]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/rmap.c
[PATCH] mm: kill kmem_cache_t usage
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
25 *
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29 * taken together; in truncation, i_mutex is taken outermost.
30 *
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock or pte_lock
36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37 * swap_lock (in swap_duplicate, swap_info_get)
38 * mmlist_lock (in mmput, drain_mmlist and others)
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56
57 #include <asm/tlbflush.h>
58
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
60
61 struct kmem_cache *anon_vma_cachep;
62
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
64 {
65 #ifdef RMAP_DEBUG
66 struct anon_vma *anon_vma = find_vma->anon_vma;
67 struct vm_area_struct *vma;
68 unsigned int mapcount = 0;
69 int found = 0;
70
71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 mapcount++;
73 BUG_ON(mapcount > 100000);
74 if (vma == find_vma)
75 found = 1;
76 }
77 BUG_ON(!found);
78 #endif
79 }
80
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
83 {
84 struct anon_vma *anon_vma = vma->anon_vma;
85
86 might_sleep();
87 if (unlikely(!anon_vma)) {
88 struct mm_struct *mm = vma->vm_mm;
89 struct anon_vma *allocated, *locked;
90
91 anon_vma = find_mergeable_anon_vma(vma);
92 if (anon_vma) {
93 allocated = NULL;
94 locked = anon_vma;
95 spin_lock(&locked->lock);
96 } else {
97 anon_vma = anon_vma_alloc();
98 if (unlikely(!anon_vma))
99 return -ENOMEM;
100 allocated = anon_vma;
101 locked = NULL;
102 }
103
104 /* page_table_lock to protect against threads */
105 spin_lock(&mm->page_table_lock);
106 if (likely(!vma->anon_vma)) {
107 vma->anon_vma = anon_vma;
108 list_add(&vma->anon_vma_node, &anon_vma->head);
109 allocated = NULL;
110 }
111 spin_unlock(&mm->page_table_lock);
112
113 if (locked)
114 spin_unlock(&locked->lock);
115 if (unlikely(allocated))
116 anon_vma_free(allocated);
117 }
118 return 0;
119 }
120
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
122 {
123 BUG_ON(vma->anon_vma != next->anon_vma);
124 list_del(&next->anon_vma_node);
125 }
126
127 void __anon_vma_link(struct vm_area_struct *vma)
128 {
129 struct anon_vma *anon_vma = vma->anon_vma;
130
131 if (anon_vma) {
132 list_add(&vma->anon_vma_node, &anon_vma->head);
133 validate_anon_vma(vma);
134 }
135 }
136
137 void anon_vma_link(struct vm_area_struct *vma)
138 {
139 struct anon_vma *anon_vma = vma->anon_vma;
140
141 if (anon_vma) {
142 spin_lock(&anon_vma->lock);
143 list_add(&vma->anon_vma_node, &anon_vma->head);
144 validate_anon_vma(vma);
145 spin_unlock(&anon_vma->lock);
146 }
147 }
148
149 void anon_vma_unlink(struct vm_area_struct *vma)
150 {
151 struct anon_vma *anon_vma = vma->anon_vma;
152 int empty;
153
154 if (!anon_vma)
155 return;
156
157 spin_lock(&anon_vma->lock);
158 validate_anon_vma(vma);
159 list_del(&vma->anon_vma_node);
160
161 /* We must garbage collect the anon_vma if it's empty */
162 empty = list_empty(&anon_vma->head);
163 spin_unlock(&anon_vma->lock);
164
165 if (empty)
166 anon_vma_free(anon_vma);
167 }
168
169 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
170 unsigned long flags)
171 {
172 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
173 SLAB_CTOR_CONSTRUCTOR) {
174 struct anon_vma *anon_vma = data;
175
176 spin_lock_init(&anon_vma->lock);
177 INIT_LIST_HEAD(&anon_vma->head);
178 }
179 }
180
181 void __init anon_vma_init(void)
182 {
183 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
184 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
185 }
186
187 /*
188 * Getting a lock on a stable anon_vma from a page off the LRU is
189 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
190 */
191 static struct anon_vma *page_lock_anon_vma(struct page *page)
192 {
193 struct anon_vma *anon_vma = NULL;
194 unsigned long anon_mapping;
195
196 rcu_read_lock();
197 anon_mapping = (unsigned long) page->mapping;
198 if (!(anon_mapping & PAGE_MAPPING_ANON))
199 goto out;
200 if (!page_mapped(page))
201 goto out;
202
203 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
204 spin_lock(&anon_vma->lock);
205 out:
206 rcu_read_unlock();
207 return anon_vma;
208 }
209
210 #ifdef CONFIG_MIGRATION
211 /*
212 * Remove an anonymous page from swap replacing the swap pte's
213 * through real pte's pointing to valid pages and then releasing
214 * the page from the swap cache.
215 *
216 * Must hold page lock on page and mmap_sem of one vma that contains
217 * the page.
218 */
219 void remove_from_swap(struct page *page)
220 {
221 struct anon_vma *anon_vma;
222 struct vm_area_struct *vma;
223 unsigned long mapping;
224
225 if (!PageSwapCache(page))
226 return;
227
228 mapping = (unsigned long)page->mapping;
229
230 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
231 return;
232
233 /*
234 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
235 */
236 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
237 spin_lock(&anon_vma->lock);
238
239 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
240 remove_vma_swap(vma, page);
241
242 spin_unlock(&anon_vma->lock);
243 delete_from_swap_cache(page);
244 }
245 EXPORT_SYMBOL(remove_from_swap);
246 #endif
247
248 /*
249 * At what user virtual address is page expected in vma?
250 */
251 static inline unsigned long
252 vma_address(struct page *page, struct vm_area_struct *vma)
253 {
254 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
255 unsigned long address;
256
257 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
258 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
259 /* page should be within any vma from prio_tree_next */
260 BUG_ON(!PageAnon(page));
261 return -EFAULT;
262 }
263 return address;
264 }
265
266 /*
267 * At what user virtual address is page expected in vma? checking that the
268 * page matches the vma: currently only used on anon pages, by unuse_vma;
269 */
270 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
271 {
272 if (PageAnon(page)) {
273 if ((void *)vma->anon_vma !=
274 (void *)page->mapping - PAGE_MAPPING_ANON)
275 return -EFAULT;
276 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
277 if (!vma->vm_file ||
278 vma->vm_file->f_mapping != page->mapping)
279 return -EFAULT;
280 } else
281 return -EFAULT;
282 return vma_address(page, vma);
283 }
284
285 /*
286 * Check that @page is mapped at @address into @mm.
287 *
288 * On success returns with pte mapped and locked.
289 */
290 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
291 unsigned long address, spinlock_t **ptlp)
292 {
293 pgd_t *pgd;
294 pud_t *pud;
295 pmd_t *pmd;
296 pte_t *pte;
297 spinlock_t *ptl;
298
299 pgd = pgd_offset(mm, address);
300 if (!pgd_present(*pgd))
301 return NULL;
302
303 pud = pud_offset(pgd, address);
304 if (!pud_present(*pud))
305 return NULL;
306
307 pmd = pmd_offset(pud, address);
308 if (!pmd_present(*pmd))
309 return NULL;
310
311 pte = pte_offset_map(pmd, address);
312 /* Make a quick check before getting the lock */
313 if (!pte_present(*pte)) {
314 pte_unmap(pte);
315 return NULL;
316 }
317
318 ptl = pte_lockptr(mm, pmd);
319 spin_lock(ptl);
320 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
321 *ptlp = ptl;
322 return pte;
323 }
324 pte_unmap_unlock(pte, ptl);
325 return NULL;
326 }
327
328 /*
329 * Subfunctions of page_referenced: page_referenced_one called
330 * repeatedly from either page_referenced_anon or page_referenced_file.
331 */
332 static int page_referenced_one(struct page *page,
333 struct vm_area_struct *vma, unsigned int *mapcount)
334 {
335 struct mm_struct *mm = vma->vm_mm;
336 unsigned long address;
337 pte_t *pte;
338 spinlock_t *ptl;
339 int referenced = 0;
340
341 address = vma_address(page, vma);
342 if (address == -EFAULT)
343 goto out;
344
345 pte = page_check_address(page, mm, address, &ptl);
346 if (!pte)
347 goto out;
348
349 if (ptep_clear_flush_young(vma, address, pte))
350 referenced++;
351
352 /* Pretend the page is referenced if the task has the
353 swap token and is in the middle of a page fault. */
354 if (mm != current->mm && has_swap_token(mm) &&
355 rwsem_is_locked(&mm->mmap_sem))
356 referenced++;
357
358 (*mapcount)--;
359 pte_unmap_unlock(pte, ptl);
360 out:
361 return referenced;
362 }
363
364 static int page_referenced_anon(struct page *page)
365 {
366 unsigned int mapcount;
367 struct anon_vma *anon_vma;
368 struct vm_area_struct *vma;
369 int referenced = 0;
370
371 anon_vma = page_lock_anon_vma(page);
372 if (!anon_vma)
373 return referenced;
374
375 mapcount = page_mapcount(page);
376 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
377 referenced += page_referenced_one(page, vma, &mapcount);
378 if (!mapcount)
379 break;
380 }
381 spin_unlock(&anon_vma->lock);
382 return referenced;
383 }
384
385 /**
386 * page_referenced_file - referenced check for object-based rmap
387 * @page: the page we're checking references on.
388 *
389 * For an object-based mapped page, find all the places it is mapped and
390 * check/clear the referenced flag. This is done by following the page->mapping
391 * pointer, then walking the chain of vmas it holds. It returns the number
392 * of references it found.
393 *
394 * This function is only called from page_referenced for object-based pages.
395 */
396 static int page_referenced_file(struct page *page)
397 {
398 unsigned int mapcount;
399 struct address_space *mapping = page->mapping;
400 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
401 struct vm_area_struct *vma;
402 struct prio_tree_iter iter;
403 int referenced = 0;
404
405 /*
406 * The caller's checks on page->mapping and !PageAnon have made
407 * sure that this is a file page: the check for page->mapping
408 * excludes the case just before it gets set on an anon page.
409 */
410 BUG_ON(PageAnon(page));
411
412 /*
413 * The page lock not only makes sure that page->mapping cannot
414 * suddenly be NULLified by truncation, it makes sure that the
415 * structure at mapping cannot be freed and reused yet,
416 * so we can safely take mapping->i_mmap_lock.
417 */
418 BUG_ON(!PageLocked(page));
419
420 spin_lock(&mapping->i_mmap_lock);
421
422 /*
423 * i_mmap_lock does not stabilize mapcount at all, but mapcount
424 * is more likely to be accurate if we note it after spinning.
425 */
426 mapcount = page_mapcount(page);
427
428 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
429 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
430 == (VM_LOCKED|VM_MAYSHARE)) {
431 referenced++;
432 break;
433 }
434 referenced += page_referenced_one(page, vma, &mapcount);
435 if (!mapcount)
436 break;
437 }
438
439 spin_unlock(&mapping->i_mmap_lock);
440 return referenced;
441 }
442
443 /**
444 * page_referenced - test if the page was referenced
445 * @page: the page to test
446 * @is_locked: caller holds lock on the page
447 *
448 * Quick test_and_clear_referenced for all mappings to a page,
449 * returns the number of ptes which referenced the page.
450 */
451 int page_referenced(struct page *page, int is_locked)
452 {
453 int referenced = 0;
454
455 if (page_test_and_clear_young(page))
456 referenced++;
457
458 if (TestClearPageReferenced(page))
459 referenced++;
460
461 if (page_mapped(page) && page->mapping) {
462 if (PageAnon(page))
463 referenced += page_referenced_anon(page);
464 else if (is_locked)
465 referenced += page_referenced_file(page);
466 else if (TestSetPageLocked(page))
467 referenced++;
468 else {
469 if (page->mapping)
470 referenced += page_referenced_file(page);
471 unlock_page(page);
472 }
473 }
474 return referenced;
475 }
476
477 /**
478 * page_set_anon_rmap - setup new anonymous rmap
479 * @page: the page to add the mapping to
480 * @vma: the vm area in which the mapping is added
481 * @address: the user virtual address mapped
482 */
483 static void __page_set_anon_rmap(struct page *page,
484 struct vm_area_struct *vma, unsigned long address)
485 {
486 struct anon_vma *anon_vma = vma->anon_vma;
487
488 BUG_ON(!anon_vma);
489 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
490 page->mapping = (struct address_space *) anon_vma;
491
492 page->index = linear_page_index(vma, address);
493
494 /*
495 * nr_mapped state can be updated without turning off
496 * interrupts because it is not modified via interrupt.
497 */
498 __inc_page_state(nr_mapped);
499 }
500
501 /**
502 * page_add_anon_rmap - add pte mapping to an anonymous page
503 * @page: the page to add the mapping to
504 * @vma: the vm area in which the mapping is added
505 * @address: the user virtual address mapped
506 *
507 * The caller needs to hold the pte lock.
508 */
509 void page_add_anon_rmap(struct page *page,
510 struct vm_area_struct *vma, unsigned long address)
511 {
512 if (atomic_inc_and_test(&page->_mapcount))
513 __page_set_anon_rmap(page, vma, address);
514 /* else checking page index and mapping is racy */
515 }
516
517 /*
518 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
519 * @page: the page to add the mapping to
520 * @vma: the vm area in which the mapping is added
521 * @address: the user virtual address mapped
522 *
523 * Same as page_add_anon_rmap but must only be called on *new* pages.
524 * This means the inc-and-test can be bypassed.
525 */
526 void page_add_new_anon_rmap(struct page *page,
527 struct vm_area_struct *vma, unsigned long address)
528 {
529 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
530 __page_set_anon_rmap(page, vma, address);
531 }
532
533 /**
534 * page_add_file_rmap - add pte mapping to a file page
535 * @page: the page to add the mapping to
536 *
537 * The caller needs to hold the pte lock.
538 */
539 void page_add_file_rmap(struct page *page)
540 {
541 if (atomic_inc_and_test(&page->_mapcount))
542 __inc_page_state(nr_mapped);
543 }
544
545 /**
546 * page_remove_rmap - take down pte mapping from a page
547 * @page: page to remove mapping from
548 *
549 * The caller needs to hold the pte lock.
550 */
551 void page_remove_rmap(struct page *page)
552 {
553 if (atomic_add_negative(-1, &page->_mapcount)) {
554 if (page_mapcount(page) < 0) {
555 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
556 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
557 printk (KERN_EMERG " page->count = %x\n", page_count(page));
558 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
559 }
560
561 BUG_ON(page_mapcount(page) < 0);
562 /*
563 * It would be tidy to reset the PageAnon mapping here,
564 * but that might overwrite a racing page_add_anon_rmap
565 * which increments mapcount after us but sets mapping
566 * before us: so leave the reset to free_hot_cold_page,
567 * and remember that it's only reliable while mapped.
568 * Leaving it set also helps swapoff to reinstate ptes
569 * faster for those pages still in swapcache.
570 */
571 if (page_test_and_clear_dirty(page))
572 set_page_dirty(page);
573 __dec_page_state(nr_mapped);
574 }
575 }
576
577 /*
578 * Subfunctions of try_to_unmap: try_to_unmap_one called
579 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
580 */
581 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
582 int ignore_refs)
583 {
584 struct mm_struct *mm = vma->vm_mm;
585 unsigned long address;
586 pte_t *pte;
587 pte_t pteval;
588 spinlock_t *ptl;
589 int ret = SWAP_AGAIN;
590
591 address = vma_address(page, vma);
592 if (address == -EFAULT)
593 goto out;
594
595 pte = page_check_address(page, mm, address, &ptl);
596 if (!pte)
597 goto out;
598
599 /*
600 * If the page is mlock()d, we cannot swap it out.
601 * If it's recently referenced (perhaps page_referenced
602 * skipped over this mm) then we should reactivate it.
603 */
604 if ((vma->vm_flags & VM_LOCKED) ||
605 (ptep_clear_flush_young(vma, address, pte)
606 && !ignore_refs)) {
607 ret = SWAP_FAIL;
608 goto out_unmap;
609 }
610
611 /* Nuke the page table entry. */
612 flush_cache_page(vma, address, page_to_pfn(page));
613 pteval = ptep_clear_flush(vma, address, pte);
614
615 /* Move the dirty bit to the physical page now the pte is gone. */
616 if (pte_dirty(pteval))
617 set_page_dirty(page);
618
619 /* Update high watermark before we lower rss */
620 update_hiwater_rss(mm);
621
622 if (PageAnon(page)) {
623 swp_entry_t entry = { .val = page_private(page) };
624 /*
625 * Store the swap location in the pte.
626 * See handle_pte_fault() ...
627 */
628 BUG_ON(!PageSwapCache(page));
629 swap_duplicate(entry);
630 if (list_empty(&mm->mmlist)) {
631 spin_lock(&mmlist_lock);
632 if (list_empty(&mm->mmlist))
633 list_add(&mm->mmlist, &init_mm.mmlist);
634 spin_unlock(&mmlist_lock);
635 }
636 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
637 BUG_ON(pte_file(*pte));
638 dec_mm_counter(mm, anon_rss);
639 } else
640 dec_mm_counter(mm, file_rss);
641
642 page_remove_rmap(page);
643 page_cache_release(page);
644
645 out_unmap:
646 pte_unmap_unlock(pte, ptl);
647 out:
648 return ret;
649 }
650
651 /*
652 * objrmap doesn't work for nonlinear VMAs because the assumption that
653 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
654 * Consequently, given a particular page and its ->index, we cannot locate the
655 * ptes which are mapping that page without an exhaustive linear search.
656 *
657 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
658 * maps the file to which the target page belongs. The ->vm_private_data field
659 * holds the current cursor into that scan. Successive searches will circulate
660 * around the vma's virtual address space.
661 *
662 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
663 * more scanning pressure is placed against them as well. Eventually pages
664 * will become fully unmapped and are eligible for eviction.
665 *
666 * For very sparsely populated VMAs this is a little inefficient - chances are
667 * there there won't be many ptes located within the scan cluster. In this case
668 * maybe we could scan further - to the end of the pte page, perhaps.
669 */
670 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
671 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
672
673 static void try_to_unmap_cluster(unsigned long cursor,
674 unsigned int *mapcount, struct vm_area_struct *vma)
675 {
676 struct mm_struct *mm = vma->vm_mm;
677 pgd_t *pgd;
678 pud_t *pud;
679 pmd_t *pmd;
680 pte_t *pte;
681 pte_t pteval;
682 spinlock_t *ptl;
683 struct page *page;
684 unsigned long address;
685 unsigned long end;
686
687 address = (vma->vm_start + cursor) & CLUSTER_MASK;
688 end = address + CLUSTER_SIZE;
689 if (address < vma->vm_start)
690 address = vma->vm_start;
691 if (end > vma->vm_end)
692 end = vma->vm_end;
693
694 pgd = pgd_offset(mm, address);
695 if (!pgd_present(*pgd))
696 return;
697
698 pud = pud_offset(pgd, address);
699 if (!pud_present(*pud))
700 return;
701
702 pmd = pmd_offset(pud, address);
703 if (!pmd_present(*pmd))
704 return;
705
706 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
707
708 /* Update high watermark before we lower rss */
709 update_hiwater_rss(mm);
710
711 for (; address < end; pte++, address += PAGE_SIZE) {
712 if (!pte_present(*pte))
713 continue;
714 page = vm_normal_page(vma, address, *pte);
715 BUG_ON(!page || PageAnon(page));
716
717 if (ptep_clear_flush_young(vma, address, pte))
718 continue;
719
720 /* Nuke the page table entry. */
721 flush_cache_page(vma, address, pte_pfn(*pte));
722 pteval = ptep_clear_flush(vma, address, pte);
723
724 /* If nonlinear, store the file page offset in the pte. */
725 if (page->index != linear_page_index(vma, address))
726 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
727
728 /* Move the dirty bit to the physical page now the pte is gone. */
729 if (pte_dirty(pteval))
730 set_page_dirty(page);
731
732 page_remove_rmap(page);
733 page_cache_release(page);
734 dec_mm_counter(mm, file_rss);
735 (*mapcount)--;
736 }
737 pte_unmap_unlock(pte - 1, ptl);
738 }
739
740 static int try_to_unmap_anon(struct page *page, int ignore_refs)
741 {
742 struct anon_vma *anon_vma;
743 struct vm_area_struct *vma;
744 int ret = SWAP_AGAIN;
745
746 anon_vma = page_lock_anon_vma(page);
747 if (!anon_vma)
748 return ret;
749
750 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
751 ret = try_to_unmap_one(page, vma, ignore_refs);
752 if (ret == SWAP_FAIL || !page_mapped(page))
753 break;
754 }
755 spin_unlock(&anon_vma->lock);
756 return ret;
757 }
758
759 /**
760 * try_to_unmap_file - unmap file page using the object-based rmap method
761 * @page: the page to unmap
762 *
763 * Find all the mappings of a page using the mapping pointer and the vma chains
764 * contained in the address_space struct it points to.
765 *
766 * This function is only called from try_to_unmap for object-based pages.
767 */
768 static int try_to_unmap_file(struct page *page, int ignore_refs)
769 {
770 struct address_space *mapping = page->mapping;
771 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
772 struct vm_area_struct *vma;
773 struct prio_tree_iter iter;
774 int ret = SWAP_AGAIN;
775 unsigned long cursor;
776 unsigned long max_nl_cursor = 0;
777 unsigned long max_nl_size = 0;
778 unsigned int mapcount;
779
780 spin_lock(&mapping->i_mmap_lock);
781 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
782 ret = try_to_unmap_one(page, vma, ignore_refs);
783 if (ret == SWAP_FAIL || !page_mapped(page))
784 goto out;
785 }
786
787 if (list_empty(&mapping->i_mmap_nonlinear))
788 goto out;
789
790 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
791 shared.vm_set.list) {
792 if (vma->vm_flags & VM_LOCKED)
793 continue;
794 cursor = (unsigned long) vma->vm_private_data;
795 if (cursor > max_nl_cursor)
796 max_nl_cursor = cursor;
797 cursor = vma->vm_end - vma->vm_start;
798 if (cursor > max_nl_size)
799 max_nl_size = cursor;
800 }
801
802 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
803 ret = SWAP_FAIL;
804 goto out;
805 }
806
807 /*
808 * We don't try to search for this page in the nonlinear vmas,
809 * and page_referenced wouldn't have found it anyway. Instead
810 * just walk the nonlinear vmas trying to age and unmap some.
811 * The mapcount of the page we came in with is irrelevant,
812 * but even so use it as a guide to how hard we should try?
813 */
814 mapcount = page_mapcount(page);
815 if (!mapcount)
816 goto out;
817 cond_resched_lock(&mapping->i_mmap_lock);
818
819 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
820 if (max_nl_cursor == 0)
821 max_nl_cursor = CLUSTER_SIZE;
822
823 do {
824 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
825 shared.vm_set.list) {
826 if (vma->vm_flags & VM_LOCKED)
827 continue;
828 cursor = (unsigned long) vma->vm_private_data;
829 while ( cursor < max_nl_cursor &&
830 cursor < vma->vm_end - vma->vm_start) {
831 try_to_unmap_cluster(cursor, &mapcount, vma);
832 cursor += CLUSTER_SIZE;
833 vma->vm_private_data = (void *) cursor;
834 if ((int)mapcount <= 0)
835 goto out;
836 }
837 vma->vm_private_data = (void *) max_nl_cursor;
838 }
839 cond_resched_lock(&mapping->i_mmap_lock);
840 max_nl_cursor += CLUSTER_SIZE;
841 } while (max_nl_cursor <= max_nl_size);
842
843 /*
844 * Don't loop forever (perhaps all the remaining pages are
845 * in locked vmas). Reset cursor on all unreserved nonlinear
846 * vmas, now forgetting on which ones it had fallen behind.
847 */
848 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
849 vma->vm_private_data = NULL;
850 out:
851 spin_unlock(&mapping->i_mmap_lock);
852 return ret;
853 }
854
855 /**
856 * try_to_unmap - try to remove all page table mappings to a page
857 * @page: the page to get unmapped
858 *
859 * Tries to remove all the page table entries which are mapping this
860 * page, used in the pageout path. Caller must hold the page lock.
861 * Return values are:
862 *
863 * SWAP_SUCCESS - we succeeded in removing all mappings
864 * SWAP_AGAIN - we missed a mapping, try again later
865 * SWAP_FAIL - the page is unswappable
866 */
867 int try_to_unmap(struct page *page, int ignore_refs)
868 {
869 int ret;
870
871 BUG_ON(!PageLocked(page));
872
873 if (PageAnon(page))
874 ret = try_to_unmap_anon(page, ignore_refs);
875 else
876 ret = try_to_unmap_file(page, ignore_refs);
877
878 if (!page_mapped(page))
879 ret = SWAP_SUCCESS;
880 return ret;
881 }
882