]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
mm: thp: enable thp migration in generic path
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66
67 #include <asm/tlbflush.h>
68
69 #include <trace/events/tlb.h>
70
71 #include "internal.h"
72
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 struct anon_vma *anon_vma;
79
80 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 if (anon_vma) {
82 atomic_set(&anon_vma->refcount, 1);
83 anon_vma->degree = 1; /* Reference for first vma */
84 anon_vma->parent = anon_vma;
85 /*
86 * Initialise the anon_vma root to point to itself. If called
87 * from fork, the root will be reset to the parents anon_vma.
88 */
89 anon_vma->root = anon_vma;
90 }
91
92 return anon_vma;
93 }
94
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 VM_BUG_ON(atomic_read(&anon_vma->refcount));
98
99 /*
100 * Synchronize against page_lock_anon_vma_read() such that
101 * we can safely hold the lock without the anon_vma getting
102 * freed.
103 *
104 * Relies on the full mb implied by the atomic_dec_and_test() from
105 * put_anon_vma() against the acquire barrier implied by
106 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 *
108 * page_lock_anon_vma_read() VS put_anon_vma()
109 * down_read_trylock() atomic_dec_and_test()
110 * LOCK MB
111 * atomic_read() rwsem_is_locked()
112 *
113 * LOCK should suffice since the actual taking of the lock must
114 * happen _before_ what follows.
115 */
116 might_sleep();
117 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 anon_vma_lock_write(anon_vma);
119 anon_vma_unlock_write(anon_vma);
120 }
121
122 kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 struct anon_vma_chain *avc,
137 struct anon_vma *anon_vma)
138 {
139 avc->vma = vma;
140 avc->anon_vma = anon_vma;
141 list_add(&avc->same_vma, &vma->anon_vma_chain);
142 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144
145 /**
146 * __anon_vma_prepare - attach an anon_vma to a memory region
147 * @vma: the memory region in question
148 *
149 * This makes sure the memory mapping described by 'vma' has
150 * an 'anon_vma' attached to it, so that we can associate the
151 * anonymous pages mapped into it with that anon_vma.
152 *
153 * The common case will be that we already have one, which
154 * is handled inline by anon_vma_prepare(). But if
155 * not we either need to find an adjacent mapping that we
156 * can re-use the anon_vma from (very common when the only
157 * reason for splitting a vma has been mprotect()), or we
158 * allocate a new one.
159 *
160 * Anon-vma allocations are very subtle, because we may have
161 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162 * and that may actually touch the spinlock even in the newly
163 * allocated vma (it depends on RCU to make sure that the
164 * anon_vma isn't actually destroyed).
165 *
166 * As a result, we need to do proper anon_vma locking even
167 * for the new allocation. At the same time, we do not want
168 * to do any locking for the common case of already having
169 * an anon_vma.
170 *
171 * This must be called with the mmap_sem held for reading.
172 */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 struct mm_struct *mm = vma->vm_mm;
176 struct anon_vma *anon_vma, *allocated;
177 struct anon_vma_chain *avc;
178
179 might_sleep();
180
181 avc = anon_vma_chain_alloc(GFP_KERNEL);
182 if (!avc)
183 goto out_enomem;
184
185 anon_vma = find_mergeable_anon_vma(vma);
186 allocated = NULL;
187 if (!anon_vma) {
188 anon_vma = anon_vma_alloc();
189 if (unlikely(!anon_vma))
190 goto out_enomem_free_avc;
191 allocated = anon_vma;
192 }
193
194 anon_vma_lock_write(anon_vma);
195 /* page_table_lock to protect against threads */
196 spin_lock(&mm->page_table_lock);
197 if (likely(!vma->anon_vma)) {
198 vma->anon_vma = anon_vma;
199 anon_vma_chain_link(vma, avc, anon_vma);
200 /* vma reference or self-parent link for new root */
201 anon_vma->degree++;
202 allocated = NULL;
203 avc = NULL;
204 }
205 spin_unlock(&mm->page_table_lock);
206 anon_vma_unlock_write(anon_vma);
207
208 if (unlikely(allocated))
209 put_anon_vma(allocated);
210 if (unlikely(avc))
211 anon_vma_chain_free(avc);
212
213 return 0;
214
215 out_enomem_free_avc:
216 anon_vma_chain_free(avc);
217 out_enomem:
218 return -ENOMEM;
219 }
220
221 /*
222 * This is a useful helper function for locking the anon_vma root as
223 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224 * have the same vma.
225 *
226 * Such anon_vma's should have the same root, so you'd expect to see
227 * just a single mutex_lock for the whole traversal.
228 */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 struct anon_vma *new_root = anon_vma->root;
232 if (new_root != root) {
233 if (WARN_ON_ONCE(root))
234 up_write(&root->rwsem);
235 root = new_root;
236 down_write(&root->rwsem);
237 }
238 return root;
239 }
240
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 if (root)
244 up_write(&root->rwsem);
245 }
246
247 /*
248 * Attach the anon_vmas from src to dst.
249 * Returns 0 on success, -ENOMEM on failure.
250 *
251 * If dst->anon_vma is NULL this function tries to find and reuse existing
252 * anon_vma which has no vmas and only one child anon_vma. This prevents
253 * degradation of anon_vma hierarchy to endless linear chain in case of
254 * constantly forking task. On the other hand, an anon_vma with more than one
255 * child isn't reused even if there was no alive vma, thus rmap walker has a
256 * good chance of avoiding scanning the whole hierarchy when it searches where
257 * page is mapped.
258 */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 struct anon_vma_chain *avc, *pavc;
262 struct anon_vma *root = NULL;
263
264 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 struct anon_vma *anon_vma;
266
267 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 if (unlikely(!avc)) {
269 unlock_anon_vma_root(root);
270 root = NULL;
271 avc = anon_vma_chain_alloc(GFP_KERNEL);
272 if (!avc)
273 goto enomem_failure;
274 }
275 anon_vma = pavc->anon_vma;
276 root = lock_anon_vma_root(root, anon_vma);
277 anon_vma_chain_link(dst, avc, anon_vma);
278
279 /*
280 * Reuse existing anon_vma if its degree lower than two,
281 * that means it has no vma and only one anon_vma child.
282 *
283 * Do not chose parent anon_vma, otherwise first child
284 * will always reuse it. Root anon_vma is never reused:
285 * it has self-parent reference and at least one child.
286 */
287 if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 anon_vma->degree < 2)
289 dst->anon_vma = anon_vma;
290 }
291 if (dst->anon_vma)
292 dst->anon_vma->degree++;
293 unlock_anon_vma_root(root);
294 return 0;
295
296 enomem_failure:
297 /*
298 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 * decremented in unlink_anon_vmas().
300 * We can safely do this because callers of anon_vma_clone() don't care
301 * about dst->anon_vma if anon_vma_clone() failed.
302 */
303 dst->anon_vma = NULL;
304 unlink_anon_vmas(dst);
305 return -ENOMEM;
306 }
307
308 /*
309 * Attach vma to its own anon_vma, as well as to the anon_vmas that
310 * the corresponding VMA in the parent process is attached to.
311 * Returns 0 on success, non-zero on failure.
312 */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 struct anon_vma_chain *avc;
316 struct anon_vma *anon_vma;
317 int error;
318
319 /* Don't bother if the parent process has no anon_vma here. */
320 if (!pvma->anon_vma)
321 return 0;
322
323 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 vma->anon_vma = NULL;
325
326 /*
327 * First, attach the new VMA to the parent VMA's anon_vmas,
328 * so rmap can find non-COWed pages in child processes.
329 */
330 error = anon_vma_clone(vma, pvma);
331 if (error)
332 return error;
333
334 /* An existing anon_vma has been reused, all done then. */
335 if (vma->anon_vma)
336 return 0;
337
338 /* Then add our own anon_vma. */
339 anon_vma = anon_vma_alloc();
340 if (!anon_vma)
341 goto out_error;
342 avc = anon_vma_chain_alloc(GFP_KERNEL);
343 if (!avc)
344 goto out_error_free_anon_vma;
345
346 /*
347 * The root anon_vma's spinlock is the lock actually used when we
348 * lock any of the anon_vmas in this anon_vma tree.
349 */
350 anon_vma->root = pvma->anon_vma->root;
351 anon_vma->parent = pvma->anon_vma;
352 /*
353 * With refcounts, an anon_vma can stay around longer than the
354 * process it belongs to. The root anon_vma needs to be pinned until
355 * this anon_vma is freed, because the lock lives in the root.
356 */
357 get_anon_vma(anon_vma->root);
358 /* Mark this anon_vma as the one where our new (COWed) pages go. */
359 vma->anon_vma = anon_vma;
360 anon_vma_lock_write(anon_vma);
361 anon_vma_chain_link(vma, avc, anon_vma);
362 anon_vma->parent->degree++;
363 anon_vma_unlock_write(anon_vma);
364
365 return 0;
366
367 out_error_free_anon_vma:
368 put_anon_vma(anon_vma);
369 out_error:
370 unlink_anon_vmas(vma);
371 return -ENOMEM;
372 }
373
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 struct anon_vma_chain *avc, *next;
377 struct anon_vma *root = NULL;
378
379 /*
380 * Unlink each anon_vma chained to the VMA. This list is ordered
381 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 */
383 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 struct anon_vma *anon_vma = avc->anon_vma;
385
386 root = lock_anon_vma_root(root, anon_vma);
387 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388
389 /*
390 * Leave empty anon_vmas on the list - we'll need
391 * to free them outside the lock.
392 */
393 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 anon_vma->parent->degree--;
395 continue;
396 }
397
398 list_del(&avc->same_vma);
399 anon_vma_chain_free(avc);
400 }
401 if (vma->anon_vma)
402 vma->anon_vma->degree--;
403 unlock_anon_vma_root(root);
404
405 /*
406 * Iterate the list once more, it now only contains empty and unlinked
407 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 * needing to write-acquire the anon_vma->root->rwsem.
409 */
410 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 struct anon_vma *anon_vma = avc->anon_vma;
412
413 VM_WARN_ON(anon_vma->degree);
414 put_anon_vma(anon_vma);
415
416 list_del(&avc->same_vma);
417 anon_vma_chain_free(avc);
418 }
419 }
420
421 static void anon_vma_ctor(void *data)
422 {
423 struct anon_vma *anon_vma = data;
424
425 init_rwsem(&anon_vma->rwsem);
426 atomic_set(&anon_vma->refcount, 0);
427 anon_vma->rb_root = RB_ROOT;
428 }
429
430 void __init anon_vma_init(void)
431 {
432 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 anon_vma_ctor);
435 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 SLAB_PANIC|SLAB_ACCOUNT);
437 }
438
439 /*
440 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441 *
442 * Since there is no serialization what so ever against page_remove_rmap()
443 * the best this function can do is return a locked anon_vma that might
444 * have been relevant to this page.
445 *
446 * The page might have been remapped to a different anon_vma or the anon_vma
447 * returned may already be freed (and even reused).
448 *
449 * In case it was remapped to a different anon_vma, the new anon_vma will be a
450 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451 * ensure that any anon_vma obtained from the page will still be valid for as
452 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453 *
454 * All users of this function must be very careful when walking the anon_vma
455 * chain and verify that the page in question is indeed mapped in it
456 * [ something equivalent to page_mapped_in_vma() ].
457 *
458 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459 * that the anon_vma pointer from page->mapping is valid if there is a
460 * mapcount, we can dereference the anon_vma after observing those.
461 */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 struct anon_vma *anon_vma = NULL;
465 unsigned long anon_mapping;
466
467 rcu_read_lock();
468 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 goto out;
471 if (!page_mapped(page))
472 goto out;
473
474 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 anon_vma = NULL;
477 goto out;
478 }
479
480 /*
481 * If this page is still mapped, then its anon_vma cannot have been
482 * freed. But if it has been unmapped, we have no security against the
483 * anon_vma structure being freed and reused (for another anon_vma:
484 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 * above cannot corrupt).
486 */
487 if (!page_mapped(page)) {
488 rcu_read_unlock();
489 put_anon_vma(anon_vma);
490 return NULL;
491 }
492 out:
493 rcu_read_unlock();
494
495 return anon_vma;
496 }
497
498 /*
499 * Similar to page_get_anon_vma() except it locks the anon_vma.
500 *
501 * Its a little more complex as it tries to keep the fast path to a single
502 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503 * reference like with page_get_anon_vma() and then block on the mutex.
504 */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 struct anon_vma *anon_vma = NULL;
508 struct anon_vma *root_anon_vma;
509 unsigned long anon_mapping;
510
511 rcu_read_lock();
512 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 goto out;
515 if (!page_mapped(page))
516 goto out;
517
518 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 root_anon_vma = READ_ONCE(anon_vma->root);
520 if (down_read_trylock(&root_anon_vma->rwsem)) {
521 /*
522 * If the page is still mapped, then this anon_vma is still
523 * its anon_vma, and holding the mutex ensures that it will
524 * not go away, see anon_vma_free().
525 */
526 if (!page_mapped(page)) {
527 up_read(&root_anon_vma->rwsem);
528 anon_vma = NULL;
529 }
530 goto out;
531 }
532
533 /* trylock failed, we got to sleep */
534 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 anon_vma = NULL;
536 goto out;
537 }
538
539 if (!page_mapped(page)) {
540 rcu_read_unlock();
541 put_anon_vma(anon_vma);
542 return NULL;
543 }
544
545 /* we pinned the anon_vma, its safe to sleep */
546 rcu_read_unlock();
547 anon_vma_lock_read(anon_vma);
548
549 if (atomic_dec_and_test(&anon_vma->refcount)) {
550 /*
551 * Oops, we held the last refcount, release the lock
552 * and bail -- can't simply use put_anon_vma() because
553 * we'll deadlock on the anon_vma_lock_write() recursion.
554 */
555 anon_vma_unlock_read(anon_vma);
556 __put_anon_vma(anon_vma);
557 anon_vma = NULL;
558 }
559
560 return anon_vma;
561
562 out:
563 rcu_read_unlock();
564 return anon_vma;
565 }
566
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 anon_vma_unlock_read(anon_vma);
570 }
571
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575 * important if a PTE was dirty when it was unmapped that it's flushed
576 * before any IO is initiated on the page to prevent lost writes. Similarly,
577 * it must be flushed before freeing to prevent data leakage.
578 */
579 void try_to_unmap_flush(void)
580 {
581 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582
583 if (!tlb_ubc->flush_required)
584 return;
585
586 arch_tlbbatch_flush(&tlb_ubc->arch);
587 tlb_ubc->flush_required = false;
588 tlb_ubc->writable = false;
589 }
590
591 /* Flush iff there are potentially writable TLB entries that can race with IO */
592 void try_to_unmap_flush_dirty(void)
593 {
594 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
595
596 if (tlb_ubc->writable)
597 try_to_unmap_flush();
598 }
599
600 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
601 {
602 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
603
604 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
605 tlb_ubc->flush_required = true;
606
607 /*
608 * Ensure compiler does not re-order the setting of tlb_flush_batched
609 * before the PTE is cleared.
610 */
611 barrier();
612 mm->tlb_flush_batched = true;
613
614 /*
615 * If the PTE was dirty then it's best to assume it's writable. The
616 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
617 * before the page is queued for IO.
618 */
619 if (writable)
620 tlb_ubc->writable = true;
621 }
622
623 /*
624 * Returns true if the TLB flush should be deferred to the end of a batch of
625 * unmap operations to reduce IPIs.
626 */
627 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
628 {
629 bool should_defer = false;
630
631 if (!(flags & TTU_BATCH_FLUSH))
632 return false;
633
634 /* If remote CPUs need to be flushed then defer batch the flush */
635 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
636 should_defer = true;
637 put_cpu();
638
639 return should_defer;
640 }
641
642 /*
643 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
644 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
645 * operation such as mprotect or munmap to race between reclaim unmapping
646 * the page and flushing the page. If this race occurs, it potentially allows
647 * access to data via a stale TLB entry. Tracking all mm's that have TLB
648 * batching in flight would be expensive during reclaim so instead track
649 * whether TLB batching occurred in the past and if so then do a flush here
650 * if required. This will cost one additional flush per reclaim cycle paid
651 * by the first operation at risk such as mprotect and mumap.
652 *
653 * This must be called under the PTL so that an access to tlb_flush_batched
654 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
655 * via the PTL.
656 */
657 void flush_tlb_batched_pending(struct mm_struct *mm)
658 {
659 if (mm->tlb_flush_batched) {
660 flush_tlb_mm(mm);
661
662 /*
663 * Do not allow the compiler to re-order the clearing of
664 * tlb_flush_batched before the tlb is flushed.
665 */
666 barrier();
667 mm->tlb_flush_batched = false;
668 }
669 }
670 #else
671 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
672 {
673 }
674
675 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
676 {
677 return false;
678 }
679 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
680
681 /*
682 * At what user virtual address is page expected in vma?
683 * Caller should check the page is actually part of the vma.
684 */
685 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
686 {
687 unsigned long address;
688 if (PageAnon(page)) {
689 struct anon_vma *page__anon_vma = page_anon_vma(page);
690 /*
691 * Note: swapoff's unuse_vma() is more efficient with this
692 * check, and needs it to match anon_vma when KSM is active.
693 */
694 if (!vma->anon_vma || !page__anon_vma ||
695 vma->anon_vma->root != page__anon_vma->root)
696 return -EFAULT;
697 } else if (page->mapping) {
698 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
699 return -EFAULT;
700 } else
701 return -EFAULT;
702 address = __vma_address(page, vma);
703 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
704 return -EFAULT;
705 return address;
706 }
707
708 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
709 {
710 pgd_t *pgd;
711 p4d_t *p4d;
712 pud_t *pud;
713 pmd_t *pmd = NULL;
714 pmd_t pmde;
715
716 pgd = pgd_offset(mm, address);
717 if (!pgd_present(*pgd))
718 goto out;
719
720 p4d = p4d_offset(pgd, address);
721 if (!p4d_present(*p4d))
722 goto out;
723
724 pud = pud_offset(p4d, address);
725 if (!pud_present(*pud))
726 goto out;
727
728 pmd = pmd_offset(pud, address);
729 /*
730 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
731 * without holding anon_vma lock for write. So when looking for a
732 * genuine pmde (in which to find pte), test present and !THP together.
733 */
734 pmde = *pmd;
735 barrier();
736 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
737 pmd = NULL;
738 out:
739 return pmd;
740 }
741
742 struct page_referenced_arg {
743 int mapcount;
744 int referenced;
745 unsigned long vm_flags;
746 struct mem_cgroup *memcg;
747 };
748 /*
749 * arg: page_referenced_arg will be passed
750 */
751 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
752 unsigned long address, void *arg)
753 {
754 struct page_referenced_arg *pra = arg;
755 struct page_vma_mapped_walk pvmw = {
756 .page = page,
757 .vma = vma,
758 .address = address,
759 };
760 int referenced = 0;
761
762 while (page_vma_mapped_walk(&pvmw)) {
763 address = pvmw.address;
764
765 if (vma->vm_flags & VM_LOCKED) {
766 page_vma_mapped_walk_done(&pvmw);
767 pra->vm_flags |= VM_LOCKED;
768 return false; /* To break the loop */
769 }
770
771 if (pvmw.pte) {
772 if (ptep_clear_flush_young_notify(vma, address,
773 pvmw.pte)) {
774 /*
775 * Don't treat a reference through
776 * a sequentially read mapping as such.
777 * If the page has been used in another mapping,
778 * we will catch it; if this other mapping is
779 * already gone, the unmap path will have set
780 * PG_referenced or activated the page.
781 */
782 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 referenced++;
784 }
785 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
786 if (pmdp_clear_flush_young_notify(vma, address,
787 pvmw.pmd))
788 referenced++;
789 } else {
790 /* unexpected pmd-mapped page? */
791 WARN_ON_ONCE(1);
792 }
793
794 pra->mapcount--;
795 }
796
797 if (referenced)
798 clear_page_idle(page);
799 if (test_and_clear_page_young(page))
800 referenced++;
801
802 if (referenced) {
803 pra->referenced++;
804 pra->vm_flags |= vma->vm_flags;
805 }
806
807 if (!pra->mapcount)
808 return false; /* To break the loop */
809
810 return true;
811 }
812
813 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
814 {
815 struct page_referenced_arg *pra = arg;
816 struct mem_cgroup *memcg = pra->memcg;
817
818 if (!mm_match_cgroup(vma->vm_mm, memcg))
819 return true;
820
821 return false;
822 }
823
824 /**
825 * page_referenced - test if the page was referenced
826 * @page: the page to test
827 * @is_locked: caller holds lock on the page
828 * @memcg: target memory cgroup
829 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
830 *
831 * Quick test_and_clear_referenced for all mappings to a page,
832 * returns the number of ptes which referenced the page.
833 */
834 int page_referenced(struct page *page,
835 int is_locked,
836 struct mem_cgroup *memcg,
837 unsigned long *vm_flags)
838 {
839 int we_locked = 0;
840 struct page_referenced_arg pra = {
841 .mapcount = total_mapcount(page),
842 .memcg = memcg,
843 };
844 struct rmap_walk_control rwc = {
845 .rmap_one = page_referenced_one,
846 .arg = (void *)&pra,
847 .anon_lock = page_lock_anon_vma_read,
848 };
849
850 *vm_flags = 0;
851 if (!page_mapped(page))
852 return 0;
853
854 if (!page_rmapping(page))
855 return 0;
856
857 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
858 we_locked = trylock_page(page);
859 if (!we_locked)
860 return 1;
861 }
862
863 /*
864 * If we are reclaiming on behalf of a cgroup, skip
865 * counting on behalf of references from different
866 * cgroups
867 */
868 if (memcg) {
869 rwc.invalid_vma = invalid_page_referenced_vma;
870 }
871
872 rmap_walk(page, &rwc);
873 *vm_flags = pra.vm_flags;
874
875 if (we_locked)
876 unlock_page(page);
877
878 return pra.referenced;
879 }
880
881 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
882 unsigned long address, void *arg)
883 {
884 struct page_vma_mapped_walk pvmw = {
885 .page = page,
886 .vma = vma,
887 .address = address,
888 .flags = PVMW_SYNC,
889 };
890 unsigned long start = address, end;
891 int *cleaned = arg;
892
893 /*
894 * We have to assume the worse case ie pmd for invalidation. Note that
895 * the page can not be free from this function.
896 */
897 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
898 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
899
900 while (page_vma_mapped_walk(&pvmw)) {
901 unsigned long cstart, cend;
902 int ret = 0;
903
904 cstart = address = pvmw.address;
905 if (pvmw.pte) {
906 pte_t entry;
907 pte_t *pte = pvmw.pte;
908
909 if (!pte_dirty(*pte) && !pte_write(*pte))
910 continue;
911
912 flush_cache_page(vma, address, pte_pfn(*pte));
913 entry = ptep_clear_flush(vma, address, pte);
914 entry = pte_wrprotect(entry);
915 entry = pte_mkclean(entry);
916 set_pte_at(vma->vm_mm, address, pte, entry);
917 cend = cstart + PAGE_SIZE;
918 ret = 1;
919 } else {
920 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
921 pmd_t *pmd = pvmw.pmd;
922 pmd_t entry;
923
924 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
925 continue;
926
927 flush_cache_page(vma, address, page_to_pfn(page));
928 entry = pmdp_huge_clear_flush(vma, address, pmd);
929 entry = pmd_wrprotect(entry);
930 entry = pmd_mkclean(entry);
931 set_pmd_at(vma->vm_mm, address, pmd, entry);
932 cstart &= PMD_MASK;
933 cend = cstart + PMD_SIZE;
934 ret = 1;
935 #else
936 /* unexpected pmd-mapped page? */
937 WARN_ON_ONCE(1);
938 #endif
939 }
940
941 if (ret) {
942 mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend);
943 (*cleaned)++;
944 }
945 }
946
947 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
948
949 return true;
950 }
951
952 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
953 {
954 if (vma->vm_flags & VM_SHARED)
955 return false;
956
957 return true;
958 }
959
960 int page_mkclean(struct page *page)
961 {
962 int cleaned = 0;
963 struct address_space *mapping;
964 struct rmap_walk_control rwc = {
965 .arg = (void *)&cleaned,
966 .rmap_one = page_mkclean_one,
967 .invalid_vma = invalid_mkclean_vma,
968 };
969
970 BUG_ON(!PageLocked(page));
971
972 if (!page_mapped(page))
973 return 0;
974
975 mapping = page_mapping(page);
976 if (!mapping)
977 return 0;
978
979 rmap_walk(page, &rwc);
980
981 return cleaned;
982 }
983 EXPORT_SYMBOL_GPL(page_mkclean);
984
985 /**
986 * page_move_anon_rmap - move a page to our anon_vma
987 * @page: the page to move to our anon_vma
988 * @vma: the vma the page belongs to
989 *
990 * When a page belongs exclusively to one process after a COW event,
991 * that page can be moved into the anon_vma that belongs to just that
992 * process, so the rmap code will not search the parent or sibling
993 * processes.
994 */
995 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
996 {
997 struct anon_vma *anon_vma = vma->anon_vma;
998
999 page = compound_head(page);
1000
1001 VM_BUG_ON_PAGE(!PageLocked(page), page);
1002 VM_BUG_ON_VMA(!anon_vma, vma);
1003
1004 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1005 /*
1006 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1007 * simultaneously, so a concurrent reader (eg page_referenced()'s
1008 * PageAnon()) will not see one without the other.
1009 */
1010 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1011 }
1012
1013 /**
1014 * __page_set_anon_rmap - set up new anonymous rmap
1015 * @page: Page to add to rmap
1016 * @vma: VM area to add page to.
1017 * @address: User virtual address of the mapping
1018 * @exclusive: the page is exclusively owned by the current process
1019 */
1020 static void __page_set_anon_rmap(struct page *page,
1021 struct vm_area_struct *vma, unsigned long address, int exclusive)
1022 {
1023 struct anon_vma *anon_vma = vma->anon_vma;
1024
1025 BUG_ON(!anon_vma);
1026
1027 if (PageAnon(page))
1028 return;
1029
1030 /*
1031 * If the page isn't exclusively mapped into this vma,
1032 * we must use the _oldest_ possible anon_vma for the
1033 * page mapping!
1034 */
1035 if (!exclusive)
1036 anon_vma = anon_vma->root;
1037
1038 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1039 page->mapping = (struct address_space *) anon_vma;
1040 page->index = linear_page_index(vma, address);
1041 }
1042
1043 /**
1044 * __page_check_anon_rmap - sanity check anonymous rmap addition
1045 * @page: the page to add the mapping to
1046 * @vma: the vm area in which the mapping is added
1047 * @address: the user virtual address mapped
1048 */
1049 static void __page_check_anon_rmap(struct page *page,
1050 struct vm_area_struct *vma, unsigned long address)
1051 {
1052 #ifdef CONFIG_DEBUG_VM
1053 /*
1054 * The page's anon-rmap details (mapping and index) are guaranteed to
1055 * be set up correctly at this point.
1056 *
1057 * We have exclusion against page_add_anon_rmap because the caller
1058 * always holds the page locked, except if called from page_dup_rmap,
1059 * in which case the page is already known to be setup.
1060 *
1061 * We have exclusion against page_add_new_anon_rmap because those pages
1062 * are initially only visible via the pagetables, and the pte is locked
1063 * over the call to page_add_new_anon_rmap.
1064 */
1065 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1066 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1067 #endif
1068 }
1069
1070 /**
1071 * page_add_anon_rmap - add pte mapping to an anonymous page
1072 * @page: the page to add the mapping to
1073 * @vma: the vm area in which the mapping is added
1074 * @address: the user virtual address mapped
1075 * @compound: charge the page as compound or small page
1076 *
1077 * The caller needs to hold the pte lock, and the page must be locked in
1078 * the anon_vma case: to serialize mapping,index checking after setting,
1079 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1080 * (but PageKsm is never downgraded to PageAnon).
1081 */
1082 void page_add_anon_rmap(struct page *page,
1083 struct vm_area_struct *vma, unsigned long address, bool compound)
1084 {
1085 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1086 }
1087
1088 /*
1089 * Special version of the above for do_swap_page, which often runs
1090 * into pages that are exclusively owned by the current process.
1091 * Everybody else should continue to use page_add_anon_rmap above.
1092 */
1093 void do_page_add_anon_rmap(struct page *page,
1094 struct vm_area_struct *vma, unsigned long address, int flags)
1095 {
1096 bool compound = flags & RMAP_COMPOUND;
1097 bool first;
1098
1099 if (compound) {
1100 atomic_t *mapcount;
1101 VM_BUG_ON_PAGE(!PageLocked(page), page);
1102 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1103 mapcount = compound_mapcount_ptr(page);
1104 first = atomic_inc_and_test(mapcount);
1105 } else {
1106 first = atomic_inc_and_test(&page->_mapcount);
1107 }
1108
1109 if (first) {
1110 int nr = compound ? hpage_nr_pages(page) : 1;
1111 /*
1112 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1113 * these counters are not modified in interrupt context, and
1114 * pte lock(a spinlock) is held, which implies preemption
1115 * disabled.
1116 */
1117 if (compound)
1118 __inc_node_page_state(page, NR_ANON_THPS);
1119 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1120 }
1121 if (unlikely(PageKsm(page)))
1122 return;
1123
1124 VM_BUG_ON_PAGE(!PageLocked(page), page);
1125
1126 /* address might be in next vma when migration races vma_adjust */
1127 if (first)
1128 __page_set_anon_rmap(page, vma, address,
1129 flags & RMAP_EXCLUSIVE);
1130 else
1131 __page_check_anon_rmap(page, vma, address);
1132 }
1133
1134 /**
1135 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1136 * @page: the page to add the mapping to
1137 * @vma: the vm area in which the mapping is added
1138 * @address: the user virtual address mapped
1139 * @compound: charge the page as compound or small page
1140 *
1141 * Same as page_add_anon_rmap but must only be called on *new* pages.
1142 * This means the inc-and-test can be bypassed.
1143 * Page does not have to be locked.
1144 */
1145 void page_add_new_anon_rmap(struct page *page,
1146 struct vm_area_struct *vma, unsigned long address, bool compound)
1147 {
1148 int nr = compound ? hpage_nr_pages(page) : 1;
1149
1150 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1151 __SetPageSwapBacked(page);
1152 if (compound) {
1153 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1154 /* increment count (starts at -1) */
1155 atomic_set(compound_mapcount_ptr(page), 0);
1156 __inc_node_page_state(page, NR_ANON_THPS);
1157 } else {
1158 /* Anon THP always mapped first with PMD */
1159 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1160 /* increment count (starts at -1) */
1161 atomic_set(&page->_mapcount, 0);
1162 }
1163 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1164 __page_set_anon_rmap(page, vma, address, 1);
1165 }
1166
1167 /**
1168 * page_add_file_rmap - add pte mapping to a file page
1169 * @page: the page to add the mapping to
1170 *
1171 * The caller needs to hold the pte lock.
1172 */
1173 void page_add_file_rmap(struct page *page, bool compound)
1174 {
1175 int i, nr = 1;
1176
1177 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1178 lock_page_memcg(page);
1179 if (compound && PageTransHuge(page)) {
1180 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1181 if (atomic_inc_and_test(&page[i]._mapcount))
1182 nr++;
1183 }
1184 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1185 goto out;
1186 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1187 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1188 } else {
1189 if (PageTransCompound(page) && page_mapping(page)) {
1190 VM_WARN_ON_ONCE(!PageLocked(page));
1191
1192 SetPageDoubleMap(compound_head(page));
1193 if (PageMlocked(page))
1194 clear_page_mlock(compound_head(page));
1195 }
1196 if (!atomic_inc_and_test(&page->_mapcount))
1197 goto out;
1198 }
1199 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1200 out:
1201 unlock_page_memcg(page);
1202 }
1203
1204 static void page_remove_file_rmap(struct page *page, bool compound)
1205 {
1206 int i, nr = 1;
1207
1208 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1209 lock_page_memcg(page);
1210
1211 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1212 if (unlikely(PageHuge(page))) {
1213 /* hugetlb pages are always mapped with pmds */
1214 atomic_dec(compound_mapcount_ptr(page));
1215 goto out;
1216 }
1217
1218 /* page still mapped by someone else? */
1219 if (compound && PageTransHuge(page)) {
1220 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1221 if (atomic_add_negative(-1, &page[i]._mapcount))
1222 nr++;
1223 }
1224 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1225 goto out;
1226 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1227 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1228 } else {
1229 if (!atomic_add_negative(-1, &page->_mapcount))
1230 goto out;
1231 }
1232
1233 /*
1234 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1235 * these counters are not modified in interrupt context, and
1236 * pte lock(a spinlock) is held, which implies preemption disabled.
1237 */
1238 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1239
1240 if (unlikely(PageMlocked(page)))
1241 clear_page_mlock(page);
1242 out:
1243 unlock_page_memcg(page);
1244 }
1245
1246 static void page_remove_anon_compound_rmap(struct page *page)
1247 {
1248 int i, nr;
1249
1250 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1251 return;
1252
1253 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1254 if (unlikely(PageHuge(page)))
1255 return;
1256
1257 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1258 return;
1259
1260 __dec_node_page_state(page, NR_ANON_THPS);
1261
1262 if (TestClearPageDoubleMap(page)) {
1263 /*
1264 * Subpages can be mapped with PTEs too. Check how many of
1265 * themi are still mapped.
1266 */
1267 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1268 if (atomic_add_negative(-1, &page[i]._mapcount))
1269 nr++;
1270 }
1271 } else {
1272 nr = HPAGE_PMD_NR;
1273 }
1274
1275 if (unlikely(PageMlocked(page)))
1276 clear_page_mlock(page);
1277
1278 if (nr) {
1279 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1280 deferred_split_huge_page(page);
1281 }
1282 }
1283
1284 /**
1285 * page_remove_rmap - take down pte mapping from a page
1286 * @page: page to remove mapping from
1287 * @compound: uncharge the page as compound or small page
1288 *
1289 * The caller needs to hold the pte lock.
1290 */
1291 void page_remove_rmap(struct page *page, bool compound)
1292 {
1293 if (!PageAnon(page))
1294 return page_remove_file_rmap(page, compound);
1295
1296 if (compound)
1297 return page_remove_anon_compound_rmap(page);
1298
1299 /* page still mapped by someone else? */
1300 if (!atomic_add_negative(-1, &page->_mapcount))
1301 return;
1302
1303 /*
1304 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1305 * these counters are not modified in interrupt context, and
1306 * pte lock(a spinlock) is held, which implies preemption disabled.
1307 */
1308 __dec_node_page_state(page, NR_ANON_MAPPED);
1309
1310 if (unlikely(PageMlocked(page)))
1311 clear_page_mlock(page);
1312
1313 if (PageTransCompound(page))
1314 deferred_split_huge_page(compound_head(page));
1315
1316 /*
1317 * It would be tidy to reset the PageAnon mapping here,
1318 * but that might overwrite a racing page_add_anon_rmap
1319 * which increments mapcount after us but sets mapping
1320 * before us: so leave the reset to free_hot_cold_page,
1321 * and remember that it's only reliable while mapped.
1322 * Leaving it set also helps swapoff to reinstate ptes
1323 * faster for those pages still in swapcache.
1324 */
1325 }
1326
1327 /*
1328 * @arg: enum ttu_flags will be passed to this argument
1329 */
1330 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1331 unsigned long address, void *arg)
1332 {
1333 struct mm_struct *mm = vma->vm_mm;
1334 struct page_vma_mapped_walk pvmw = {
1335 .page = page,
1336 .vma = vma,
1337 .address = address,
1338 };
1339 pte_t pteval;
1340 struct page *subpage;
1341 bool ret = true;
1342 unsigned long start = address, end;
1343 enum ttu_flags flags = (enum ttu_flags)arg;
1344
1345 /* munlock has nothing to gain from examining un-locked vmas */
1346 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1347 return true;
1348
1349 if (flags & TTU_SPLIT_HUGE_PMD) {
1350 split_huge_pmd_address(vma, address,
1351 flags & TTU_SPLIT_FREEZE, page);
1352 }
1353
1354 /*
1355 * We have to assume the worse case ie pmd for invalidation. Note that
1356 * the page can not be free in this function as call of try_to_unmap()
1357 * must hold a reference on the page.
1358 */
1359 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1360 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1361
1362 while (page_vma_mapped_walk(&pvmw)) {
1363 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1364 /* PMD-mapped THP migration entry */
1365 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1366 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1367
1368 if (!PageAnon(page))
1369 continue;
1370
1371 set_pmd_migration_entry(&pvmw, page);
1372 continue;
1373 }
1374 #endif
1375
1376 /*
1377 * If the page is mlock()d, we cannot swap it out.
1378 * If it's recently referenced (perhaps page_referenced
1379 * skipped over this mm) then we should reactivate it.
1380 */
1381 if (!(flags & TTU_IGNORE_MLOCK)) {
1382 if (vma->vm_flags & VM_LOCKED) {
1383 /* PTE-mapped THP are never mlocked */
1384 if (!PageTransCompound(page)) {
1385 /*
1386 * Holding pte lock, we do *not* need
1387 * mmap_sem here
1388 */
1389 mlock_vma_page(page);
1390 }
1391 ret = false;
1392 page_vma_mapped_walk_done(&pvmw);
1393 break;
1394 }
1395 if (flags & TTU_MUNLOCK)
1396 continue;
1397 }
1398
1399 /* Unexpected PMD-mapped THP? */
1400 VM_BUG_ON_PAGE(!pvmw.pte, page);
1401
1402 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1403 address = pvmw.address;
1404
1405
1406 if (!(flags & TTU_IGNORE_ACCESS)) {
1407 if (ptep_clear_flush_young_notify(vma, address,
1408 pvmw.pte)) {
1409 ret = false;
1410 page_vma_mapped_walk_done(&pvmw);
1411 break;
1412 }
1413 }
1414
1415 /* Nuke the page table entry. */
1416 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1417 if (should_defer_flush(mm, flags)) {
1418 /*
1419 * We clear the PTE but do not flush so potentially
1420 * a remote CPU could still be writing to the page.
1421 * If the entry was previously clean then the
1422 * architecture must guarantee that a clear->dirty
1423 * transition on a cached TLB entry is written through
1424 * and traps if the PTE is unmapped.
1425 */
1426 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1427
1428 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1429 } else {
1430 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1431 }
1432
1433 /* Move the dirty bit to the page. Now the pte is gone. */
1434 if (pte_dirty(pteval))
1435 set_page_dirty(page);
1436
1437 /* Update high watermark before we lower rss */
1438 update_hiwater_rss(mm);
1439
1440 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1441 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1442 if (PageHuge(page)) {
1443 int nr = 1 << compound_order(page);
1444 hugetlb_count_sub(nr, mm);
1445 set_huge_swap_pte_at(mm, address,
1446 pvmw.pte, pteval,
1447 vma_mmu_pagesize(vma));
1448 } else {
1449 dec_mm_counter(mm, mm_counter(page));
1450 set_pte_at(mm, address, pvmw.pte, pteval);
1451 }
1452
1453 } else if (pte_unused(pteval)) {
1454 /*
1455 * The guest indicated that the page content is of no
1456 * interest anymore. Simply discard the pte, vmscan
1457 * will take care of the rest.
1458 */
1459 dec_mm_counter(mm, mm_counter(page));
1460 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1461 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1462 swp_entry_t entry;
1463 pte_t swp_pte;
1464 /*
1465 * Store the pfn of the page in a special migration
1466 * pte. do_swap_page() will wait until the migration
1467 * pte is removed and then restart fault handling.
1468 */
1469 entry = make_migration_entry(subpage,
1470 pte_write(pteval));
1471 swp_pte = swp_entry_to_pte(entry);
1472 if (pte_soft_dirty(pteval))
1473 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1474 set_pte_at(mm, address, pvmw.pte, swp_pte);
1475 } else if (PageAnon(page)) {
1476 swp_entry_t entry = { .val = page_private(subpage) };
1477 pte_t swp_pte;
1478 /*
1479 * Store the swap location in the pte.
1480 * See handle_pte_fault() ...
1481 */
1482 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1483 WARN_ON_ONCE(1);
1484 ret = false;
1485 /* We have to invalidate as we cleared the pte */
1486 page_vma_mapped_walk_done(&pvmw);
1487 break;
1488 }
1489
1490 /* MADV_FREE page check */
1491 if (!PageSwapBacked(page)) {
1492 if (!PageDirty(page)) {
1493 dec_mm_counter(mm, MM_ANONPAGES);
1494 goto discard;
1495 }
1496
1497 /*
1498 * If the page was redirtied, it cannot be
1499 * discarded. Remap the page to page table.
1500 */
1501 set_pte_at(mm, address, pvmw.pte, pteval);
1502 SetPageSwapBacked(page);
1503 ret = false;
1504 page_vma_mapped_walk_done(&pvmw);
1505 break;
1506 }
1507
1508 if (swap_duplicate(entry) < 0) {
1509 set_pte_at(mm, address, pvmw.pte, pteval);
1510 ret = false;
1511 page_vma_mapped_walk_done(&pvmw);
1512 break;
1513 }
1514 if (list_empty(&mm->mmlist)) {
1515 spin_lock(&mmlist_lock);
1516 if (list_empty(&mm->mmlist))
1517 list_add(&mm->mmlist, &init_mm.mmlist);
1518 spin_unlock(&mmlist_lock);
1519 }
1520 dec_mm_counter(mm, MM_ANONPAGES);
1521 inc_mm_counter(mm, MM_SWAPENTS);
1522 swp_pte = swp_entry_to_pte(entry);
1523 if (pte_soft_dirty(pteval))
1524 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1525 set_pte_at(mm, address, pvmw.pte, swp_pte);
1526 } else
1527 dec_mm_counter(mm, mm_counter_file(page));
1528 discard:
1529 page_remove_rmap(subpage, PageHuge(page));
1530 put_page(page);
1531 mmu_notifier_invalidate_range(mm, address,
1532 address + PAGE_SIZE);
1533 }
1534
1535 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1536
1537 return ret;
1538 }
1539
1540 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1541 {
1542 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1543
1544 if (!maybe_stack)
1545 return false;
1546
1547 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1548 VM_STACK_INCOMPLETE_SETUP)
1549 return true;
1550
1551 return false;
1552 }
1553
1554 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1555 {
1556 return is_vma_temporary_stack(vma);
1557 }
1558
1559 static int page_mapcount_is_zero(struct page *page)
1560 {
1561 return !total_mapcount(page);
1562 }
1563
1564 /**
1565 * try_to_unmap - try to remove all page table mappings to a page
1566 * @page: the page to get unmapped
1567 * @flags: action and flags
1568 *
1569 * Tries to remove all the page table entries which are mapping this
1570 * page, used in the pageout path. Caller must hold the page lock.
1571 *
1572 * If unmap is successful, return true. Otherwise, false.
1573 */
1574 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1575 {
1576 struct rmap_walk_control rwc = {
1577 .rmap_one = try_to_unmap_one,
1578 .arg = (void *)flags,
1579 .done = page_mapcount_is_zero,
1580 .anon_lock = page_lock_anon_vma_read,
1581 };
1582
1583 /*
1584 * During exec, a temporary VMA is setup and later moved.
1585 * The VMA is moved under the anon_vma lock but not the
1586 * page tables leading to a race where migration cannot
1587 * find the migration ptes. Rather than increasing the
1588 * locking requirements of exec(), migration skips
1589 * temporary VMAs until after exec() completes.
1590 */
1591 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1592 && !PageKsm(page) && PageAnon(page))
1593 rwc.invalid_vma = invalid_migration_vma;
1594
1595 if (flags & TTU_RMAP_LOCKED)
1596 rmap_walk_locked(page, &rwc);
1597 else
1598 rmap_walk(page, &rwc);
1599
1600 return !page_mapcount(page) ? true : false;
1601 }
1602
1603 static int page_not_mapped(struct page *page)
1604 {
1605 return !page_mapped(page);
1606 };
1607
1608 /**
1609 * try_to_munlock - try to munlock a page
1610 * @page: the page to be munlocked
1611 *
1612 * Called from munlock code. Checks all of the VMAs mapping the page
1613 * to make sure nobody else has this page mlocked. The page will be
1614 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1615 */
1616
1617 void try_to_munlock(struct page *page)
1618 {
1619 struct rmap_walk_control rwc = {
1620 .rmap_one = try_to_unmap_one,
1621 .arg = (void *)TTU_MUNLOCK,
1622 .done = page_not_mapped,
1623 .anon_lock = page_lock_anon_vma_read,
1624
1625 };
1626
1627 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1628 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1629
1630 rmap_walk(page, &rwc);
1631 }
1632
1633 void __put_anon_vma(struct anon_vma *anon_vma)
1634 {
1635 struct anon_vma *root = anon_vma->root;
1636
1637 anon_vma_free(anon_vma);
1638 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1639 anon_vma_free(root);
1640 }
1641
1642 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1643 struct rmap_walk_control *rwc)
1644 {
1645 struct anon_vma *anon_vma;
1646
1647 if (rwc->anon_lock)
1648 return rwc->anon_lock(page);
1649
1650 /*
1651 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1652 * because that depends on page_mapped(); but not all its usages
1653 * are holding mmap_sem. Users without mmap_sem are required to
1654 * take a reference count to prevent the anon_vma disappearing
1655 */
1656 anon_vma = page_anon_vma(page);
1657 if (!anon_vma)
1658 return NULL;
1659
1660 anon_vma_lock_read(anon_vma);
1661 return anon_vma;
1662 }
1663
1664 /*
1665 * rmap_walk_anon - do something to anonymous page using the object-based
1666 * rmap method
1667 * @page: the page to be handled
1668 * @rwc: control variable according to each walk type
1669 *
1670 * Find all the mappings of a page using the mapping pointer and the vma chains
1671 * contained in the anon_vma struct it points to.
1672 *
1673 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1674 * where the page was found will be held for write. So, we won't recheck
1675 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1676 * LOCKED.
1677 */
1678 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1679 bool locked)
1680 {
1681 struct anon_vma *anon_vma;
1682 pgoff_t pgoff_start, pgoff_end;
1683 struct anon_vma_chain *avc;
1684
1685 if (locked) {
1686 anon_vma = page_anon_vma(page);
1687 /* anon_vma disappear under us? */
1688 VM_BUG_ON_PAGE(!anon_vma, page);
1689 } else {
1690 anon_vma = rmap_walk_anon_lock(page, rwc);
1691 }
1692 if (!anon_vma)
1693 return;
1694
1695 pgoff_start = page_to_pgoff(page);
1696 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1697 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1698 pgoff_start, pgoff_end) {
1699 struct vm_area_struct *vma = avc->vma;
1700 unsigned long address = vma_address(page, vma);
1701
1702 cond_resched();
1703
1704 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1705 continue;
1706
1707 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1708 break;
1709 if (rwc->done && rwc->done(page))
1710 break;
1711 }
1712
1713 if (!locked)
1714 anon_vma_unlock_read(anon_vma);
1715 }
1716
1717 /*
1718 * rmap_walk_file - do something to file page using the object-based rmap method
1719 * @page: the page to be handled
1720 * @rwc: control variable according to each walk type
1721 *
1722 * Find all the mappings of a page using the mapping pointer and the vma chains
1723 * contained in the address_space struct it points to.
1724 *
1725 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1726 * where the page was found will be held for write. So, we won't recheck
1727 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1728 * LOCKED.
1729 */
1730 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1731 bool locked)
1732 {
1733 struct address_space *mapping = page_mapping(page);
1734 pgoff_t pgoff_start, pgoff_end;
1735 struct vm_area_struct *vma;
1736
1737 /*
1738 * The page lock not only makes sure that page->mapping cannot
1739 * suddenly be NULLified by truncation, it makes sure that the
1740 * structure at mapping cannot be freed and reused yet,
1741 * so we can safely take mapping->i_mmap_rwsem.
1742 */
1743 VM_BUG_ON_PAGE(!PageLocked(page), page);
1744
1745 if (!mapping)
1746 return;
1747
1748 pgoff_start = page_to_pgoff(page);
1749 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1750 if (!locked)
1751 i_mmap_lock_read(mapping);
1752 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1753 pgoff_start, pgoff_end) {
1754 unsigned long address = vma_address(page, vma);
1755
1756 cond_resched();
1757
1758 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1759 continue;
1760
1761 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1762 goto done;
1763 if (rwc->done && rwc->done(page))
1764 goto done;
1765 }
1766
1767 done:
1768 if (!locked)
1769 i_mmap_unlock_read(mapping);
1770 }
1771
1772 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1773 {
1774 if (unlikely(PageKsm(page)))
1775 rmap_walk_ksm(page, rwc);
1776 else if (PageAnon(page))
1777 rmap_walk_anon(page, rwc, false);
1778 else
1779 rmap_walk_file(page, rwc, false);
1780 }
1781
1782 /* Like rmap_walk, but caller holds relevant rmap lock */
1783 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1784 {
1785 /* no ksm support for now */
1786 VM_BUG_ON_PAGE(PageKsm(page), page);
1787 if (PageAnon(page))
1788 rmap_walk_anon(page, rwc, true);
1789 else
1790 rmap_walk_file(page, rwc, true);
1791 }
1792
1793 #ifdef CONFIG_HUGETLB_PAGE
1794 /*
1795 * The following three functions are for anonymous (private mapped) hugepages.
1796 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1797 * and no lru code, because we handle hugepages differently from common pages.
1798 */
1799 static void __hugepage_set_anon_rmap(struct page *page,
1800 struct vm_area_struct *vma, unsigned long address, int exclusive)
1801 {
1802 struct anon_vma *anon_vma = vma->anon_vma;
1803
1804 BUG_ON(!anon_vma);
1805
1806 if (PageAnon(page))
1807 return;
1808 if (!exclusive)
1809 anon_vma = anon_vma->root;
1810
1811 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1812 page->mapping = (struct address_space *) anon_vma;
1813 page->index = linear_page_index(vma, address);
1814 }
1815
1816 void hugepage_add_anon_rmap(struct page *page,
1817 struct vm_area_struct *vma, unsigned long address)
1818 {
1819 struct anon_vma *anon_vma = vma->anon_vma;
1820 int first;
1821
1822 BUG_ON(!PageLocked(page));
1823 BUG_ON(!anon_vma);
1824 /* address might be in next vma when migration races vma_adjust */
1825 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1826 if (first)
1827 __hugepage_set_anon_rmap(page, vma, address, 0);
1828 }
1829
1830 void hugepage_add_new_anon_rmap(struct page *page,
1831 struct vm_area_struct *vma, unsigned long address)
1832 {
1833 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1834 atomic_set(compound_mapcount_ptr(page), 0);
1835 __hugepage_set_anon_rmap(page, vma, address, 1);
1836 }
1837 #endif /* CONFIG_HUGETLB_PAGE */