]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/shmem.c
IB/mlx5: Avoid passing an invalid QP type to firmware
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
38
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
40
41 static struct vfsmount *shm_mnt;
42
43 #ifdef CONFIG_SHMEM
44 /*
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
48 */
49
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static int shmem_default_max_inodes(void)
115 {
116 unsigned long ul;
117
118 ul = INT_MAX;
119 ul = min3(ul, totalram_pages - totalhigh_pages, totalram_pages / 2);
120 return ul;
121 }
122 #endif
123
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 struct vm_fault *vmf, int *fault_type);
131
132 int shmem_getpage(struct inode *inode, pgoff_t index,
133 struct page **pagep, enum sgp_type sgp)
134 {
135 return shmem_getpage_gfp(inode, index, pagep, sgp,
136 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
137 }
138
139 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
140 {
141 return sb->s_fs_info;
142 }
143
144 /*
145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
146 * for shared memory and for shared anonymous (/dev/zero) mappings
147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
148 * consistent with the pre-accounting of private mappings ...
149 */
150 static inline int shmem_acct_size(unsigned long flags, loff_t size)
151 {
152 return (flags & VM_NORESERVE) ?
153 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
154 }
155
156 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
157 {
158 if (!(flags & VM_NORESERVE))
159 vm_unacct_memory(VM_ACCT(size));
160 }
161
162 static inline int shmem_reacct_size(unsigned long flags,
163 loff_t oldsize, loff_t newsize)
164 {
165 if (!(flags & VM_NORESERVE)) {
166 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
167 return security_vm_enough_memory_mm(current->mm,
168 VM_ACCT(newsize) - VM_ACCT(oldsize));
169 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
170 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
171 }
172 return 0;
173 }
174
175 /*
176 * ... whereas tmpfs objects are accounted incrementally as
177 * pages are allocated, in order to allow large sparse files.
178 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
179 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
180 */
181 static inline int shmem_acct_block(unsigned long flags, long pages)
182 {
183 if (!(flags & VM_NORESERVE))
184 return 0;
185
186 return security_vm_enough_memory_mm(current->mm,
187 pages * VM_ACCT(PAGE_SIZE));
188 }
189
190 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
191 {
192 if (flags & VM_NORESERVE)
193 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
194 }
195
196 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
197 {
198 struct shmem_inode_info *info = SHMEM_I(inode);
199 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
200
201 if (shmem_acct_block(info->flags, pages))
202 return false;
203
204 if (sbinfo->max_blocks) {
205 if (percpu_counter_compare(&sbinfo->used_blocks,
206 sbinfo->max_blocks - pages) > 0)
207 goto unacct;
208 percpu_counter_add(&sbinfo->used_blocks, pages);
209 }
210
211 return true;
212
213 unacct:
214 shmem_unacct_blocks(info->flags, pages);
215 return false;
216 }
217
218 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
219 {
220 struct shmem_inode_info *info = SHMEM_I(inode);
221 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
222
223 if (sbinfo->max_blocks)
224 percpu_counter_sub(&sbinfo->used_blocks, pages);
225 shmem_unacct_blocks(info->flags, pages);
226 }
227
228 static const struct super_operations shmem_ops;
229 static const struct address_space_operations shmem_aops;
230 static const struct file_operations shmem_file_operations;
231 static const struct inode_operations shmem_inode_operations;
232 static const struct inode_operations shmem_dir_inode_operations;
233 static const struct inode_operations shmem_special_inode_operations;
234 static const struct vm_operations_struct shmem_vm_ops;
235 static struct file_system_type shmem_fs_type;
236
237 bool vma_is_shmem(struct vm_area_struct *vma)
238 {
239 return vma->vm_ops == &shmem_vm_ops;
240 }
241
242 static LIST_HEAD(shmem_swaplist);
243 static DEFINE_MUTEX(shmem_swaplist_mutex);
244
245 static int shmem_reserve_inode(struct super_block *sb)
246 {
247 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
248 if (sbinfo->max_inodes) {
249 spin_lock(&sbinfo->stat_lock);
250 if (!sbinfo->free_inodes) {
251 spin_unlock(&sbinfo->stat_lock);
252 return -ENOSPC;
253 }
254 sbinfo->free_inodes--;
255 spin_unlock(&sbinfo->stat_lock);
256 }
257 return 0;
258 }
259
260 static void shmem_free_inode(struct super_block *sb)
261 {
262 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
263 if (sbinfo->max_inodes) {
264 spin_lock(&sbinfo->stat_lock);
265 sbinfo->free_inodes++;
266 spin_unlock(&sbinfo->stat_lock);
267 }
268 }
269
270 /**
271 * shmem_recalc_inode - recalculate the block usage of an inode
272 * @inode: inode to recalc
273 *
274 * We have to calculate the free blocks since the mm can drop
275 * undirtied hole pages behind our back.
276 *
277 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
278 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
279 *
280 * It has to be called with the spinlock held.
281 */
282 static void shmem_recalc_inode(struct inode *inode)
283 {
284 struct shmem_inode_info *info = SHMEM_I(inode);
285 long freed;
286
287 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
288 if (freed > 0) {
289 info->alloced -= freed;
290 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
291 shmem_inode_unacct_blocks(inode, freed);
292 }
293 }
294
295 bool shmem_charge(struct inode *inode, long pages)
296 {
297 struct shmem_inode_info *info = SHMEM_I(inode);
298 unsigned long flags;
299
300 if (!shmem_inode_acct_block(inode, pages))
301 return false;
302
303 spin_lock_irqsave(&info->lock, flags);
304 info->alloced += pages;
305 inode->i_blocks += pages * BLOCKS_PER_PAGE;
306 shmem_recalc_inode(inode);
307 spin_unlock_irqrestore(&info->lock, flags);
308 inode->i_mapping->nrpages += pages;
309
310 return true;
311 }
312
313 void shmem_uncharge(struct inode *inode, long pages)
314 {
315 struct shmem_inode_info *info = SHMEM_I(inode);
316 unsigned long flags;
317
318 spin_lock_irqsave(&info->lock, flags);
319 info->alloced -= pages;
320 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
321 shmem_recalc_inode(inode);
322 spin_unlock_irqrestore(&info->lock, flags);
323
324 shmem_inode_unacct_blocks(inode, pages);
325 }
326
327 /*
328 * Replace item expected in radix tree by a new item, while holding tree lock.
329 */
330 static int shmem_radix_tree_replace(struct address_space *mapping,
331 pgoff_t index, void *expected, void *replacement)
332 {
333 struct radix_tree_node *node;
334 void **pslot;
335 void *item;
336
337 VM_BUG_ON(!expected);
338 VM_BUG_ON(!replacement);
339 item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
340 if (!item)
341 return -ENOENT;
342 if (item != expected)
343 return -ENOENT;
344 __radix_tree_replace(&mapping->page_tree, node, pslot,
345 replacement, NULL);
346 return 0;
347 }
348
349 /*
350 * Sometimes, before we decide whether to proceed or to fail, we must check
351 * that an entry was not already brought back from swap by a racing thread.
352 *
353 * Checking page is not enough: by the time a SwapCache page is locked, it
354 * might be reused, and again be SwapCache, using the same swap as before.
355 */
356 static bool shmem_confirm_swap(struct address_space *mapping,
357 pgoff_t index, swp_entry_t swap)
358 {
359 void *item;
360
361 rcu_read_lock();
362 item = radix_tree_lookup(&mapping->page_tree, index);
363 rcu_read_unlock();
364 return item == swp_to_radix_entry(swap);
365 }
366
367 /*
368 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
369 *
370 * SHMEM_HUGE_NEVER:
371 * disables huge pages for the mount;
372 * SHMEM_HUGE_ALWAYS:
373 * enables huge pages for the mount;
374 * SHMEM_HUGE_WITHIN_SIZE:
375 * only allocate huge pages if the page will be fully within i_size,
376 * also respect fadvise()/madvise() hints;
377 * SHMEM_HUGE_ADVISE:
378 * only allocate huge pages if requested with fadvise()/madvise();
379 */
380
381 #define SHMEM_HUGE_NEVER 0
382 #define SHMEM_HUGE_ALWAYS 1
383 #define SHMEM_HUGE_WITHIN_SIZE 2
384 #define SHMEM_HUGE_ADVISE 3
385
386 /*
387 * Special values.
388 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
389 *
390 * SHMEM_HUGE_DENY:
391 * disables huge on shm_mnt and all mounts, for emergency use;
392 * SHMEM_HUGE_FORCE:
393 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
394 *
395 */
396 #define SHMEM_HUGE_DENY (-1)
397 #define SHMEM_HUGE_FORCE (-2)
398
399 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
400 /* ifdef here to avoid bloating shmem.o when not necessary */
401
402 int shmem_huge __read_mostly;
403
404 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
405 static int shmem_parse_huge(const char *str)
406 {
407 if (!strcmp(str, "never"))
408 return SHMEM_HUGE_NEVER;
409 if (!strcmp(str, "always"))
410 return SHMEM_HUGE_ALWAYS;
411 if (!strcmp(str, "within_size"))
412 return SHMEM_HUGE_WITHIN_SIZE;
413 if (!strcmp(str, "advise"))
414 return SHMEM_HUGE_ADVISE;
415 if (!strcmp(str, "deny"))
416 return SHMEM_HUGE_DENY;
417 if (!strcmp(str, "force"))
418 return SHMEM_HUGE_FORCE;
419 return -EINVAL;
420 }
421
422 static const char *shmem_format_huge(int huge)
423 {
424 switch (huge) {
425 case SHMEM_HUGE_NEVER:
426 return "never";
427 case SHMEM_HUGE_ALWAYS:
428 return "always";
429 case SHMEM_HUGE_WITHIN_SIZE:
430 return "within_size";
431 case SHMEM_HUGE_ADVISE:
432 return "advise";
433 case SHMEM_HUGE_DENY:
434 return "deny";
435 case SHMEM_HUGE_FORCE:
436 return "force";
437 default:
438 VM_BUG_ON(1);
439 return "bad_val";
440 }
441 }
442 #endif
443
444 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
445 struct shrink_control *sc, unsigned long nr_to_split)
446 {
447 LIST_HEAD(list), *pos, *next;
448 LIST_HEAD(to_remove);
449 struct inode *inode;
450 struct shmem_inode_info *info;
451 struct page *page;
452 unsigned long batch = sc ? sc->nr_to_scan : 128;
453 int removed = 0, split = 0;
454
455 if (list_empty(&sbinfo->shrinklist))
456 return SHRINK_STOP;
457
458 spin_lock(&sbinfo->shrinklist_lock);
459 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
460 info = list_entry(pos, struct shmem_inode_info, shrinklist);
461
462 /* pin the inode */
463 inode = igrab(&info->vfs_inode);
464
465 /* inode is about to be evicted */
466 if (!inode) {
467 list_del_init(&info->shrinklist);
468 removed++;
469 goto next;
470 }
471
472 /* Check if there's anything to gain */
473 if (round_up(inode->i_size, PAGE_SIZE) ==
474 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
475 list_move(&info->shrinklist, &to_remove);
476 removed++;
477 goto next;
478 }
479
480 list_move(&info->shrinklist, &list);
481 next:
482 if (!--batch)
483 break;
484 }
485 spin_unlock(&sbinfo->shrinklist_lock);
486
487 list_for_each_safe(pos, next, &to_remove) {
488 info = list_entry(pos, struct shmem_inode_info, shrinklist);
489 inode = &info->vfs_inode;
490 list_del_init(&info->shrinklist);
491 iput(inode);
492 }
493
494 list_for_each_safe(pos, next, &list) {
495 int ret;
496
497 info = list_entry(pos, struct shmem_inode_info, shrinklist);
498 inode = &info->vfs_inode;
499
500 if (nr_to_split && split >= nr_to_split)
501 goto leave;
502
503 page = find_get_page(inode->i_mapping,
504 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
505 if (!page)
506 goto drop;
507
508 /* No huge page at the end of the file: nothing to split */
509 if (!PageTransHuge(page)) {
510 put_page(page);
511 goto drop;
512 }
513
514 /*
515 * Leave the inode on the list if we failed to lock
516 * the page at this time.
517 *
518 * Waiting for the lock may lead to deadlock in the
519 * reclaim path.
520 */
521 if (!trylock_page(page)) {
522 put_page(page);
523 goto leave;
524 }
525
526 ret = split_huge_page(page);
527 unlock_page(page);
528 put_page(page);
529
530 /* If split failed leave the inode on the list */
531 if (ret)
532 goto leave;
533
534 split++;
535 drop:
536 list_del_init(&info->shrinklist);
537 removed++;
538 leave:
539 iput(inode);
540 }
541
542 spin_lock(&sbinfo->shrinklist_lock);
543 list_splice_tail(&list, &sbinfo->shrinklist);
544 sbinfo->shrinklist_len -= removed;
545 spin_unlock(&sbinfo->shrinklist_lock);
546
547 return split;
548 }
549
550 static long shmem_unused_huge_scan(struct super_block *sb,
551 struct shrink_control *sc)
552 {
553 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554
555 if (!READ_ONCE(sbinfo->shrinklist_len))
556 return SHRINK_STOP;
557
558 return shmem_unused_huge_shrink(sbinfo, sc, 0);
559 }
560
561 static long shmem_unused_huge_count(struct super_block *sb,
562 struct shrink_control *sc)
563 {
564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
565 return READ_ONCE(sbinfo->shrinklist_len);
566 }
567 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568
569 #define shmem_huge SHMEM_HUGE_DENY
570
571 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
572 struct shrink_control *sc, unsigned long nr_to_split)
573 {
574 return 0;
575 }
576 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577
578 /*
579 * Like add_to_page_cache_locked, but error if expected item has gone.
580 */
581 static int shmem_add_to_page_cache(struct page *page,
582 struct address_space *mapping,
583 pgoff_t index, void *expected)
584 {
585 int error, nr = hpage_nr_pages(page);
586
587 VM_BUG_ON_PAGE(PageTail(page), page);
588 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
589 VM_BUG_ON_PAGE(!PageLocked(page), page);
590 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
591 VM_BUG_ON(expected && PageTransHuge(page));
592
593 page_ref_add(page, nr);
594 page->mapping = mapping;
595 page->index = index;
596
597 spin_lock_irq(&mapping->tree_lock);
598 if (PageTransHuge(page)) {
599 void __rcu **results;
600 pgoff_t idx;
601 int i;
602
603 error = 0;
604 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
605 &results, &idx, index, 1) &&
606 idx < index + HPAGE_PMD_NR) {
607 error = -EEXIST;
608 }
609
610 if (!error) {
611 for (i = 0; i < HPAGE_PMD_NR; i++) {
612 error = radix_tree_insert(&mapping->page_tree,
613 index + i, page + i);
614 VM_BUG_ON(error);
615 }
616 count_vm_event(THP_FILE_ALLOC);
617 }
618 } else if (!expected) {
619 error = radix_tree_insert(&mapping->page_tree, index, page);
620 } else {
621 error = shmem_radix_tree_replace(mapping, index, expected,
622 page);
623 }
624
625 if (!error) {
626 mapping->nrpages += nr;
627 if (PageTransHuge(page))
628 __inc_node_page_state(page, NR_SHMEM_THPS);
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631 spin_unlock_irq(&mapping->tree_lock);
632 } else {
633 page->mapping = NULL;
634 spin_unlock_irq(&mapping->tree_lock);
635 page_ref_sub(page, nr);
636 }
637 return error;
638 }
639
640 /*
641 * Like delete_from_page_cache, but substitutes swap for page.
642 */
643 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
644 {
645 struct address_space *mapping = page->mapping;
646 int error;
647
648 VM_BUG_ON_PAGE(PageCompound(page), page);
649
650 spin_lock_irq(&mapping->tree_lock);
651 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
652 page->mapping = NULL;
653 mapping->nrpages--;
654 __dec_node_page_state(page, NR_FILE_PAGES);
655 __dec_node_page_state(page, NR_SHMEM);
656 spin_unlock_irq(&mapping->tree_lock);
657 put_page(page);
658 BUG_ON(error);
659 }
660
661 /*
662 * Remove swap entry from radix tree, free the swap and its page cache.
663 */
664 static int shmem_free_swap(struct address_space *mapping,
665 pgoff_t index, void *radswap)
666 {
667 void *old;
668
669 spin_lock_irq(&mapping->tree_lock);
670 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
671 spin_unlock_irq(&mapping->tree_lock);
672 if (old != radswap)
673 return -ENOENT;
674 free_swap_and_cache(radix_to_swp_entry(radswap));
675 return 0;
676 }
677
678 /*
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
681 *
682 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
684 */
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
687 {
688 struct radix_tree_iter iter;
689 void **slot;
690 struct page *page;
691 unsigned long swapped = 0;
692
693 rcu_read_lock();
694
695 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
696 if (iter.index >= end)
697 break;
698
699 page = radix_tree_deref_slot(slot);
700
701 if (radix_tree_deref_retry(page)) {
702 slot = radix_tree_iter_retry(&iter);
703 continue;
704 }
705
706 if (radix_tree_exceptional_entry(page))
707 swapped++;
708
709 if (need_resched()) {
710 slot = radix_tree_iter_resume(slot, &iter);
711 cond_resched_rcu();
712 }
713 }
714
715 rcu_read_unlock();
716
717 return swapped << PAGE_SHIFT;
718 }
719
720 /*
721 * Determine (in bytes) how many of the shmem object's pages mapped by the
722 * given vma is swapped out.
723 *
724 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
725 * as long as the inode doesn't go away and racy results are not a problem.
726 */
727 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
728 {
729 struct inode *inode = file_inode(vma->vm_file);
730 struct shmem_inode_info *info = SHMEM_I(inode);
731 struct address_space *mapping = inode->i_mapping;
732 unsigned long swapped;
733
734 /* Be careful as we don't hold info->lock */
735 swapped = READ_ONCE(info->swapped);
736
737 /*
738 * The easier cases are when the shmem object has nothing in swap, or
739 * the vma maps it whole. Then we can simply use the stats that we
740 * already track.
741 */
742 if (!swapped)
743 return 0;
744
745 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
746 return swapped << PAGE_SHIFT;
747
748 /* Here comes the more involved part */
749 return shmem_partial_swap_usage(mapping,
750 linear_page_index(vma, vma->vm_start),
751 linear_page_index(vma, vma->vm_end));
752 }
753
754 /*
755 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
756 */
757 void shmem_unlock_mapping(struct address_space *mapping)
758 {
759 struct pagevec pvec;
760 pgoff_t indices[PAGEVEC_SIZE];
761 pgoff_t index = 0;
762
763 pagevec_init(&pvec);
764 /*
765 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
766 */
767 while (!mapping_unevictable(mapping)) {
768 /*
769 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
770 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
771 */
772 pvec.nr = find_get_entries(mapping, index,
773 PAGEVEC_SIZE, pvec.pages, indices);
774 if (!pvec.nr)
775 break;
776 index = indices[pvec.nr - 1] + 1;
777 pagevec_remove_exceptionals(&pvec);
778 check_move_unevictable_pages(pvec.pages, pvec.nr);
779 pagevec_release(&pvec);
780 cond_resched();
781 }
782 }
783
784 /*
785 * Remove range of pages and swap entries from radix tree, and free them.
786 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
787 */
788 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
789 bool unfalloc)
790 {
791 struct address_space *mapping = inode->i_mapping;
792 struct shmem_inode_info *info = SHMEM_I(inode);
793 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
794 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
795 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
796 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
797 struct pagevec pvec;
798 pgoff_t indices[PAGEVEC_SIZE];
799 long nr_swaps_freed = 0;
800 pgoff_t index;
801 int i;
802
803 if (lend == -1)
804 end = -1; /* unsigned, so actually very big */
805
806 pagevec_init(&pvec);
807 index = start;
808 while (index < end) {
809 pvec.nr = find_get_entries(mapping, index,
810 min(end - index, (pgoff_t)PAGEVEC_SIZE),
811 pvec.pages, indices);
812 if (!pvec.nr)
813 break;
814 for (i = 0; i < pagevec_count(&pvec); i++) {
815 struct page *page = pvec.pages[i];
816
817 index = indices[i];
818 if (index >= end)
819 break;
820
821 if (radix_tree_exceptional_entry(page)) {
822 if (unfalloc)
823 continue;
824 nr_swaps_freed += !shmem_free_swap(mapping,
825 index, page);
826 continue;
827 }
828
829 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
830
831 if (!trylock_page(page))
832 continue;
833
834 if (PageTransTail(page)) {
835 /* Middle of THP: zero out the page */
836 clear_highpage(page);
837 unlock_page(page);
838 continue;
839 } else if (PageTransHuge(page)) {
840 if (index == round_down(end, HPAGE_PMD_NR)) {
841 /*
842 * Range ends in the middle of THP:
843 * zero out the page
844 */
845 clear_highpage(page);
846 unlock_page(page);
847 continue;
848 }
849 index += HPAGE_PMD_NR - 1;
850 i += HPAGE_PMD_NR - 1;
851 }
852
853 if (!unfalloc || !PageUptodate(page)) {
854 VM_BUG_ON_PAGE(PageTail(page), page);
855 if (page_mapping(page) == mapping) {
856 VM_BUG_ON_PAGE(PageWriteback(page), page);
857 truncate_inode_page(mapping, page);
858 }
859 }
860 unlock_page(page);
861 }
862 pagevec_remove_exceptionals(&pvec);
863 pagevec_release(&pvec);
864 cond_resched();
865 index++;
866 }
867
868 if (partial_start) {
869 struct page *page = NULL;
870 shmem_getpage(inode, start - 1, &page, SGP_READ);
871 if (page) {
872 unsigned int top = PAGE_SIZE;
873 if (start > end) {
874 top = partial_end;
875 partial_end = 0;
876 }
877 zero_user_segment(page, partial_start, top);
878 set_page_dirty(page);
879 unlock_page(page);
880 put_page(page);
881 }
882 }
883 if (partial_end) {
884 struct page *page = NULL;
885 shmem_getpage(inode, end, &page, SGP_READ);
886 if (page) {
887 zero_user_segment(page, 0, partial_end);
888 set_page_dirty(page);
889 unlock_page(page);
890 put_page(page);
891 }
892 }
893 if (start >= end)
894 return;
895
896 index = start;
897 while (index < end) {
898 cond_resched();
899
900 pvec.nr = find_get_entries(mapping, index,
901 min(end - index, (pgoff_t)PAGEVEC_SIZE),
902 pvec.pages, indices);
903 if (!pvec.nr) {
904 /* If all gone or hole-punch or unfalloc, we're done */
905 if (index == start || end != -1)
906 break;
907 /* But if truncating, restart to make sure all gone */
908 index = start;
909 continue;
910 }
911 for (i = 0; i < pagevec_count(&pvec); i++) {
912 struct page *page = pvec.pages[i];
913
914 index = indices[i];
915 if (index >= end)
916 break;
917
918 if (radix_tree_exceptional_entry(page)) {
919 if (unfalloc)
920 continue;
921 if (shmem_free_swap(mapping, index, page)) {
922 /* Swap was replaced by page: retry */
923 index--;
924 break;
925 }
926 nr_swaps_freed++;
927 continue;
928 }
929
930 lock_page(page);
931
932 if (PageTransTail(page)) {
933 /* Middle of THP: zero out the page */
934 clear_highpage(page);
935 unlock_page(page);
936 /*
937 * Partial thp truncate due 'start' in middle
938 * of THP: don't need to look on these pages
939 * again on !pvec.nr restart.
940 */
941 if (index != round_down(end, HPAGE_PMD_NR))
942 start++;
943 continue;
944 } else if (PageTransHuge(page)) {
945 if (index == round_down(end, HPAGE_PMD_NR)) {
946 /*
947 * Range ends in the middle of THP:
948 * zero out the page
949 */
950 clear_highpage(page);
951 unlock_page(page);
952 continue;
953 }
954 index += HPAGE_PMD_NR - 1;
955 i += HPAGE_PMD_NR - 1;
956 }
957
958 if (!unfalloc || !PageUptodate(page)) {
959 VM_BUG_ON_PAGE(PageTail(page), page);
960 if (page_mapping(page) == mapping) {
961 VM_BUG_ON_PAGE(PageWriteback(page), page);
962 truncate_inode_page(mapping, page);
963 } else {
964 /* Page was replaced by swap: retry */
965 unlock_page(page);
966 index--;
967 break;
968 }
969 }
970 unlock_page(page);
971 }
972 pagevec_remove_exceptionals(&pvec);
973 pagevec_release(&pvec);
974 index++;
975 }
976
977 spin_lock_irq(&info->lock);
978 info->swapped -= nr_swaps_freed;
979 shmem_recalc_inode(inode);
980 spin_unlock_irq(&info->lock);
981 }
982
983 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
984 {
985 shmem_undo_range(inode, lstart, lend, false);
986 inode->i_ctime = inode->i_mtime = current_time(inode);
987 }
988 EXPORT_SYMBOL_GPL(shmem_truncate_range);
989
990 static int shmem_getattr(const struct path *path, struct kstat *stat,
991 u32 request_mask, unsigned int query_flags)
992 {
993 struct inode *inode = path->dentry->d_inode;
994 struct shmem_inode_info *info = SHMEM_I(inode);
995
996 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
997 spin_lock_irq(&info->lock);
998 shmem_recalc_inode(inode);
999 spin_unlock_irq(&info->lock);
1000 }
1001 generic_fillattr(inode, stat);
1002 return 0;
1003 }
1004
1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1006 {
1007 struct inode *inode = d_inode(dentry);
1008 struct shmem_inode_info *info = SHMEM_I(inode);
1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1010 int error;
1011
1012 error = setattr_prepare(dentry, attr);
1013 if (error)
1014 return error;
1015
1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1017 loff_t oldsize = inode->i_size;
1018 loff_t newsize = attr->ia_size;
1019
1020 /* protected by i_mutex */
1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1022 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1023 return -EPERM;
1024
1025 if (newsize != oldsize) {
1026 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1027 oldsize, newsize);
1028 if (error)
1029 return error;
1030 i_size_write(inode, newsize);
1031 inode->i_ctime = inode->i_mtime = current_time(inode);
1032 }
1033 if (newsize <= oldsize) {
1034 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1035 if (oldsize > holebegin)
1036 unmap_mapping_range(inode->i_mapping,
1037 holebegin, 0, 1);
1038 if (info->alloced)
1039 shmem_truncate_range(inode,
1040 newsize, (loff_t)-1);
1041 /* unmap again to remove racily COWed private pages */
1042 if (oldsize > holebegin)
1043 unmap_mapping_range(inode->i_mapping,
1044 holebegin, 0, 1);
1045
1046 /*
1047 * Part of the huge page can be beyond i_size: subject
1048 * to shrink under memory pressure.
1049 */
1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1051 spin_lock(&sbinfo->shrinklist_lock);
1052 /*
1053 * _careful to defend against unlocked access to
1054 * ->shrink_list in shmem_unused_huge_shrink()
1055 */
1056 if (list_empty_careful(&info->shrinklist)) {
1057 list_add_tail(&info->shrinklist,
1058 &sbinfo->shrinklist);
1059 sbinfo->shrinklist_len++;
1060 }
1061 spin_unlock(&sbinfo->shrinklist_lock);
1062 }
1063 }
1064 }
1065
1066 setattr_copy(inode, attr);
1067 if (attr->ia_valid & ATTR_MODE)
1068 error = posix_acl_chmod(inode, inode->i_mode);
1069 return error;
1070 }
1071
1072 static void shmem_evict_inode(struct inode *inode)
1073 {
1074 struct shmem_inode_info *info = SHMEM_I(inode);
1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1076
1077 if (inode->i_mapping->a_ops == &shmem_aops) {
1078 shmem_unacct_size(info->flags, inode->i_size);
1079 inode->i_size = 0;
1080 shmem_truncate_range(inode, 0, (loff_t)-1);
1081 if (!list_empty(&info->shrinklist)) {
1082 spin_lock(&sbinfo->shrinklist_lock);
1083 if (!list_empty(&info->shrinklist)) {
1084 list_del_init(&info->shrinklist);
1085 sbinfo->shrinklist_len--;
1086 }
1087 spin_unlock(&sbinfo->shrinklist_lock);
1088 }
1089 if (!list_empty(&info->swaplist)) {
1090 mutex_lock(&shmem_swaplist_mutex);
1091 list_del_init(&info->swaplist);
1092 mutex_unlock(&shmem_swaplist_mutex);
1093 }
1094 }
1095
1096 simple_xattrs_free(&info->xattrs);
1097 WARN_ON(inode->i_blocks);
1098 if (!sbinfo->idr_nouse && inode->i_ino) {
1099 mutex_lock(&sbinfo->idr_lock);
1100 idr_remove(&sbinfo->idr, inode->i_ino);
1101 mutex_unlock(&sbinfo->idr_lock);
1102 }
1103 shmem_free_inode(inode->i_sb);
1104 clear_inode(inode);
1105 }
1106
1107 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1108 {
1109 struct radix_tree_iter iter;
1110 void **slot;
1111 unsigned long found = -1;
1112 unsigned int checked = 0;
1113
1114 rcu_read_lock();
1115 radix_tree_for_each_slot(slot, root, &iter, 0) {
1116 if (*slot == item) {
1117 found = iter.index;
1118 break;
1119 }
1120 checked++;
1121 if ((checked % 4096) != 0)
1122 continue;
1123 slot = radix_tree_iter_resume(slot, &iter);
1124 cond_resched_rcu();
1125 }
1126
1127 rcu_read_unlock();
1128 return found;
1129 }
1130
1131 /*
1132 * If swap found in inode, free it and move page from swapcache to filecache.
1133 */
1134 static int shmem_unuse_inode(struct shmem_inode_info *info,
1135 swp_entry_t swap, struct page **pagep)
1136 {
1137 struct address_space *mapping = info->vfs_inode.i_mapping;
1138 void *radswap;
1139 pgoff_t index;
1140 gfp_t gfp;
1141 int error = 0;
1142
1143 radswap = swp_to_radix_entry(swap);
1144 index = find_swap_entry(&mapping->page_tree, radswap);
1145 if (index == -1)
1146 return -EAGAIN; /* tell shmem_unuse we found nothing */
1147
1148 /*
1149 * Move _head_ to start search for next from here.
1150 * But be careful: shmem_evict_inode checks list_empty without taking
1151 * mutex, and there's an instant in list_move_tail when info->swaplist
1152 * would appear empty, if it were the only one on shmem_swaplist.
1153 */
1154 if (shmem_swaplist.next != &info->swaplist)
1155 list_move_tail(&shmem_swaplist, &info->swaplist);
1156
1157 gfp = mapping_gfp_mask(mapping);
1158 if (shmem_should_replace_page(*pagep, gfp)) {
1159 mutex_unlock(&shmem_swaplist_mutex);
1160 error = shmem_replace_page(pagep, gfp, info, index);
1161 mutex_lock(&shmem_swaplist_mutex);
1162 /*
1163 * We needed to drop mutex to make that restrictive page
1164 * allocation, but the inode might have been freed while we
1165 * dropped it: although a racing shmem_evict_inode() cannot
1166 * complete without emptying the radix_tree, our page lock
1167 * on this swapcache page is not enough to prevent that -
1168 * free_swap_and_cache() of our swap entry will only
1169 * trylock_page(), removing swap from radix_tree whatever.
1170 *
1171 * We must not proceed to shmem_add_to_page_cache() if the
1172 * inode has been freed, but of course we cannot rely on
1173 * inode or mapping or info to check that. However, we can
1174 * safely check if our swap entry is still in use (and here
1175 * it can't have got reused for another page): if it's still
1176 * in use, then the inode cannot have been freed yet, and we
1177 * can safely proceed (if it's no longer in use, that tells
1178 * nothing about the inode, but we don't need to unuse swap).
1179 */
1180 if (!page_swapcount(*pagep))
1181 error = -ENOENT;
1182 }
1183
1184 /*
1185 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1186 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1187 * beneath us (pagelock doesn't help until the page is in pagecache).
1188 */
1189 if (!error)
1190 error = shmem_add_to_page_cache(*pagep, mapping, index,
1191 radswap);
1192 if (error != -ENOMEM) {
1193 /*
1194 * Truncation and eviction use free_swap_and_cache(), which
1195 * only does trylock page: if we raced, best clean up here.
1196 */
1197 delete_from_swap_cache(*pagep);
1198 set_page_dirty(*pagep);
1199 if (!error) {
1200 spin_lock_irq(&info->lock);
1201 info->swapped--;
1202 spin_unlock_irq(&info->lock);
1203 swap_free(swap);
1204 }
1205 }
1206 return error;
1207 }
1208
1209 /*
1210 * Search through swapped inodes to find and replace swap by page.
1211 */
1212 int shmem_unuse(swp_entry_t swap, struct page *page)
1213 {
1214 struct list_head *this, *next;
1215 struct shmem_inode_info *info;
1216 struct mem_cgroup *memcg;
1217 int error = 0;
1218
1219 /*
1220 * There's a faint possibility that swap page was replaced before
1221 * caller locked it: caller will come back later with the right page.
1222 */
1223 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1224 goto out;
1225
1226 /*
1227 * Charge page using GFP_KERNEL while we can wait, before taking
1228 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1229 * Charged back to the user (not to caller) when swap account is used.
1230 */
1231 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1232 false);
1233 if (error)
1234 goto out;
1235 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1236 error = -EAGAIN;
1237
1238 mutex_lock(&shmem_swaplist_mutex);
1239 list_for_each_safe(this, next, &shmem_swaplist) {
1240 info = list_entry(this, struct shmem_inode_info, swaplist);
1241 if (info->swapped)
1242 error = shmem_unuse_inode(info, swap, &page);
1243 else
1244 list_del_init(&info->swaplist);
1245 cond_resched();
1246 if (error != -EAGAIN)
1247 break;
1248 /* found nothing in this: move on to search the next */
1249 }
1250 mutex_unlock(&shmem_swaplist_mutex);
1251
1252 if (error) {
1253 if (error != -ENOMEM)
1254 error = 0;
1255 mem_cgroup_cancel_charge(page, memcg, false);
1256 } else
1257 mem_cgroup_commit_charge(page, memcg, true, false);
1258 out:
1259 unlock_page(page);
1260 put_page(page);
1261 return error;
1262 }
1263
1264 /*
1265 * Move the page from the page cache to the swap cache.
1266 */
1267 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1268 {
1269 struct shmem_inode_info *info;
1270 struct address_space *mapping;
1271 struct inode *inode;
1272 swp_entry_t swap;
1273 pgoff_t index;
1274
1275 VM_BUG_ON_PAGE(PageCompound(page), page);
1276 BUG_ON(!PageLocked(page));
1277 mapping = page->mapping;
1278 index = page->index;
1279 inode = mapping->host;
1280 info = SHMEM_I(inode);
1281 if (info->flags & VM_LOCKED)
1282 goto redirty;
1283 if (!total_swap_pages)
1284 goto redirty;
1285
1286 /*
1287 * Our capabilities prevent regular writeback or sync from ever calling
1288 * shmem_writepage; but a stacking filesystem might use ->writepage of
1289 * its underlying filesystem, in which case tmpfs should write out to
1290 * swap only in response to memory pressure, and not for the writeback
1291 * threads or sync.
1292 */
1293 if (!wbc->for_reclaim) {
1294 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1295 goto redirty;
1296 }
1297
1298 /*
1299 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1300 * value into swapfile.c, the only way we can correctly account for a
1301 * fallocated page arriving here is now to initialize it and write it.
1302 *
1303 * That's okay for a page already fallocated earlier, but if we have
1304 * not yet completed the fallocation, then (a) we want to keep track
1305 * of this page in case we have to undo it, and (b) it may not be a
1306 * good idea to continue anyway, once we're pushing into swap. So
1307 * reactivate the page, and let shmem_fallocate() quit when too many.
1308 */
1309 if (!PageUptodate(page)) {
1310 if (inode->i_private) {
1311 struct shmem_falloc *shmem_falloc;
1312 spin_lock(&inode->i_lock);
1313 shmem_falloc = inode->i_private;
1314 if (shmem_falloc &&
1315 !shmem_falloc->waitq &&
1316 index >= shmem_falloc->start &&
1317 index < shmem_falloc->next)
1318 shmem_falloc->nr_unswapped++;
1319 else
1320 shmem_falloc = NULL;
1321 spin_unlock(&inode->i_lock);
1322 if (shmem_falloc)
1323 goto redirty;
1324 }
1325 clear_highpage(page);
1326 flush_dcache_page(page);
1327 SetPageUptodate(page);
1328 }
1329
1330 swap = get_swap_page(page);
1331 if (!swap.val)
1332 goto redirty;
1333
1334 if (mem_cgroup_try_charge_swap(page, swap))
1335 goto free_swap;
1336
1337 /*
1338 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1339 * if it's not already there. Do it now before the page is
1340 * moved to swap cache, when its pagelock no longer protects
1341 * the inode from eviction. But don't unlock the mutex until
1342 * we've incremented swapped, because shmem_unuse_inode() will
1343 * prune a !swapped inode from the swaplist under this mutex.
1344 */
1345 mutex_lock(&shmem_swaplist_mutex);
1346 if (list_empty(&info->swaplist))
1347 list_add_tail(&info->swaplist, &shmem_swaplist);
1348
1349 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1350 spin_lock_irq(&info->lock);
1351 shmem_recalc_inode(inode);
1352 info->swapped++;
1353 spin_unlock_irq(&info->lock);
1354
1355 swap_shmem_alloc(swap);
1356 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1357
1358 mutex_unlock(&shmem_swaplist_mutex);
1359 BUG_ON(page_mapped(page));
1360 swap_writepage(page, wbc);
1361 return 0;
1362 }
1363
1364 mutex_unlock(&shmem_swaplist_mutex);
1365 free_swap:
1366 put_swap_page(page, swap);
1367 redirty:
1368 set_page_dirty(page);
1369 if (wbc->for_reclaim)
1370 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1371 unlock_page(page);
1372 return 0;
1373 }
1374
1375 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1376 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1377 {
1378 char buffer[64];
1379
1380 if (!mpol || mpol->mode == MPOL_DEFAULT)
1381 return; /* show nothing */
1382
1383 mpol_to_str(buffer, sizeof(buffer), mpol);
1384
1385 seq_printf(seq, ",mpol=%s", buffer);
1386 }
1387
1388 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1389 {
1390 struct mempolicy *mpol = NULL;
1391 if (sbinfo->mpol) {
1392 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1393 mpol = sbinfo->mpol;
1394 mpol_get(mpol);
1395 spin_unlock(&sbinfo->stat_lock);
1396 }
1397 return mpol;
1398 }
1399 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1400 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1401 {
1402 }
1403 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1404 {
1405 return NULL;
1406 }
1407 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1408 #ifndef CONFIG_NUMA
1409 #define vm_policy vm_private_data
1410 #endif
1411
1412 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1413 struct shmem_inode_info *info, pgoff_t index)
1414 {
1415 /* Create a pseudo vma that just contains the policy */
1416 vma->vm_start = 0;
1417 /* Bias interleave by inode number to distribute better across nodes */
1418 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1419 vma->vm_ops = NULL;
1420 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1421 }
1422
1423 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1424 {
1425 /* Drop reference taken by mpol_shared_policy_lookup() */
1426 mpol_cond_put(vma->vm_policy);
1427 }
1428
1429 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1430 struct shmem_inode_info *info, pgoff_t index)
1431 {
1432 struct vm_area_struct pvma;
1433 struct page *page;
1434
1435 shmem_pseudo_vma_init(&pvma, info, index);
1436 page = swapin_readahead(swap, gfp, &pvma, 0);
1437 shmem_pseudo_vma_destroy(&pvma);
1438
1439 return page;
1440 }
1441
1442 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1443 struct shmem_inode_info *info, pgoff_t index)
1444 {
1445 struct vm_area_struct pvma;
1446 struct inode *inode = &info->vfs_inode;
1447 struct address_space *mapping = inode->i_mapping;
1448 pgoff_t idx, hindex;
1449 void __rcu **results;
1450 struct page *page;
1451
1452 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1453 return NULL;
1454
1455 hindex = round_down(index, HPAGE_PMD_NR);
1456 rcu_read_lock();
1457 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1458 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1459 rcu_read_unlock();
1460 return NULL;
1461 }
1462 rcu_read_unlock();
1463
1464 shmem_pseudo_vma_init(&pvma, info, hindex);
1465 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1466 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1467 shmem_pseudo_vma_destroy(&pvma);
1468 if (page)
1469 prep_transhuge_page(page);
1470 return page;
1471 }
1472
1473 static struct page *shmem_alloc_page(gfp_t gfp,
1474 struct shmem_inode_info *info, pgoff_t index)
1475 {
1476 struct vm_area_struct pvma;
1477 struct page *page;
1478
1479 shmem_pseudo_vma_init(&pvma, info, index);
1480 page = alloc_page_vma(gfp, &pvma, 0);
1481 shmem_pseudo_vma_destroy(&pvma);
1482
1483 return page;
1484 }
1485
1486 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1487 struct inode *inode,
1488 pgoff_t index, bool huge)
1489 {
1490 struct shmem_inode_info *info = SHMEM_I(inode);
1491 struct page *page;
1492 int nr;
1493 int err = -ENOSPC;
1494
1495 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1496 huge = false;
1497 nr = huge ? HPAGE_PMD_NR : 1;
1498
1499 if (!shmem_inode_acct_block(inode, nr))
1500 goto failed;
1501
1502 if (huge)
1503 page = shmem_alloc_hugepage(gfp, info, index);
1504 else
1505 page = shmem_alloc_page(gfp, info, index);
1506 if (page) {
1507 __SetPageLocked(page);
1508 __SetPageSwapBacked(page);
1509 return page;
1510 }
1511
1512 err = -ENOMEM;
1513 shmem_inode_unacct_blocks(inode, nr);
1514 failed:
1515 return ERR_PTR(err);
1516 }
1517
1518 /*
1519 * When a page is moved from swapcache to shmem filecache (either by the
1520 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1521 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1522 * ignorance of the mapping it belongs to. If that mapping has special
1523 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1524 * we may need to copy to a suitable page before moving to filecache.
1525 *
1526 * In a future release, this may well be extended to respect cpuset and
1527 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1528 * but for now it is a simple matter of zone.
1529 */
1530 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1531 {
1532 return page_zonenum(page) > gfp_zone(gfp);
1533 }
1534
1535 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1536 struct shmem_inode_info *info, pgoff_t index)
1537 {
1538 struct page *oldpage, *newpage;
1539 struct address_space *swap_mapping;
1540 pgoff_t swap_index;
1541 int error;
1542
1543 oldpage = *pagep;
1544 swap_index = page_private(oldpage);
1545 swap_mapping = page_mapping(oldpage);
1546
1547 /*
1548 * We have arrived here because our zones are constrained, so don't
1549 * limit chance of success by further cpuset and node constraints.
1550 */
1551 gfp &= ~GFP_CONSTRAINT_MASK;
1552 newpage = shmem_alloc_page(gfp, info, index);
1553 if (!newpage)
1554 return -ENOMEM;
1555
1556 get_page(newpage);
1557 copy_highpage(newpage, oldpage);
1558 flush_dcache_page(newpage);
1559
1560 __SetPageLocked(newpage);
1561 __SetPageSwapBacked(newpage);
1562 SetPageUptodate(newpage);
1563 set_page_private(newpage, swap_index);
1564 SetPageSwapCache(newpage);
1565
1566 /*
1567 * Our caller will very soon move newpage out of swapcache, but it's
1568 * a nice clean interface for us to replace oldpage by newpage there.
1569 */
1570 spin_lock_irq(&swap_mapping->tree_lock);
1571 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1572 newpage);
1573 if (!error) {
1574 __inc_node_page_state(newpage, NR_FILE_PAGES);
1575 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1576 }
1577 spin_unlock_irq(&swap_mapping->tree_lock);
1578
1579 if (unlikely(error)) {
1580 /*
1581 * Is this possible? I think not, now that our callers check
1582 * both PageSwapCache and page_private after getting page lock;
1583 * but be defensive. Reverse old to newpage for clear and free.
1584 */
1585 oldpage = newpage;
1586 } else {
1587 mem_cgroup_migrate(oldpage, newpage);
1588 lru_cache_add_anon(newpage);
1589 *pagep = newpage;
1590 }
1591
1592 ClearPageSwapCache(oldpage);
1593 set_page_private(oldpage, 0);
1594
1595 unlock_page(oldpage);
1596 put_page(oldpage);
1597 put_page(oldpage);
1598 return error;
1599 }
1600
1601 /*
1602 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1603 *
1604 * If we allocate a new one we do not mark it dirty. That's up to the
1605 * vm. If we swap it in we mark it dirty since we also free the swap
1606 * entry since a page cannot live in both the swap and page cache.
1607 *
1608 * fault_mm and fault_type are only supplied by shmem_fault:
1609 * otherwise they are NULL.
1610 */
1611 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1612 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1613 struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1614 {
1615 struct address_space *mapping = inode->i_mapping;
1616 struct shmem_inode_info *info = SHMEM_I(inode);
1617 struct shmem_sb_info *sbinfo;
1618 struct mm_struct *charge_mm;
1619 struct mem_cgroup *memcg;
1620 struct page *page;
1621 swp_entry_t swap;
1622 enum sgp_type sgp_huge = sgp;
1623 pgoff_t hindex = index;
1624 int error;
1625 int once = 0;
1626 int alloced = 0;
1627
1628 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1629 return -EFBIG;
1630 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1631 sgp = SGP_CACHE;
1632 repeat:
1633 swap.val = 0;
1634 page = find_lock_entry(mapping, index);
1635 if (radix_tree_exceptional_entry(page)) {
1636 swap = radix_to_swp_entry(page);
1637 page = NULL;
1638 }
1639
1640 if (sgp <= SGP_CACHE &&
1641 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1642 error = -EINVAL;
1643 goto unlock;
1644 }
1645
1646 if (page && sgp == SGP_WRITE)
1647 mark_page_accessed(page);
1648
1649 /* fallocated page? */
1650 if (page && !PageUptodate(page)) {
1651 if (sgp != SGP_READ)
1652 goto clear;
1653 unlock_page(page);
1654 put_page(page);
1655 page = NULL;
1656 }
1657 if (page || (sgp == SGP_READ && !swap.val)) {
1658 *pagep = page;
1659 return 0;
1660 }
1661
1662 /*
1663 * Fast cache lookup did not find it:
1664 * bring it back from swap or allocate.
1665 */
1666 sbinfo = SHMEM_SB(inode->i_sb);
1667 charge_mm = vma ? vma->vm_mm : current->mm;
1668
1669 if (swap.val) {
1670 /* Look it up and read it in.. */
1671 page = lookup_swap_cache(swap, NULL, 0);
1672 if (!page) {
1673 /* Or update major stats only when swapin succeeds?? */
1674 if (fault_type) {
1675 *fault_type |= VM_FAULT_MAJOR;
1676 count_vm_event(PGMAJFAULT);
1677 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1678 }
1679 /* Here we actually start the io */
1680 page = shmem_swapin(swap, gfp, info, index);
1681 if (!page) {
1682 error = -ENOMEM;
1683 goto failed;
1684 }
1685 }
1686
1687 /* We have to do this with page locked to prevent races */
1688 lock_page(page);
1689 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1690 !shmem_confirm_swap(mapping, index, swap)) {
1691 error = -EEXIST; /* try again */
1692 goto unlock;
1693 }
1694 if (!PageUptodate(page)) {
1695 error = -EIO;
1696 goto failed;
1697 }
1698 wait_on_page_writeback(page);
1699
1700 if (shmem_should_replace_page(page, gfp)) {
1701 error = shmem_replace_page(&page, gfp, info, index);
1702 if (error)
1703 goto failed;
1704 }
1705
1706 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1707 false);
1708 if (!error) {
1709 error = shmem_add_to_page_cache(page, mapping, index,
1710 swp_to_radix_entry(swap));
1711 /*
1712 * We already confirmed swap under page lock, and make
1713 * no memory allocation here, so usually no possibility
1714 * of error; but free_swap_and_cache() only trylocks a
1715 * page, so it is just possible that the entry has been
1716 * truncated or holepunched since swap was confirmed.
1717 * shmem_undo_range() will have done some of the
1718 * unaccounting, now delete_from_swap_cache() will do
1719 * the rest.
1720 * Reset swap.val? No, leave it so "failed" goes back to
1721 * "repeat": reading a hole and writing should succeed.
1722 */
1723 if (error) {
1724 mem_cgroup_cancel_charge(page, memcg, false);
1725 delete_from_swap_cache(page);
1726 }
1727 }
1728 if (error)
1729 goto failed;
1730
1731 mem_cgroup_commit_charge(page, memcg, true, false);
1732
1733 spin_lock_irq(&info->lock);
1734 info->swapped--;
1735 shmem_recalc_inode(inode);
1736 spin_unlock_irq(&info->lock);
1737
1738 if (sgp == SGP_WRITE)
1739 mark_page_accessed(page);
1740
1741 delete_from_swap_cache(page);
1742 set_page_dirty(page);
1743 swap_free(swap);
1744
1745 } else {
1746 if (vma && userfaultfd_missing(vma)) {
1747 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1748 return 0;
1749 }
1750
1751 /* shmem_symlink() */
1752 if (mapping->a_ops != &shmem_aops)
1753 goto alloc_nohuge;
1754 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1755 goto alloc_nohuge;
1756 if (shmem_huge == SHMEM_HUGE_FORCE)
1757 goto alloc_huge;
1758 switch (sbinfo->huge) {
1759 loff_t i_size;
1760 pgoff_t off;
1761 case SHMEM_HUGE_NEVER:
1762 goto alloc_nohuge;
1763 case SHMEM_HUGE_WITHIN_SIZE:
1764 off = round_up(index, HPAGE_PMD_NR);
1765 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1766 if (i_size >= HPAGE_PMD_SIZE &&
1767 i_size >> PAGE_SHIFT >= off)
1768 goto alloc_huge;
1769 /* fallthrough */
1770 case SHMEM_HUGE_ADVISE:
1771 if (sgp_huge == SGP_HUGE)
1772 goto alloc_huge;
1773 /* TODO: implement fadvise() hints */
1774 goto alloc_nohuge;
1775 }
1776
1777 alloc_huge:
1778 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1779 if (IS_ERR(page)) {
1780 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, inode,
1781 index, false);
1782 }
1783 if (IS_ERR(page)) {
1784 int retry = 5;
1785 error = PTR_ERR(page);
1786 page = NULL;
1787 if (error != -ENOSPC)
1788 goto failed;
1789 /*
1790 * Try to reclaim some spece by splitting a huge page
1791 * beyond i_size on the filesystem.
1792 */
1793 while (retry--) {
1794 int ret;
1795 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1796 if (ret == SHRINK_STOP)
1797 break;
1798 if (ret)
1799 goto alloc_nohuge;
1800 }
1801 goto failed;
1802 }
1803
1804 if (PageTransHuge(page))
1805 hindex = round_down(index, HPAGE_PMD_NR);
1806 else
1807 hindex = index;
1808
1809 if (sgp == SGP_WRITE)
1810 __SetPageReferenced(page);
1811
1812 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1813 PageTransHuge(page));
1814 if (error)
1815 goto unacct;
1816 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1817 compound_order(page));
1818 if (!error) {
1819 error = shmem_add_to_page_cache(page, mapping, hindex,
1820 NULL);
1821 radix_tree_preload_end();
1822 }
1823 if (error) {
1824 mem_cgroup_cancel_charge(page, memcg,
1825 PageTransHuge(page));
1826 goto unacct;
1827 }
1828 mem_cgroup_commit_charge(page, memcg, false,
1829 PageTransHuge(page));
1830 lru_cache_add_anon(page);
1831
1832 spin_lock_irq(&info->lock);
1833 info->alloced += 1 << compound_order(page);
1834 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1835 shmem_recalc_inode(inode);
1836 spin_unlock_irq(&info->lock);
1837 alloced = true;
1838
1839 if (PageTransHuge(page) &&
1840 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1841 hindex + HPAGE_PMD_NR - 1) {
1842 /*
1843 * Part of the huge page is beyond i_size: subject
1844 * to shrink under memory pressure.
1845 */
1846 spin_lock(&sbinfo->shrinklist_lock);
1847 /*
1848 * _careful to defend against unlocked access to
1849 * ->shrink_list in shmem_unused_huge_shrink()
1850 */
1851 if (list_empty_careful(&info->shrinklist)) {
1852 list_add_tail(&info->shrinklist,
1853 &sbinfo->shrinklist);
1854 sbinfo->shrinklist_len++;
1855 }
1856 spin_unlock(&sbinfo->shrinklist_lock);
1857 }
1858
1859 /*
1860 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1861 */
1862 if (sgp == SGP_FALLOC)
1863 sgp = SGP_WRITE;
1864 clear:
1865 /*
1866 * Let SGP_WRITE caller clear ends if write does not fill page;
1867 * but SGP_FALLOC on a page fallocated earlier must initialize
1868 * it now, lest undo on failure cancel our earlier guarantee.
1869 */
1870 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1871 struct page *head = compound_head(page);
1872 int i;
1873
1874 for (i = 0; i < (1 << compound_order(head)); i++) {
1875 clear_highpage(head + i);
1876 flush_dcache_page(head + i);
1877 }
1878 SetPageUptodate(head);
1879 }
1880 }
1881
1882 /* Perhaps the file has been truncated since we checked */
1883 if (sgp <= SGP_CACHE &&
1884 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1885 if (alloced) {
1886 ClearPageDirty(page);
1887 delete_from_page_cache(page);
1888 spin_lock_irq(&info->lock);
1889 shmem_recalc_inode(inode);
1890 spin_unlock_irq(&info->lock);
1891 }
1892 error = -EINVAL;
1893 goto unlock;
1894 }
1895 *pagep = page + index - hindex;
1896 return 0;
1897
1898 /*
1899 * Error recovery.
1900 */
1901 unacct:
1902 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1903
1904 if (PageTransHuge(page)) {
1905 unlock_page(page);
1906 put_page(page);
1907 goto alloc_nohuge;
1908 }
1909 failed:
1910 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1911 error = -EEXIST;
1912 unlock:
1913 if (page) {
1914 unlock_page(page);
1915 put_page(page);
1916 }
1917 if (error == -ENOSPC && !once++) {
1918 spin_lock_irq(&info->lock);
1919 shmem_recalc_inode(inode);
1920 spin_unlock_irq(&info->lock);
1921 goto repeat;
1922 }
1923 if (error == -EEXIST) /* from above or from radix_tree_insert */
1924 goto repeat;
1925 return error;
1926 }
1927
1928 /*
1929 * This is like autoremove_wake_function, but it removes the wait queue
1930 * entry unconditionally - even if something else had already woken the
1931 * target.
1932 */
1933 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1934 {
1935 int ret = default_wake_function(wait, mode, sync, key);
1936 list_del_init(&wait->entry);
1937 return ret;
1938 }
1939
1940 static int shmem_fault(struct vm_fault *vmf)
1941 {
1942 struct vm_area_struct *vma = vmf->vma;
1943 struct inode *inode = file_inode(vma->vm_file);
1944 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1945 enum sgp_type sgp;
1946 int error;
1947 int ret = VM_FAULT_LOCKED;
1948
1949 /*
1950 * Trinity finds that probing a hole which tmpfs is punching can
1951 * prevent the hole-punch from ever completing: which in turn
1952 * locks writers out with its hold on i_mutex. So refrain from
1953 * faulting pages into the hole while it's being punched. Although
1954 * shmem_undo_range() does remove the additions, it may be unable to
1955 * keep up, as each new page needs its own unmap_mapping_range() call,
1956 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1957 *
1958 * It does not matter if we sometimes reach this check just before the
1959 * hole-punch begins, so that one fault then races with the punch:
1960 * we just need to make racing faults a rare case.
1961 *
1962 * The implementation below would be much simpler if we just used a
1963 * standard mutex or completion: but we cannot take i_mutex in fault,
1964 * and bloating every shmem inode for this unlikely case would be sad.
1965 */
1966 if (unlikely(inode->i_private)) {
1967 struct shmem_falloc *shmem_falloc;
1968
1969 spin_lock(&inode->i_lock);
1970 shmem_falloc = inode->i_private;
1971 if (shmem_falloc &&
1972 shmem_falloc->waitq &&
1973 vmf->pgoff >= shmem_falloc->start &&
1974 vmf->pgoff < shmem_falloc->next) {
1975 wait_queue_head_t *shmem_falloc_waitq;
1976 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1977
1978 ret = VM_FAULT_NOPAGE;
1979 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1980 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1981 /* It's polite to up mmap_sem if we can */
1982 up_read(&vma->vm_mm->mmap_sem);
1983 ret = VM_FAULT_RETRY;
1984 }
1985
1986 shmem_falloc_waitq = shmem_falloc->waitq;
1987 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1988 TASK_UNINTERRUPTIBLE);
1989 spin_unlock(&inode->i_lock);
1990 schedule();
1991
1992 /*
1993 * shmem_falloc_waitq points into the shmem_fallocate()
1994 * stack of the hole-punching task: shmem_falloc_waitq
1995 * is usually invalid by the time we reach here, but
1996 * finish_wait() does not dereference it in that case;
1997 * though i_lock needed lest racing with wake_up_all().
1998 */
1999 spin_lock(&inode->i_lock);
2000 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2001 spin_unlock(&inode->i_lock);
2002 return ret;
2003 }
2004 spin_unlock(&inode->i_lock);
2005 }
2006
2007 sgp = SGP_CACHE;
2008
2009 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2010 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2011 sgp = SGP_NOHUGE;
2012 else if (vma->vm_flags & VM_HUGEPAGE)
2013 sgp = SGP_HUGE;
2014
2015 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2016 gfp, vma, vmf, &ret);
2017 if (error)
2018 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
2019 return ret;
2020 }
2021
2022 unsigned long shmem_get_unmapped_area(struct file *file,
2023 unsigned long uaddr, unsigned long len,
2024 unsigned long pgoff, unsigned long flags)
2025 {
2026 unsigned long (*get_area)(struct file *,
2027 unsigned long, unsigned long, unsigned long, unsigned long);
2028 unsigned long addr;
2029 unsigned long offset;
2030 unsigned long inflated_len;
2031 unsigned long inflated_addr;
2032 unsigned long inflated_offset;
2033
2034 if (len > TASK_SIZE)
2035 return -ENOMEM;
2036
2037 get_area = current->mm->get_unmapped_area;
2038 addr = get_area(file, uaddr, len, pgoff, flags);
2039
2040 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2041 return addr;
2042 if (IS_ERR_VALUE(addr))
2043 return addr;
2044 if (addr & ~PAGE_MASK)
2045 return addr;
2046 if (addr > TASK_SIZE - len)
2047 return addr;
2048
2049 if (shmem_huge == SHMEM_HUGE_DENY)
2050 return addr;
2051 if (len < HPAGE_PMD_SIZE)
2052 return addr;
2053 if (flags & MAP_FIXED)
2054 return addr;
2055 /*
2056 * Our priority is to support MAP_SHARED mapped hugely;
2057 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2058 * But if caller specified an address hint, respect that as before.
2059 */
2060 if (uaddr)
2061 return addr;
2062
2063 if (shmem_huge != SHMEM_HUGE_FORCE) {
2064 struct super_block *sb;
2065
2066 if (file) {
2067 VM_BUG_ON(file->f_op != &shmem_file_operations);
2068 sb = file_inode(file)->i_sb;
2069 } else {
2070 /*
2071 * Called directly from mm/mmap.c, or drivers/char/mem.c
2072 * for "/dev/zero", to create a shared anonymous object.
2073 */
2074 if (IS_ERR(shm_mnt))
2075 return addr;
2076 sb = shm_mnt->mnt_sb;
2077 }
2078 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2079 return addr;
2080 }
2081
2082 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2083 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2084 return addr;
2085 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2086 return addr;
2087
2088 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2089 if (inflated_len > TASK_SIZE)
2090 return addr;
2091 if (inflated_len < len)
2092 return addr;
2093
2094 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2095 if (IS_ERR_VALUE(inflated_addr))
2096 return addr;
2097 if (inflated_addr & ~PAGE_MASK)
2098 return addr;
2099
2100 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2101 inflated_addr += offset - inflated_offset;
2102 if (inflated_offset > offset)
2103 inflated_addr += HPAGE_PMD_SIZE;
2104
2105 if (inflated_addr > TASK_SIZE - len)
2106 return addr;
2107 return inflated_addr;
2108 }
2109
2110 #ifdef CONFIG_NUMA
2111 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2112 {
2113 struct inode *inode = file_inode(vma->vm_file);
2114 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2115 }
2116
2117 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2118 unsigned long addr)
2119 {
2120 struct inode *inode = file_inode(vma->vm_file);
2121 pgoff_t index;
2122
2123 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2124 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2125 }
2126 #endif
2127
2128 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2129 {
2130 struct inode *inode = file_inode(file);
2131 struct shmem_inode_info *info = SHMEM_I(inode);
2132 int retval = -ENOMEM;
2133
2134 spin_lock_irq(&info->lock);
2135 if (lock && !(info->flags & VM_LOCKED)) {
2136 if (!user_shm_lock(inode->i_size, user))
2137 goto out_nomem;
2138 info->flags |= VM_LOCKED;
2139 mapping_set_unevictable(file->f_mapping);
2140 }
2141 if (!lock && (info->flags & VM_LOCKED) && user) {
2142 user_shm_unlock(inode->i_size, user);
2143 info->flags &= ~VM_LOCKED;
2144 mapping_clear_unevictable(file->f_mapping);
2145 }
2146 retval = 0;
2147
2148 out_nomem:
2149 spin_unlock_irq(&info->lock);
2150 return retval;
2151 }
2152
2153 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2154 {
2155 file_accessed(file);
2156 vma->vm_ops = &shmem_vm_ops;
2157 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2158 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2159 (vma->vm_end & HPAGE_PMD_MASK)) {
2160 khugepaged_enter(vma, vma->vm_flags);
2161 }
2162 return 0;
2163 }
2164
2165 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2166 umode_t mode, dev_t dev, unsigned long flags)
2167 {
2168 struct inode *inode;
2169 struct shmem_inode_info *info;
2170 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2171 int ino;
2172
2173 if (shmem_reserve_inode(sb))
2174 return NULL;
2175
2176 inode = new_inode(sb);
2177 if (inode) {
2178 inode_init_owner(inode, dir, mode);
2179 inode->i_blocks = 0;
2180 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2181 inode->i_generation = get_seconds();
2182 info = SHMEM_I(inode);
2183 memset(info, 0, (char *)inode - (char *)info);
2184 spin_lock_init(&info->lock);
2185 info->seals = F_SEAL_SEAL;
2186 info->flags = flags & VM_NORESERVE;
2187 INIT_LIST_HEAD(&info->shrinklist);
2188 INIT_LIST_HEAD(&info->swaplist);
2189 simple_xattrs_init(&info->xattrs);
2190 cache_no_acl(inode);
2191
2192 switch (mode & S_IFMT) {
2193 default:
2194 inode->i_op = &shmem_special_inode_operations;
2195 init_special_inode(inode, mode, dev);
2196 break;
2197 case S_IFREG:
2198 inode->i_mapping->a_ops = &shmem_aops;
2199 inode->i_op = &shmem_inode_operations;
2200 inode->i_fop = &shmem_file_operations;
2201 mpol_shared_policy_init(&info->policy,
2202 shmem_get_sbmpol(sbinfo));
2203 break;
2204 case S_IFDIR:
2205 inc_nlink(inode);
2206 /* Some things misbehave if size == 0 on a directory */
2207 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2208 inode->i_op = &shmem_dir_inode_operations;
2209 inode->i_fop = &simple_dir_operations;
2210 break;
2211 case S_IFLNK:
2212 /*
2213 * Must not load anything in the rbtree,
2214 * mpol_free_shared_policy will not be called.
2215 */
2216 mpol_shared_policy_init(&info->policy, NULL);
2217 break;
2218 }
2219
2220 lockdep_annotate_inode_mutex_key(inode);
2221
2222 if (!sbinfo->idr_nouse) {
2223 /* inum 0 and 1 are unused */
2224 mutex_lock(&sbinfo->idr_lock);
2225 ino = idr_alloc(&sbinfo->idr, inode, 2, INT_MAX,
2226 GFP_NOFS);
2227 if (ino > 0) {
2228 inode->i_ino = ino;
2229 mutex_unlock(&sbinfo->idr_lock);
2230 __insert_inode_hash(inode, inode->i_ino);
2231 } else {
2232 inode->i_ino = 0;
2233 mutex_unlock(&sbinfo->idr_lock);
2234 iput(inode);
2235 /* shmem_free_inode() will be called */
2236 inode = NULL;
2237 }
2238 } else
2239 inode->i_ino = get_next_ino();
2240 } else
2241 shmem_free_inode(sb);
2242 return inode;
2243 }
2244
2245 bool shmem_mapping(struct address_space *mapping)
2246 {
2247 return mapping->a_ops == &shmem_aops;
2248 }
2249
2250 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2251 pmd_t *dst_pmd,
2252 struct vm_area_struct *dst_vma,
2253 unsigned long dst_addr,
2254 unsigned long src_addr,
2255 bool zeropage,
2256 struct page **pagep)
2257 {
2258 struct inode *inode = file_inode(dst_vma->vm_file);
2259 struct shmem_inode_info *info = SHMEM_I(inode);
2260 struct address_space *mapping = inode->i_mapping;
2261 gfp_t gfp = mapping_gfp_mask(mapping);
2262 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2263 struct mem_cgroup *memcg;
2264 spinlock_t *ptl;
2265 void *page_kaddr;
2266 struct page *page;
2267 pte_t _dst_pte, *dst_pte;
2268 int ret;
2269 pgoff_t offset, max_off;
2270
2271 ret = -ENOMEM;
2272 if (!shmem_inode_acct_block(inode, 1))
2273 goto out;
2274
2275 if (!*pagep) {
2276 page = shmem_alloc_page(gfp, info, pgoff);
2277 if (!page)
2278 goto out_unacct_blocks;
2279
2280 if (!zeropage) { /* mcopy_atomic */
2281 page_kaddr = kmap_atomic(page);
2282 ret = copy_from_user(page_kaddr,
2283 (const void __user *)src_addr,
2284 PAGE_SIZE);
2285 kunmap_atomic(page_kaddr);
2286
2287 /* fallback to copy_from_user outside mmap_sem */
2288 if (unlikely(ret)) {
2289 *pagep = page;
2290 shmem_inode_unacct_blocks(inode, 1);
2291 /* don't free the page */
2292 return -ENOENT;
2293 }
2294 } else { /* mfill_zeropage_atomic */
2295 clear_highpage(page);
2296 }
2297 } else {
2298 page = *pagep;
2299 *pagep = NULL;
2300 }
2301
2302 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2303 __SetPageLocked(page);
2304 __SetPageSwapBacked(page);
2305 __SetPageUptodate(page);
2306
2307 ret = -EFAULT;
2308 offset = linear_page_index(dst_vma, dst_addr);
2309 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2310 if (unlikely(offset >= max_off))
2311 goto out_release;
2312
2313 ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2314 if (ret)
2315 goto out_release;
2316
2317 ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2318 if (!ret) {
2319 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2320 radix_tree_preload_end();
2321 }
2322 if (ret)
2323 goto out_release_uncharge;
2324
2325 mem_cgroup_commit_charge(page, memcg, false, false);
2326
2327 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2328 if (dst_vma->vm_flags & VM_WRITE)
2329 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2330 else {
2331 /*
2332 * We don't set the pte dirty if the vma has no
2333 * VM_WRITE permission, so mark the page dirty or it
2334 * could be freed from under us. We could do it
2335 * unconditionally before unlock_page(), but doing it
2336 * only if VM_WRITE is not set is faster.
2337 */
2338 set_page_dirty(page);
2339 }
2340
2341 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2342
2343 ret = -EFAULT;
2344 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 if (unlikely(offset >= max_off))
2346 goto out_release_uncharge_unlock;
2347
2348 ret = -EEXIST;
2349 if (!pte_none(*dst_pte))
2350 goto out_release_uncharge_unlock;
2351
2352 lru_cache_add_anon(page);
2353
2354 spin_lock(&info->lock);
2355 info->alloced++;
2356 inode->i_blocks += BLOCKS_PER_PAGE;
2357 shmem_recalc_inode(inode);
2358 spin_unlock(&info->lock);
2359
2360 inc_mm_counter(dst_mm, mm_counter_file(page));
2361 page_add_file_rmap(page, false);
2362 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2363
2364 /* No need to invalidate - it was non-present before */
2365 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2366 pte_unmap_unlock(dst_pte, ptl);
2367 unlock_page(page);
2368 ret = 0;
2369 out:
2370 return ret;
2371 out_release_uncharge_unlock:
2372 pte_unmap_unlock(dst_pte, ptl);
2373 ClearPageDirty(page);
2374 delete_from_page_cache(page);
2375 out_release_uncharge:
2376 mem_cgroup_cancel_charge(page, memcg, false);
2377 out_release:
2378 unlock_page(page);
2379 put_page(page);
2380 out_unacct_blocks:
2381 shmem_inode_unacct_blocks(inode, 1);
2382 goto out;
2383 }
2384
2385 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2386 pmd_t *dst_pmd,
2387 struct vm_area_struct *dst_vma,
2388 unsigned long dst_addr,
2389 unsigned long src_addr,
2390 struct page **pagep)
2391 {
2392 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2393 dst_addr, src_addr, false, pagep);
2394 }
2395
2396 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2397 pmd_t *dst_pmd,
2398 struct vm_area_struct *dst_vma,
2399 unsigned long dst_addr)
2400 {
2401 struct page *page = NULL;
2402
2403 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2404 dst_addr, 0, true, &page);
2405 }
2406
2407 #ifdef CONFIG_TMPFS
2408 static const struct inode_operations shmem_symlink_inode_operations;
2409 static const struct inode_operations shmem_short_symlink_operations;
2410
2411 #ifdef CONFIG_TMPFS_XATTR
2412 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2413 #else
2414 #define shmem_initxattrs NULL
2415 #endif
2416
2417 static int
2418 shmem_write_begin(struct file *file, struct address_space *mapping,
2419 loff_t pos, unsigned len, unsigned flags,
2420 struct page **pagep, void **fsdata)
2421 {
2422 struct inode *inode = mapping->host;
2423 struct shmem_inode_info *info = SHMEM_I(inode);
2424 pgoff_t index = pos >> PAGE_SHIFT;
2425
2426 /* i_mutex is held by caller */
2427 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2428 if (info->seals & F_SEAL_WRITE)
2429 return -EPERM;
2430 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2431 return -EPERM;
2432 }
2433
2434 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2435 }
2436
2437 static int
2438 shmem_write_end(struct file *file, struct address_space *mapping,
2439 loff_t pos, unsigned len, unsigned copied,
2440 struct page *page, void *fsdata)
2441 {
2442 struct inode *inode = mapping->host;
2443
2444 if (pos + copied > inode->i_size)
2445 i_size_write(inode, pos + copied);
2446
2447 if (!PageUptodate(page)) {
2448 struct page *head = compound_head(page);
2449 if (PageTransCompound(page)) {
2450 int i;
2451
2452 for (i = 0; i < HPAGE_PMD_NR; i++) {
2453 if (head + i == page)
2454 continue;
2455 clear_highpage(head + i);
2456 flush_dcache_page(head + i);
2457 }
2458 }
2459 if (copied < PAGE_SIZE) {
2460 unsigned from = pos & (PAGE_SIZE - 1);
2461 zero_user_segments(page, 0, from,
2462 from + copied, PAGE_SIZE);
2463 }
2464 SetPageUptodate(head);
2465 }
2466 set_page_dirty(page);
2467 unlock_page(page);
2468 put_page(page);
2469
2470 return copied;
2471 }
2472
2473 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2474 {
2475 struct file *file = iocb->ki_filp;
2476 struct inode *inode = file_inode(file);
2477 struct address_space *mapping = inode->i_mapping;
2478 pgoff_t index;
2479 unsigned long offset;
2480 enum sgp_type sgp = SGP_READ;
2481 int error = 0;
2482 ssize_t retval = 0;
2483 loff_t *ppos = &iocb->ki_pos;
2484
2485 /*
2486 * Might this read be for a stacking filesystem? Then when reading
2487 * holes of a sparse file, we actually need to allocate those pages,
2488 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2489 */
2490 if (!iter_is_iovec(to))
2491 sgp = SGP_CACHE;
2492
2493 index = *ppos >> PAGE_SHIFT;
2494 offset = *ppos & ~PAGE_MASK;
2495
2496 for (;;) {
2497 struct page *page = NULL;
2498 pgoff_t end_index;
2499 unsigned long nr, ret;
2500 loff_t i_size = i_size_read(inode);
2501
2502 end_index = i_size >> PAGE_SHIFT;
2503 if (index > end_index)
2504 break;
2505 if (index == end_index) {
2506 nr = i_size & ~PAGE_MASK;
2507 if (nr <= offset)
2508 break;
2509 }
2510
2511 error = shmem_getpage(inode, index, &page, sgp);
2512 if (error) {
2513 if (error == -EINVAL)
2514 error = 0;
2515 break;
2516 }
2517 if (page) {
2518 if (sgp == SGP_CACHE)
2519 set_page_dirty(page);
2520 unlock_page(page);
2521 }
2522
2523 /*
2524 * We must evaluate after, since reads (unlike writes)
2525 * are called without i_mutex protection against truncate
2526 */
2527 nr = PAGE_SIZE;
2528 i_size = i_size_read(inode);
2529 end_index = i_size >> PAGE_SHIFT;
2530 if (index == end_index) {
2531 nr = i_size & ~PAGE_MASK;
2532 if (nr <= offset) {
2533 if (page)
2534 put_page(page);
2535 break;
2536 }
2537 }
2538 nr -= offset;
2539
2540 if (page) {
2541 /*
2542 * If users can be writing to this page using arbitrary
2543 * virtual addresses, take care about potential aliasing
2544 * before reading the page on the kernel side.
2545 */
2546 if (mapping_writably_mapped(mapping))
2547 flush_dcache_page(page);
2548 /*
2549 * Mark the page accessed if we read the beginning.
2550 */
2551 if (!offset)
2552 mark_page_accessed(page);
2553 } else {
2554 page = ZERO_PAGE(0);
2555 get_page(page);
2556 }
2557
2558 /*
2559 * Ok, we have the page, and it's up-to-date, so
2560 * now we can copy it to user space...
2561 */
2562 ret = copy_page_to_iter(page, offset, nr, to);
2563 retval += ret;
2564 offset += ret;
2565 index += offset >> PAGE_SHIFT;
2566 offset &= ~PAGE_MASK;
2567
2568 put_page(page);
2569 if (!iov_iter_count(to))
2570 break;
2571 if (ret < nr) {
2572 error = -EFAULT;
2573 break;
2574 }
2575 cond_resched();
2576 }
2577
2578 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2579 file_accessed(file);
2580 return retval ? retval : error;
2581 }
2582
2583 /*
2584 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2585 */
2586 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2587 pgoff_t index, pgoff_t end, int whence)
2588 {
2589 struct page *page;
2590 struct pagevec pvec;
2591 pgoff_t indices[PAGEVEC_SIZE];
2592 bool done = false;
2593 int i;
2594
2595 pagevec_init(&pvec);
2596 pvec.nr = 1; /* start small: we may be there already */
2597 while (!done) {
2598 pvec.nr = find_get_entries(mapping, index,
2599 pvec.nr, pvec.pages, indices);
2600 if (!pvec.nr) {
2601 if (whence == SEEK_DATA)
2602 index = end;
2603 break;
2604 }
2605 for (i = 0; i < pvec.nr; i++, index++) {
2606 if (index < indices[i]) {
2607 if (whence == SEEK_HOLE) {
2608 done = true;
2609 break;
2610 }
2611 index = indices[i];
2612 }
2613 page = pvec.pages[i];
2614 if (page && !radix_tree_exceptional_entry(page)) {
2615 if (!PageUptodate(page))
2616 page = NULL;
2617 }
2618 if (index >= end ||
2619 (page && whence == SEEK_DATA) ||
2620 (!page && whence == SEEK_HOLE)) {
2621 done = true;
2622 break;
2623 }
2624 }
2625 pagevec_remove_exceptionals(&pvec);
2626 pagevec_release(&pvec);
2627 pvec.nr = PAGEVEC_SIZE;
2628 cond_resched();
2629 }
2630 return index;
2631 }
2632
2633 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2634 {
2635 struct address_space *mapping = file->f_mapping;
2636 struct inode *inode = mapping->host;
2637 pgoff_t start, end;
2638 loff_t new_offset;
2639
2640 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2641 return generic_file_llseek_size(file, offset, whence,
2642 MAX_LFS_FILESIZE, i_size_read(inode));
2643 inode_lock(inode);
2644 /* We're holding i_mutex so we can access i_size directly */
2645
2646 if (offset < 0)
2647 offset = -EINVAL;
2648 else if (offset >= inode->i_size)
2649 offset = -ENXIO;
2650 else {
2651 start = offset >> PAGE_SHIFT;
2652 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2653 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2654 new_offset <<= PAGE_SHIFT;
2655 if (new_offset > offset) {
2656 if (new_offset < inode->i_size)
2657 offset = new_offset;
2658 else if (whence == SEEK_DATA)
2659 offset = -ENXIO;
2660 else
2661 offset = inode->i_size;
2662 }
2663 }
2664
2665 if (offset >= 0)
2666 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2667 inode_unlock(inode);
2668 return offset;
2669 }
2670
2671 /*
2672 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2673 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2674 */
2675 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2676 #define LAST_SCAN 4 /* about 150ms max */
2677
2678 static void shmem_tag_pins(struct address_space *mapping)
2679 {
2680 struct radix_tree_iter iter;
2681 void **slot;
2682 pgoff_t start;
2683 struct page *page;
2684
2685 lru_add_drain();
2686 start = 0;
2687 rcu_read_lock();
2688
2689 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2690 page = radix_tree_deref_slot(slot);
2691 if (!page || radix_tree_exception(page)) {
2692 if (radix_tree_deref_retry(page)) {
2693 slot = radix_tree_iter_retry(&iter);
2694 continue;
2695 }
2696 } else if (page_count(page) - page_mapcount(page) > 1) {
2697 spin_lock_irq(&mapping->tree_lock);
2698 radix_tree_tag_set(&mapping->page_tree, iter.index,
2699 SHMEM_TAG_PINNED);
2700 spin_unlock_irq(&mapping->tree_lock);
2701 }
2702
2703 if (need_resched()) {
2704 slot = radix_tree_iter_resume(slot, &iter);
2705 cond_resched_rcu();
2706 }
2707 }
2708 rcu_read_unlock();
2709 }
2710
2711 /*
2712 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2713 * via get_user_pages(), drivers might have some pending I/O without any active
2714 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2715 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2716 * them to be dropped.
2717 * The caller must guarantee that no new user will acquire writable references
2718 * to those pages to avoid races.
2719 */
2720 static int shmem_wait_for_pins(struct address_space *mapping)
2721 {
2722 struct radix_tree_iter iter;
2723 void **slot;
2724 pgoff_t start;
2725 struct page *page;
2726 int error, scan;
2727
2728 shmem_tag_pins(mapping);
2729
2730 error = 0;
2731 for (scan = 0; scan <= LAST_SCAN; scan++) {
2732 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2733 break;
2734
2735 if (!scan)
2736 lru_add_drain_all();
2737 else if (schedule_timeout_killable((HZ << scan) / 200))
2738 scan = LAST_SCAN;
2739
2740 start = 0;
2741 rcu_read_lock();
2742 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2743 start, SHMEM_TAG_PINNED) {
2744
2745 page = radix_tree_deref_slot(slot);
2746 if (radix_tree_exception(page)) {
2747 if (radix_tree_deref_retry(page)) {
2748 slot = radix_tree_iter_retry(&iter);
2749 continue;
2750 }
2751
2752 page = NULL;
2753 }
2754
2755 if (page &&
2756 page_count(page) - page_mapcount(page) != 1) {
2757 if (scan < LAST_SCAN)
2758 goto continue_resched;
2759
2760 /*
2761 * On the last scan, we clean up all those tags
2762 * we inserted; but make a note that we still
2763 * found pages pinned.
2764 */
2765 error = -EBUSY;
2766 }
2767
2768 spin_lock_irq(&mapping->tree_lock);
2769 radix_tree_tag_clear(&mapping->page_tree,
2770 iter.index, SHMEM_TAG_PINNED);
2771 spin_unlock_irq(&mapping->tree_lock);
2772 continue_resched:
2773 if (need_resched()) {
2774 slot = radix_tree_iter_resume(slot, &iter);
2775 cond_resched_rcu();
2776 }
2777 }
2778 rcu_read_unlock();
2779 }
2780
2781 return error;
2782 }
2783
2784 #define F_ALL_SEALS (F_SEAL_SEAL | \
2785 F_SEAL_SHRINK | \
2786 F_SEAL_GROW | \
2787 F_SEAL_WRITE)
2788
2789 int shmem_add_seals(struct file *file, unsigned int seals)
2790 {
2791 struct inode *inode = file_inode(file);
2792 struct shmem_inode_info *info = SHMEM_I(inode);
2793 int error;
2794
2795 /*
2796 * SEALING
2797 * Sealing allows multiple parties to share a shmem-file but restrict
2798 * access to a specific subset of file operations. Seals can only be
2799 * added, but never removed. This way, mutually untrusted parties can
2800 * share common memory regions with a well-defined policy. A malicious
2801 * peer can thus never perform unwanted operations on a shared object.
2802 *
2803 * Seals are only supported on special shmem-files and always affect
2804 * the whole underlying inode. Once a seal is set, it may prevent some
2805 * kinds of access to the file. Currently, the following seals are
2806 * defined:
2807 * SEAL_SEAL: Prevent further seals from being set on this file
2808 * SEAL_SHRINK: Prevent the file from shrinking
2809 * SEAL_GROW: Prevent the file from growing
2810 * SEAL_WRITE: Prevent write access to the file
2811 *
2812 * As we don't require any trust relationship between two parties, we
2813 * must prevent seals from being removed. Therefore, sealing a file
2814 * only adds a given set of seals to the file, it never touches
2815 * existing seals. Furthermore, the "setting seals"-operation can be
2816 * sealed itself, which basically prevents any further seal from being
2817 * added.
2818 *
2819 * Semantics of sealing are only defined on volatile files. Only
2820 * anonymous shmem files support sealing. More importantly, seals are
2821 * never written to disk. Therefore, there's no plan to support it on
2822 * other file types.
2823 */
2824
2825 if (file->f_op != &shmem_file_operations)
2826 return -EINVAL;
2827 if (!(file->f_mode & FMODE_WRITE))
2828 return -EPERM;
2829 if (seals & ~(unsigned int)F_ALL_SEALS)
2830 return -EINVAL;
2831
2832 inode_lock(inode);
2833
2834 if (info->seals & F_SEAL_SEAL) {
2835 error = -EPERM;
2836 goto unlock;
2837 }
2838
2839 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2840 error = mapping_deny_writable(file->f_mapping);
2841 if (error)
2842 goto unlock;
2843
2844 error = shmem_wait_for_pins(file->f_mapping);
2845 if (error) {
2846 mapping_allow_writable(file->f_mapping);
2847 goto unlock;
2848 }
2849 }
2850
2851 info->seals |= seals;
2852 error = 0;
2853
2854 unlock:
2855 inode_unlock(inode);
2856 return error;
2857 }
2858 EXPORT_SYMBOL_GPL(shmem_add_seals);
2859
2860 int shmem_get_seals(struct file *file)
2861 {
2862 if (file->f_op != &shmem_file_operations)
2863 return -EINVAL;
2864
2865 return SHMEM_I(file_inode(file))->seals;
2866 }
2867 EXPORT_SYMBOL_GPL(shmem_get_seals);
2868
2869 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2870 {
2871 long error;
2872
2873 switch (cmd) {
2874 case F_ADD_SEALS:
2875 /* disallow upper 32bit */
2876 if (arg > UINT_MAX)
2877 return -EINVAL;
2878
2879 error = shmem_add_seals(file, arg);
2880 break;
2881 case F_GET_SEALS:
2882 error = shmem_get_seals(file);
2883 break;
2884 default:
2885 error = -EINVAL;
2886 break;
2887 }
2888
2889 return error;
2890 }
2891
2892 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2893 loff_t len)
2894 {
2895 struct inode *inode = file_inode(file);
2896 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2897 struct shmem_inode_info *info = SHMEM_I(inode);
2898 struct shmem_falloc shmem_falloc;
2899 pgoff_t start, index, end;
2900 int error;
2901
2902 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2903 return -EOPNOTSUPP;
2904
2905 inode_lock(inode);
2906
2907 if (mode & FALLOC_FL_PUNCH_HOLE) {
2908 struct address_space *mapping = file->f_mapping;
2909 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2910 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2911 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2912
2913 /* protected by i_mutex */
2914 if (info->seals & F_SEAL_WRITE) {
2915 error = -EPERM;
2916 goto out;
2917 }
2918
2919 shmem_falloc.waitq = &shmem_falloc_waitq;
2920 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2921 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2922 spin_lock(&inode->i_lock);
2923 inode->i_private = &shmem_falloc;
2924 spin_unlock(&inode->i_lock);
2925
2926 if ((u64)unmap_end > (u64)unmap_start)
2927 unmap_mapping_range(mapping, unmap_start,
2928 1 + unmap_end - unmap_start, 0);
2929 shmem_truncate_range(inode, offset, offset + len - 1);
2930 /* No need to unmap again: hole-punching leaves COWed pages */
2931
2932 spin_lock(&inode->i_lock);
2933 inode->i_private = NULL;
2934 wake_up_all(&shmem_falloc_waitq);
2935 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2936 spin_unlock(&inode->i_lock);
2937 error = 0;
2938 goto out;
2939 }
2940
2941 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2942 error = inode_newsize_ok(inode, offset + len);
2943 if (error)
2944 goto out;
2945
2946 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2947 error = -EPERM;
2948 goto out;
2949 }
2950
2951 start = offset >> PAGE_SHIFT;
2952 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2953 /* Try to avoid a swapstorm if len is impossible to satisfy */
2954 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2955 error = -ENOSPC;
2956 goto out;
2957 }
2958
2959 shmem_falloc.waitq = NULL;
2960 shmem_falloc.start = start;
2961 shmem_falloc.next = start;
2962 shmem_falloc.nr_falloced = 0;
2963 shmem_falloc.nr_unswapped = 0;
2964 spin_lock(&inode->i_lock);
2965 inode->i_private = &shmem_falloc;
2966 spin_unlock(&inode->i_lock);
2967
2968 for (index = start; index < end; index++) {
2969 struct page *page;
2970
2971 /*
2972 * Good, the fallocate(2) manpage permits EINTR: we may have
2973 * been interrupted because we are using up too much memory.
2974 */
2975 if (signal_pending(current))
2976 error = -EINTR;
2977 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2978 error = -ENOMEM;
2979 else
2980 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2981 if (error) {
2982 /* Remove the !PageUptodate pages we added */
2983 if (index > start) {
2984 shmem_undo_range(inode,
2985 (loff_t)start << PAGE_SHIFT,
2986 ((loff_t)index << PAGE_SHIFT) - 1, true);
2987 }
2988 goto undone;
2989 }
2990
2991 /*
2992 * Inform shmem_writepage() how far we have reached.
2993 * No need for lock or barrier: we have the page lock.
2994 */
2995 shmem_falloc.next++;
2996 if (!PageUptodate(page))
2997 shmem_falloc.nr_falloced++;
2998
2999 /*
3000 * If !PageUptodate, leave it that way so that freeable pages
3001 * can be recognized if we need to rollback on error later.
3002 * But set_page_dirty so that memory pressure will swap rather
3003 * than free the pages we are allocating (and SGP_CACHE pages
3004 * might still be clean: we now need to mark those dirty too).
3005 */
3006 set_page_dirty(page);
3007 unlock_page(page);
3008 put_page(page);
3009 cond_resched();
3010 }
3011
3012 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3013 i_size_write(inode, offset + len);
3014 inode->i_ctime = current_time(inode);
3015 undone:
3016 spin_lock(&inode->i_lock);
3017 inode->i_private = NULL;
3018 spin_unlock(&inode->i_lock);
3019 out:
3020 inode_unlock(inode);
3021 return error;
3022 }
3023
3024 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3025 {
3026 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3027
3028 buf->f_type = TMPFS_MAGIC;
3029 buf->f_bsize = PAGE_SIZE;
3030 buf->f_namelen = NAME_MAX;
3031 if (sbinfo->max_blocks) {
3032 buf->f_blocks = sbinfo->max_blocks;
3033 buf->f_bavail =
3034 buf->f_bfree = sbinfo->max_blocks -
3035 percpu_counter_sum(&sbinfo->used_blocks);
3036 }
3037 if (sbinfo->max_inodes) {
3038 buf->f_files = sbinfo->max_inodes;
3039 buf->f_ffree = sbinfo->free_inodes;
3040 }
3041 /* else leave those fields 0 like simple_statfs */
3042 return 0;
3043 }
3044
3045 /*
3046 * File creation. Allocate an inode, and we're done..
3047 */
3048 static int
3049 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3050 {
3051 struct inode *inode;
3052 int error = -ENOSPC;
3053
3054 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
3055 if (inode) {
3056 error = simple_acl_create(dir, inode);
3057 if (error)
3058 goto out_iput;
3059 error = security_inode_init_security(inode, dir,
3060 &dentry->d_name,
3061 shmem_initxattrs, NULL);
3062 if (error && error != -EOPNOTSUPP)
3063 goto out_iput;
3064
3065 error = 0;
3066 dir->i_size += BOGO_DIRENT_SIZE;
3067 dir->i_ctime = dir->i_mtime = current_time(dir);
3068 d_instantiate(dentry, inode);
3069 dget(dentry); /* Extra count - pin the dentry in core */
3070 }
3071 return error;
3072 out_iput:
3073 iput(inode);
3074 return error;
3075 }
3076
3077 static int
3078 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
3079 {
3080 struct inode *inode;
3081 int error = -ENOSPC;
3082
3083 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
3084 if (inode) {
3085 error = security_inode_init_security(inode, dir,
3086 NULL,
3087 shmem_initxattrs, NULL);
3088 if (error && error != -EOPNOTSUPP)
3089 goto out_iput;
3090 error = simple_acl_create(dir, inode);
3091 if (error)
3092 goto out_iput;
3093 d_tmpfile(dentry, inode);
3094 }
3095 return error;
3096 out_iput:
3097 iput(inode);
3098 return error;
3099 }
3100
3101 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3102 {
3103 int error;
3104
3105 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3106 return error;
3107 inc_nlink(dir);
3108 return 0;
3109 }
3110
3111 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3112 bool excl)
3113 {
3114 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3115 }
3116
3117 /*
3118 * Link a file..
3119 */
3120 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3121 {
3122 struct inode *inode = d_inode(old_dentry);
3123 int ret;
3124
3125 /*
3126 * No ordinary (disk based) filesystem counts links as inodes;
3127 * but each new link needs a new dentry, pinning lowmem, and
3128 * tmpfs dentries cannot be pruned until they are unlinked.
3129 */
3130 ret = shmem_reserve_inode(inode->i_sb);
3131 if (ret)
3132 goto out;
3133
3134 dir->i_size += BOGO_DIRENT_SIZE;
3135 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3136 inc_nlink(inode);
3137 ihold(inode); /* New dentry reference */
3138 dget(dentry); /* Extra pinning count for the created dentry */
3139 d_instantiate(dentry, inode);
3140 out:
3141 return ret;
3142 }
3143
3144 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3145 {
3146 struct inode *inode = d_inode(dentry);
3147
3148 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3149 shmem_free_inode(inode->i_sb);
3150
3151 dir->i_size -= BOGO_DIRENT_SIZE;
3152 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3153 drop_nlink(inode);
3154 dput(dentry); /* Undo the count from "create" - this does all the work */
3155 return 0;
3156 }
3157
3158 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3159 {
3160 if (!simple_empty(dentry))
3161 return -ENOTEMPTY;
3162
3163 drop_nlink(d_inode(dentry));
3164 drop_nlink(dir);
3165 return shmem_unlink(dir, dentry);
3166 }
3167
3168 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3169 {
3170 bool old_is_dir = d_is_dir(old_dentry);
3171 bool new_is_dir = d_is_dir(new_dentry);
3172
3173 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3174 if (old_is_dir) {
3175 drop_nlink(old_dir);
3176 inc_nlink(new_dir);
3177 } else {
3178 drop_nlink(new_dir);
3179 inc_nlink(old_dir);
3180 }
3181 }
3182 old_dir->i_ctime = old_dir->i_mtime =
3183 new_dir->i_ctime = new_dir->i_mtime =
3184 d_inode(old_dentry)->i_ctime =
3185 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3186
3187 return 0;
3188 }
3189
3190 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3191 {
3192 struct dentry *whiteout;
3193 int error;
3194
3195 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3196 if (!whiteout)
3197 return -ENOMEM;
3198
3199 error = shmem_mknod(old_dir, whiteout,
3200 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3201 dput(whiteout);
3202 if (error)
3203 return error;
3204
3205 /*
3206 * Cheat and hash the whiteout while the old dentry is still in
3207 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3208 *
3209 * d_lookup() will consistently find one of them at this point,
3210 * not sure which one, but that isn't even important.
3211 */
3212 d_rehash(whiteout);
3213 return 0;
3214 }
3215
3216 /*
3217 * The VFS layer already does all the dentry stuff for rename,
3218 * we just have to decrement the usage count for the target if
3219 * it exists so that the VFS layer correctly free's it when it
3220 * gets overwritten.
3221 */
3222 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3223 {
3224 struct inode *inode = d_inode(old_dentry);
3225 int they_are_dirs = S_ISDIR(inode->i_mode);
3226
3227 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3228 return -EINVAL;
3229
3230 if (flags & RENAME_EXCHANGE)
3231 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3232
3233 if (!simple_empty(new_dentry))
3234 return -ENOTEMPTY;
3235
3236 if (flags & RENAME_WHITEOUT) {
3237 int error;
3238
3239 error = shmem_whiteout(old_dir, old_dentry);
3240 if (error)
3241 return error;
3242 }
3243
3244 if (d_really_is_positive(new_dentry)) {
3245 (void) shmem_unlink(new_dir, new_dentry);
3246 if (they_are_dirs) {
3247 drop_nlink(d_inode(new_dentry));
3248 drop_nlink(old_dir);
3249 }
3250 } else if (they_are_dirs) {
3251 drop_nlink(old_dir);
3252 inc_nlink(new_dir);
3253 }
3254
3255 old_dir->i_size -= BOGO_DIRENT_SIZE;
3256 new_dir->i_size += BOGO_DIRENT_SIZE;
3257 old_dir->i_ctime = old_dir->i_mtime =
3258 new_dir->i_ctime = new_dir->i_mtime =
3259 inode->i_ctime = current_time(old_dir);
3260 return 0;
3261 }
3262
3263 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3264 {
3265 int error;
3266 int len;
3267 struct inode *inode;
3268 struct page *page;
3269
3270 len = strlen(symname) + 1;
3271 if (len > PAGE_SIZE)
3272 return -ENAMETOOLONG;
3273
3274 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3275 if (!inode)
3276 return -ENOSPC;
3277
3278 error = security_inode_init_security(inode, dir, &dentry->d_name,
3279 shmem_initxattrs, NULL);
3280 if (error) {
3281 if (error != -EOPNOTSUPP) {
3282 iput(inode);
3283 return error;
3284 }
3285 error = 0;
3286 }
3287
3288 inode->i_size = len-1;
3289 if (len <= SHORT_SYMLINK_LEN) {
3290 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3291 if (!inode->i_link) {
3292 iput(inode);
3293 return -ENOMEM;
3294 }
3295 inode->i_op = &shmem_short_symlink_operations;
3296 } else {
3297 inode_nohighmem(inode);
3298 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3299 if (error) {
3300 iput(inode);
3301 return error;
3302 }
3303 inode->i_mapping->a_ops = &shmem_aops;
3304 inode->i_op = &shmem_symlink_inode_operations;
3305 memcpy(page_address(page), symname, len);
3306 SetPageUptodate(page);
3307 set_page_dirty(page);
3308 unlock_page(page);
3309 put_page(page);
3310 }
3311 dir->i_size += BOGO_DIRENT_SIZE;
3312 dir->i_ctime = dir->i_mtime = current_time(dir);
3313 d_instantiate(dentry, inode);
3314 dget(dentry);
3315 return 0;
3316 }
3317
3318 static void shmem_put_link(void *arg)
3319 {
3320 mark_page_accessed(arg);
3321 put_page(arg);
3322 }
3323
3324 static const char *shmem_get_link(struct dentry *dentry,
3325 struct inode *inode,
3326 struct delayed_call *done)
3327 {
3328 struct page *page = NULL;
3329 int error;
3330 if (!dentry) {
3331 page = find_get_page(inode->i_mapping, 0);
3332 if (!page)
3333 return ERR_PTR(-ECHILD);
3334 if (!PageUptodate(page)) {
3335 put_page(page);
3336 return ERR_PTR(-ECHILD);
3337 }
3338 } else {
3339 error = shmem_getpage(inode, 0, &page, SGP_READ);
3340 if (error)
3341 return ERR_PTR(error);
3342 unlock_page(page);
3343 }
3344 set_delayed_call(done, shmem_put_link, page);
3345 return page_address(page);
3346 }
3347
3348 #ifdef CONFIG_TMPFS_XATTR
3349 /*
3350 * Superblocks without xattr inode operations may get some security.* xattr
3351 * support from the LSM "for free". As soon as we have any other xattrs
3352 * like ACLs, we also need to implement the security.* handlers at
3353 * filesystem level, though.
3354 */
3355
3356 /*
3357 * Callback for security_inode_init_security() for acquiring xattrs.
3358 */
3359 static int shmem_initxattrs(struct inode *inode,
3360 const struct xattr *xattr_array,
3361 void *fs_info)
3362 {
3363 struct shmem_inode_info *info = SHMEM_I(inode);
3364 const struct xattr *xattr;
3365 struct simple_xattr *new_xattr;
3366 size_t len;
3367
3368 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3369 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3370 if (!new_xattr)
3371 return -ENOMEM;
3372
3373 len = strlen(xattr->name) + 1;
3374 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3375 GFP_KERNEL);
3376 if (!new_xattr->name) {
3377 kfree(new_xattr);
3378 return -ENOMEM;
3379 }
3380
3381 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3382 XATTR_SECURITY_PREFIX_LEN);
3383 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3384 xattr->name, len);
3385
3386 simple_xattr_list_add(&info->xattrs, new_xattr);
3387 }
3388
3389 return 0;
3390 }
3391
3392 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3393 struct dentry *unused, struct inode *inode,
3394 const char *name, void *buffer, size_t size)
3395 {
3396 struct shmem_inode_info *info = SHMEM_I(inode);
3397
3398 name = xattr_full_name(handler, name);
3399 return simple_xattr_get(&info->xattrs, name, buffer, size);
3400 }
3401
3402 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3403 struct dentry *unused, struct inode *inode,
3404 const char *name, const void *value,
3405 size_t size, int flags)
3406 {
3407 struct shmem_inode_info *info = SHMEM_I(inode);
3408
3409 name = xattr_full_name(handler, name);
3410 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3411 }
3412
3413 static const struct xattr_handler shmem_security_xattr_handler = {
3414 .prefix = XATTR_SECURITY_PREFIX,
3415 .get = shmem_xattr_handler_get,
3416 .set = shmem_xattr_handler_set,
3417 };
3418
3419 static const struct xattr_handler shmem_trusted_xattr_handler = {
3420 .prefix = XATTR_TRUSTED_PREFIX,
3421 .get = shmem_xattr_handler_get,
3422 .set = shmem_xattr_handler_set,
3423 };
3424
3425 static const struct xattr_handler *shmem_xattr_handlers[] = {
3426 #ifdef CONFIG_TMPFS_POSIX_ACL
3427 &posix_acl_access_xattr_handler,
3428 &posix_acl_default_xattr_handler,
3429 #endif
3430 &shmem_security_xattr_handler,
3431 &shmem_trusted_xattr_handler,
3432 NULL
3433 };
3434
3435 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3436 {
3437 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3438 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3439 }
3440 #endif /* CONFIG_TMPFS_XATTR */
3441
3442 static const struct inode_operations shmem_short_symlink_operations = {
3443 .get_link = simple_get_link,
3444 #ifdef CONFIG_TMPFS_XATTR
3445 .listxattr = shmem_listxattr,
3446 #endif
3447 };
3448
3449 static const struct inode_operations shmem_symlink_inode_operations = {
3450 .get_link = shmem_get_link,
3451 #ifdef CONFIG_TMPFS_XATTR
3452 .listxattr = shmem_listxattr,
3453 #endif
3454 };
3455
3456 static struct dentry *shmem_get_parent(struct dentry *child)
3457 {
3458 return ERR_PTR(-ESTALE);
3459 }
3460
3461 static int shmem_match(struct inode *ino, void *vfh)
3462 {
3463 __u32 *fh = vfh;
3464 __u64 inum = fh[1];
3465 return ino->i_ino == inum && fh[0] == ino->i_generation;
3466 }
3467
3468 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3469 struct fid *fid, int fh_len, int fh_type)
3470 {
3471 struct inode *inode;
3472 struct dentry *dentry = NULL;
3473 u64 inum;
3474
3475 if (fh_len < 2)
3476 return NULL;
3477
3478 inum = fid->raw[1];
3479 inode = ilookup5(sb, inum, shmem_match, fid->raw);
3480 if (inode) {
3481 dentry = d_find_alias(inode);
3482 iput(inode);
3483 }
3484
3485 return dentry;
3486 }
3487
3488 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3489 struct inode *parent)
3490 {
3491 if (*len < 2) {
3492 *len = 2;
3493 return FILEID_INVALID;
3494 }
3495
3496 fh[0] = inode->i_generation;
3497 fh[1] = inode->i_ino;
3498
3499 *len = 2;
3500 return 1;
3501 }
3502
3503 static const struct export_operations shmem_export_ops = {
3504 .get_parent = shmem_get_parent,
3505 .encode_fh = shmem_encode_fh,
3506 .fh_to_dentry = shmem_fh_to_dentry,
3507 };
3508
3509 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3510 bool remount)
3511 {
3512 char *this_char, *value, *rest;
3513 struct mempolicy *mpol = NULL;
3514 uid_t uid;
3515 gid_t gid;
3516
3517 while (options != NULL) {
3518 this_char = options;
3519 for (;;) {
3520 /*
3521 * NUL-terminate this option: unfortunately,
3522 * mount options form a comma-separated list,
3523 * but mpol's nodelist may also contain commas.
3524 */
3525 options = strchr(options, ',');
3526 if (options == NULL)
3527 break;
3528 options++;
3529 if (!isdigit(*options)) {
3530 options[-1] = '\0';
3531 break;
3532 }
3533 }
3534 if (!*this_char)
3535 continue;
3536 if ((value = strchr(this_char,'=')) != NULL) {
3537 *value++ = 0;
3538 } else {
3539 pr_err("tmpfs: No value for mount option '%s'\n",
3540 this_char);
3541 goto error;
3542 }
3543
3544 if (!strcmp(this_char,"size")) {
3545 unsigned long long size;
3546 size = memparse(value,&rest);
3547 if (*rest == '%') {
3548 size <<= PAGE_SHIFT;
3549 size *= totalram_pages;
3550 do_div(size, 100);
3551 rest++;
3552 }
3553 if (*rest)
3554 goto bad_val;
3555 sbinfo->max_blocks =
3556 DIV_ROUND_UP(size, PAGE_SIZE);
3557 } else if (!strcmp(this_char,"nr_blocks")) {
3558 sbinfo->max_blocks = memparse(value, &rest);
3559 if (*rest)
3560 goto bad_val;
3561 } else if (!strcmp(this_char,"nr_inodes")) {
3562 sbinfo->max_inodes = memparse(value, &rest);
3563 if (*rest || sbinfo->max_inodes < 2)
3564 goto bad_val;
3565 } else if (!strcmp(this_char,"mode")) {
3566 if (remount)
3567 continue;
3568 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3569 if (*rest)
3570 goto bad_val;
3571 } else if (!strcmp(this_char,"uid")) {
3572 if (remount)
3573 continue;
3574 uid = simple_strtoul(value, &rest, 0);
3575 if (*rest)
3576 goto bad_val;
3577 sbinfo->uid = make_kuid(current_user_ns(), uid);
3578 if (!uid_valid(sbinfo->uid))
3579 goto bad_val;
3580 } else if (!strcmp(this_char,"gid")) {
3581 if (remount)
3582 continue;
3583 gid = simple_strtoul(value, &rest, 0);
3584 if (*rest)
3585 goto bad_val;
3586 sbinfo->gid = make_kgid(current_user_ns(), gid);
3587 if (!gid_valid(sbinfo->gid))
3588 goto bad_val;
3589 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3590 } else if (!strcmp(this_char, "huge")) {
3591 int huge;
3592 huge = shmem_parse_huge(value);
3593 if (huge < 0)
3594 goto bad_val;
3595 if (!has_transparent_hugepage() &&
3596 huge != SHMEM_HUGE_NEVER)
3597 goto bad_val;
3598 sbinfo->huge = huge;
3599 #endif
3600 #ifdef CONFIG_NUMA
3601 } else if (!strcmp(this_char,"mpol")) {
3602 mpol_put(mpol);
3603 mpol = NULL;
3604 if (mpol_parse_str(value, &mpol))
3605 goto bad_val;
3606 #endif
3607 } else {
3608 pr_err("tmpfs: Bad mount option %s\n", this_char);
3609 goto error;
3610 }
3611 }
3612 sbinfo->mpol = mpol;
3613 return 0;
3614
3615 bad_val:
3616 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3617 value, this_char);
3618 error:
3619 mpol_put(mpol);
3620 return 1;
3621
3622 }
3623
3624 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3625 {
3626 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3627 struct shmem_sb_info config = *sbinfo;
3628 int inodes;
3629 int error = -EINVAL;
3630
3631 config.mpol = NULL;
3632 if (shmem_parse_options(data, &config, true))
3633 return error;
3634
3635 spin_lock(&sbinfo->stat_lock);
3636 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3637 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3638 goto out;
3639 if (config.max_inodes < inodes)
3640 goto out;
3641 /*
3642 * Those tests disallow limited->unlimited while any are in use;
3643 * but we must separately disallow unlimited->limited, because
3644 * in that case we have no record of how much is already in use.
3645 */
3646 if (config.max_blocks && !sbinfo->max_blocks)
3647 goto out;
3648 if (config.max_inodes && !sbinfo->max_inodes)
3649 goto out;
3650
3651 error = 0;
3652 sbinfo->huge = config.huge;
3653 sbinfo->max_blocks = config.max_blocks;
3654 sbinfo->max_inodes = config.max_inodes;
3655 sbinfo->free_inodes = config.max_inodes - inodes;
3656
3657 /*
3658 * Preserve previous mempolicy unless mpol remount option was specified.
3659 */
3660 if (config.mpol) {
3661 mpol_put(sbinfo->mpol);
3662 sbinfo->mpol = config.mpol; /* transfers initial ref */
3663 }
3664 out:
3665 spin_unlock(&sbinfo->stat_lock);
3666 return error;
3667 }
3668
3669 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3670 {
3671 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3672
3673 if (sbinfo->max_blocks != shmem_default_max_blocks())
3674 seq_printf(seq, ",size=%luk",
3675 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3676 if (sbinfo->max_inodes != shmem_default_max_inodes())
3677 seq_printf(seq, ",nr_inodes=%d", sbinfo->max_inodes);
3678 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3679 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3680 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3681 seq_printf(seq, ",uid=%u",
3682 from_kuid_munged(&init_user_ns, sbinfo->uid));
3683 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3684 seq_printf(seq, ",gid=%u",
3685 from_kgid_munged(&init_user_ns, sbinfo->gid));
3686 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3687 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3688 if (sbinfo->huge)
3689 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3690 #endif
3691 shmem_show_mpol(seq, sbinfo->mpol);
3692 return 0;
3693 }
3694
3695 #define MFD_NAME_PREFIX "memfd:"
3696 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3697 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3698
3699 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3700
3701 SYSCALL_DEFINE2(memfd_create,
3702 const char __user *, uname,
3703 unsigned int, flags)
3704 {
3705 struct shmem_inode_info *info;
3706 struct file *file;
3707 int fd, error;
3708 char *name;
3709 long len;
3710
3711 if (!(flags & MFD_HUGETLB)) {
3712 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3713 return -EINVAL;
3714 } else {
3715 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3716 if (flags & MFD_ALLOW_SEALING)
3717 return -EINVAL;
3718 /* Allow huge page size encoding in flags. */
3719 if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
3720 (MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
3721 return -EINVAL;
3722 }
3723
3724 /* length includes terminating zero */
3725 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3726 if (len <= 0)
3727 return -EFAULT;
3728 if (len > MFD_NAME_MAX_LEN + 1)
3729 return -EINVAL;
3730
3731 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
3732 if (!name)
3733 return -ENOMEM;
3734
3735 strcpy(name, MFD_NAME_PREFIX);
3736 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3737 error = -EFAULT;
3738 goto err_name;
3739 }
3740
3741 /* terminating-zero may have changed after strnlen_user() returned */
3742 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3743 error = -EFAULT;
3744 goto err_name;
3745 }
3746
3747 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3748 if (fd < 0) {
3749 error = fd;
3750 goto err_name;
3751 }
3752
3753 if (flags & MFD_HUGETLB) {
3754 struct user_struct *user = NULL;
3755
3756 file = hugetlb_file_setup(name, 0, VM_NORESERVE, &user,
3757 HUGETLB_ANONHUGE_INODE,
3758 (flags >> MFD_HUGE_SHIFT) &
3759 MFD_HUGE_MASK);
3760 } else
3761 file = shmem_file_setup(name, 0, VM_NORESERVE);
3762 if (IS_ERR(file)) {
3763 error = PTR_ERR(file);
3764 goto err_fd;
3765 }
3766 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3767 file->f_flags |= O_RDWR | O_LARGEFILE;
3768
3769 if (flags & MFD_ALLOW_SEALING) {
3770 /*
3771 * flags check at beginning of function ensures
3772 * this is not a hugetlbfs (MFD_HUGETLB) file.
3773 */
3774 info = SHMEM_I(file_inode(file));
3775 info->seals &= ~F_SEAL_SEAL;
3776 }
3777
3778 fd_install(fd, file);
3779 kfree(name);
3780 return fd;
3781
3782 err_fd:
3783 put_unused_fd(fd);
3784 err_name:
3785 kfree(name);
3786 return error;
3787 }
3788
3789 #endif /* CONFIG_TMPFS */
3790
3791 static void shmem_put_super(struct super_block *sb)
3792 {
3793 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3794
3795 if (!sbinfo->idr_nouse)
3796 idr_destroy(&sbinfo->idr);
3797 percpu_counter_destroy(&sbinfo->used_blocks);
3798 mpol_put(sbinfo->mpol);
3799 kfree(sbinfo);
3800 sb->s_fs_info = NULL;
3801 }
3802
3803 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3804 {
3805 struct inode *inode;
3806 struct shmem_sb_info *sbinfo;
3807 int err = -ENOMEM;
3808
3809 /* Round up to L1_CACHE_BYTES to resist false sharing */
3810 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3811 L1_CACHE_BYTES), GFP_KERNEL);
3812 if (!sbinfo)
3813 return -ENOMEM;
3814
3815 mutex_init(&sbinfo->idr_lock);
3816 idr_init(&sbinfo->idr);
3817 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3818 sbinfo->uid = current_fsuid();
3819 sbinfo->gid = current_fsgid();
3820 sb->s_fs_info = sbinfo;
3821
3822 #ifdef CONFIG_TMPFS
3823 /*
3824 * Per default we only allow half of the physical ram per
3825 * tmpfs instance, limiting inodes to one per page of lowmem;
3826 * but the internal instance is left unlimited.
3827 */
3828 if (!(sb->s_flags & SB_KERNMOUNT)) {
3829 sbinfo->max_blocks = shmem_default_max_blocks();
3830 sbinfo->max_inodes = shmem_default_max_inodes();
3831 if (shmem_parse_options(data, sbinfo, false)) {
3832 err = -EINVAL;
3833 goto failed;
3834 }
3835 } else {
3836 sb->s_flags |= SB_NOUSER;
3837 }
3838 sb->s_export_op = &shmem_export_ops;
3839 sb->s_flags |= SB_NOSEC;
3840 #else
3841 sb->s_flags |= SB_NOUSER;
3842 #endif
3843
3844 spin_lock_init(&sbinfo->stat_lock);
3845 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3846 goto failed;
3847 sbinfo->free_inodes = sbinfo->max_inodes;
3848 spin_lock_init(&sbinfo->shrinklist_lock);
3849 INIT_LIST_HEAD(&sbinfo->shrinklist);
3850
3851 sb->s_maxbytes = MAX_LFS_FILESIZE;
3852 sb->s_blocksize = PAGE_SIZE;
3853 sb->s_blocksize_bits = PAGE_SHIFT;
3854 sb->s_magic = TMPFS_MAGIC;
3855 sb->s_op = &shmem_ops;
3856 sb->s_time_gran = 1;
3857 #ifdef CONFIG_TMPFS_XATTR
3858 sb->s_xattr = shmem_xattr_handlers;
3859 #endif
3860 #ifdef CONFIG_TMPFS_POSIX_ACL
3861 sb->s_flags |= SB_POSIXACL;
3862 #endif
3863 uuid_gen(&sb->s_uuid);
3864
3865 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3866 if (!inode)
3867 goto failed;
3868 inode->i_uid = sbinfo->uid;
3869 inode->i_gid = sbinfo->gid;
3870 sb->s_root = d_make_root(inode);
3871 if (!sb->s_root)
3872 goto failed;
3873 return 0;
3874
3875 failed:
3876 shmem_put_super(sb);
3877 return err;
3878 }
3879
3880 static struct kmem_cache *shmem_inode_cachep;
3881
3882 static struct inode *shmem_alloc_inode(struct super_block *sb)
3883 {
3884 struct shmem_inode_info *info;
3885 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3886 if (!info)
3887 return NULL;
3888 return &info->vfs_inode;
3889 }
3890
3891 static void shmem_destroy_callback(struct rcu_head *head)
3892 {
3893 struct inode *inode = container_of(head, struct inode, i_rcu);
3894 if (S_ISLNK(inode->i_mode))
3895 kfree(inode->i_link);
3896 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3897 }
3898
3899 static void shmem_destroy_inode(struct inode *inode)
3900 {
3901 if (S_ISREG(inode->i_mode))
3902 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3903 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3904 }
3905
3906 static void shmem_init_inode(void *foo)
3907 {
3908 struct shmem_inode_info *info = foo;
3909 inode_init_once(&info->vfs_inode);
3910 }
3911
3912 static void shmem_init_inodecache(void)
3913 {
3914 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3915 sizeof(struct shmem_inode_info),
3916 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3917 }
3918
3919 static void shmem_destroy_inodecache(void)
3920 {
3921 kmem_cache_destroy(shmem_inode_cachep);
3922 }
3923
3924 static __init void shmem_no_idr(struct super_block *sb)
3925 {
3926 struct shmem_sb_info *sbinfo;
3927
3928 sbinfo = SHMEM_SB(sb);
3929 sbinfo->idr_nouse = true;
3930 idr_destroy(&sbinfo->idr);
3931 }
3932
3933 static const struct address_space_operations shmem_aops = {
3934 .writepage = shmem_writepage,
3935 .set_page_dirty = __set_page_dirty_no_writeback,
3936 #ifdef CONFIG_TMPFS
3937 .write_begin = shmem_write_begin,
3938 .write_end = shmem_write_end,
3939 #endif
3940 #ifdef CONFIG_MIGRATION
3941 .migratepage = migrate_page,
3942 #endif
3943 .error_remove_page = generic_error_remove_page,
3944 };
3945
3946 static const struct file_operations shmem_file_operations = {
3947 .mmap = shmem_mmap,
3948 .get_unmapped_area = shmem_get_unmapped_area,
3949 #ifdef CONFIG_TMPFS
3950 .llseek = shmem_file_llseek,
3951 .read_iter = shmem_file_read_iter,
3952 .write_iter = generic_file_write_iter,
3953 .fsync = noop_fsync,
3954 .splice_read = generic_file_splice_read,
3955 .splice_write = iter_file_splice_write,
3956 .fallocate = shmem_fallocate,
3957 #endif
3958 };
3959
3960 static const struct inode_operations shmem_inode_operations = {
3961 .getattr = shmem_getattr,
3962 .setattr = shmem_setattr,
3963 #ifdef CONFIG_TMPFS_XATTR
3964 .listxattr = shmem_listxattr,
3965 .set_acl = simple_set_acl,
3966 #endif
3967 };
3968
3969 static const struct inode_operations shmem_dir_inode_operations = {
3970 #ifdef CONFIG_TMPFS
3971 .create = shmem_create,
3972 .lookup = simple_lookup,
3973 .link = shmem_link,
3974 .unlink = shmem_unlink,
3975 .symlink = shmem_symlink,
3976 .mkdir = shmem_mkdir,
3977 .rmdir = shmem_rmdir,
3978 .mknod = shmem_mknod,
3979 .rename = shmem_rename2,
3980 .tmpfile = shmem_tmpfile,
3981 #endif
3982 #ifdef CONFIG_TMPFS_XATTR
3983 .listxattr = shmem_listxattr,
3984 #endif
3985 #ifdef CONFIG_TMPFS_POSIX_ACL
3986 .setattr = shmem_setattr,
3987 .set_acl = simple_set_acl,
3988 #endif
3989 };
3990
3991 static const struct inode_operations shmem_special_inode_operations = {
3992 #ifdef CONFIG_TMPFS_XATTR
3993 .listxattr = shmem_listxattr,
3994 #endif
3995 #ifdef CONFIG_TMPFS_POSIX_ACL
3996 .setattr = shmem_setattr,
3997 .set_acl = simple_set_acl,
3998 #endif
3999 };
4000
4001 static const struct super_operations shmem_ops = {
4002 .alloc_inode = shmem_alloc_inode,
4003 .destroy_inode = shmem_destroy_inode,
4004 #ifdef CONFIG_TMPFS
4005 .statfs = shmem_statfs,
4006 .remount_fs = shmem_remount_fs,
4007 .show_options = shmem_show_options,
4008 #endif
4009 .evict_inode = shmem_evict_inode,
4010 .drop_inode = generic_delete_inode,
4011 .put_super = shmem_put_super,
4012 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4013 .nr_cached_objects = shmem_unused_huge_count,
4014 .free_cached_objects = shmem_unused_huge_scan,
4015 #endif
4016 };
4017
4018 static const struct vm_operations_struct shmem_vm_ops = {
4019 .fault = shmem_fault,
4020 .map_pages = filemap_map_pages,
4021 #ifdef CONFIG_NUMA
4022 .set_policy = shmem_set_policy,
4023 .get_policy = shmem_get_policy,
4024 #endif
4025 };
4026
4027 static struct dentry *shmem_mount(struct file_system_type *fs_type,
4028 int flags, const char *dev_name, void *data)
4029 {
4030 return mount_nodev(fs_type, flags, data, shmem_fill_super);
4031 }
4032
4033 static struct file_system_type shmem_fs_type = {
4034 .owner = THIS_MODULE,
4035 .name = "tmpfs",
4036 .mount = shmem_mount,
4037 .kill_sb = kill_litter_super,
4038 .fs_flags = FS_USERNS_MOUNT,
4039 };
4040
4041 int __init shmem_init(void)
4042 {
4043 int error;
4044
4045 /* If rootfs called this, don't re-init */
4046 if (shmem_inode_cachep)
4047 return 0;
4048
4049 shmem_init_inodecache();
4050
4051 error = register_filesystem(&shmem_fs_type);
4052 if (error) {
4053 pr_err("Could not register tmpfs\n");
4054 goto out2;
4055 }
4056
4057 shm_mnt = kern_mount(&shmem_fs_type);
4058 if (IS_ERR(shm_mnt)) {
4059 error = PTR_ERR(shm_mnt);
4060 pr_err("Could not kern_mount tmpfs\n");
4061 goto out1;
4062 }
4063 shmem_no_idr(shm_mnt->mnt_sb);
4064
4065 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4066 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4067 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4068 else
4069 shmem_huge = 0; /* just in case it was patched */
4070 #endif
4071 return 0;
4072
4073 out1:
4074 unregister_filesystem(&shmem_fs_type);
4075 out2:
4076 shmem_destroy_inodecache();
4077 shm_mnt = ERR_PTR(error);
4078 return error;
4079 }
4080
4081 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4082 static ssize_t shmem_enabled_show(struct kobject *kobj,
4083 struct kobj_attribute *attr, char *buf)
4084 {
4085 int values[] = {
4086 SHMEM_HUGE_ALWAYS,
4087 SHMEM_HUGE_WITHIN_SIZE,
4088 SHMEM_HUGE_ADVISE,
4089 SHMEM_HUGE_NEVER,
4090 SHMEM_HUGE_DENY,
4091 SHMEM_HUGE_FORCE,
4092 };
4093 int i, count;
4094
4095 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4096 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4097
4098 count += sprintf(buf + count, fmt,
4099 shmem_format_huge(values[i]));
4100 }
4101 buf[count - 1] = '\n';
4102 return count;
4103 }
4104
4105 static ssize_t shmem_enabled_store(struct kobject *kobj,
4106 struct kobj_attribute *attr, const char *buf, size_t count)
4107 {
4108 char tmp[16];
4109 int huge;
4110
4111 if (count + 1 > sizeof(tmp))
4112 return -EINVAL;
4113 memcpy(tmp, buf, count);
4114 tmp[count] = '\0';
4115 if (count && tmp[count - 1] == '\n')
4116 tmp[count - 1] = '\0';
4117
4118 huge = shmem_parse_huge(tmp);
4119 if (huge == -EINVAL)
4120 return -EINVAL;
4121 if (!has_transparent_hugepage() &&
4122 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4123 return -EINVAL;
4124
4125 shmem_huge = huge;
4126 if (shmem_huge > SHMEM_HUGE_DENY)
4127 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4128 return count;
4129 }
4130
4131 struct kobj_attribute shmem_enabled_attr =
4132 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4133 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4134
4135 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4136 bool shmem_huge_enabled(struct vm_area_struct *vma)
4137 {
4138 struct inode *inode = file_inode(vma->vm_file);
4139 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4140 loff_t i_size;
4141 pgoff_t off;
4142
4143 if (shmem_huge == SHMEM_HUGE_FORCE)
4144 return true;
4145 if (shmem_huge == SHMEM_HUGE_DENY)
4146 return false;
4147 switch (sbinfo->huge) {
4148 case SHMEM_HUGE_NEVER:
4149 return false;
4150 case SHMEM_HUGE_ALWAYS:
4151 return true;
4152 case SHMEM_HUGE_WITHIN_SIZE:
4153 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4154 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4155 if (i_size >= HPAGE_PMD_SIZE &&
4156 i_size >> PAGE_SHIFT >= off)
4157 return true;
4158 /* fall through */
4159 case SHMEM_HUGE_ADVISE:
4160 /* TODO: implement fadvise() hints */
4161 return (vma->vm_flags & VM_HUGEPAGE);
4162 default:
4163 VM_BUG_ON(1);
4164 return false;
4165 }
4166 }
4167 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4168
4169 #else /* !CONFIG_SHMEM */
4170
4171 /*
4172 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4173 *
4174 * This is intended for small system where the benefits of the full
4175 * shmem code (swap-backed and resource-limited) are outweighed by
4176 * their complexity. On systems without swap this code should be
4177 * effectively equivalent, but much lighter weight.
4178 */
4179
4180 static struct file_system_type shmem_fs_type = {
4181 .name = "tmpfs",
4182 .mount = ramfs_mount,
4183 .kill_sb = kill_litter_super,
4184 .fs_flags = FS_USERNS_MOUNT,
4185 };
4186
4187 int __init shmem_init(void)
4188 {
4189 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4190
4191 shm_mnt = kern_mount(&shmem_fs_type);
4192 BUG_ON(IS_ERR(shm_mnt));
4193
4194 return 0;
4195 }
4196
4197 int shmem_unuse(swp_entry_t swap, struct page *page)
4198 {
4199 return 0;
4200 }
4201
4202 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4203 {
4204 return 0;
4205 }
4206
4207 void shmem_unlock_mapping(struct address_space *mapping)
4208 {
4209 }
4210
4211 #ifdef CONFIG_MMU
4212 unsigned long shmem_get_unmapped_area(struct file *file,
4213 unsigned long addr, unsigned long len,
4214 unsigned long pgoff, unsigned long flags)
4215 {
4216 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4217 }
4218 #endif
4219
4220 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4221 {
4222 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4223 }
4224 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4225
4226 #define shmem_vm_ops generic_file_vm_ops
4227 #define shmem_file_operations ramfs_file_operations
4228 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4229 #define shmem_acct_size(flags, size) 0
4230 #define shmem_unacct_size(flags, size) do {} while (0)
4231
4232 #endif /* CONFIG_SHMEM */
4233
4234 /* common code */
4235
4236 static const struct dentry_operations anon_ops = {
4237 .d_dname = simple_dname
4238 };
4239
4240 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4241 unsigned long flags, unsigned int i_flags)
4242 {
4243 struct file *res;
4244 struct inode *inode;
4245 struct path path;
4246 struct super_block *sb;
4247 struct qstr this;
4248
4249 if (IS_ERR(mnt))
4250 return ERR_CAST(mnt);
4251
4252 if (size < 0 || size > MAX_LFS_FILESIZE)
4253 return ERR_PTR(-EINVAL);
4254
4255 if (shmem_acct_size(flags, size))
4256 return ERR_PTR(-ENOMEM);
4257
4258 res = ERR_PTR(-ENOMEM);
4259 this.name = name;
4260 this.len = strlen(name);
4261 this.hash = 0; /* will go */
4262 sb = mnt->mnt_sb;
4263 path.mnt = mntget(mnt);
4264 path.dentry = d_alloc_pseudo(sb, &this);
4265 if (!path.dentry)
4266 goto put_memory;
4267 d_set_d_op(path.dentry, &anon_ops);
4268
4269 res = ERR_PTR(-ENOSPC);
4270 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4271 if (!inode)
4272 goto put_memory;
4273
4274 inode->i_flags |= i_flags;
4275 d_instantiate(path.dentry, inode);
4276 inode->i_size = size;
4277 clear_nlink(inode); /* It is unlinked */
4278 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4279 if (IS_ERR(res))
4280 goto put_path;
4281
4282 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4283 &shmem_file_operations);
4284 if (IS_ERR(res))
4285 goto put_path;
4286
4287 return res;
4288
4289 put_memory:
4290 shmem_unacct_size(flags, size);
4291 put_path:
4292 path_put(&path);
4293 return res;
4294 }
4295
4296 /**
4297 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4298 * kernel internal. There will be NO LSM permission checks against the
4299 * underlying inode. So users of this interface must do LSM checks at a
4300 * higher layer. The users are the big_key and shm implementations. LSM
4301 * checks are provided at the key or shm level rather than the inode.
4302 * @name: name for dentry (to be seen in /proc/<pid>/maps
4303 * @size: size to be set for the file
4304 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4305 */
4306 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4307 {
4308 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4309 }
4310
4311 /**
4312 * shmem_file_setup - get an unlinked file living in tmpfs
4313 * @name: name for dentry (to be seen in /proc/<pid>/maps
4314 * @size: size to be set for the file
4315 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4316 */
4317 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4318 {
4319 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4320 }
4321 EXPORT_SYMBOL_GPL(shmem_file_setup);
4322
4323 /**
4324 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4325 * @mnt: the tmpfs mount where the file will be created
4326 * @name: name for dentry (to be seen in /proc/<pid>/maps
4327 * @size: size to be set for the file
4328 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4329 */
4330 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4331 loff_t size, unsigned long flags)
4332 {
4333 return __shmem_file_setup(mnt, name, size, flags, 0);
4334 }
4335 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4336
4337 /**
4338 * shmem_zero_setup - setup a shared anonymous mapping
4339 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4340 */
4341 int shmem_zero_setup(struct vm_area_struct *vma)
4342 {
4343 struct file *file;
4344 loff_t size = vma->vm_end - vma->vm_start;
4345
4346 /*
4347 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4348 * between XFS directory reading and selinux: since this file is only
4349 * accessible to the user through its mapping, use S_PRIVATE flag to
4350 * bypass file security, in the same way as shmem_kernel_file_setup().
4351 */
4352 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4353 if (IS_ERR(file))
4354 return PTR_ERR(file);
4355
4356 if (vma->vm_file)
4357 fput(vma->vm_file);
4358 vma->vm_file = file;
4359 vma->vm_ops = &shmem_vm_ops;
4360
4361 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4362 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4363 (vma->vm_end & HPAGE_PMD_MASK)) {
4364 khugepaged_enter(vma, vma->vm_flags);
4365 }
4366
4367 return 0;
4368 }
4369
4370 /**
4371 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4372 * @mapping: the page's address_space
4373 * @index: the page index
4374 * @gfp: the page allocator flags to use if allocating
4375 *
4376 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4377 * with any new page allocations done using the specified allocation flags.
4378 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4379 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4380 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4381 *
4382 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4383 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4384 */
4385 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4386 pgoff_t index, gfp_t gfp)
4387 {
4388 #ifdef CONFIG_SHMEM
4389 struct inode *inode = mapping->host;
4390 struct page *page;
4391 int error;
4392
4393 BUG_ON(mapping->a_ops != &shmem_aops);
4394 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4395 gfp, NULL, NULL, NULL);
4396 if (error)
4397 page = ERR_PTR(error);
4398 else
4399 unlock_page(page);
4400 return page;
4401 #else
4402 /*
4403 * The tiny !SHMEM case uses ramfs without swap
4404 */
4405 return read_cache_page_gfp(mapping, index, gfp);
4406 #endif
4407 }
4408 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);