1132 }
1133 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1134 goto out;
1135 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1136 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1137 } else {
1138 if (PageTransCompound(page) && page_mapping(page)) {
1139 VM_WARN_ON_ONCE(!PageLocked(page));
1140
1141 SetPageDoubleMap(compound_head(page));
1142 if (PageMlocked(page))
1143 clear_page_mlock(compound_head(page));
1144 }
1145 if (!atomic_inc_and_test(&page->_mapcount))
1146 goto out;
1147 }
1148 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1149 out:
1150 unlock_page_memcg(page);
1151 }
1152
1153 static void page_remove_file_rmap(struct page *page, bool compound)
1154 {
1155 int i, nr = 1;
1156
1157 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1158 lock_page_memcg(page);
1159
1160 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1161 if (unlikely(PageHuge(page))) {
1162 /* hugetlb pages are always mapped with pmds */
1163 atomic_dec(compound_mapcount_ptr(page));
1164 goto out;
1165 }
1166
1167 /* page still mapped by someone else? */
1168 if (compound && PageTransHuge(page)) {
1169 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1170 if (atomic_add_negative(-1, &page[i]._mapcount))
1171 nr++;
1172 }
1173 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1174 goto out;
1175 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1176 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1177 } else {
1178 if (!atomic_add_negative(-1, &page->_mapcount))
1179 goto out;
1180 }
1181
1182 /*
1183 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1184 * these counters are not modified in interrupt context, and
1185 * pte lock(a spinlock) is held, which implies preemption disabled.
1186 */
1187 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1188
1189 if (unlikely(PageMlocked(page)))
1190 clear_page_mlock(page);
1191 out:
1192 unlock_page_memcg(page);
1193 }
1194
1195 static void page_remove_anon_compound_rmap(struct page *page)
1196 {
1197 int i, nr;
1198
1199 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1200 return;
1201
1202 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1203 if (unlikely(PageHuge(page)))
1204 return;
1205
1206 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1207 return;
1208
1209 __dec_node_page_state(page, NR_ANON_THPS);
1210
1211 if (TestClearPageDoubleMap(page)) {
1212 /*
1213 * Subpages can be mapped with PTEs too. Check how many of
1214 * themi are still mapped.
1215 */
1216 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1217 if (atomic_add_negative(-1, &page[i]._mapcount))
1218 nr++;
1219 }
1220 } else {
1221 nr = HPAGE_PMD_NR;
1222 }
1223
1224 if (unlikely(PageMlocked(page)))
1225 clear_page_mlock(page);
1226
1227 if (nr) {
1228 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1229 deferred_split_huge_page(page);
1230 }
1231 }
1232
1233 /**
1234 * page_remove_rmap - take down pte mapping from a page
1235 * @page: page to remove mapping from
1236 * @compound: uncharge the page as compound or small page
1237 *
1238 * The caller needs to hold the pte lock.
1239 */
1240 void page_remove_rmap(struct page *page, bool compound)
1241 {
1242 if (!PageAnon(page))
1243 return page_remove_file_rmap(page, compound);
1244
1245 if (compound)
1246 return page_remove_anon_compound_rmap(page);
1247
1248 /* page still mapped by someone else? */
1249 if (!atomic_add_negative(-1, &page->_mapcount))
1250 return;
1251
1252 /*
1253 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1254 * these counters are not modified in interrupt context, and
1255 * pte lock(a spinlock) is held, which implies preemption disabled.
1256 */
1257 __dec_node_page_state(page, NR_ANON_MAPPED);
1258
1259 if (unlikely(PageMlocked(page)))
1260 clear_page_mlock(page);
1261
1262 if (PageTransCompound(page))
1263 deferred_split_huge_page(compound_head(page));
1264
1265 /*
1266 * It would be tidy to reset the PageAnon mapping here,
1267 * but that might overwrite a racing page_add_anon_rmap
1268 * which increments mapcount after us but sets mapping
1269 * before us: so leave the reset to free_hot_cold_page,
1270 * and remember that it's only reliable while mapped.
1271 * Leaving it set also helps swapoff to reinstate ptes
1272 * faster for those pages still in swapcache.
1273 */
1274 }
1275
1276 /*
1277 * @arg: enum ttu_flags will be passed to this argument
1278 */
1279 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1280 unsigned long address, void *arg)
1281 {
1282 struct mm_struct *mm = vma->vm_mm;
1283 struct page_vma_mapped_walk pvmw = {
1284 .page = page,
1285 .vma = vma,
1286 .address = address,
1287 };
1288 pte_t pteval;
1289 struct page *subpage;
1290 bool ret = true;
1291 enum ttu_flags flags = (enum ttu_flags)arg;
1292
1293 /* munlock has nothing to gain from examining un-locked vmas */
1294 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1295 return true;
1296
1297 if (flags & TTU_SPLIT_HUGE_PMD) {
1298 split_huge_pmd_address(vma, address,
1299 flags & TTU_MIGRATION, page);
1300 }
1301
1302 while (page_vma_mapped_walk(&pvmw)) {
1303 /*
1304 * If the page is mlock()d, we cannot swap it out.
1305 * If it's recently referenced (perhaps page_referenced
1306 * skipped over this mm) then we should reactivate it.
1307 */
1308 if (!(flags & TTU_IGNORE_MLOCK)) {
1309 if (vma->vm_flags & VM_LOCKED) {
1310 /* PTE-mapped THP are never mlocked */
1311 if (!PageTransCompound(page)) {
1312 /*
1313 * Holding pte lock, we do *not* need
1314 * mmap_sem here
1315 */
1316 mlock_vma_page(page);
1317 }
1318 ret = false;
1319 page_vma_mapped_walk_done(&pvmw);
1320 break;
1321 }
1322 if (flags & TTU_MUNLOCK)
1323 continue;
1324 }
1325
1326 /* Unexpected PMD-mapped THP? */
1327 VM_BUG_ON_PAGE(!pvmw.pte, page);
1328
1329 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1330 address = pvmw.address;
1331
1332
1333 if (!(flags & TTU_IGNORE_ACCESS)) {
1334 if (ptep_clear_flush_young_notify(vma, address,
1335 pvmw.pte)) {
1336 ret = false;
1337 page_vma_mapped_walk_done(&pvmw);
1338 break;
1339 }
1340 }
1341
1342 /* Nuke the page table entry. */
1343 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1344 if (should_defer_flush(mm, flags)) {
1345 /*
1346 * We clear the PTE but do not flush so potentially
1347 * a remote CPU could still be writing to the page.
1348 * If the entry was previously clean then the
1349 * architecture must guarantee that a clear->dirty
1350 * transition on a cached TLB entry is written through
1351 * and traps if the PTE is unmapped.
1352 */
1353 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1354
1355 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1356 } else {
1357 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1358 }
1359
1360 /* Move the dirty bit to the page. Now the pte is gone. */
1361 if (pte_dirty(pteval))
1362 set_page_dirty(page);
1363
1364 /* Update high watermark before we lower rss */
1365 update_hiwater_rss(mm);
1366
1367 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1368 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1369 if (PageHuge(page)) {
1370 int nr = 1 << compound_order(page);
1371 hugetlb_count_sub(nr, mm);
1372 set_huge_swap_pte_at(mm, address,
1373 pvmw.pte, pteval,
1374 vma_mmu_pagesize(vma));
1375 } else {
1376 dec_mm_counter(mm, mm_counter(page));
1377 set_pte_at(mm, address, pvmw.pte, pteval);
1378 }
1379
1380 } else if (pte_unused(pteval)) {
1381 /*
1382 * The guest indicated that the page content is of no
1383 * interest anymore. Simply discard the pte, vmscan
1384 * will take care of the rest.
1385 */
1386 dec_mm_counter(mm, mm_counter(page));
1387 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1388 (flags & TTU_MIGRATION)) {
1389 swp_entry_t entry;
1390 pte_t swp_pte;
1391 /*
1392 * Store the pfn of the page in a special migration
1393 * pte. do_swap_page() will wait until the migration
1394 * pte is removed and then restart fault handling.
1395 */
1396 entry = make_migration_entry(subpage,
1397 pte_write(pteval));
1398 swp_pte = swp_entry_to_pte(entry);
1399 if (pte_soft_dirty(pteval))
1400 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1401 set_pte_at(mm, address, pvmw.pte, swp_pte);
1402 } else if (PageAnon(page)) {
1403 swp_entry_t entry = { .val = page_private(subpage) };
1404 pte_t swp_pte;
1405 /*
1406 * Store the swap location in the pte.
1407 * See handle_pte_fault() ...
1408 */
1409 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1410 WARN_ON_ONCE(1);
1411 ret = false;
1412 page_vma_mapped_walk_done(&pvmw);
1413 break;
1414 }
1415
1416 /* MADV_FREE page check */
1417 if (!PageSwapBacked(page)) {
1418 if (!PageDirty(page)) {
1419 dec_mm_counter(mm, MM_ANONPAGES);
1420 goto discard;
1421 }
1422
1423 /*
1424 * If the page was redirtied, it cannot be
1425 * discarded. Remap the page to page table.
1426 */
1427 set_pte_at(mm, address, pvmw.pte, pteval);
1428 SetPageSwapBacked(page);
1429 ret = false;
1430 page_vma_mapped_walk_done(&pvmw);
1431 break;
1432 }
1433
1434 if (swap_duplicate(entry) < 0) {
1435 set_pte_at(mm, address, pvmw.pte, pteval);
1436 ret = false;
1437 page_vma_mapped_walk_done(&pvmw);
1438 break;
1439 }
1440 if (list_empty(&mm->mmlist)) {
1441 spin_lock(&mmlist_lock);
1442 if (list_empty(&mm->mmlist))
1443 list_add(&mm->mmlist, &init_mm.mmlist);
1444 spin_unlock(&mmlist_lock);
1445 }
1446 dec_mm_counter(mm, MM_ANONPAGES);
1447 inc_mm_counter(mm, MM_SWAPENTS);
1448 swp_pte = swp_entry_to_pte(entry);
1449 if (pte_soft_dirty(pteval))
1450 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1451 set_pte_at(mm, address, pvmw.pte, swp_pte);
1452 } else
1453 dec_mm_counter(mm, mm_counter_file(page));
1454 discard:
1455 page_remove_rmap(subpage, PageHuge(page));
1456 put_page(page);
1457 mmu_notifier_invalidate_page(mm, address);
1458 }
1459 return ret;
1460 }
1461
1462 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1463 {
1464 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1465
1466 if (!maybe_stack)
1467 return false;
1468
1469 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1470 VM_STACK_INCOMPLETE_SETUP)
1471 return true;
1472
1473 return false;
1474 }
1475
1476 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1477 {
1478 return is_vma_temporary_stack(vma);
1479 }
1480
1481 static int page_mapcount_is_zero(struct page *page)
1482 {
1483 return !total_mapcount(page);
1484 }
1485
1486 /**
1487 * try_to_unmap - try to remove all page table mappings to a page
1488 * @page: the page to get unmapped
1489 * @flags: action and flags
1490 *
1491 * Tries to remove all the page table entries which are mapping this
1492 * page, used in the pageout path. Caller must hold the page lock.
1493 *
1494 * If unmap is successful, return true. Otherwise, false.
1495 */
1496 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1497 {
1498 struct rmap_walk_control rwc = {
1499 .rmap_one = try_to_unmap_one,
1500 .arg = (void *)flags,
1501 .done = page_mapcount_is_zero,
1502 .anon_lock = page_lock_anon_vma_read,
1503 };
1504
1505 /*
1506 * During exec, a temporary VMA is setup and later moved.
1507 * The VMA is moved under the anon_vma lock but not the
1508 * page tables leading to a race where migration cannot
1509 * find the migration ptes. Rather than increasing the
1510 * locking requirements of exec(), migration skips
1511 * temporary VMAs until after exec() completes.
1512 */
1513 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1514 rwc.invalid_vma = invalid_migration_vma;
1515
1516 if (flags & TTU_RMAP_LOCKED)
1517 rmap_walk_locked(page, &rwc);
1518 else
1519 rmap_walk(page, &rwc);
1520
1521 return !page_mapcount(page) ? true : false;
1522 }
1523
1524 static int page_not_mapped(struct page *page)
1525 {
1526 return !page_mapped(page);
1527 };
1528
1529 /**
1530 * try_to_munlock - try to munlock a page
1531 * @page: the page to be munlocked
1532 *
1533 * Called from munlock code. Checks all of the VMAs mapping the page
1534 * to make sure nobody else has this page mlocked. The page will be
1535 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1536 */
1537
1538 void try_to_munlock(struct page *page)
1539 {
1540 struct rmap_walk_control rwc = {
1541 .rmap_one = try_to_unmap_one,
1542 .arg = (void *)TTU_MUNLOCK,
1543 .done = page_not_mapped,
1544 .anon_lock = page_lock_anon_vma_read,
1545
1546 };
1547
1548 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1549 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1550
1551 rmap_walk(page, &rwc);
1552 }
1553
1554 void __put_anon_vma(struct anon_vma *anon_vma)
1555 {
1556 struct anon_vma *root = anon_vma->root;
1557
1558 anon_vma_free(anon_vma);
1559 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1560 anon_vma_free(root);
1561 }
1562
1563 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1564 struct rmap_walk_control *rwc)
1565 {
1566 struct anon_vma *anon_vma;
1567
1568 if (rwc->anon_lock)
1569 return rwc->anon_lock(page);
1570
1571 /*
1572 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1573 * because that depends on page_mapped(); but not all its usages
1574 * are holding mmap_sem. Users without mmap_sem are required to
1575 * take a reference count to prevent the anon_vma disappearing
1576 */
1577 anon_vma = page_anon_vma(page);
1578 if (!anon_vma)
1579 return NULL;
1580
1581 anon_vma_lock_read(anon_vma);
1582 return anon_vma;
1583 }
1584
1585 /*
1586 * rmap_walk_anon - do something to anonymous page using the object-based
1587 * rmap method
1588 * @page: the page to be handled
1589 * @rwc: control variable according to each walk type
1590 *
1591 * Find all the mappings of a page using the mapping pointer and the vma chains
1592 * contained in the anon_vma struct it points to.
1593 *
1594 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1595 * where the page was found will be held for write. So, we won't recheck
1596 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1597 * LOCKED.
1598 */
1599 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1600 bool locked)
1601 {
1602 struct anon_vma *anon_vma;
1603 pgoff_t pgoff_start, pgoff_end;
1604 struct anon_vma_chain *avc;
1605
1606 if (locked) {
1607 anon_vma = page_anon_vma(page);
1608 /* anon_vma disappear under us? */
1609 VM_BUG_ON_PAGE(!anon_vma, page);
1610 } else {
1611 anon_vma = rmap_walk_anon_lock(page, rwc);
1612 }
1613 if (!anon_vma)
1614 return;
1615
1616 pgoff_start = page_to_pgoff(page);
1617 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1618 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1619 pgoff_start, pgoff_end) {
1620 struct vm_area_struct *vma = avc->vma;
1621 unsigned long address = vma_address(page, vma);
1622
1623 cond_resched();
1624
1625 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1626 continue;
1627
1628 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1629 break;
1630 if (rwc->done && rwc->done(page))
1631 break;
1632 }
1633
1634 if (!locked)
1635 anon_vma_unlock_read(anon_vma);
1636 }
1637
1638 /*
1639 * rmap_walk_file - do something to file page using the object-based rmap method
1640 * @page: the page to be handled
1641 * @rwc: control variable according to each walk type
1642 *
1643 * Find all the mappings of a page using the mapping pointer and the vma chains
1644 * contained in the address_space struct it points to.
1645 *
1646 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1647 * where the page was found will be held for write. So, we won't recheck
1648 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1649 * LOCKED.
1650 */
1651 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1652 bool locked)
1653 {
1654 struct address_space *mapping = page_mapping(page);
1655 pgoff_t pgoff_start, pgoff_end;
1656 struct vm_area_struct *vma;
1657
1658 /*
1659 * The page lock not only makes sure that page->mapping cannot
1660 * suddenly be NULLified by truncation, it makes sure that the
1661 * structure at mapping cannot be freed and reused yet,
1662 * so we can safely take mapping->i_mmap_rwsem.
1663 */
1664 VM_BUG_ON_PAGE(!PageLocked(page), page);
1665
1666 if (!mapping)
1667 return;
1668
1669 pgoff_start = page_to_pgoff(page);
1670 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1671 if (!locked)
1672 i_mmap_lock_read(mapping);
1673 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1674 pgoff_start, pgoff_end) {
1675 unsigned long address = vma_address(page, vma);
1676
1677 cond_resched();
1678
1679 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1680 continue;
1681
1682 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1683 goto done;
1684 if (rwc->done && rwc->done(page))
1685 goto done;
1686 }
1687
1688 done:
1689 if (!locked)
1690 i_mmap_unlock_read(mapping);
1691 }
1692
1693 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1694 {
1695 if (unlikely(PageKsm(page)))
1696 rmap_walk_ksm(page, rwc);
1697 else if (PageAnon(page))
1698 rmap_walk_anon(page, rwc, false);
1699 else
1700 rmap_walk_file(page, rwc, false);
1701 }
1702
1703 /* Like rmap_walk, but caller holds relevant rmap lock */
1704 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1705 {
1706 /* no ksm support for now */
1707 VM_BUG_ON_PAGE(PageKsm(page), page);
1708 if (PageAnon(page))
1709 rmap_walk_anon(page, rwc, true);
1710 else
1711 rmap_walk_file(page, rwc, true);
1712 }
1713
1714 #ifdef CONFIG_HUGETLB_PAGE
1715 /*
1716 * The following three functions are for anonymous (private mapped) hugepages.
1717 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1718 * and no lru code, because we handle hugepages differently from common pages.
1719 */
1720 static void __hugepage_set_anon_rmap(struct page *page,
1721 struct vm_area_struct *vma, unsigned long address, int exclusive)
1722 {
1723 struct anon_vma *anon_vma = vma->anon_vma;
1724
1725 BUG_ON(!anon_vma);
1726
1727 if (PageAnon(page))
1728 return;
1729 if (!exclusive)
1730 anon_vma = anon_vma->root;
1731
1732 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1733 page->mapping = (struct address_space *) anon_vma;
1734 page->index = linear_page_index(vma, address);
1735 }
1736
1737 void hugepage_add_anon_rmap(struct page *page,
1738 struct vm_area_struct *vma, unsigned long address)
1739 {
1740 struct anon_vma *anon_vma = vma->anon_vma;
1741 int first;
1742
1743 BUG_ON(!PageLocked(page));
1744 BUG_ON(!anon_vma);
1745 /* address might be in next vma when migration races vma_adjust */
1746 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1747 if (first)
1748 __hugepage_set_anon_rmap(page, vma, address, 0);
1749 }
1750
1751 void hugepage_add_new_anon_rmap(struct page *page,
1752 struct vm_area_struct *vma, unsigned long address)
1753 {
1754 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1755 atomic_set(compound_mapcount_ptr(page), 0);
1756 __hugepage_set_anon_rmap(page, vma, address, 1);
1757 }
1758 #endif /* CONFIG_HUGETLB_PAGE */