]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/rmap.c
Merge tag 'trace-v4.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66
67 #include <asm/tlbflush.h>
68
69 #include <trace/events/tlb.h>
70
71 #include "internal.h"
72
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 struct anon_vma *anon_vma;
79
80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 if (anon_vma) {
82 atomic_set(&anon_vma->refcount, 1);
83 anon_vma->degree = 1; /* Reference for first vma */
84 anon_vma->parent = anon_vma;
85 /*
86 * Initialise the anon_vma root to point to itself. If called
87 * from fork, the root will be reset to the parents anon_vma.
88 */
89 anon_vma->root = anon_vma;
90 }
91
92 return anon_vma;
93 }
94
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 VM_BUG_ON(atomic_read(&anon_vma->refcount));
98
99 /*
100 * Synchronize against page_lock_anon_vma_read() such that
101 * we can safely hold the lock without the anon_vma getting
102 * freed.
103 *
104 * Relies on the full mb implied by the atomic_dec_and_test() from
105 * put_anon_vma() against the acquire barrier implied by
106 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 *
108 * page_lock_anon_vma_read() VS put_anon_vma()
109 * down_read_trylock() atomic_dec_and_test()
110 * LOCK MB
111 * atomic_read() rwsem_is_locked()
112 *
113 * LOCK should suffice since the actual taking of the lock must
114 * happen _before_ what follows.
115 */
116 might_sleep();
117 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 anon_vma_lock_write(anon_vma);
119 anon_vma_unlock_write(anon_vma);
120 }
121
122 kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 struct anon_vma_chain *avc,
137 struct anon_vma *anon_vma)
138 {
139 avc->vma = vma;
140 avc->anon_vma = anon_vma;
141 list_add(&avc->same_vma, &vma->anon_vma_chain);
142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144
145 /**
146 * __anon_vma_prepare - attach an anon_vma to a memory region
147 * @vma: the memory region in question
148 *
149 * This makes sure the memory mapping described by 'vma' has
150 * an 'anon_vma' attached to it, so that we can associate the
151 * anonymous pages mapped into it with that anon_vma.
152 *
153 * The common case will be that we already have one, which
154 * is handled inline by anon_vma_prepare(). But if
155 * not we either need to find an adjacent mapping that we
156 * can re-use the anon_vma from (very common when the only
157 * reason for splitting a vma has been mprotect()), or we
158 * allocate a new one.
159 *
160 * Anon-vma allocations are very subtle, because we may have
161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162 * and that may actually touch the spinlock even in the newly
163 * allocated vma (it depends on RCU to make sure that the
164 * anon_vma isn't actually destroyed).
165 *
166 * As a result, we need to do proper anon_vma locking even
167 * for the new allocation. At the same time, we do not want
168 * to do any locking for the common case of already having
169 * an anon_vma.
170 *
171 * This must be called with the mmap_sem held for reading.
172 */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 struct mm_struct *mm = vma->vm_mm;
176 struct anon_vma *anon_vma, *allocated;
177 struct anon_vma_chain *avc;
178
179 might_sleep();
180
181 avc = anon_vma_chain_alloc(GFP_KERNEL);
182 if (!avc)
183 goto out_enomem;
184
185 anon_vma = find_mergeable_anon_vma(vma);
186 allocated = NULL;
187 if (!anon_vma) {
188 anon_vma = anon_vma_alloc();
189 if (unlikely(!anon_vma))
190 goto out_enomem_free_avc;
191 allocated = anon_vma;
192 }
193
194 anon_vma_lock_write(anon_vma);
195 /* page_table_lock to protect against threads */
196 spin_lock(&mm->page_table_lock);
197 if (likely(!vma->anon_vma)) {
198 vma->anon_vma = anon_vma;
199 anon_vma_chain_link(vma, avc, anon_vma);
200 /* vma reference or self-parent link for new root */
201 anon_vma->degree++;
202 allocated = NULL;
203 avc = NULL;
204 }
205 spin_unlock(&mm->page_table_lock);
206 anon_vma_unlock_write(anon_vma);
207
208 if (unlikely(allocated))
209 put_anon_vma(allocated);
210 if (unlikely(avc))
211 anon_vma_chain_free(avc);
212
213 return 0;
214
215 out_enomem_free_avc:
216 anon_vma_chain_free(avc);
217 out_enomem:
218 return -ENOMEM;
219 }
220
221 /*
222 * This is a useful helper function for locking the anon_vma root as
223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224 * have the same vma.
225 *
226 * Such anon_vma's should have the same root, so you'd expect to see
227 * just a single mutex_lock for the whole traversal.
228 */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 struct anon_vma *new_root = anon_vma->root;
232 if (new_root != root) {
233 if (WARN_ON_ONCE(root))
234 up_write(&root->rwsem);
235 root = new_root;
236 down_write(&root->rwsem);
237 }
238 return root;
239 }
240
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 if (root)
244 up_write(&root->rwsem);
245 }
246
247 /*
248 * Attach the anon_vmas from src to dst.
249 * Returns 0 on success, -ENOMEM on failure.
250 *
251 * If dst->anon_vma is NULL this function tries to find and reuse existing
252 * anon_vma which has no vmas and only one child anon_vma. This prevents
253 * degradation of anon_vma hierarchy to endless linear chain in case of
254 * constantly forking task. On the other hand, an anon_vma with more than one
255 * child isn't reused even if there was no alive vma, thus rmap walker has a
256 * good chance of avoiding scanning the whole hierarchy when it searches where
257 * page is mapped.
258 */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 struct anon_vma_chain *avc, *pavc;
262 struct anon_vma *root = NULL;
263
264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 struct anon_vma *anon_vma;
266
267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 if (unlikely(!avc)) {
269 unlock_anon_vma_root(root);
270 root = NULL;
271 avc = anon_vma_chain_alloc(GFP_KERNEL);
272 if (!avc)
273 goto enomem_failure;
274 }
275 anon_vma = pavc->anon_vma;
276 root = lock_anon_vma_root(root, anon_vma);
277 anon_vma_chain_link(dst, avc, anon_vma);
278
279 /*
280 * Reuse existing anon_vma if its degree lower than two,
281 * that means it has no vma and only one anon_vma child.
282 *
283 * Do not chose parent anon_vma, otherwise first child
284 * will always reuse it. Root anon_vma is never reused:
285 * it has self-parent reference and at least one child.
286 */
287 if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 anon_vma->degree < 2)
289 dst->anon_vma = anon_vma;
290 }
291 if (dst->anon_vma)
292 dst->anon_vma->degree++;
293 unlock_anon_vma_root(root);
294 return 0;
295
296 enomem_failure:
297 /*
298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 * decremented in unlink_anon_vmas().
300 * We can safely do this because callers of anon_vma_clone() don't care
301 * about dst->anon_vma if anon_vma_clone() failed.
302 */
303 dst->anon_vma = NULL;
304 unlink_anon_vmas(dst);
305 return -ENOMEM;
306 }
307
308 /*
309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
310 * the corresponding VMA in the parent process is attached to.
311 * Returns 0 on success, non-zero on failure.
312 */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 struct anon_vma_chain *avc;
316 struct anon_vma *anon_vma;
317 int error;
318
319 /* Don't bother if the parent process has no anon_vma here. */
320 if (!pvma->anon_vma)
321 return 0;
322
323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 vma->anon_vma = NULL;
325
326 /*
327 * First, attach the new VMA to the parent VMA's anon_vmas,
328 * so rmap can find non-COWed pages in child processes.
329 */
330 error = anon_vma_clone(vma, pvma);
331 if (error)
332 return error;
333
334 /* An existing anon_vma has been reused, all done then. */
335 if (vma->anon_vma)
336 return 0;
337
338 /* Then add our own anon_vma. */
339 anon_vma = anon_vma_alloc();
340 if (!anon_vma)
341 goto out_error;
342 avc = anon_vma_chain_alloc(GFP_KERNEL);
343 if (!avc)
344 goto out_error_free_anon_vma;
345
346 /*
347 * The root anon_vma's spinlock is the lock actually used when we
348 * lock any of the anon_vmas in this anon_vma tree.
349 */
350 anon_vma->root = pvma->anon_vma->root;
351 anon_vma->parent = pvma->anon_vma;
352 /*
353 * With refcounts, an anon_vma can stay around longer than the
354 * process it belongs to. The root anon_vma needs to be pinned until
355 * this anon_vma is freed, because the lock lives in the root.
356 */
357 get_anon_vma(anon_vma->root);
358 /* Mark this anon_vma as the one where our new (COWed) pages go. */
359 vma->anon_vma = anon_vma;
360 anon_vma_lock_write(anon_vma);
361 anon_vma_chain_link(vma, avc, anon_vma);
362 anon_vma->parent->degree++;
363 anon_vma_unlock_write(anon_vma);
364
365 return 0;
366
367 out_error_free_anon_vma:
368 put_anon_vma(anon_vma);
369 out_error:
370 unlink_anon_vmas(vma);
371 return -ENOMEM;
372 }
373
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 struct anon_vma_chain *avc, *next;
377 struct anon_vma *root = NULL;
378
379 /*
380 * Unlink each anon_vma chained to the VMA. This list is ordered
381 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 */
383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 struct anon_vma *anon_vma = avc->anon_vma;
385
386 root = lock_anon_vma_root(root, anon_vma);
387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388
389 /*
390 * Leave empty anon_vmas on the list - we'll need
391 * to free them outside the lock.
392 */
393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 anon_vma->parent->degree--;
395 continue;
396 }
397
398 list_del(&avc->same_vma);
399 anon_vma_chain_free(avc);
400 }
401 if (vma->anon_vma)
402 vma->anon_vma->degree--;
403 unlock_anon_vma_root(root);
404
405 /*
406 * Iterate the list once more, it now only contains empty and unlinked
407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 * needing to write-acquire the anon_vma->root->rwsem.
409 */
410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 struct anon_vma *anon_vma = avc->anon_vma;
412
413 VM_WARN_ON(anon_vma->degree);
414 put_anon_vma(anon_vma);
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 }
420
421 static void anon_vma_ctor(void *data)
422 {
423 struct anon_vma *anon_vma = data;
424
425 init_rwsem(&anon_vma->rwsem);
426 atomic_set(&anon_vma->refcount, 0);
427 anon_vma->rb_root = RB_ROOT;
428 }
429
430 void __init anon_vma_init(void)
431 {
432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 anon_vma_ctor);
435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 SLAB_PANIC|SLAB_ACCOUNT);
437 }
438
439 /*
440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 *
442 * Since there is no serialization what so ever against page_remove_rmap()
443 * the best this function can do is return a locked anon_vma that might
444 * have been relevant to this page.
445 *
446 * The page might have been remapped to a different anon_vma or the anon_vma
447 * returned may already be freed (and even reused).
448 *
449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451 * ensure that any anon_vma obtained from the page will still be valid for as
452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 *
454 * All users of this function must be very careful when walking the anon_vma
455 * chain and verify that the page in question is indeed mapped in it
456 * [ something equivalent to page_mapped_in_vma() ].
457 *
458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459 * that the anon_vma pointer from page->mapping is valid if there is a
460 * mapcount, we can dereference the anon_vma after observing those.
461 */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 struct anon_vma *anon_vma = NULL;
465 unsigned long anon_mapping;
466
467 rcu_read_lock();
468 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 goto out;
471 if (!page_mapped(page))
472 goto out;
473
474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 anon_vma = NULL;
477 goto out;
478 }
479
480 /*
481 * If this page is still mapped, then its anon_vma cannot have been
482 * freed. But if it has been unmapped, we have no security against the
483 * anon_vma structure being freed and reused (for another anon_vma:
484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 * above cannot corrupt).
486 */
487 if (!page_mapped(page)) {
488 rcu_read_unlock();
489 put_anon_vma(anon_vma);
490 return NULL;
491 }
492 out:
493 rcu_read_unlock();
494
495 return anon_vma;
496 }
497
498 /*
499 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 *
501 * Its a little more complex as it tries to keep the fast path to a single
502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503 * reference like with page_get_anon_vma() and then block on the mutex.
504 */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 struct anon_vma *anon_vma = NULL;
508 struct anon_vma *root_anon_vma;
509 unsigned long anon_mapping;
510
511 rcu_read_lock();
512 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 goto out;
515 if (!page_mapped(page))
516 goto out;
517
518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 root_anon_vma = READ_ONCE(anon_vma->root);
520 if (down_read_trylock(&root_anon_vma->rwsem)) {
521 /*
522 * If the page is still mapped, then this anon_vma is still
523 * its anon_vma, and holding the mutex ensures that it will
524 * not go away, see anon_vma_free().
525 */
526 if (!page_mapped(page)) {
527 up_read(&root_anon_vma->rwsem);
528 anon_vma = NULL;
529 }
530 goto out;
531 }
532
533 /* trylock failed, we got to sleep */
534 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 anon_vma = NULL;
536 goto out;
537 }
538
539 if (!page_mapped(page)) {
540 rcu_read_unlock();
541 put_anon_vma(anon_vma);
542 return NULL;
543 }
544
545 /* we pinned the anon_vma, its safe to sleep */
546 rcu_read_unlock();
547 anon_vma_lock_read(anon_vma);
548
549 if (atomic_dec_and_test(&anon_vma->refcount)) {
550 /*
551 * Oops, we held the last refcount, release the lock
552 * and bail -- can't simply use put_anon_vma() because
553 * we'll deadlock on the anon_vma_lock_write() recursion.
554 */
555 anon_vma_unlock_read(anon_vma);
556 __put_anon_vma(anon_vma);
557 anon_vma = NULL;
558 }
559
560 return anon_vma;
561
562 out:
563 rcu_read_unlock();
564 return anon_vma;
565 }
566
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 anon_vma_unlock_read(anon_vma);
570 }
571
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575 * important if a PTE was dirty when it was unmapped that it's flushed
576 * before any IO is initiated on the page to prevent lost writes. Similarly,
577 * it must be flushed before freeing to prevent data leakage.
578 */
579 void try_to_unmap_flush(void)
580 {
581 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582
583 if (!tlb_ubc->flush_required)
584 return;
585
586 arch_tlbbatch_flush(&tlb_ubc->arch);
587 tlb_ubc->flush_required = false;
588 tlb_ubc->writable = false;
589 }
590
591 /* Flush iff there are potentially writable TLB entries that can race with IO */
592 void try_to_unmap_flush_dirty(void)
593 {
594 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
595
596 if (tlb_ubc->writable)
597 try_to_unmap_flush();
598 }
599
600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
601 {
602 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
603
604 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
605 tlb_ubc->flush_required = true;
606
607 /*
608 * Ensure compiler does not re-order the setting of tlb_flush_batched
609 * before the PTE is cleared.
610 */
611 barrier();
612 mm->tlb_flush_batched = true;
613
614 /*
615 * If the PTE was dirty then it's best to assume it's writable. The
616 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
617 * before the page is queued for IO.
618 */
619 if (writable)
620 tlb_ubc->writable = true;
621 }
622
623 /*
624 * Returns true if the TLB flush should be deferred to the end of a batch of
625 * unmap operations to reduce IPIs.
626 */
627 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
628 {
629 bool should_defer = false;
630
631 if (!(flags & TTU_BATCH_FLUSH))
632 return false;
633
634 /* If remote CPUs need to be flushed then defer batch the flush */
635 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
636 should_defer = true;
637 put_cpu();
638
639 return should_defer;
640 }
641
642 /*
643 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
644 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
645 * operation such as mprotect or munmap to race between reclaim unmapping
646 * the page and flushing the page. If this race occurs, it potentially allows
647 * access to data via a stale TLB entry. Tracking all mm's that have TLB
648 * batching in flight would be expensive during reclaim so instead track
649 * whether TLB batching occurred in the past and if so then do a flush here
650 * if required. This will cost one additional flush per reclaim cycle paid
651 * by the first operation at risk such as mprotect and mumap.
652 *
653 * This must be called under the PTL so that an access to tlb_flush_batched
654 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
655 * via the PTL.
656 */
657 void flush_tlb_batched_pending(struct mm_struct *mm)
658 {
659 if (mm->tlb_flush_batched) {
660 flush_tlb_mm(mm);
661
662 /*
663 * Do not allow the compiler to re-order the clearing of
664 * tlb_flush_batched before the tlb is flushed.
665 */
666 barrier();
667 mm->tlb_flush_batched = false;
668 }
669 }
670 #else
671 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
672 {
673 }
674
675 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
676 {
677 return false;
678 }
679 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
680
681 /*
682 * At what user virtual address is page expected in vma?
683 * Caller should check the page is actually part of the vma.
684 */
685 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
686 {
687 unsigned long address;
688 if (PageAnon(page)) {
689 struct anon_vma *page__anon_vma = page_anon_vma(page);
690 /*
691 * Note: swapoff's unuse_vma() is more efficient with this
692 * check, and needs it to match anon_vma when KSM is active.
693 */
694 if (!vma->anon_vma || !page__anon_vma ||
695 vma->anon_vma->root != page__anon_vma->root)
696 return -EFAULT;
697 } else if (page->mapping) {
698 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
699 return -EFAULT;
700 } else
701 return -EFAULT;
702 address = __vma_address(page, vma);
703 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
704 return -EFAULT;
705 return address;
706 }
707
708 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
709 {
710 pgd_t *pgd;
711 p4d_t *p4d;
712 pud_t *pud;
713 pmd_t *pmd = NULL;
714 pmd_t pmde;
715
716 pgd = pgd_offset(mm, address);
717 if (!pgd_present(*pgd))
718 goto out;
719
720 p4d = p4d_offset(pgd, address);
721 if (!p4d_present(*p4d))
722 goto out;
723
724 pud = pud_offset(p4d, address);
725 if (!pud_present(*pud))
726 goto out;
727
728 pmd = pmd_offset(pud, address);
729 /*
730 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
731 * without holding anon_vma lock for write. So when looking for a
732 * genuine pmde (in which to find pte), test present and !THP together.
733 */
734 pmde = *pmd;
735 barrier();
736 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
737 pmd = NULL;
738 out:
739 return pmd;
740 }
741
742 struct page_referenced_arg {
743 int mapcount;
744 int referenced;
745 unsigned long vm_flags;
746 struct mem_cgroup *memcg;
747 };
748 /*
749 * arg: page_referenced_arg will be passed
750 */
751 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
752 unsigned long address, void *arg)
753 {
754 struct page_referenced_arg *pra = arg;
755 struct page_vma_mapped_walk pvmw = {
756 .page = page,
757 .vma = vma,
758 .address = address,
759 };
760 int referenced = 0;
761
762 while (page_vma_mapped_walk(&pvmw)) {
763 address = pvmw.address;
764
765 if (vma->vm_flags & VM_LOCKED) {
766 page_vma_mapped_walk_done(&pvmw);
767 pra->vm_flags |= VM_LOCKED;
768 return false; /* To break the loop */
769 }
770
771 if (pvmw.pte) {
772 if (ptep_clear_flush_young_notify(vma, address,
773 pvmw.pte)) {
774 /*
775 * Don't treat a reference through
776 * a sequentially read mapping as such.
777 * If the page has been used in another mapping,
778 * we will catch it; if this other mapping is
779 * already gone, the unmap path will have set
780 * PG_referenced or activated the page.
781 */
782 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 referenced++;
784 }
785 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
786 if (pmdp_clear_flush_young_notify(vma, address,
787 pvmw.pmd))
788 referenced++;
789 } else {
790 /* unexpected pmd-mapped page? */
791 WARN_ON_ONCE(1);
792 }
793
794 pra->mapcount--;
795 }
796
797 if (referenced)
798 clear_page_idle(page);
799 if (test_and_clear_page_young(page))
800 referenced++;
801
802 if (referenced) {
803 pra->referenced++;
804 pra->vm_flags |= vma->vm_flags;
805 }
806
807 if (!pra->mapcount)
808 return false; /* To break the loop */
809
810 return true;
811 }
812
813 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
814 {
815 struct page_referenced_arg *pra = arg;
816 struct mem_cgroup *memcg = pra->memcg;
817
818 if (!mm_match_cgroup(vma->vm_mm, memcg))
819 return true;
820
821 return false;
822 }
823
824 /**
825 * page_referenced - test if the page was referenced
826 * @page: the page to test
827 * @is_locked: caller holds lock on the page
828 * @memcg: target memory cgroup
829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
830 *
831 * Quick test_and_clear_referenced for all mappings to a page,
832 * returns the number of ptes which referenced the page.
833 */
834 int page_referenced(struct page *page,
835 int is_locked,
836 struct mem_cgroup *memcg,
837 unsigned long *vm_flags)
838 {
839 int we_locked = 0;
840 struct page_referenced_arg pra = {
841 .mapcount = total_mapcount(page),
842 .memcg = memcg,
843 };
844 struct rmap_walk_control rwc = {
845 .rmap_one = page_referenced_one,
846 .arg = (void *)&pra,
847 .anon_lock = page_lock_anon_vma_read,
848 };
849
850 *vm_flags = 0;
851 if (!page_mapped(page))
852 return 0;
853
854 if (!page_rmapping(page))
855 return 0;
856
857 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
858 we_locked = trylock_page(page);
859 if (!we_locked)
860 return 1;
861 }
862
863 /*
864 * If we are reclaiming on behalf of a cgroup, skip
865 * counting on behalf of references from different
866 * cgroups
867 */
868 if (memcg) {
869 rwc.invalid_vma = invalid_page_referenced_vma;
870 }
871
872 rmap_walk(page, &rwc);
873 *vm_flags = pra.vm_flags;
874
875 if (we_locked)
876 unlock_page(page);
877
878 return pra.referenced;
879 }
880
881 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
882 unsigned long address, void *arg)
883 {
884 struct page_vma_mapped_walk pvmw = {
885 .page = page,
886 .vma = vma,
887 .address = address,
888 .flags = PVMW_SYNC,
889 };
890 int *cleaned = arg;
891 bool invalidation_needed = false;
892
893 while (page_vma_mapped_walk(&pvmw)) {
894 int ret = 0;
895 if (pvmw.pte) {
896 pte_t entry;
897 pte_t *pte = pvmw.pte;
898
899 if (!pte_dirty(*pte) && !pte_write(*pte))
900 continue;
901
902 flush_cache_page(vma, pvmw.address, pte_pfn(*pte));
903 entry = ptep_clear_flush(vma, pvmw.address, pte);
904 entry = pte_wrprotect(entry);
905 entry = pte_mkclean(entry);
906 set_pte_at(vma->vm_mm, pvmw.address, pte, entry);
907 ret = 1;
908 } else {
909 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
910 pmd_t *pmd = pvmw.pmd;
911 pmd_t entry;
912
913 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
914 continue;
915
916 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
917 entry = pmdp_huge_clear_flush(vma, pvmw.address, pmd);
918 entry = pmd_wrprotect(entry);
919 entry = pmd_mkclean(entry);
920 set_pmd_at(vma->vm_mm, pvmw.address, pmd, entry);
921 ret = 1;
922 #else
923 /* unexpected pmd-mapped page? */
924 WARN_ON_ONCE(1);
925 #endif
926 }
927
928 if (ret) {
929 (*cleaned)++;
930 invalidation_needed = true;
931 }
932 }
933
934 if (invalidation_needed) {
935 mmu_notifier_invalidate_range(vma->vm_mm, address,
936 address + (1UL << compound_order(page)));
937 }
938
939 return true;
940 }
941
942 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
943 {
944 if (vma->vm_flags & VM_SHARED)
945 return false;
946
947 return true;
948 }
949
950 int page_mkclean(struct page *page)
951 {
952 int cleaned = 0;
953 struct address_space *mapping;
954 struct rmap_walk_control rwc = {
955 .arg = (void *)&cleaned,
956 .rmap_one = page_mkclean_one,
957 .invalid_vma = invalid_mkclean_vma,
958 };
959
960 BUG_ON(!PageLocked(page));
961
962 if (!page_mapped(page))
963 return 0;
964
965 mapping = page_mapping(page);
966 if (!mapping)
967 return 0;
968
969 rmap_walk(page, &rwc);
970
971 return cleaned;
972 }
973 EXPORT_SYMBOL_GPL(page_mkclean);
974
975 /**
976 * page_move_anon_rmap - move a page to our anon_vma
977 * @page: the page to move to our anon_vma
978 * @vma: the vma the page belongs to
979 *
980 * When a page belongs exclusively to one process after a COW event,
981 * that page can be moved into the anon_vma that belongs to just that
982 * process, so the rmap code will not search the parent or sibling
983 * processes.
984 */
985 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
986 {
987 struct anon_vma *anon_vma = vma->anon_vma;
988
989 page = compound_head(page);
990
991 VM_BUG_ON_PAGE(!PageLocked(page), page);
992 VM_BUG_ON_VMA(!anon_vma, vma);
993
994 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
995 /*
996 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
997 * simultaneously, so a concurrent reader (eg page_referenced()'s
998 * PageAnon()) will not see one without the other.
999 */
1000 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1001 }
1002
1003 /**
1004 * __page_set_anon_rmap - set up new anonymous rmap
1005 * @page: Page to add to rmap
1006 * @vma: VM area to add page to.
1007 * @address: User virtual address of the mapping
1008 * @exclusive: the page is exclusively owned by the current process
1009 */
1010 static void __page_set_anon_rmap(struct page *page,
1011 struct vm_area_struct *vma, unsigned long address, int exclusive)
1012 {
1013 struct anon_vma *anon_vma = vma->anon_vma;
1014
1015 BUG_ON(!anon_vma);
1016
1017 if (PageAnon(page))
1018 return;
1019
1020 /*
1021 * If the page isn't exclusively mapped into this vma,
1022 * we must use the _oldest_ possible anon_vma for the
1023 * page mapping!
1024 */
1025 if (!exclusive)
1026 anon_vma = anon_vma->root;
1027
1028 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1029 page->mapping = (struct address_space *) anon_vma;
1030 page->index = linear_page_index(vma, address);
1031 }
1032
1033 /**
1034 * __page_check_anon_rmap - sanity check anonymous rmap addition
1035 * @page: the page to add the mapping to
1036 * @vma: the vm area in which the mapping is added
1037 * @address: the user virtual address mapped
1038 */
1039 static void __page_check_anon_rmap(struct page *page,
1040 struct vm_area_struct *vma, unsigned long address)
1041 {
1042 #ifdef CONFIG_DEBUG_VM
1043 /*
1044 * The page's anon-rmap details (mapping and index) are guaranteed to
1045 * be set up correctly at this point.
1046 *
1047 * We have exclusion against page_add_anon_rmap because the caller
1048 * always holds the page locked, except if called from page_dup_rmap,
1049 * in which case the page is already known to be setup.
1050 *
1051 * We have exclusion against page_add_new_anon_rmap because those pages
1052 * are initially only visible via the pagetables, and the pte is locked
1053 * over the call to page_add_new_anon_rmap.
1054 */
1055 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1056 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1057 #endif
1058 }
1059
1060 /**
1061 * page_add_anon_rmap - add pte mapping to an anonymous page
1062 * @page: the page to add the mapping to
1063 * @vma: the vm area in which the mapping is added
1064 * @address: the user virtual address mapped
1065 * @compound: charge the page as compound or small page
1066 *
1067 * The caller needs to hold the pte lock, and the page must be locked in
1068 * the anon_vma case: to serialize mapping,index checking after setting,
1069 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1070 * (but PageKsm is never downgraded to PageAnon).
1071 */
1072 void page_add_anon_rmap(struct page *page,
1073 struct vm_area_struct *vma, unsigned long address, bool compound)
1074 {
1075 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1076 }
1077
1078 /*
1079 * Special version of the above for do_swap_page, which often runs
1080 * into pages that are exclusively owned by the current process.
1081 * Everybody else should continue to use page_add_anon_rmap above.
1082 */
1083 void do_page_add_anon_rmap(struct page *page,
1084 struct vm_area_struct *vma, unsigned long address, int flags)
1085 {
1086 bool compound = flags & RMAP_COMPOUND;
1087 bool first;
1088
1089 if (compound) {
1090 atomic_t *mapcount;
1091 VM_BUG_ON_PAGE(!PageLocked(page), page);
1092 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1093 mapcount = compound_mapcount_ptr(page);
1094 first = atomic_inc_and_test(mapcount);
1095 } else {
1096 first = atomic_inc_and_test(&page->_mapcount);
1097 }
1098
1099 if (first) {
1100 int nr = compound ? hpage_nr_pages(page) : 1;
1101 /*
1102 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1103 * these counters are not modified in interrupt context, and
1104 * pte lock(a spinlock) is held, which implies preemption
1105 * disabled.
1106 */
1107 if (compound)
1108 __inc_node_page_state(page, NR_ANON_THPS);
1109 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1110 }
1111 if (unlikely(PageKsm(page)))
1112 return;
1113
1114 VM_BUG_ON_PAGE(!PageLocked(page), page);
1115
1116 /* address might be in next vma when migration races vma_adjust */
1117 if (first)
1118 __page_set_anon_rmap(page, vma, address,
1119 flags & RMAP_EXCLUSIVE);
1120 else
1121 __page_check_anon_rmap(page, vma, address);
1122 }
1123
1124 /**
1125 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1126 * @page: the page to add the mapping to
1127 * @vma: the vm area in which the mapping is added
1128 * @address: the user virtual address mapped
1129 * @compound: charge the page as compound or small page
1130 *
1131 * Same as page_add_anon_rmap but must only be called on *new* pages.
1132 * This means the inc-and-test can be bypassed.
1133 * Page does not have to be locked.
1134 */
1135 void page_add_new_anon_rmap(struct page *page,
1136 struct vm_area_struct *vma, unsigned long address, bool compound)
1137 {
1138 int nr = compound ? hpage_nr_pages(page) : 1;
1139
1140 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1141 __SetPageSwapBacked(page);
1142 if (compound) {
1143 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1144 /* increment count (starts at -1) */
1145 atomic_set(compound_mapcount_ptr(page), 0);
1146 __inc_node_page_state(page, NR_ANON_THPS);
1147 } else {
1148 /* Anon THP always mapped first with PMD */
1149 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1150 /* increment count (starts at -1) */
1151 atomic_set(&page->_mapcount, 0);
1152 }
1153 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1154 __page_set_anon_rmap(page, vma, address, 1);
1155 }
1156
1157 /**
1158 * page_add_file_rmap - add pte mapping to a file page
1159 * @page: the page to add the mapping to
1160 *
1161 * The caller needs to hold the pte lock.
1162 */
1163 void page_add_file_rmap(struct page *page, bool compound)
1164 {
1165 int i, nr = 1;
1166
1167 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1168 lock_page_memcg(page);
1169 if (compound && PageTransHuge(page)) {
1170 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1171 if (atomic_inc_and_test(&page[i]._mapcount))
1172 nr++;
1173 }
1174 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1175 goto out;
1176 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1177 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1178 } else {
1179 if (PageTransCompound(page) && page_mapping(page)) {
1180 VM_WARN_ON_ONCE(!PageLocked(page));
1181
1182 SetPageDoubleMap(compound_head(page));
1183 if (PageMlocked(page))
1184 clear_page_mlock(compound_head(page));
1185 }
1186 if (!atomic_inc_and_test(&page->_mapcount))
1187 goto out;
1188 }
1189 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1190 out:
1191 unlock_page_memcg(page);
1192 }
1193
1194 static void page_remove_file_rmap(struct page *page, bool compound)
1195 {
1196 int i, nr = 1;
1197
1198 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1199 lock_page_memcg(page);
1200
1201 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1202 if (unlikely(PageHuge(page))) {
1203 /* hugetlb pages are always mapped with pmds */
1204 atomic_dec(compound_mapcount_ptr(page));
1205 goto out;
1206 }
1207
1208 /* page still mapped by someone else? */
1209 if (compound && PageTransHuge(page)) {
1210 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1211 if (atomic_add_negative(-1, &page[i]._mapcount))
1212 nr++;
1213 }
1214 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1215 goto out;
1216 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1217 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1218 } else {
1219 if (!atomic_add_negative(-1, &page->_mapcount))
1220 goto out;
1221 }
1222
1223 /*
1224 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1225 * these counters are not modified in interrupt context, and
1226 * pte lock(a spinlock) is held, which implies preemption disabled.
1227 */
1228 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1229
1230 if (unlikely(PageMlocked(page)))
1231 clear_page_mlock(page);
1232 out:
1233 unlock_page_memcg(page);
1234 }
1235
1236 static void page_remove_anon_compound_rmap(struct page *page)
1237 {
1238 int i, nr;
1239
1240 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1241 return;
1242
1243 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1244 if (unlikely(PageHuge(page)))
1245 return;
1246
1247 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1248 return;
1249
1250 __dec_node_page_state(page, NR_ANON_THPS);
1251
1252 if (TestClearPageDoubleMap(page)) {
1253 /*
1254 * Subpages can be mapped with PTEs too. Check how many of
1255 * themi are still mapped.
1256 */
1257 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1258 if (atomic_add_negative(-1, &page[i]._mapcount))
1259 nr++;
1260 }
1261 } else {
1262 nr = HPAGE_PMD_NR;
1263 }
1264
1265 if (unlikely(PageMlocked(page)))
1266 clear_page_mlock(page);
1267
1268 if (nr) {
1269 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1270 deferred_split_huge_page(page);
1271 }
1272 }
1273
1274 /**
1275 * page_remove_rmap - take down pte mapping from a page
1276 * @page: page to remove mapping from
1277 * @compound: uncharge the page as compound or small page
1278 *
1279 * The caller needs to hold the pte lock.
1280 */
1281 void page_remove_rmap(struct page *page, bool compound)
1282 {
1283 if (!PageAnon(page))
1284 return page_remove_file_rmap(page, compound);
1285
1286 if (compound)
1287 return page_remove_anon_compound_rmap(page);
1288
1289 /* page still mapped by someone else? */
1290 if (!atomic_add_negative(-1, &page->_mapcount))
1291 return;
1292
1293 /*
1294 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1295 * these counters are not modified in interrupt context, and
1296 * pte lock(a spinlock) is held, which implies preemption disabled.
1297 */
1298 __dec_node_page_state(page, NR_ANON_MAPPED);
1299
1300 if (unlikely(PageMlocked(page)))
1301 clear_page_mlock(page);
1302
1303 if (PageTransCompound(page))
1304 deferred_split_huge_page(compound_head(page));
1305
1306 /*
1307 * It would be tidy to reset the PageAnon mapping here,
1308 * but that might overwrite a racing page_add_anon_rmap
1309 * which increments mapcount after us but sets mapping
1310 * before us: so leave the reset to free_hot_cold_page,
1311 * and remember that it's only reliable while mapped.
1312 * Leaving it set also helps swapoff to reinstate ptes
1313 * faster for those pages still in swapcache.
1314 */
1315 }
1316
1317 /*
1318 * @arg: enum ttu_flags will be passed to this argument
1319 */
1320 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1321 unsigned long address, void *arg)
1322 {
1323 struct mm_struct *mm = vma->vm_mm;
1324 struct page_vma_mapped_walk pvmw = {
1325 .page = page,
1326 .vma = vma,
1327 .address = address,
1328 };
1329 pte_t pteval;
1330 struct page *subpage;
1331 bool ret = true, invalidation_needed = false;
1332 enum ttu_flags flags = (enum ttu_flags)arg;
1333
1334 /* munlock has nothing to gain from examining un-locked vmas */
1335 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1336 return true;
1337
1338 if (flags & TTU_SPLIT_HUGE_PMD) {
1339 split_huge_pmd_address(vma, address,
1340 flags & TTU_MIGRATION, page);
1341 }
1342
1343 while (page_vma_mapped_walk(&pvmw)) {
1344 /*
1345 * If the page is mlock()d, we cannot swap it out.
1346 * If it's recently referenced (perhaps page_referenced
1347 * skipped over this mm) then we should reactivate it.
1348 */
1349 if (!(flags & TTU_IGNORE_MLOCK)) {
1350 if (vma->vm_flags & VM_LOCKED) {
1351 /* PTE-mapped THP are never mlocked */
1352 if (!PageTransCompound(page)) {
1353 /*
1354 * Holding pte lock, we do *not* need
1355 * mmap_sem here
1356 */
1357 mlock_vma_page(page);
1358 }
1359 ret = false;
1360 page_vma_mapped_walk_done(&pvmw);
1361 break;
1362 }
1363 if (flags & TTU_MUNLOCK)
1364 continue;
1365 }
1366
1367 /* Unexpected PMD-mapped THP? */
1368 VM_BUG_ON_PAGE(!pvmw.pte, page);
1369
1370 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1371
1372 if (!(flags & TTU_IGNORE_ACCESS)) {
1373 if (ptep_clear_flush_young_notify(vma, pvmw.address,
1374 pvmw.pte)) {
1375 ret = false;
1376 page_vma_mapped_walk_done(&pvmw);
1377 break;
1378 }
1379 }
1380
1381 /* Nuke the page table entry. */
1382 flush_cache_page(vma, pvmw.address, pte_pfn(*pvmw.pte));
1383 if (should_defer_flush(mm, flags)) {
1384 /*
1385 * We clear the PTE but do not flush so potentially
1386 * a remote CPU could still be writing to the page.
1387 * If the entry was previously clean then the
1388 * architecture must guarantee that a clear->dirty
1389 * transition on a cached TLB entry is written through
1390 * and traps if the PTE is unmapped.
1391 */
1392 pteval = ptep_get_and_clear(mm, pvmw.address,
1393 pvmw.pte);
1394
1395 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1396 } else {
1397 pteval = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1398 }
1399
1400 /* Move the dirty bit to the page. Now the pte is gone. */
1401 if (pte_dirty(pteval))
1402 set_page_dirty(page);
1403
1404 /* Update high watermark before we lower rss */
1405 update_hiwater_rss(mm);
1406
1407 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1408 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1409 if (PageHuge(page)) {
1410 int nr = 1 << compound_order(page);
1411 hugetlb_count_sub(nr, mm);
1412 set_huge_swap_pte_at(mm, pvmw.address,
1413 pvmw.pte, pteval,
1414 vma_mmu_pagesize(vma));
1415 } else {
1416 dec_mm_counter(mm, mm_counter(page));
1417 set_pte_at(mm, pvmw.address, pvmw.pte, pteval);
1418 }
1419
1420 } else if (pte_unused(pteval)) {
1421 /*
1422 * The guest indicated that the page content is of no
1423 * interest anymore. Simply discard the pte, vmscan
1424 * will take care of the rest.
1425 */
1426 dec_mm_counter(mm, mm_counter(page));
1427 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1428 (flags & TTU_MIGRATION)) {
1429 swp_entry_t entry;
1430 pte_t swp_pte;
1431 /*
1432 * Store the pfn of the page in a special migration
1433 * pte. do_swap_page() will wait until the migration
1434 * pte is removed and then restart fault handling.
1435 */
1436 entry = make_migration_entry(subpage,
1437 pte_write(pteval));
1438 swp_pte = swp_entry_to_pte(entry);
1439 if (pte_soft_dirty(pteval))
1440 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1441 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1442 } else if (PageAnon(page)) {
1443 swp_entry_t entry = { .val = page_private(subpage) };
1444 pte_t swp_pte;
1445 /*
1446 * Store the swap location in the pte.
1447 * See handle_pte_fault() ...
1448 */
1449 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1450 WARN_ON_ONCE(1);
1451 ret = false;
1452 page_vma_mapped_walk_done(&pvmw);
1453 break;
1454 }
1455
1456 /* MADV_FREE page check */
1457 if (!PageSwapBacked(page)) {
1458 if (!PageDirty(page)) {
1459 dec_mm_counter(mm, MM_ANONPAGES);
1460 goto discard;
1461 }
1462
1463 /*
1464 * If the page was redirtied, it cannot be
1465 * discarded. Remap the page to page table.
1466 */
1467 set_pte_at(mm, pvmw.address, pvmw.pte, pteval);
1468 SetPageSwapBacked(page);
1469 ret = false;
1470 page_vma_mapped_walk_done(&pvmw);
1471 break;
1472 }
1473
1474 if (swap_duplicate(entry) < 0) {
1475 set_pte_at(mm, pvmw.address, pvmw.pte, pteval);
1476 ret = false;
1477 page_vma_mapped_walk_done(&pvmw);
1478 break;
1479 }
1480 if (list_empty(&mm->mmlist)) {
1481 spin_lock(&mmlist_lock);
1482 if (list_empty(&mm->mmlist))
1483 list_add(&mm->mmlist, &init_mm.mmlist);
1484 spin_unlock(&mmlist_lock);
1485 }
1486 dec_mm_counter(mm, MM_ANONPAGES);
1487 inc_mm_counter(mm, MM_SWAPENTS);
1488 swp_pte = swp_entry_to_pte(entry);
1489 if (pte_soft_dirty(pteval))
1490 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1491 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1492 } else
1493 dec_mm_counter(mm, mm_counter_file(page));
1494 discard:
1495 page_remove_rmap(subpage, PageHuge(page));
1496 put_page(page);
1497 invalidation_needed = true;
1498 }
1499
1500 if (invalidation_needed)
1501 mmu_notifier_invalidate_range(mm, address,
1502 address + (1UL << compound_order(page)));
1503 return ret;
1504 }
1505
1506 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1507 {
1508 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1509
1510 if (!maybe_stack)
1511 return false;
1512
1513 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1514 VM_STACK_INCOMPLETE_SETUP)
1515 return true;
1516
1517 return false;
1518 }
1519
1520 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1521 {
1522 return is_vma_temporary_stack(vma);
1523 }
1524
1525 static int page_mapcount_is_zero(struct page *page)
1526 {
1527 return !total_mapcount(page);
1528 }
1529
1530 /**
1531 * try_to_unmap - try to remove all page table mappings to a page
1532 * @page: the page to get unmapped
1533 * @flags: action and flags
1534 *
1535 * Tries to remove all the page table entries which are mapping this
1536 * page, used in the pageout path. Caller must hold the page lock.
1537 *
1538 * If unmap is successful, return true. Otherwise, false.
1539 */
1540 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1541 {
1542 struct rmap_walk_control rwc = {
1543 .rmap_one = try_to_unmap_one,
1544 .arg = (void *)flags,
1545 .done = page_mapcount_is_zero,
1546 .anon_lock = page_lock_anon_vma_read,
1547 };
1548
1549 /*
1550 * During exec, a temporary VMA is setup and later moved.
1551 * The VMA is moved under the anon_vma lock but not the
1552 * page tables leading to a race where migration cannot
1553 * find the migration ptes. Rather than increasing the
1554 * locking requirements of exec(), migration skips
1555 * temporary VMAs until after exec() completes.
1556 */
1557 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1558 rwc.invalid_vma = invalid_migration_vma;
1559
1560 if (flags & TTU_RMAP_LOCKED)
1561 rmap_walk_locked(page, &rwc);
1562 else
1563 rmap_walk(page, &rwc);
1564
1565 return !page_mapcount(page) ? true : false;
1566 }
1567
1568 static int page_not_mapped(struct page *page)
1569 {
1570 return !page_mapped(page);
1571 };
1572
1573 /**
1574 * try_to_munlock - try to munlock a page
1575 * @page: the page to be munlocked
1576 *
1577 * Called from munlock code. Checks all of the VMAs mapping the page
1578 * to make sure nobody else has this page mlocked. The page will be
1579 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1580 */
1581
1582 void try_to_munlock(struct page *page)
1583 {
1584 struct rmap_walk_control rwc = {
1585 .rmap_one = try_to_unmap_one,
1586 .arg = (void *)TTU_MUNLOCK,
1587 .done = page_not_mapped,
1588 .anon_lock = page_lock_anon_vma_read,
1589
1590 };
1591
1592 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1593 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1594
1595 rmap_walk(page, &rwc);
1596 }
1597
1598 void __put_anon_vma(struct anon_vma *anon_vma)
1599 {
1600 struct anon_vma *root = anon_vma->root;
1601
1602 anon_vma_free(anon_vma);
1603 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1604 anon_vma_free(root);
1605 }
1606
1607 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1608 struct rmap_walk_control *rwc)
1609 {
1610 struct anon_vma *anon_vma;
1611
1612 if (rwc->anon_lock)
1613 return rwc->anon_lock(page);
1614
1615 /*
1616 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1617 * because that depends on page_mapped(); but not all its usages
1618 * are holding mmap_sem. Users without mmap_sem are required to
1619 * take a reference count to prevent the anon_vma disappearing
1620 */
1621 anon_vma = page_anon_vma(page);
1622 if (!anon_vma)
1623 return NULL;
1624
1625 anon_vma_lock_read(anon_vma);
1626 return anon_vma;
1627 }
1628
1629 /*
1630 * rmap_walk_anon - do something to anonymous page using the object-based
1631 * rmap method
1632 * @page: the page to be handled
1633 * @rwc: control variable according to each walk type
1634 *
1635 * Find all the mappings of a page using the mapping pointer and the vma chains
1636 * contained in the anon_vma struct it points to.
1637 *
1638 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1639 * where the page was found will be held for write. So, we won't recheck
1640 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1641 * LOCKED.
1642 */
1643 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1644 bool locked)
1645 {
1646 struct anon_vma *anon_vma;
1647 pgoff_t pgoff_start, pgoff_end;
1648 struct anon_vma_chain *avc;
1649
1650 if (locked) {
1651 anon_vma = page_anon_vma(page);
1652 /* anon_vma disappear under us? */
1653 VM_BUG_ON_PAGE(!anon_vma, page);
1654 } else {
1655 anon_vma = rmap_walk_anon_lock(page, rwc);
1656 }
1657 if (!anon_vma)
1658 return;
1659
1660 pgoff_start = page_to_pgoff(page);
1661 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1662 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1663 pgoff_start, pgoff_end) {
1664 struct vm_area_struct *vma = avc->vma;
1665 unsigned long address = vma_address(page, vma);
1666
1667 cond_resched();
1668
1669 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1670 continue;
1671
1672 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1673 break;
1674 if (rwc->done && rwc->done(page))
1675 break;
1676 }
1677
1678 if (!locked)
1679 anon_vma_unlock_read(anon_vma);
1680 }
1681
1682 /*
1683 * rmap_walk_file - do something to file page using the object-based rmap method
1684 * @page: the page to be handled
1685 * @rwc: control variable according to each walk type
1686 *
1687 * Find all the mappings of a page using the mapping pointer and the vma chains
1688 * contained in the address_space struct it points to.
1689 *
1690 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1691 * where the page was found will be held for write. So, we won't recheck
1692 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1693 * LOCKED.
1694 */
1695 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1696 bool locked)
1697 {
1698 struct address_space *mapping = page_mapping(page);
1699 pgoff_t pgoff_start, pgoff_end;
1700 struct vm_area_struct *vma;
1701
1702 /*
1703 * The page lock not only makes sure that page->mapping cannot
1704 * suddenly be NULLified by truncation, it makes sure that the
1705 * structure at mapping cannot be freed and reused yet,
1706 * so we can safely take mapping->i_mmap_rwsem.
1707 */
1708 VM_BUG_ON_PAGE(!PageLocked(page), page);
1709
1710 if (!mapping)
1711 return;
1712
1713 pgoff_start = page_to_pgoff(page);
1714 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1715 if (!locked)
1716 i_mmap_lock_read(mapping);
1717 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1718 pgoff_start, pgoff_end) {
1719 unsigned long address = vma_address(page, vma);
1720
1721 cond_resched();
1722
1723 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1724 continue;
1725
1726 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1727 goto done;
1728 if (rwc->done && rwc->done(page))
1729 goto done;
1730 }
1731
1732 done:
1733 if (!locked)
1734 i_mmap_unlock_read(mapping);
1735 }
1736
1737 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1738 {
1739 if (unlikely(PageKsm(page)))
1740 rmap_walk_ksm(page, rwc);
1741 else if (PageAnon(page))
1742 rmap_walk_anon(page, rwc, false);
1743 else
1744 rmap_walk_file(page, rwc, false);
1745 }
1746
1747 /* Like rmap_walk, but caller holds relevant rmap lock */
1748 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1749 {
1750 /* no ksm support for now */
1751 VM_BUG_ON_PAGE(PageKsm(page), page);
1752 if (PageAnon(page))
1753 rmap_walk_anon(page, rwc, true);
1754 else
1755 rmap_walk_file(page, rwc, true);
1756 }
1757
1758 #ifdef CONFIG_HUGETLB_PAGE
1759 /*
1760 * The following three functions are for anonymous (private mapped) hugepages.
1761 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1762 * and no lru code, because we handle hugepages differently from common pages.
1763 */
1764 static void __hugepage_set_anon_rmap(struct page *page,
1765 struct vm_area_struct *vma, unsigned long address, int exclusive)
1766 {
1767 struct anon_vma *anon_vma = vma->anon_vma;
1768
1769 BUG_ON(!anon_vma);
1770
1771 if (PageAnon(page))
1772 return;
1773 if (!exclusive)
1774 anon_vma = anon_vma->root;
1775
1776 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1777 page->mapping = (struct address_space *) anon_vma;
1778 page->index = linear_page_index(vma, address);
1779 }
1780
1781 void hugepage_add_anon_rmap(struct page *page,
1782 struct vm_area_struct *vma, unsigned long address)
1783 {
1784 struct anon_vma *anon_vma = vma->anon_vma;
1785 int first;
1786
1787 BUG_ON(!PageLocked(page));
1788 BUG_ON(!anon_vma);
1789 /* address might be in next vma when migration races vma_adjust */
1790 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1791 if (first)
1792 __hugepage_set_anon_rmap(page, vma, address, 0);
1793 }
1794
1795 void hugepage_add_new_anon_rmap(struct page *page,
1796 struct vm_area_struct *vma, unsigned long address)
1797 {
1798 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1799 atomic_set(compound_mapcount_ptr(page), 0);
1800 __hugepage_set_anon_rmap(page, vma, address, 1);
1801 }
1802 #endif /* CONFIG_HUGETLB_PAGE */