]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
mm: avoid repeated anon_vma lock/unlock sequences in anon_vma_clone()
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
28 * anon_vma->mutex
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->mutex (memory_failure, collect_procs_anon)
44 * pte map lock
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61
62 #include <asm/tlbflush.h>
63
64 #include "internal.h"
65
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
84 }
85
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
89
90 /*
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
93 * freed.
94 *
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 *
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
101 * LOCK MB
102 * atomic_read() mutex_is_locked()
103 *
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
106 */
107 if (mutex_is_locked(&anon_vma->root->mutex)) {
108 anon_vma_lock(anon_vma);
109 anon_vma_unlock(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 /**
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
128 *
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
132 *
133 * The common case will be that we already have one, but if
134 * not we either need to find an adjacent mapping that we
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
138 *
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
144 *
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
148 * an anon_vma.
149 *
150 * This must be called with the mmap_sem held for reading.
151 */
152 int anon_vma_prepare(struct vm_area_struct *vma)
153 {
154 struct anon_vma *anon_vma = vma->anon_vma;
155 struct anon_vma_chain *avc;
156
157 might_sleep();
158 if (unlikely(!anon_vma)) {
159 struct mm_struct *mm = vma->vm_mm;
160 struct anon_vma *allocated;
161
162 avc = anon_vma_chain_alloc();
163 if (!avc)
164 goto out_enomem;
165
166 anon_vma = find_mergeable_anon_vma(vma);
167 allocated = NULL;
168 if (!anon_vma) {
169 anon_vma = anon_vma_alloc();
170 if (unlikely(!anon_vma))
171 goto out_enomem_free_avc;
172 allocated = anon_vma;
173 }
174
175 anon_vma_lock(anon_vma);
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm->page_table_lock);
178 if (likely(!vma->anon_vma)) {
179 vma->anon_vma = anon_vma;
180 avc->anon_vma = anon_vma;
181 avc->vma = vma;
182 list_add(&avc->same_vma, &vma->anon_vma_chain);
183 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 allocated = NULL;
185 avc = NULL;
186 }
187 spin_unlock(&mm->page_table_lock);
188 anon_vma_unlock(anon_vma);
189
190 if (unlikely(allocated))
191 put_anon_vma(allocated);
192 if (unlikely(avc))
193 anon_vma_chain_free(avc);
194 }
195 return 0;
196
197 out_enomem_free_avc:
198 anon_vma_chain_free(avc);
199 out_enomem:
200 return -ENOMEM;
201 }
202
203 /*
204 * This is a useful helper function for locking the anon_vma root as
205 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
206 * have the same vma.
207 *
208 * Such anon_vma's should have the same root, so you'd expect to see
209 * just a single mutex_lock for the whole traversal.
210 */
211 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
212 {
213 struct anon_vma *new_root = anon_vma->root;
214 if (new_root != root) {
215 if (WARN_ON_ONCE(root))
216 mutex_unlock(&root->mutex);
217 root = new_root;
218 mutex_lock(&root->mutex);
219 }
220 return root;
221 }
222
223 static inline void unlock_anon_vma_root(struct anon_vma *root)
224 {
225 if (root)
226 mutex_unlock(&root->mutex);
227 }
228
229 static void anon_vma_chain_link(struct vm_area_struct *vma,
230 struct anon_vma_chain *avc,
231 struct anon_vma *anon_vma)
232 {
233 avc->vma = vma;
234 avc->anon_vma = anon_vma;
235 list_add(&avc->same_vma, &vma->anon_vma_chain);
236
237 /*
238 * It's critical to add new vmas to the tail of the anon_vma,
239 * see comment in huge_memory.c:__split_huge_page().
240 */
241 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
242 }
243
244 /*
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
247 */
248 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
249 {
250 struct anon_vma_chain *avc, *pavc;
251 struct anon_vma *root = NULL;
252
253 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
254 struct anon_vma *anon_vma;
255
256 avc = anon_vma_chain_alloc();
257 if (!avc)
258 goto enomem_failure;
259 anon_vma = pavc->anon_vma;
260 root = lock_anon_vma_root(root, anon_vma);
261 anon_vma_chain_link(dst, avc, anon_vma);
262 }
263 unlock_anon_vma_root(root);
264 return 0;
265
266 enomem_failure:
267 unlock_anon_vma_root(root);
268 unlink_anon_vmas(dst);
269 return -ENOMEM;
270 }
271
272 /*
273 * Attach vma to its own anon_vma, as well as to the anon_vmas that
274 * the corresponding VMA in the parent process is attached to.
275 * Returns 0 on success, non-zero on failure.
276 */
277 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
278 {
279 struct anon_vma_chain *avc;
280 struct anon_vma *anon_vma;
281
282 /* Don't bother if the parent process has no anon_vma here. */
283 if (!pvma->anon_vma)
284 return 0;
285
286 /*
287 * First, attach the new VMA to the parent VMA's anon_vmas,
288 * so rmap can find non-COWed pages in child processes.
289 */
290 if (anon_vma_clone(vma, pvma))
291 return -ENOMEM;
292
293 /* Then add our own anon_vma. */
294 anon_vma = anon_vma_alloc();
295 if (!anon_vma)
296 goto out_error;
297 avc = anon_vma_chain_alloc();
298 if (!avc)
299 goto out_error_free_anon_vma;
300
301 /*
302 * The root anon_vma's spinlock is the lock actually used when we
303 * lock any of the anon_vmas in this anon_vma tree.
304 */
305 anon_vma->root = pvma->anon_vma->root;
306 /*
307 * With refcounts, an anon_vma can stay around longer than the
308 * process it belongs to. The root anon_vma needs to be pinned until
309 * this anon_vma is freed, because the lock lives in the root.
310 */
311 get_anon_vma(anon_vma->root);
312 /* Mark this anon_vma as the one where our new (COWed) pages go. */
313 vma->anon_vma = anon_vma;
314 anon_vma_lock(anon_vma);
315 anon_vma_chain_link(vma, avc, anon_vma);
316 anon_vma_unlock(anon_vma);
317
318 return 0;
319
320 out_error_free_anon_vma:
321 put_anon_vma(anon_vma);
322 out_error:
323 unlink_anon_vmas(vma);
324 return -ENOMEM;
325 }
326
327 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
328 {
329 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
330 int empty;
331
332 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
333 if (!anon_vma)
334 return;
335
336 anon_vma_lock(anon_vma);
337 list_del(&anon_vma_chain->same_anon_vma);
338
339 /* We must garbage collect the anon_vma if it's empty */
340 empty = list_empty(&anon_vma->head);
341 anon_vma_unlock(anon_vma);
342
343 if (empty)
344 put_anon_vma(anon_vma);
345 }
346
347 void unlink_anon_vmas(struct vm_area_struct *vma)
348 {
349 struct anon_vma_chain *avc, *next;
350
351 /*
352 * Unlink each anon_vma chained to the VMA. This list is ordered
353 * from newest to oldest, ensuring the root anon_vma gets freed last.
354 */
355 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
356 anon_vma_unlink(avc);
357 list_del(&avc->same_vma);
358 anon_vma_chain_free(avc);
359 }
360 }
361
362 static void anon_vma_ctor(void *data)
363 {
364 struct anon_vma *anon_vma = data;
365
366 mutex_init(&anon_vma->mutex);
367 atomic_set(&anon_vma->refcount, 0);
368 INIT_LIST_HEAD(&anon_vma->head);
369 }
370
371 void __init anon_vma_init(void)
372 {
373 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
374 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
375 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
376 }
377
378 /*
379 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
380 *
381 * Since there is no serialization what so ever against page_remove_rmap()
382 * the best this function can do is return a locked anon_vma that might
383 * have been relevant to this page.
384 *
385 * The page might have been remapped to a different anon_vma or the anon_vma
386 * returned may already be freed (and even reused).
387 *
388 * In case it was remapped to a different anon_vma, the new anon_vma will be a
389 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
390 * ensure that any anon_vma obtained from the page will still be valid for as
391 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
392 *
393 * All users of this function must be very careful when walking the anon_vma
394 * chain and verify that the page in question is indeed mapped in it
395 * [ something equivalent to page_mapped_in_vma() ].
396 *
397 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
398 * that the anon_vma pointer from page->mapping is valid if there is a
399 * mapcount, we can dereference the anon_vma after observing those.
400 */
401 struct anon_vma *page_get_anon_vma(struct page *page)
402 {
403 struct anon_vma *anon_vma = NULL;
404 unsigned long anon_mapping;
405
406 rcu_read_lock();
407 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
408 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
409 goto out;
410 if (!page_mapped(page))
411 goto out;
412
413 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
414 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
415 anon_vma = NULL;
416 goto out;
417 }
418
419 /*
420 * If this page is still mapped, then its anon_vma cannot have been
421 * freed. But if it has been unmapped, we have no security against the
422 * anon_vma structure being freed and reused (for another anon_vma:
423 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
424 * above cannot corrupt).
425 */
426 if (!page_mapped(page)) {
427 put_anon_vma(anon_vma);
428 anon_vma = NULL;
429 }
430 out:
431 rcu_read_unlock();
432
433 return anon_vma;
434 }
435
436 /*
437 * Similar to page_get_anon_vma() except it locks the anon_vma.
438 *
439 * Its a little more complex as it tries to keep the fast path to a single
440 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
441 * reference like with page_get_anon_vma() and then block on the mutex.
442 */
443 struct anon_vma *page_lock_anon_vma(struct page *page)
444 {
445 struct anon_vma *anon_vma = NULL;
446 struct anon_vma *root_anon_vma;
447 unsigned long anon_mapping;
448
449 rcu_read_lock();
450 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
451 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
452 goto out;
453 if (!page_mapped(page))
454 goto out;
455
456 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
457 root_anon_vma = ACCESS_ONCE(anon_vma->root);
458 if (mutex_trylock(&root_anon_vma->mutex)) {
459 /*
460 * If the page is still mapped, then this anon_vma is still
461 * its anon_vma, and holding the mutex ensures that it will
462 * not go away, see anon_vma_free().
463 */
464 if (!page_mapped(page)) {
465 mutex_unlock(&root_anon_vma->mutex);
466 anon_vma = NULL;
467 }
468 goto out;
469 }
470
471 /* trylock failed, we got to sleep */
472 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
473 anon_vma = NULL;
474 goto out;
475 }
476
477 if (!page_mapped(page)) {
478 put_anon_vma(anon_vma);
479 anon_vma = NULL;
480 goto out;
481 }
482
483 /* we pinned the anon_vma, its safe to sleep */
484 rcu_read_unlock();
485 anon_vma_lock(anon_vma);
486
487 if (atomic_dec_and_test(&anon_vma->refcount)) {
488 /*
489 * Oops, we held the last refcount, release the lock
490 * and bail -- can't simply use put_anon_vma() because
491 * we'll deadlock on the anon_vma_lock() recursion.
492 */
493 anon_vma_unlock(anon_vma);
494 __put_anon_vma(anon_vma);
495 anon_vma = NULL;
496 }
497
498 return anon_vma;
499
500 out:
501 rcu_read_unlock();
502 return anon_vma;
503 }
504
505 void page_unlock_anon_vma(struct anon_vma *anon_vma)
506 {
507 anon_vma_unlock(anon_vma);
508 }
509
510 /*
511 * At what user virtual address is page expected in @vma?
512 * Returns virtual address or -EFAULT if page's index/offset is not
513 * within the range mapped the @vma.
514 */
515 inline unsigned long
516 vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 unsigned long address;
520
521 if (unlikely(is_vm_hugetlb_page(vma)))
522 pgoff = page->index << huge_page_order(page_hstate(page));
523 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
525 /* page should be within @vma mapping range */
526 return -EFAULT;
527 }
528 return address;
529 }
530
531 /*
532 * At what user virtual address is page expected in vma?
533 * Caller should check the page is actually part of the vma.
534 */
535 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
536 {
537 if (PageAnon(page)) {
538 struct anon_vma *page__anon_vma = page_anon_vma(page);
539 /*
540 * Note: swapoff's unuse_vma() is more efficient with this
541 * check, and needs it to match anon_vma when KSM is active.
542 */
543 if (!vma->anon_vma || !page__anon_vma ||
544 vma->anon_vma->root != page__anon_vma->root)
545 return -EFAULT;
546 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
547 if (!vma->vm_file ||
548 vma->vm_file->f_mapping != page->mapping)
549 return -EFAULT;
550 } else
551 return -EFAULT;
552 return vma_address(page, vma);
553 }
554
555 /*
556 * Check that @page is mapped at @address into @mm.
557 *
558 * If @sync is false, page_check_address may perform a racy check to avoid
559 * the page table lock when the pte is not present (helpful when reclaiming
560 * highly shared pages).
561 *
562 * On success returns with pte mapped and locked.
563 */
564 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
565 unsigned long address, spinlock_t **ptlp, int sync)
566 {
567 pgd_t *pgd;
568 pud_t *pud;
569 pmd_t *pmd;
570 pte_t *pte;
571 spinlock_t *ptl;
572
573 if (unlikely(PageHuge(page))) {
574 pte = huge_pte_offset(mm, address);
575 ptl = &mm->page_table_lock;
576 goto check;
577 }
578
579 pgd = pgd_offset(mm, address);
580 if (!pgd_present(*pgd))
581 return NULL;
582
583 pud = pud_offset(pgd, address);
584 if (!pud_present(*pud))
585 return NULL;
586
587 pmd = pmd_offset(pud, address);
588 if (!pmd_present(*pmd))
589 return NULL;
590 if (pmd_trans_huge(*pmd))
591 return NULL;
592
593 pte = pte_offset_map(pmd, address);
594 /* Make a quick check before getting the lock */
595 if (!sync && !pte_present(*pte)) {
596 pte_unmap(pte);
597 return NULL;
598 }
599
600 ptl = pte_lockptr(mm, pmd);
601 check:
602 spin_lock(ptl);
603 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
604 *ptlp = ptl;
605 return pte;
606 }
607 pte_unmap_unlock(pte, ptl);
608 return NULL;
609 }
610
611 /**
612 * page_mapped_in_vma - check whether a page is really mapped in a VMA
613 * @page: the page to test
614 * @vma: the VMA to test
615 *
616 * Returns 1 if the page is mapped into the page tables of the VMA, 0
617 * if the page is not mapped into the page tables of this VMA. Only
618 * valid for normal file or anonymous VMAs.
619 */
620 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
621 {
622 unsigned long address;
623 pte_t *pte;
624 spinlock_t *ptl;
625
626 address = vma_address(page, vma);
627 if (address == -EFAULT) /* out of vma range */
628 return 0;
629 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
630 if (!pte) /* the page is not in this mm */
631 return 0;
632 pte_unmap_unlock(pte, ptl);
633
634 return 1;
635 }
636
637 /*
638 * Subfunctions of page_referenced: page_referenced_one called
639 * repeatedly from either page_referenced_anon or page_referenced_file.
640 */
641 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
642 unsigned long address, unsigned int *mapcount,
643 unsigned long *vm_flags)
644 {
645 struct mm_struct *mm = vma->vm_mm;
646 int referenced = 0;
647
648 if (unlikely(PageTransHuge(page))) {
649 pmd_t *pmd;
650
651 spin_lock(&mm->page_table_lock);
652 /*
653 * rmap might return false positives; we must filter
654 * these out using page_check_address_pmd().
655 */
656 pmd = page_check_address_pmd(page, mm, address,
657 PAGE_CHECK_ADDRESS_PMD_FLAG);
658 if (!pmd) {
659 spin_unlock(&mm->page_table_lock);
660 goto out;
661 }
662
663 if (vma->vm_flags & VM_LOCKED) {
664 spin_unlock(&mm->page_table_lock);
665 *mapcount = 0; /* break early from loop */
666 *vm_flags |= VM_LOCKED;
667 goto out;
668 }
669
670 /* go ahead even if the pmd is pmd_trans_splitting() */
671 if (pmdp_clear_flush_young_notify(vma, address, pmd))
672 referenced++;
673 spin_unlock(&mm->page_table_lock);
674 } else {
675 pte_t *pte;
676 spinlock_t *ptl;
677
678 /*
679 * rmap might return false positives; we must filter
680 * these out using page_check_address().
681 */
682 pte = page_check_address(page, mm, address, &ptl, 0);
683 if (!pte)
684 goto out;
685
686 if (vma->vm_flags & VM_LOCKED) {
687 pte_unmap_unlock(pte, ptl);
688 *mapcount = 0; /* break early from loop */
689 *vm_flags |= VM_LOCKED;
690 goto out;
691 }
692
693 if (ptep_clear_flush_young_notify(vma, address, pte)) {
694 /*
695 * Don't treat a reference through a sequentially read
696 * mapping as such. If the page has been used in
697 * another mapping, we will catch it; if this other
698 * mapping is already gone, the unmap path will have
699 * set PG_referenced or activated the page.
700 */
701 if (likely(!VM_SequentialReadHint(vma)))
702 referenced++;
703 }
704 pte_unmap_unlock(pte, ptl);
705 }
706
707 /* Pretend the page is referenced if the task has the
708 swap token and is in the middle of a page fault. */
709 if (mm != current->mm && has_swap_token(mm) &&
710 rwsem_is_locked(&mm->mmap_sem))
711 referenced++;
712
713 (*mapcount)--;
714
715 if (referenced)
716 *vm_flags |= vma->vm_flags;
717 out:
718 return referenced;
719 }
720
721 static int page_referenced_anon(struct page *page,
722 struct mem_cgroup *mem_cont,
723 unsigned long *vm_flags)
724 {
725 unsigned int mapcount;
726 struct anon_vma *anon_vma;
727 struct anon_vma_chain *avc;
728 int referenced = 0;
729
730 anon_vma = page_lock_anon_vma(page);
731 if (!anon_vma)
732 return referenced;
733
734 mapcount = page_mapcount(page);
735 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
736 struct vm_area_struct *vma = avc->vma;
737 unsigned long address = vma_address(page, vma);
738 if (address == -EFAULT)
739 continue;
740 /*
741 * If we are reclaiming on behalf of a cgroup, skip
742 * counting on behalf of references from different
743 * cgroups
744 */
745 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
746 continue;
747 referenced += page_referenced_one(page, vma, address,
748 &mapcount, vm_flags);
749 if (!mapcount)
750 break;
751 }
752
753 page_unlock_anon_vma(anon_vma);
754 return referenced;
755 }
756
757 /**
758 * page_referenced_file - referenced check for object-based rmap
759 * @page: the page we're checking references on.
760 * @mem_cont: target memory controller
761 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
762 *
763 * For an object-based mapped page, find all the places it is mapped and
764 * check/clear the referenced flag. This is done by following the page->mapping
765 * pointer, then walking the chain of vmas it holds. It returns the number
766 * of references it found.
767 *
768 * This function is only called from page_referenced for object-based pages.
769 */
770 static int page_referenced_file(struct page *page,
771 struct mem_cgroup *mem_cont,
772 unsigned long *vm_flags)
773 {
774 unsigned int mapcount;
775 struct address_space *mapping = page->mapping;
776 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
777 struct vm_area_struct *vma;
778 struct prio_tree_iter iter;
779 int referenced = 0;
780
781 /*
782 * The caller's checks on page->mapping and !PageAnon have made
783 * sure that this is a file page: the check for page->mapping
784 * excludes the case just before it gets set on an anon page.
785 */
786 BUG_ON(PageAnon(page));
787
788 /*
789 * The page lock not only makes sure that page->mapping cannot
790 * suddenly be NULLified by truncation, it makes sure that the
791 * structure at mapping cannot be freed and reused yet,
792 * so we can safely take mapping->i_mmap_mutex.
793 */
794 BUG_ON(!PageLocked(page));
795
796 mutex_lock(&mapping->i_mmap_mutex);
797
798 /*
799 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
800 * is more likely to be accurate if we note it after spinning.
801 */
802 mapcount = page_mapcount(page);
803
804 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
805 unsigned long address = vma_address(page, vma);
806 if (address == -EFAULT)
807 continue;
808 /*
809 * If we are reclaiming on behalf of a cgroup, skip
810 * counting on behalf of references from different
811 * cgroups
812 */
813 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
814 continue;
815 referenced += page_referenced_one(page, vma, address,
816 &mapcount, vm_flags);
817 if (!mapcount)
818 break;
819 }
820
821 mutex_unlock(&mapping->i_mmap_mutex);
822 return referenced;
823 }
824
825 /**
826 * page_referenced - test if the page was referenced
827 * @page: the page to test
828 * @is_locked: caller holds lock on the page
829 * @mem_cont: target memory controller
830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
831 *
832 * Quick test_and_clear_referenced for all mappings to a page,
833 * returns the number of ptes which referenced the page.
834 */
835 int page_referenced(struct page *page,
836 int is_locked,
837 struct mem_cgroup *mem_cont,
838 unsigned long *vm_flags)
839 {
840 int referenced = 0;
841 int we_locked = 0;
842
843 *vm_flags = 0;
844 if (page_mapped(page) && page_rmapping(page)) {
845 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
846 we_locked = trylock_page(page);
847 if (!we_locked) {
848 referenced++;
849 goto out;
850 }
851 }
852 if (unlikely(PageKsm(page)))
853 referenced += page_referenced_ksm(page, mem_cont,
854 vm_flags);
855 else if (PageAnon(page))
856 referenced += page_referenced_anon(page, mem_cont,
857 vm_flags);
858 else if (page->mapping)
859 referenced += page_referenced_file(page, mem_cont,
860 vm_flags);
861 if (we_locked)
862 unlock_page(page);
863 }
864 out:
865 if (page_test_and_clear_young(page_to_pfn(page)))
866 referenced++;
867
868 return referenced;
869 }
870
871 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
872 unsigned long address)
873 {
874 struct mm_struct *mm = vma->vm_mm;
875 pte_t *pte;
876 spinlock_t *ptl;
877 int ret = 0;
878
879 pte = page_check_address(page, mm, address, &ptl, 1);
880 if (!pte)
881 goto out;
882
883 if (pte_dirty(*pte) || pte_write(*pte)) {
884 pte_t entry;
885
886 flush_cache_page(vma, address, pte_pfn(*pte));
887 entry = ptep_clear_flush_notify(vma, address, pte);
888 entry = pte_wrprotect(entry);
889 entry = pte_mkclean(entry);
890 set_pte_at(mm, address, pte, entry);
891 ret = 1;
892 }
893
894 pte_unmap_unlock(pte, ptl);
895 out:
896 return ret;
897 }
898
899 static int page_mkclean_file(struct address_space *mapping, struct page *page)
900 {
901 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
902 struct vm_area_struct *vma;
903 struct prio_tree_iter iter;
904 int ret = 0;
905
906 BUG_ON(PageAnon(page));
907
908 mutex_lock(&mapping->i_mmap_mutex);
909 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
910 if (vma->vm_flags & VM_SHARED) {
911 unsigned long address = vma_address(page, vma);
912 if (address == -EFAULT)
913 continue;
914 ret += page_mkclean_one(page, vma, address);
915 }
916 }
917 mutex_unlock(&mapping->i_mmap_mutex);
918 return ret;
919 }
920
921 int page_mkclean(struct page *page)
922 {
923 int ret = 0;
924
925 BUG_ON(!PageLocked(page));
926
927 if (page_mapped(page)) {
928 struct address_space *mapping = page_mapping(page);
929 if (mapping) {
930 ret = page_mkclean_file(mapping, page);
931 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
932 ret = 1;
933 }
934 }
935
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(page_mkclean);
939
940 /**
941 * page_move_anon_rmap - move a page to our anon_vma
942 * @page: the page to move to our anon_vma
943 * @vma: the vma the page belongs to
944 * @address: the user virtual address mapped
945 *
946 * When a page belongs exclusively to one process after a COW event,
947 * that page can be moved into the anon_vma that belongs to just that
948 * process, so the rmap code will not search the parent or sibling
949 * processes.
950 */
951 void page_move_anon_rmap(struct page *page,
952 struct vm_area_struct *vma, unsigned long address)
953 {
954 struct anon_vma *anon_vma = vma->anon_vma;
955
956 VM_BUG_ON(!PageLocked(page));
957 VM_BUG_ON(!anon_vma);
958 VM_BUG_ON(page->index != linear_page_index(vma, address));
959
960 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
961 page->mapping = (struct address_space *) anon_vma;
962 }
963
964 /**
965 * __page_set_anon_rmap - set up new anonymous rmap
966 * @page: Page to add to rmap
967 * @vma: VM area to add page to.
968 * @address: User virtual address of the mapping
969 * @exclusive: the page is exclusively owned by the current process
970 */
971 static void __page_set_anon_rmap(struct page *page,
972 struct vm_area_struct *vma, unsigned long address, int exclusive)
973 {
974 struct anon_vma *anon_vma = vma->anon_vma;
975
976 BUG_ON(!anon_vma);
977
978 if (PageAnon(page))
979 return;
980
981 /*
982 * If the page isn't exclusively mapped into this vma,
983 * we must use the _oldest_ possible anon_vma for the
984 * page mapping!
985 */
986 if (!exclusive)
987 anon_vma = anon_vma->root;
988
989 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
990 page->mapping = (struct address_space *) anon_vma;
991 page->index = linear_page_index(vma, address);
992 }
993
994 /**
995 * __page_check_anon_rmap - sanity check anonymous rmap addition
996 * @page: the page to add the mapping to
997 * @vma: the vm area in which the mapping is added
998 * @address: the user virtual address mapped
999 */
1000 static void __page_check_anon_rmap(struct page *page,
1001 struct vm_area_struct *vma, unsigned long address)
1002 {
1003 #ifdef CONFIG_DEBUG_VM
1004 /*
1005 * The page's anon-rmap details (mapping and index) are guaranteed to
1006 * be set up correctly at this point.
1007 *
1008 * We have exclusion against page_add_anon_rmap because the caller
1009 * always holds the page locked, except if called from page_dup_rmap,
1010 * in which case the page is already known to be setup.
1011 *
1012 * We have exclusion against page_add_new_anon_rmap because those pages
1013 * are initially only visible via the pagetables, and the pte is locked
1014 * over the call to page_add_new_anon_rmap.
1015 */
1016 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1017 BUG_ON(page->index != linear_page_index(vma, address));
1018 #endif
1019 }
1020
1021 /**
1022 * page_add_anon_rmap - add pte mapping to an anonymous page
1023 * @page: the page to add the mapping to
1024 * @vma: the vm area in which the mapping is added
1025 * @address: the user virtual address mapped
1026 *
1027 * The caller needs to hold the pte lock, and the page must be locked in
1028 * the anon_vma case: to serialize mapping,index checking after setting,
1029 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1030 * (but PageKsm is never downgraded to PageAnon).
1031 */
1032 void page_add_anon_rmap(struct page *page,
1033 struct vm_area_struct *vma, unsigned long address)
1034 {
1035 do_page_add_anon_rmap(page, vma, address, 0);
1036 }
1037
1038 /*
1039 * Special version of the above for do_swap_page, which often runs
1040 * into pages that are exclusively owned by the current process.
1041 * Everybody else should continue to use page_add_anon_rmap above.
1042 */
1043 void do_page_add_anon_rmap(struct page *page,
1044 struct vm_area_struct *vma, unsigned long address, int exclusive)
1045 {
1046 int first = atomic_inc_and_test(&page->_mapcount);
1047 if (first) {
1048 if (!PageTransHuge(page))
1049 __inc_zone_page_state(page, NR_ANON_PAGES);
1050 else
1051 __inc_zone_page_state(page,
1052 NR_ANON_TRANSPARENT_HUGEPAGES);
1053 }
1054 if (unlikely(PageKsm(page)))
1055 return;
1056
1057 VM_BUG_ON(!PageLocked(page));
1058 /* address might be in next vma when migration races vma_adjust */
1059 if (first)
1060 __page_set_anon_rmap(page, vma, address, exclusive);
1061 else
1062 __page_check_anon_rmap(page, vma, address);
1063 }
1064
1065 /**
1066 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1067 * @page: the page to add the mapping to
1068 * @vma: the vm area in which the mapping is added
1069 * @address: the user virtual address mapped
1070 *
1071 * Same as page_add_anon_rmap but must only be called on *new* pages.
1072 * This means the inc-and-test can be bypassed.
1073 * Page does not have to be locked.
1074 */
1075 void page_add_new_anon_rmap(struct page *page,
1076 struct vm_area_struct *vma, unsigned long address)
1077 {
1078 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1079 SetPageSwapBacked(page);
1080 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1081 if (!PageTransHuge(page))
1082 __inc_zone_page_state(page, NR_ANON_PAGES);
1083 else
1084 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1085 __page_set_anon_rmap(page, vma, address, 1);
1086 if (page_evictable(page, vma))
1087 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1088 else
1089 add_page_to_unevictable_list(page);
1090 }
1091
1092 /**
1093 * page_add_file_rmap - add pte mapping to a file page
1094 * @page: the page to add the mapping to
1095 *
1096 * The caller needs to hold the pte lock.
1097 */
1098 void page_add_file_rmap(struct page *page)
1099 {
1100 if (atomic_inc_and_test(&page->_mapcount)) {
1101 __inc_zone_page_state(page, NR_FILE_MAPPED);
1102 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1103 }
1104 }
1105
1106 /**
1107 * page_remove_rmap - take down pte mapping from a page
1108 * @page: page to remove mapping from
1109 *
1110 * The caller needs to hold the pte lock.
1111 */
1112 void page_remove_rmap(struct page *page)
1113 {
1114 /* page still mapped by someone else? */
1115 if (!atomic_add_negative(-1, &page->_mapcount))
1116 return;
1117
1118 /*
1119 * Now that the last pte has gone, s390 must transfer dirty
1120 * flag from storage key to struct page. We can usually skip
1121 * this if the page is anon, so about to be freed; but perhaps
1122 * not if it's in swapcache - there might be another pte slot
1123 * containing the swap entry, but page not yet written to swap.
1124 */
1125 if ((!PageAnon(page) || PageSwapCache(page)) &&
1126 page_test_and_clear_dirty(page_to_pfn(page), 1))
1127 set_page_dirty(page);
1128 /*
1129 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1130 * and not charged by memcg for now.
1131 */
1132 if (unlikely(PageHuge(page)))
1133 return;
1134 if (PageAnon(page)) {
1135 mem_cgroup_uncharge_page(page);
1136 if (!PageTransHuge(page))
1137 __dec_zone_page_state(page, NR_ANON_PAGES);
1138 else
1139 __dec_zone_page_state(page,
1140 NR_ANON_TRANSPARENT_HUGEPAGES);
1141 } else {
1142 __dec_zone_page_state(page, NR_FILE_MAPPED);
1143 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1144 }
1145 /*
1146 * It would be tidy to reset the PageAnon mapping here,
1147 * but that might overwrite a racing page_add_anon_rmap
1148 * which increments mapcount after us but sets mapping
1149 * before us: so leave the reset to free_hot_cold_page,
1150 * and remember that it's only reliable while mapped.
1151 * Leaving it set also helps swapoff to reinstate ptes
1152 * faster for those pages still in swapcache.
1153 */
1154 }
1155
1156 /*
1157 * Subfunctions of try_to_unmap: try_to_unmap_one called
1158 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1159 */
1160 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1161 unsigned long address, enum ttu_flags flags)
1162 {
1163 struct mm_struct *mm = vma->vm_mm;
1164 pte_t *pte;
1165 pte_t pteval;
1166 spinlock_t *ptl;
1167 int ret = SWAP_AGAIN;
1168
1169 pte = page_check_address(page, mm, address, &ptl, 0);
1170 if (!pte)
1171 goto out;
1172
1173 /*
1174 * If the page is mlock()d, we cannot swap it out.
1175 * If it's recently referenced (perhaps page_referenced
1176 * skipped over this mm) then we should reactivate it.
1177 */
1178 if (!(flags & TTU_IGNORE_MLOCK)) {
1179 if (vma->vm_flags & VM_LOCKED)
1180 goto out_mlock;
1181
1182 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1183 goto out_unmap;
1184 }
1185 if (!(flags & TTU_IGNORE_ACCESS)) {
1186 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1187 ret = SWAP_FAIL;
1188 goto out_unmap;
1189 }
1190 }
1191
1192 /* Nuke the page table entry. */
1193 flush_cache_page(vma, address, page_to_pfn(page));
1194 pteval = ptep_clear_flush_notify(vma, address, pte);
1195
1196 /* Move the dirty bit to the physical page now the pte is gone. */
1197 if (pte_dirty(pteval))
1198 set_page_dirty(page);
1199
1200 /* Update high watermark before we lower rss */
1201 update_hiwater_rss(mm);
1202
1203 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1204 if (PageAnon(page))
1205 dec_mm_counter(mm, MM_ANONPAGES);
1206 else
1207 dec_mm_counter(mm, MM_FILEPAGES);
1208 set_pte_at(mm, address, pte,
1209 swp_entry_to_pte(make_hwpoison_entry(page)));
1210 } else if (PageAnon(page)) {
1211 swp_entry_t entry = { .val = page_private(page) };
1212
1213 if (PageSwapCache(page)) {
1214 /*
1215 * Store the swap location in the pte.
1216 * See handle_pte_fault() ...
1217 */
1218 if (swap_duplicate(entry) < 0) {
1219 set_pte_at(mm, address, pte, pteval);
1220 ret = SWAP_FAIL;
1221 goto out_unmap;
1222 }
1223 if (list_empty(&mm->mmlist)) {
1224 spin_lock(&mmlist_lock);
1225 if (list_empty(&mm->mmlist))
1226 list_add(&mm->mmlist, &init_mm.mmlist);
1227 spin_unlock(&mmlist_lock);
1228 }
1229 dec_mm_counter(mm, MM_ANONPAGES);
1230 inc_mm_counter(mm, MM_SWAPENTS);
1231 } else if (PAGE_MIGRATION) {
1232 /*
1233 * Store the pfn of the page in a special migration
1234 * pte. do_swap_page() will wait until the migration
1235 * pte is removed and then restart fault handling.
1236 */
1237 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1238 entry = make_migration_entry(page, pte_write(pteval));
1239 }
1240 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1241 BUG_ON(pte_file(*pte));
1242 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1243 /* Establish migration entry for a file page */
1244 swp_entry_t entry;
1245 entry = make_migration_entry(page, pte_write(pteval));
1246 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1247 } else
1248 dec_mm_counter(mm, MM_FILEPAGES);
1249
1250 page_remove_rmap(page);
1251 page_cache_release(page);
1252
1253 out_unmap:
1254 pte_unmap_unlock(pte, ptl);
1255 out:
1256 return ret;
1257
1258 out_mlock:
1259 pte_unmap_unlock(pte, ptl);
1260
1261
1262 /*
1263 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1264 * unstable result and race. Plus, We can't wait here because
1265 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1266 * if trylock failed, the page remain in evictable lru and later
1267 * vmscan could retry to move the page to unevictable lru if the
1268 * page is actually mlocked.
1269 */
1270 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1271 if (vma->vm_flags & VM_LOCKED) {
1272 mlock_vma_page(page);
1273 ret = SWAP_MLOCK;
1274 }
1275 up_read(&vma->vm_mm->mmap_sem);
1276 }
1277 return ret;
1278 }
1279
1280 /*
1281 * objrmap doesn't work for nonlinear VMAs because the assumption that
1282 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1283 * Consequently, given a particular page and its ->index, we cannot locate the
1284 * ptes which are mapping that page without an exhaustive linear search.
1285 *
1286 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1287 * maps the file to which the target page belongs. The ->vm_private_data field
1288 * holds the current cursor into that scan. Successive searches will circulate
1289 * around the vma's virtual address space.
1290 *
1291 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1292 * more scanning pressure is placed against them as well. Eventually pages
1293 * will become fully unmapped and are eligible for eviction.
1294 *
1295 * For very sparsely populated VMAs this is a little inefficient - chances are
1296 * there there won't be many ptes located within the scan cluster. In this case
1297 * maybe we could scan further - to the end of the pte page, perhaps.
1298 *
1299 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1300 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1301 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1302 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1303 */
1304 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1305 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1306
1307 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1308 struct vm_area_struct *vma, struct page *check_page)
1309 {
1310 struct mm_struct *mm = vma->vm_mm;
1311 pgd_t *pgd;
1312 pud_t *pud;
1313 pmd_t *pmd;
1314 pte_t *pte;
1315 pte_t pteval;
1316 spinlock_t *ptl;
1317 struct page *page;
1318 unsigned long address;
1319 unsigned long end;
1320 int ret = SWAP_AGAIN;
1321 int locked_vma = 0;
1322
1323 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1324 end = address + CLUSTER_SIZE;
1325 if (address < vma->vm_start)
1326 address = vma->vm_start;
1327 if (end > vma->vm_end)
1328 end = vma->vm_end;
1329
1330 pgd = pgd_offset(mm, address);
1331 if (!pgd_present(*pgd))
1332 return ret;
1333
1334 pud = pud_offset(pgd, address);
1335 if (!pud_present(*pud))
1336 return ret;
1337
1338 pmd = pmd_offset(pud, address);
1339 if (!pmd_present(*pmd))
1340 return ret;
1341
1342 /*
1343 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1344 * keep the sem while scanning the cluster for mlocking pages.
1345 */
1346 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1347 locked_vma = (vma->vm_flags & VM_LOCKED);
1348 if (!locked_vma)
1349 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1350 }
1351
1352 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1353
1354 /* Update high watermark before we lower rss */
1355 update_hiwater_rss(mm);
1356
1357 for (; address < end; pte++, address += PAGE_SIZE) {
1358 if (!pte_present(*pte))
1359 continue;
1360 page = vm_normal_page(vma, address, *pte);
1361 BUG_ON(!page || PageAnon(page));
1362
1363 if (locked_vma) {
1364 mlock_vma_page(page); /* no-op if already mlocked */
1365 if (page == check_page)
1366 ret = SWAP_MLOCK;
1367 continue; /* don't unmap */
1368 }
1369
1370 if (ptep_clear_flush_young_notify(vma, address, pte))
1371 continue;
1372
1373 /* Nuke the page table entry. */
1374 flush_cache_page(vma, address, pte_pfn(*pte));
1375 pteval = ptep_clear_flush_notify(vma, address, pte);
1376
1377 /* If nonlinear, store the file page offset in the pte. */
1378 if (page->index != linear_page_index(vma, address))
1379 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1380
1381 /* Move the dirty bit to the physical page now the pte is gone. */
1382 if (pte_dirty(pteval))
1383 set_page_dirty(page);
1384
1385 page_remove_rmap(page);
1386 page_cache_release(page);
1387 dec_mm_counter(mm, MM_FILEPAGES);
1388 (*mapcount)--;
1389 }
1390 pte_unmap_unlock(pte - 1, ptl);
1391 if (locked_vma)
1392 up_read(&vma->vm_mm->mmap_sem);
1393 return ret;
1394 }
1395
1396 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1397 {
1398 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1399
1400 if (!maybe_stack)
1401 return false;
1402
1403 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1404 VM_STACK_INCOMPLETE_SETUP)
1405 return true;
1406
1407 return false;
1408 }
1409
1410 /**
1411 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1412 * rmap method
1413 * @page: the page to unmap/unlock
1414 * @flags: action and flags
1415 *
1416 * Find all the mappings of a page using the mapping pointer and the vma chains
1417 * contained in the anon_vma struct it points to.
1418 *
1419 * This function is only called from try_to_unmap/try_to_munlock for
1420 * anonymous pages.
1421 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1422 * where the page was found will be held for write. So, we won't recheck
1423 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1424 * 'LOCKED.
1425 */
1426 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1427 {
1428 struct anon_vma *anon_vma;
1429 struct anon_vma_chain *avc;
1430 int ret = SWAP_AGAIN;
1431
1432 anon_vma = page_lock_anon_vma(page);
1433 if (!anon_vma)
1434 return ret;
1435
1436 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1437 struct vm_area_struct *vma = avc->vma;
1438 unsigned long address;
1439
1440 /*
1441 * During exec, a temporary VMA is setup and later moved.
1442 * The VMA is moved under the anon_vma lock but not the
1443 * page tables leading to a race where migration cannot
1444 * find the migration ptes. Rather than increasing the
1445 * locking requirements of exec(), migration skips
1446 * temporary VMAs until after exec() completes.
1447 */
1448 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1449 is_vma_temporary_stack(vma))
1450 continue;
1451
1452 address = vma_address(page, vma);
1453 if (address == -EFAULT)
1454 continue;
1455 ret = try_to_unmap_one(page, vma, address, flags);
1456 if (ret != SWAP_AGAIN || !page_mapped(page))
1457 break;
1458 }
1459
1460 page_unlock_anon_vma(anon_vma);
1461 return ret;
1462 }
1463
1464 /**
1465 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1466 * @page: the page to unmap/unlock
1467 * @flags: action and flags
1468 *
1469 * Find all the mappings of a page using the mapping pointer and the vma chains
1470 * contained in the address_space struct it points to.
1471 *
1472 * This function is only called from try_to_unmap/try_to_munlock for
1473 * object-based pages.
1474 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1475 * where the page was found will be held for write. So, we won't recheck
1476 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1477 * 'LOCKED.
1478 */
1479 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1480 {
1481 struct address_space *mapping = page->mapping;
1482 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1483 struct vm_area_struct *vma;
1484 struct prio_tree_iter iter;
1485 int ret = SWAP_AGAIN;
1486 unsigned long cursor;
1487 unsigned long max_nl_cursor = 0;
1488 unsigned long max_nl_size = 0;
1489 unsigned int mapcount;
1490
1491 mutex_lock(&mapping->i_mmap_mutex);
1492 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1493 unsigned long address = vma_address(page, vma);
1494 if (address == -EFAULT)
1495 continue;
1496 ret = try_to_unmap_one(page, vma, address, flags);
1497 if (ret != SWAP_AGAIN || !page_mapped(page))
1498 goto out;
1499 }
1500
1501 if (list_empty(&mapping->i_mmap_nonlinear))
1502 goto out;
1503
1504 /*
1505 * We don't bother to try to find the munlocked page in nonlinears.
1506 * It's costly. Instead, later, page reclaim logic may call
1507 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1508 */
1509 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1510 goto out;
1511
1512 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1513 shared.vm_set.list) {
1514 cursor = (unsigned long) vma->vm_private_data;
1515 if (cursor > max_nl_cursor)
1516 max_nl_cursor = cursor;
1517 cursor = vma->vm_end - vma->vm_start;
1518 if (cursor > max_nl_size)
1519 max_nl_size = cursor;
1520 }
1521
1522 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1523 ret = SWAP_FAIL;
1524 goto out;
1525 }
1526
1527 /*
1528 * We don't try to search for this page in the nonlinear vmas,
1529 * and page_referenced wouldn't have found it anyway. Instead
1530 * just walk the nonlinear vmas trying to age and unmap some.
1531 * The mapcount of the page we came in with is irrelevant,
1532 * but even so use it as a guide to how hard we should try?
1533 */
1534 mapcount = page_mapcount(page);
1535 if (!mapcount)
1536 goto out;
1537 cond_resched();
1538
1539 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1540 if (max_nl_cursor == 0)
1541 max_nl_cursor = CLUSTER_SIZE;
1542
1543 do {
1544 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1545 shared.vm_set.list) {
1546 cursor = (unsigned long) vma->vm_private_data;
1547 while ( cursor < max_nl_cursor &&
1548 cursor < vma->vm_end - vma->vm_start) {
1549 if (try_to_unmap_cluster(cursor, &mapcount,
1550 vma, page) == SWAP_MLOCK)
1551 ret = SWAP_MLOCK;
1552 cursor += CLUSTER_SIZE;
1553 vma->vm_private_data = (void *) cursor;
1554 if ((int)mapcount <= 0)
1555 goto out;
1556 }
1557 vma->vm_private_data = (void *) max_nl_cursor;
1558 }
1559 cond_resched();
1560 max_nl_cursor += CLUSTER_SIZE;
1561 } while (max_nl_cursor <= max_nl_size);
1562
1563 /*
1564 * Don't loop forever (perhaps all the remaining pages are
1565 * in locked vmas). Reset cursor on all unreserved nonlinear
1566 * vmas, now forgetting on which ones it had fallen behind.
1567 */
1568 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1569 vma->vm_private_data = NULL;
1570 out:
1571 mutex_unlock(&mapping->i_mmap_mutex);
1572 return ret;
1573 }
1574
1575 /**
1576 * try_to_unmap - try to remove all page table mappings to a page
1577 * @page: the page to get unmapped
1578 * @flags: action and flags
1579 *
1580 * Tries to remove all the page table entries which are mapping this
1581 * page, used in the pageout path. Caller must hold the page lock.
1582 * Return values are:
1583 *
1584 * SWAP_SUCCESS - we succeeded in removing all mappings
1585 * SWAP_AGAIN - we missed a mapping, try again later
1586 * SWAP_FAIL - the page is unswappable
1587 * SWAP_MLOCK - page is mlocked.
1588 */
1589 int try_to_unmap(struct page *page, enum ttu_flags flags)
1590 {
1591 int ret;
1592
1593 BUG_ON(!PageLocked(page));
1594 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1595
1596 if (unlikely(PageKsm(page)))
1597 ret = try_to_unmap_ksm(page, flags);
1598 else if (PageAnon(page))
1599 ret = try_to_unmap_anon(page, flags);
1600 else
1601 ret = try_to_unmap_file(page, flags);
1602 if (ret != SWAP_MLOCK && !page_mapped(page))
1603 ret = SWAP_SUCCESS;
1604 return ret;
1605 }
1606
1607 /**
1608 * try_to_munlock - try to munlock a page
1609 * @page: the page to be munlocked
1610 *
1611 * Called from munlock code. Checks all of the VMAs mapping the page
1612 * to make sure nobody else has this page mlocked. The page will be
1613 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1614 *
1615 * Return values are:
1616 *
1617 * SWAP_AGAIN - no vma is holding page mlocked, or,
1618 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1619 * SWAP_FAIL - page cannot be located at present
1620 * SWAP_MLOCK - page is now mlocked.
1621 */
1622 int try_to_munlock(struct page *page)
1623 {
1624 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1625
1626 if (unlikely(PageKsm(page)))
1627 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1628 else if (PageAnon(page))
1629 return try_to_unmap_anon(page, TTU_MUNLOCK);
1630 else
1631 return try_to_unmap_file(page, TTU_MUNLOCK);
1632 }
1633
1634 void __put_anon_vma(struct anon_vma *anon_vma)
1635 {
1636 struct anon_vma *root = anon_vma->root;
1637
1638 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1639 anon_vma_free(root);
1640
1641 anon_vma_free(anon_vma);
1642 }
1643
1644 #ifdef CONFIG_MIGRATION
1645 /*
1646 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1647 * Called by migrate.c to remove migration ptes, but might be used more later.
1648 */
1649 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1650 struct vm_area_struct *, unsigned long, void *), void *arg)
1651 {
1652 struct anon_vma *anon_vma;
1653 struct anon_vma_chain *avc;
1654 int ret = SWAP_AGAIN;
1655
1656 /*
1657 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1658 * because that depends on page_mapped(); but not all its usages
1659 * are holding mmap_sem. Users without mmap_sem are required to
1660 * take a reference count to prevent the anon_vma disappearing
1661 */
1662 anon_vma = page_anon_vma(page);
1663 if (!anon_vma)
1664 return ret;
1665 anon_vma_lock(anon_vma);
1666 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1667 struct vm_area_struct *vma = avc->vma;
1668 unsigned long address = vma_address(page, vma);
1669 if (address == -EFAULT)
1670 continue;
1671 ret = rmap_one(page, vma, address, arg);
1672 if (ret != SWAP_AGAIN)
1673 break;
1674 }
1675 anon_vma_unlock(anon_vma);
1676 return ret;
1677 }
1678
1679 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1680 struct vm_area_struct *, unsigned long, void *), void *arg)
1681 {
1682 struct address_space *mapping = page->mapping;
1683 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1684 struct vm_area_struct *vma;
1685 struct prio_tree_iter iter;
1686 int ret = SWAP_AGAIN;
1687
1688 if (!mapping)
1689 return ret;
1690 mutex_lock(&mapping->i_mmap_mutex);
1691 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1692 unsigned long address = vma_address(page, vma);
1693 if (address == -EFAULT)
1694 continue;
1695 ret = rmap_one(page, vma, address, arg);
1696 if (ret != SWAP_AGAIN)
1697 break;
1698 }
1699 /*
1700 * No nonlinear handling: being always shared, nonlinear vmas
1701 * never contain migration ptes. Decide what to do about this
1702 * limitation to linear when we need rmap_walk() on nonlinear.
1703 */
1704 mutex_unlock(&mapping->i_mmap_mutex);
1705 return ret;
1706 }
1707
1708 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1709 struct vm_area_struct *, unsigned long, void *), void *arg)
1710 {
1711 VM_BUG_ON(!PageLocked(page));
1712
1713 if (unlikely(PageKsm(page)))
1714 return rmap_walk_ksm(page, rmap_one, arg);
1715 else if (PageAnon(page))
1716 return rmap_walk_anon(page, rmap_one, arg);
1717 else
1718 return rmap_walk_file(page, rmap_one, arg);
1719 }
1720 #endif /* CONFIG_MIGRATION */
1721
1722 #ifdef CONFIG_HUGETLB_PAGE
1723 /*
1724 * The following three functions are for anonymous (private mapped) hugepages.
1725 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1726 * and no lru code, because we handle hugepages differently from common pages.
1727 */
1728 static void __hugepage_set_anon_rmap(struct page *page,
1729 struct vm_area_struct *vma, unsigned long address, int exclusive)
1730 {
1731 struct anon_vma *anon_vma = vma->anon_vma;
1732
1733 BUG_ON(!anon_vma);
1734
1735 if (PageAnon(page))
1736 return;
1737 if (!exclusive)
1738 anon_vma = anon_vma->root;
1739
1740 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1741 page->mapping = (struct address_space *) anon_vma;
1742 page->index = linear_page_index(vma, address);
1743 }
1744
1745 void hugepage_add_anon_rmap(struct page *page,
1746 struct vm_area_struct *vma, unsigned long address)
1747 {
1748 struct anon_vma *anon_vma = vma->anon_vma;
1749 int first;
1750
1751 BUG_ON(!PageLocked(page));
1752 BUG_ON(!anon_vma);
1753 /* address might be in next vma when migration races vma_adjust */
1754 first = atomic_inc_and_test(&page->_mapcount);
1755 if (first)
1756 __hugepage_set_anon_rmap(page, vma, address, 0);
1757 }
1758
1759 void hugepage_add_new_anon_rmap(struct page *page,
1760 struct vm_area_struct *vma, unsigned long address)
1761 {
1762 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1763 atomic_set(&page->_mapcount, 0);
1764 __hugepage_set_anon_rmap(page, vma, address, 1);
1765 }
1766 #endif /* CONFIG_HUGETLB_PAGE */