]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
shmem: support RENAME_EXCHANGE
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84 * inode->i_private (with i_mutex making sure that it has only one user at
85 * a time): we would prefer not to enlarge the shmem inode just for that.
86 */
87 struct shmem_falloc {
88 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89 pgoff_t start; /* start of range currently being fallocated */
90 pgoff_t next; /* the next page offset to be fallocated */
91 pgoff_t nr_falloced; /* how many new pages have been fallocated */
92 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97 SGP_READ, /* don't exceed i_size, don't allocate page */
98 SGP_CACHE, /* don't exceed i_size, may allocate page */
99 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
100 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
101 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107 return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123 struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125 return shmem_getpage_gfp(inode, index, pagep, sgp,
126 mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131 return sb->s_fs_info;
132 }
133
134 /*
135 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136 * for shared memory and for shared anonymous (/dev/zero) mappings
137 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138 * consistent with the pre-accounting of private mappings ...
139 */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142 return (flags & VM_NORESERVE) ?
143 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148 if (!(flags & VM_NORESERVE))
149 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153 * ... whereas tmpfs objects are accounted incrementally as
154 * pages are allocated, in order to allow huge sparse files.
155 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157 */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160 return (flags & VM_NORESERVE) ?
161 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166 if (flags & VM_NORESERVE)
167 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
179 .ra_pages = 0, /* No readahead */
180 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189 if (sbinfo->max_inodes) {
190 spin_lock(&sbinfo->stat_lock);
191 if (!sbinfo->free_inodes) {
192 spin_unlock(&sbinfo->stat_lock);
193 return -ENOSPC;
194 }
195 sbinfo->free_inodes--;
196 spin_unlock(&sbinfo->stat_lock);
197 }
198 return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204 if (sbinfo->max_inodes) {
205 spin_lock(&sbinfo->stat_lock);
206 sbinfo->free_inodes++;
207 spin_unlock(&sbinfo->stat_lock);
208 }
209 }
210
211 /**
212 * shmem_recalc_inode - recalculate the block usage of an inode
213 * @inode: inode to recalc
214 *
215 * We have to calculate the free blocks since the mm can drop
216 * undirtied hole pages behind our back.
217 *
218 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
219 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220 *
221 * It has to be called with the spinlock held.
222 */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 long freed;
227
228 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 if (freed > 0) {
230 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231 if (sbinfo->max_blocks)
232 percpu_counter_add(&sbinfo->used_blocks, -freed);
233 info->alloced -= freed;
234 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235 shmem_unacct_blocks(info->flags, freed);
236 }
237 }
238
239 /*
240 * Replace item expected in radix tree by a new item, while holding tree lock.
241 */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243 pgoff_t index, void *expected, void *replacement)
244 {
245 void **pslot;
246 void *item;
247
248 VM_BUG_ON(!expected);
249 VM_BUG_ON(!replacement);
250 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251 if (!pslot)
252 return -ENOENT;
253 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254 if (item != expected)
255 return -ENOENT;
256 radix_tree_replace_slot(pslot, replacement);
257 return 0;
258 }
259
260 /*
261 * Sometimes, before we decide whether to proceed or to fail, we must check
262 * that an entry was not already brought back from swap by a racing thread.
263 *
264 * Checking page is not enough: by the time a SwapCache page is locked, it
265 * might be reused, and again be SwapCache, using the same swap as before.
266 */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268 pgoff_t index, swp_entry_t swap)
269 {
270 void *item;
271
272 rcu_read_lock();
273 item = radix_tree_lookup(&mapping->page_tree, index);
274 rcu_read_unlock();
275 return item == swp_to_radix_entry(swap);
276 }
277
278 /*
279 * Like add_to_page_cache_locked, but error if expected item has gone.
280 */
281 static int shmem_add_to_page_cache(struct page *page,
282 struct address_space *mapping,
283 pgoff_t index, gfp_t gfp, void *expected)
284 {
285 int error;
286
287 VM_BUG_ON_PAGE(!PageLocked(page), page);
288 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290 page_cache_get(page);
291 page->mapping = mapping;
292 page->index = index;
293
294 spin_lock_irq(&mapping->tree_lock);
295 if (!expected)
296 error = radix_tree_insert(&mapping->page_tree, index, page);
297 else
298 error = shmem_radix_tree_replace(mapping, index, expected,
299 page);
300 if (!error) {
301 mapping->nrpages++;
302 __inc_zone_page_state(page, NR_FILE_PAGES);
303 __inc_zone_page_state(page, NR_SHMEM);
304 spin_unlock_irq(&mapping->tree_lock);
305 } else {
306 page->mapping = NULL;
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
309 }
310 return error;
311 }
312
313 /*
314 * Like delete_from_page_cache, but substitutes swap for page.
315 */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318 struct address_space *mapping = page->mapping;
319 int error;
320
321 spin_lock_irq(&mapping->tree_lock);
322 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323 page->mapping = NULL;
324 mapping->nrpages--;
325 __dec_zone_page_state(page, NR_FILE_PAGES);
326 __dec_zone_page_state(page, NR_SHMEM);
327 spin_unlock_irq(&mapping->tree_lock);
328 page_cache_release(page);
329 BUG_ON(error);
330 }
331
332 /*
333 * Remove swap entry from radix tree, free the swap and its page cache.
334 */
335 static int shmem_free_swap(struct address_space *mapping,
336 pgoff_t index, void *radswap)
337 {
338 void *old;
339
340 spin_lock_irq(&mapping->tree_lock);
341 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
342 spin_unlock_irq(&mapping->tree_lock);
343 if (old != radswap)
344 return -ENOENT;
345 free_swap_and_cache(radix_to_swp_entry(radswap));
346 return 0;
347 }
348
349 /*
350 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
351 */
352 void shmem_unlock_mapping(struct address_space *mapping)
353 {
354 struct pagevec pvec;
355 pgoff_t indices[PAGEVEC_SIZE];
356 pgoff_t index = 0;
357
358 pagevec_init(&pvec, 0);
359 /*
360 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
361 */
362 while (!mapping_unevictable(mapping)) {
363 /*
364 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
365 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
366 */
367 pvec.nr = find_get_entries(mapping, index,
368 PAGEVEC_SIZE, pvec.pages, indices);
369 if (!pvec.nr)
370 break;
371 index = indices[pvec.nr - 1] + 1;
372 pagevec_remove_exceptionals(&pvec);
373 check_move_unevictable_pages(pvec.pages, pvec.nr);
374 pagevec_release(&pvec);
375 cond_resched();
376 }
377 }
378
379 /*
380 * Remove range of pages and swap entries from radix tree, and free them.
381 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
382 */
383 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
384 bool unfalloc)
385 {
386 struct address_space *mapping = inode->i_mapping;
387 struct shmem_inode_info *info = SHMEM_I(inode);
388 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
389 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
390 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
391 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
392 struct pagevec pvec;
393 pgoff_t indices[PAGEVEC_SIZE];
394 long nr_swaps_freed = 0;
395 pgoff_t index;
396 int i;
397
398 if (lend == -1)
399 end = -1; /* unsigned, so actually very big */
400
401 pagevec_init(&pvec, 0);
402 index = start;
403 while (index < end) {
404 pvec.nr = find_get_entries(mapping, index,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE),
406 pvec.pages, indices);
407 if (!pvec.nr)
408 break;
409 mem_cgroup_uncharge_start();
410 for (i = 0; i < pagevec_count(&pvec); i++) {
411 struct page *page = pvec.pages[i];
412
413 index = indices[i];
414 if (index >= end)
415 break;
416
417 if (radix_tree_exceptional_entry(page)) {
418 if (unfalloc)
419 continue;
420 nr_swaps_freed += !shmem_free_swap(mapping,
421 index, page);
422 continue;
423 }
424
425 if (!trylock_page(page))
426 continue;
427 if (!unfalloc || !PageUptodate(page)) {
428 if (page->mapping == mapping) {
429 VM_BUG_ON_PAGE(PageWriteback(page), page);
430 truncate_inode_page(mapping, page);
431 }
432 }
433 unlock_page(page);
434 }
435 pagevec_remove_exceptionals(&pvec);
436 pagevec_release(&pvec);
437 mem_cgroup_uncharge_end();
438 cond_resched();
439 index++;
440 }
441
442 if (partial_start) {
443 struct page *page = NULL;
444 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
445 if (page) {
446 unsigned int top = PAGE_CACHE_SIZE;
447 if (start > end) {
448 top = partial_end;
449 partial_end = 0;
450 }
451 zero_user_segment(page, partial_start, top);
452 set_page_dirty(page);
453 unlock_page(page);
454 page_cache_release(page);
455 }
456 }
457 if (partial_end) {
458 struct page *page = NULL;
459 shmem_getpage(inode, end, &page, SGP_READ, NULL);
460 if (page) {
461 zero_user_segment(page, 0, partial_end);
462 set_page_dirty(page);
463 unlock_page(page);
464 page_cache_release(page);
465 }
466 }
467 if (start >= end)
468 return;
469
470 index = start;
471 while (index < end) {
472 cond_resched();
473
474 pvec.nr = find_get_entries(mapping, index,
475 min(end - index, (pgoff_t)PAGEVEC_SIZE),
476 pvec.pages, indices);
477 if (!pvec.nr) {
478 /* If all gone or hole-punch or unfalloc, we're done */
479 if (index == start || end != -1)
480 break;
481 /* But if truncating, restart to make sure all gone */
482 index = start;
483 continue;
484 }
485 mem_cgroup_uncharge_start();
486 for (i = 0; i < pagevec_count(&pvec); i++) {
487 struct page *page = pvec.pages[i];
488
489 index = indices[i];
490 if (index >= end)
491 break;
492
493 if (radix_tree_exceptional_entry(page)) {
494 if (unfalloc)
495 continue;
496 if (shmem_free_swap(mapping, index, page)) {
497 /* Swap was replaced by page: retry */
498 index--;
499 break;
500 }
501 nr_swaps_freed++;
502 continue;
503 }
504
505 lock_page(page);
506 if (!unfalloc || !PageUptodate(page)) {
507 if (page->mapping == mapping) {
508 VM_BUG_ON_PAGE(PageWriteback(page), page);
509 truncate_inode_page(mapping, page);
510 } else {
511 /* Page was replaced by swap: retry */
512 unlock_page(page);
513 index--;
514 break;
515 }
516 }
517 unlock_page(page);
518 }
519 pagevec_remove_exceptionals(&pvec);
520 pagevec_release(&pvec);
521 mem_cgroup_uncharge_end();
522 index++;
523 }
524
525 spin_lock(&info->lock);
526 info->swapped -= nr_swaps_freed;
527 shmem_recalc_inode(inode);
528 spin_unlock(&info->lock);
529 }
530
531 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
532 {
533 shmem_undo_range(inode, lstart, lend, false);
534 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
535 }
536 EXPORT_SYMBOL_GPL(shmem_truncate_range);
537
538 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
539 {
540 struct inode *inode = dentry->d_inode;
541 int error;
542
543 error = inode_change_ok(inode, attr);
544 if (error)
545 return error;
546
547 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
548 loff_t oldsize = inode->i_size;
549 loff_t newsize = attr->ia_size;
550
551 if (newsize != oldsize) {
552 i_size_write(inode, newsize);
553 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
554 }
555 if (newsize < oldsize) {
556 loff_t holebegin = round_up(newsize, PAGE_SIZE);
557 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
558 shmem_truncate_range(inode, newsize, (loff_t)-1);
559 /* unmap again to remove racily COWed private pages */
560 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
561 }
562 }
563
564 setattr_copy(inode, attr);
565 if (attr->ia_valid & ATTR_MODE)
566 error = posix_acl_chmod(inode, inode->i_mode);
567 return error;
568 }
569
570 static void shmem_evict_inode(struct inode *inode)
571 {
572 struct shmem_inode_info *info = SHMEM_I(inode);
573
574 if (inode->i_mapping->a_ops == &shmem_aops) {
575 shmem_unacct_size(info->flags, inode->i_size);
576 inode->i_size = 0;
577 shmem_truncate_range(inode, 0, (loff_t)-1);
578 if (!list_empty(&info->swaplist)) {
579 mutex_lock(&shmem_swaplist_mutex);
580 list_del_init(&info->swaplist);
581 mutex_unlock(&shmem_swaplist_mutex);
582 }
583 } else
584 kfree(info->symlink);
585
586 simple_xattrs_free(&info->xattrs);
587 WARN_ON(inode->i_blocks);
588 shmem_free_inode(inode->i_sb);
589 clear_inode(inode);
590 }
591
592 /*
593 * If swap found in inode, free it and move page from swapcache to filecache.
594 */
595 static int shmem_unuse_inode(struct shmem_inode_info *info,
596 swp_entry_t swap, struct page **pagep)
597 {
598 struct address_space *mapping = info->vfs_inode.i_mapping;
599 void *radswap;
600 pgoff_t index;
601 gfp_t gfp;
602 int error = 0;
603
604 radswap = swp_to_radix_entry(swap);
605 index = radix_tree_locate_item(&mapping->page_tree, radswap);
606 if (index == -1)
607 return 0;
608
609 /*
610 * Move _head_ to start search for next from here.
611 * But be careful: shmem_evict_inode checks list_empty without taking
612 * mutex, and there's an instant in list_move_tail when info->swaplist
613 * would appear empty, if it were the only one on shmem_swaplist.
614 */
615 if (shmem_swaplist.next != &info->swaplist)
616 list_move_tail(&shmem_swaplist, &info->swaplist);
617
618 gfp = mapping_gfp_mask(mapping);
619 if (shmem_should_replace_page(*pagep, gfp)) {
620 mutex_unlock(&shmem_swaplist_mutex);
621 error = shmem_replace_page(pagep, gfp, info, index);
622 mutex_lock(&shmem_swaplist_mutex);
623 /*
624 * We needed to drop mutex to make that restrictive page
625 * allocation, but the inode might have been freed while we
626 * dropped it: although a racing shmem_evict_inode() cannot
627 * complete without emptying the radix_tree, our page lock
628 * on this swapcache page is not enough to prevent that -
629 * free_swap_and_cache() of our swap entry will only
630 * trylock_page(), removing swap from radix_tree whatever.
631 *
632 * We must not proceed to shmem_add_to_page_cache() if the
633 * inode has been freed, but of course we cannot rely on
634 * inode or mapping or info to check that. However, we can
635 * safely check if our swap entry is still in use (and here
636 * it can't have got reused for another page): if it's still
637 * in use, then the inode cannot have been freed yet, and we
638 * can safely proceed (if it's no longer in use, that tells
639 * nothing about the inode, but we don't need to unuse swap).
640 */
641 if (!page_swapcount(*pagep))
642 error = -ENOENT;
643 }
644
645 /*
646 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
647 * but also to hold up shmem_evict_inode(): so inode cannot be freed
648 * beneath us (pagelock doesn't help until the page is in pagecache).
649 */
650 if (!error)
651 error = shmem_add_to_page_cache(*pagep, mapping, index,
652 GFP_NOWAIT, radswap);
653 if (error != -ENOMEM) {
654 /*
655 * Truncation and eviction use free_swap_and_cache(), which
656 * only does trylock page: if we raced, best clean up here.
657 */
658 delete_from_swap_cache(*pagep);
659 set_page_dirty(*pagep);
660 if (!error) {
661 spin_lock(&info->lock);
662 info->swapped--;
663 spin_unlock(&info->lock);
664 swap_free(swap);
665 }
666 error = 1; /* not an error, but entry was found */
667 }
668 return error;
669 }
670
671 /*
672 * Search through swapped inodes to find and replace swap by page.
673 */
674 int shmem_unuse(swp_entry_t swap, struct page *page)
675 {
676 struct list_head *this, *next;
677 struct shmem_inode_info *info;
678 int found = 0;
679 int error = 0;
680
681 /*
682 * There's a faint possibility that swap page was replaced before
683 * caller locked it: caller will come back later with the right page.
684 */
685 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
686 goto out;
687
688 /*
689 * Charge page using GFP_KERNEL while we can wait, before taking
690 * the shmem_swaplist_mutex which might hold up shmem_writepage().
691 * Charged back to the user (not to caller) when swap account is used.
692 */
693 error = mem_cgroup_charge_file(page, current->mm, GFP_KERNEL);
694 if (error)
695 goto out;
696 /* No radix_tree_preload: swap entry keeps a place for page in tree */
697
698 mutex_lock(&shmem_swaplist_mutex);
699 list_for_each_safe(this, next, &shmem_swaplist) {
700 info = list_entry(this, struct shmem_inode_info, swaplist);
701 if (info->swapped)
702 found = shmem_unuse_inode(info, swap, &page);
703 else
704 list_del_init(&info->swaplist);
705 cond_resched();
706 if (found)
707 break;
708 }
709 mutex_unlock(&shmem_swaplist_mutex);
710
711 if (found < 0)
712 error = found;
713 out:
714 unlock_page(page);
715 page_cache_release(page);
716 return error;
717 }
718
719 /*
720 * Move the page from the page cache to the swap cache.
721 */
722 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
723 {
724 struct shmem_inode_info *info;
725 struct address_space *mapping;
726 struct inode *inode;
727 swp_entry_t swap;
728 pgoff_t index;
729
730 BUG_ON(!PageLocked(page));
731 mapping = page->mapping;
732 index = page->index;
733 inode = mapping->host;
734 info = SHMEM_I(inode);
735 if (info->flags & VM_LOCKED)
736 goto redirty;
737 if (!total_swap_pages)
738 goto redirty;
739
740 /*
741 * shmem_backing_dev_info's capabilities prevent regular writeback or
742 * sync from ever calling shmem_writepage; but a stacking filesystem
743 * might use ->writepage of its underlying filesystem, in which case
744 * tmpfs should write out to swap only in response to memory pressure,
745 * and not for the writeback threads or sync.
746 */
747 if (!wbc->for_reclaim) {
748 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
749 goto redirty;
750 }
751
752 /*
753 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
754 * value into swapfile.c, the only way we can correctly account for a
755 * fallocated page arriving here is now to initialize it and write it.
756 *
757 * That's okay for a page already fallocated earlier, but if we have
758 * not yet completed the fallocation, then (a) we want to keep track
759 * of this page in case we have to undo it, and (b) it may not be a
760 * good idea to continue anyway, once we're pushing into swap. So
761 * reactivate the page, and let shmem_fallocate() quit when too many.
762 */
763 if (!PageUptodate(page)) {
764 if (inode->i_private) {
765 struct shmem_falloc *shmem_falloc;
766 spin_lock(&inode->i_lock);
767 shmem_falloc = inode->i_private;
768 if (shmem_falloc &&
769 !shmem_falloc->waitq &&
770 index >= shmem_falloc->start &&
771 index < shmem_falloc->next)
772 shmem_falloc->nr_unswapped++;
773 else
774 shmem_falloc = NULL;
775 spin_unlock(&inode->i_lock);
776 if (shmem_falloc)
777 goto redirty;
778 }
779 clear_highpage(page);
780 flush_dcache_page(page);
781 SetPageUptodate(page);
782 }
783
784 swap = get_swap_page();
785 if (!swap.val)
786 goto redirty;
787
788 /*
789 * Add inode to shmem_unuse()'s list of swapped-out inodes,
790 * if it's not already there. Do it now before the page is
791 * moved to swap cache, when its pagelock no longer protects
792 * the inode from eviction. But don't unlock the mutex until
793 * we've incremented swapped, because shmem_unuse_inode() will
794 * prune a !swapped inode from the swaplist under this mutex.
795 */
796 mutex_lock(&shmem_swaplist_mutex);
797 if (list_empty(&info->swaplist))
798 list_add_tail(&info->swaplist, &shmem_swaplist);
799
800 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
801 swap_shmem_alloc(swap);
802 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
803
804 spin_lock(&info->lock);
805 info->swapped++;
806 shmem_recalc_inode(inode);
807 spin_unlock(&info->lock);
808
809 mutex_unlock(&shmem_swaplist_mutex);
810 BUG_ON(page_mapped(page));
811 swap_writepage(page, wbc);
812 return 0;
813 }
814
815 mutex_unlock(&shmem_swaplist_mutex);
816 swapcache_free(swap, NULL);
817 redirty:
818 set_page_dirty(page);
819 if (wbc->for_reclaim)
820 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
821 unlock_page(page);
822 return 0;
823 }
824
825 #ifdef CONFIG_NUMA
826 #ifdef CONFIG_TMPFS
827 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
828 {
829 char buffer[64];
830
831 if (!mpol || mpol->mode == MPOL_DEFAULT)
832 return; /* show nothing */
833
834 mpol_to_str(buffer, sizeof(buffer), mpol);
835
836 seq_printf(seq, ",mpol=%s", buffer);
837 }
838
839 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
840 {
841 struct mempolicy *mpol = NULL;
842 if (sbinfo->mpol) {
843 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
844 mpol = sbinfo->mpol;
845 mpol_get(mpol);
846 spin_unlock(&sbinfo->stat_lock);
847 }
848 return mpol;
849 }
850 #endif /* CONFIG_TMPFS */
851
852 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
853 struct shmem_inode_info *info, pgoff_t index)
854 {
855 struct vm_area_struct pvma;
856 struct page *page;
857
858 /* Create a pseudo vma that just contains the policy */
859 pvma.vm_start = 0;
860 /* Bias interleave by inode number to distribute better across nodes */
861 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
862 pvma.vm_ops = NULL;
863 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
864
865 page = swapin_readahead(swap, gfp, &pvma, 0);
866
867 /* Drop reference taken by mpol_shared_policy_lookup() */
868 mpol_cond_put(pvma.vm_policy);
869
870 return page;
871 }
872
873 static struct page *shmem_alloc_page(gfp_t gfp,
874 struct shmem_inode_info *info, pgoff_t index)
875 {
876 struct vm_area_struct pvma;
877 struct page *page;
878
879 /* Create a pseudo vma that just contains the policy */
880 pvma.vm_start = 0;
881 /* Bias interleave by inode number to distribute better across nodes */
882 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
883 pvma.vm_ops = NULL;
884 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
885
886 page = alloc_page_vma(gfp, &pvma, 0);
887
888 /* Drop reference taken by mpol_shared_policy_lookup() */
889 mpol_cond_put(pvma.vm_policy);
890
891 return page;
892 }
893 #else /* !CONFIG_NUMA */
894 #ifdef CONFIG_TMPFS
895 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
896 {
897 }
898 #endif /* CONFIG_TMPFS */
899
900 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
901 struct shmem_inode_info *info, pgoff_t index)
902 {
903 return swapin_readahead(swap, gfp, NULL, 0);
904 }
905
906 static inline struct page *shmem_alloc_page(gfp_t gfp,
907 struct shmem_inode_info *info, pgoff_t index)
908 {
909 return alloc_page(gfp);
910 }
911 #endif /* CONFIG_NUMA */
912
913 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
914 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
915 {
916 return NULL;
917 }
918 #endif
919
920 /*
921 * When a page is moved from swapcache to shmem filecache (either by the
922 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
923 * shmem_unuse_inode()), it may have been read in earlier from swap, in
924 * ignorance of the mapping it belongs to. If that mapping has special
925 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
926 * we may need to copy to a suitable page before moving to filecache.
927 *
928 * In a future release, this may well be extended to respect cpuset and
929 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
930 * but for now it is a simple matter of zone.
931 */
932 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
933 {
934 return page_zonenum(page) > gfp_zone(gfp);
935 }
936
937 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
938 struct shmem_inode_info *info, pgoff_t index)
939 {
940 struct page *oldpage, *newpage;
941 struct address_space *swap_mapping;
942 pgoff_t swap_index;
943 int error;
944
945 oldpage = *pagep;
946 swap_index = page_private(oldpage);
947 swap_mapping = page_mapping(oldpage);
948
949 /*
950 * We have arrived here because our zones are constrained, so don't
951 * limit chance of success by further cpuset and node constraints.
952 */
953 gfp &= ~GFP_CONSTRAINT_MASK;
954 newpage = shmem_alloc_page(gfp, info, index);
955 if (!newpage)
956 return -ENOMEM;
957
958 page_cache_get(newpage);
959 copy_highpage(newpage, oldpage);
960 flush_dcache_page(newpage);
961
962 __set_page_locked(newpage);
963 SetPageUptodate(newpage);
964 SetPageSwapBacked(newpage);
965 set_page_private(newpage, swap_index);
966 SetPageSwapCache(newpage);
967
968 /*
969 * Our caller will very soon move newpage out of swapcache, but it's
970 * a nice clean interface for us to replace oldpage by newpage there.
971 */
972 spin_lock_irq(&swap_mapping->tree_lock);
973 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
974 newpage);
975 if (!error) {
976 __inc_zone_page_state(newpage, NR_FILE_PAGES);
977 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
978 }
979 spin_unlock_irq(&swap_mapping->tree_lock);
980
981 if (unlikely(error)) {
982 /*
983 * Is this possible? I think not, now that our callers check
984 * both PageSwapCache and page_private after getting page lock;
985 * but be defensive. Reverse old to newpage for clear and free.
986 */
987 oldpage = newpage;
988 } else {
989 mem_cgroup_replace_page_cache(oldpage, newpage);
990 lru_cache_add_anon(newpage);
991 *pagep = newpage;
992 }
993
994 ClearPageSwapCache(oldpage);
995 set_page_private(oldpage, 0);
996
997 unlock_page(oldpage);
998 page_cache_release(oldpage);
999 page_cache_release(oldpage);
1000 return error;
1001 }
1002
1003 /*
1004 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1005 *
1006 * If we allocate a new one we do not mark it dirty. That's up to the
1007 * vm. If we swap it in we mark it dirty since we also free the swap
1008 * entry since a page cannot live in both the swap and page cache
1009 */
1010 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1011 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1012 {
1013 struct address_space *mapping = inode->i_mapping;
1014 struct shmem_inode_info *info;
1015 struct shmem_sb_info *sbinfo;
1016 struct page *page;
1017 swp_entry_t swap;
1018 int error;
1019 int once = 0;
1020 int alloced = 0;
1021
1022 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1023 return -EFBIG;
1024 repeat:
1025 swap.val = 0;
1026 page = find_lock_entry(mapping, index);
1027 if (radix_tree_exceptional_entry(page)) {
1028 swap = radix_to_swp_entry(page);
1029 page = NULL;
1030 }
1031
1032 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1033 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1034 error = -EINVAL;
1035 goto failed;
1036 }
1037
1038 if (page && sgp == SGP_WRITE)
1039 mark_page_accessed(page);
1040
1041 /* fallocated page? */
1042 if (page && !PageUptodate(page)) {
1043 if (sgp != SGP_READ)
1044 goto clear;
1045 unlock_page(page);
1046 page_cache_release(page);
1047 page = NULL;
1048 }
1049 if (page || (sgp == SGP_READ && !swap.val)) {
1050 *pagep = page;
1051 return 0;
1052 }
1053
1054 /*
1055 * Fast cache lookup did not find it:
1056 * bring it back from swap or allocate.
1057 */
1058 info = SHMEM_I(inode);
1059 sbinfo = SHMEM_SB(inode->i_sb);
1060
1061 if (swap.val) {
1062 /* Look it up and read it in.. */
1063 page = lookup_swap_cache(swap);
1064 if (!page) {
1065 /* here we actually do the io */
1066 if (fault_type)
1067 *fault_type |= VM_FAULT_MAJOR;
1068 page = shmem_swapin(swap, gfp, info, index);
1069 if (!page) {
1070 error = -ENOMEM;
1071 goto failed;
1072 }
1073 }
1074
1075 /* We have to do this with page locked to prevent races */
1076 lock_page(page);
1077 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1078 !shmem_confirm_swap(mapping, index, swap)) {
1079 error = -EEXIST; /* try again */
1080 goto unlock;
1081 }
1082 if (!PageUptodate(page)) {
1083 error = -EIO;
1084 goto failed;
1085 }
1086 wait_on_page_writeback(page);
1087
1088 if (shmem_should_replace_page(page, gfp)) {
1089 error = shmem_replace_page(&page, gfp, info, index);
1090 if (error)
1091 goto failed;
1092 }
1093
1094 error = mem_cgroup_charge_file(page, current->mm,
1095 gfp & GFP_RECLAIM_MASK);
1096 if (!error) {
1097 error = shmem_add_to_page_cache(page, mapping, index,
1098 gfp, swp_to_radix_entry(swap));
1099 /*
1100 * We already confirmed swap under page lock, and make
1101 * no memory allocation here, so usually no possibility
1102 * of error; but free_swap_and_cache() only trylocks a
1103 * page, so it is just possible that the entry has been
1104 * truncated or holepunched since swap was confirmed.
1105 * shmem_undo_range() will have done some of the
1106 * unaccounting, now delete_from_swap_cache() will do
1107 * the rest (including mem_cgroup_uncharge_swapcache).
1108 * Reset swap.val? No, leave it so "failed" goes back to
1109 * "repeat": reading a hole and writing should succeed.
1110 */
1111 if (error)
1112 delete_from_swap_cache(page);
1113 }
1114 if (error)
1115 goto failed;
1116
1117 spin_lock(&info->lock);
1118 info->swapped--;
1119 shmem_recalc_inode(inode);
1120 spin_unlock(&info->lock);
1121
1122 if (sgp == SGP_WRITE)
1123 mark_page_accessed(page);
1124
1125 delete_from_swap_cache(page);
1126 set_page_dirty(page);
1127 swap_free(swap);
1128
1129 } else {
1130 if (shmem_acct_block(info->flags)) {
1131 error = -ENOSPC;
1132 goto failed;
1133 }
1134 if (sbinfo->max_blocks) {
1135 if (percpu_counter_compare(&sbinfo->used_blocks,
1136 sbinfo->max_blocks) >= 0) {
1137 error = -ENOSPC;
1138 goto unacct;
1139 }
1140 percpu_counter_inc(&sbinfo->used_blocks);
1141 }
1142
1143 page = shmem_alloc_page(gfp, info, index);
1144 if (!page) {
1145 error = -ENOMEM;
1146 goto decused;
1147 }
1148
1149 __SetPageSwapBacked(page);
1150 __set_page_locked(page);
1151 if (sgp == SGP_WRITE)
1152 init_page_accessed(page);
1153
1154 error = mem_cgroup_charge_file(page, current->mm,
1155 gfp & GFP_RECLAIM_MASK);
1156 if (error)
1157 goto decused;
1158 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1159 if (!error) {
1160 error = shmem_add_to_page_cache(page, mapping, index,
1161 gfp, NULL);
1162 radix_tree_preload_end();
1163 }
1164 if (error) {
1165 mem_cgroup_uncharge_cache_page(page);
1166 goto decused;
1167 }
1168 lru_cache_add_anon(page);
1169
1170 spin_lock(&info->lock);
1171 info->alloced++;
1172 inode->i_blocks += BLOCKS_PER_PAGE;
1173 shmem_recalc_inode(inode);
1174 spin_unlock(&info->lock);
1175 alloced = true;
1176
1177 /*
1178 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1179 */
1180 if (sgp == SGP_FALLOC)
1181 sgp = SGP_WRITE;
1182 clear:
1183 /*
1184 * Let SGP_WRITE caller clear ends if write does not fill page;
1185 * but SGP_FALLOC on a page fallocated earlier must initialize
1186 * it now, lest undo on failure cancel our earlier guarantee.
1187 */
1188 if (sgp != SGP_WRITE) {
1189 clear_highpage(page);
1190 flush_dcache_page(page);
1191 SetPageUptodate(page);
1192 }
1193 if (sgp == SGP_DIRTY)
1194 set_page_dirty(page);
1195 }
1196
1197 /* Perhaps the file has been truncated since we checked */
1198 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1199 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1200 error = -EINVAL;
1201 if (alloced)
1202 goto trunc;
1203 else
1204 goto failed;
1205 }
1206 *pagep = page;
1207 return 0;
1208
1209 /*
1210 * Error recovery.
1211 */
1212 trunc:
1213 info = SHMEM_I(inode);
1214 ClearPageDirty(page);
1215 delete_from_page_cache(page);
1216 spin_lock(&info->lock);
1217 info->alloced--;
1218 inode->i_blocks -= BLOCKS_PER_PAGE;
1219 spin_unlock(&info->lock);
1220 decused:
1221 sbinfo = SHMEM_SB(inode->i_sb);
1222 if (sbinfo->max_blocks)
1223 percpu_counter_add(&sbinfo->used_blocks, -1);
1224 unacct:
1225 shmem_unacct_blocks(info->flags, 1);
1226 failed:
1227 if (swap.val && error != -EINVAL &&
1228 !shmem_confirm_swap(mapping, index, swap))
1229 error = -EEXIST;
1230 unlock:
1231 if (page) {
1232 unlock_page(page);
1233 page_cache_release(page);
1234 }
1235 if (error == -ENOSPC && !once++) {
1236 info = SHMEM_I(inode);
1237 spin_lock(&info->lock);
1238 shmem_recalc_inode(inode);
1239 spin_unlock(&info->lock);
1240 goto repeat;
1241 }
1242 if (error == -EEXIST) /* from above or from radix_tree_insert */
1243 goto repeat;
1244 return error;
1245 }
1246
1247 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1248 {
1249 struct inode *inode = file_inode(vma->vm_file);
1250 int error;
1251 int ret = VM_FAULT_LOCKED;
1252
1253 /*
1254 * Trinity finds that probing a hole which tmpfs is punching can
1255 * prevent the hole-punch from ever completing: which in turn
1256 * locks writers out with its hold on i_mutex. So refrain from
1257 * faulting pages into the hole while it's being punched. Although
1258 * shmem_undo_range() does remove the additions, it may be unable to
1259 * keep up, as each new page needs its own unmap_mapping_range() call,
1260 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1261 *
1262 * It does not matter if we sometimes reach this check just before the
1263 * hole-punch begins, so that one fault then races with the punch:
1264 * we just need to make racing faults a rare case.
1265 *
1266 * The implementation below would be much simpler if we just used a
1267 * standard mutex or completion: but we cannot take i_mutex in fault,
1268 * and bloating every shmem inode for this unlikely case would be sad.
1269 */
1270 if (unlikely(inode->i_private)) {
1271 struct shmem_falloc *shmem_falloc;
1272
1273 spin_lock(&inode->i_lock);
1274 shmem_falloc = inode->i_private;
1275 if (shmem_falloc &&
1276 shmem_falloc->waitq &&
1277 vmf->pgoff >= shmem_falloc->start &&
1278 vmf->pgoff < shmem_falloc->next) {
1279 wait_queue_head_t *shmem_falloc_waitq;
1280 DEFINE_WAIT(shmem_fault_wait);
1281
1282 ret = VM_FAULT_NOPAGE;
1283 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1284 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1285 /* It's polite to up mmap_sem if we can */
1286 up_read(&vma->vm_mm->mmap_sem);
1287 ret = VM_FAULT_RETRY;
1288 }
1289
1290 shmem_falloc_waitq = shmem_falloc->waitq;
1291 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1292 TASK_UNINTERRUPTIBLE);
1293 spin_unlock(&inode->i_lock);
1294 schedule();
1295
1296 /*
1297 * shmem_falloc_waitq points into the shmem_fallocate()
1298 * stack of the hole-punching task: shmem_falloc_waitq
1299 * is usually invalid by the time we reach here, but
1300 * finish_wait() does not dereference it in that case;
1301 * though i_lock needed lest racing with wake_up_all().
1302 */
1303 spin_lock(&inode->i_lock);
1304 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1305 spin_unlock(&inode->i_lock);
1306 return ret;
1307 }
1308 spin_unlock(&inode->i_lock);
1309 }
1310
1311 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1312 if (error)
1313 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1314
1315 if (ret & VM_FAULT_MAJOR) {
1316 count_vm_event(PGMAJFAULT);
1317 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1318 }
1319 return ret;
1320 }
1321
1322 #ifdef CONFIG_NUMA
1323 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1324 {
1325 struct inode *inode = file_inode(vma->vm_file);
1326 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1327 }
1328
1329 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1330 unsigned long addr)
1331 {
1332 struct inode *inode = file_inode(vma->vm_file);
1333 pgoff_t index;
1334
1335 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1336 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1337 }
1338 #endif
1339
1340 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1341 {
1342 struct inode *inode = file_inode(file);
1343 struct shmem_inode_info *info = SHMEM_I(inode);
1344 int retval = -ENOMEM;
1345
1346 spin_lock(&info->lock);
1347 if (lock && !(info->flags & VM_LOCKED)) {
1348 if (!user_shm_lock(inode->i_size, user))
1349 goto out_nomem;
1350 info->flags |= VM_LOCKED;
1351 mapping_set_unevictable(file->f_mapping);
1352 }
1353 if (!lock && (info->flags & VM_LOCKED) && user) {
1354 user_shm_unlock(inode->i_size, user);
1355 info->flags &= ~VM_LOCKED;
1356 mapping_clear_unevictable(file->f_mapping);
1357 }
1358 retval = 0;
1359
1360 out_nomem:
1361 spin_unlock(&info->lock);
1362 return retval;
1363 }
1364
1365 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1366 {
1367 file_accessed(file);
1368 vma->vm_ops = &shmem_vm_ops;
1369 return 0;
1370 }
1371
1372 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1373 umode_t mode, dev_t dev, unsigned long flags)
1374 {
1375 struct inode *inode;
1376 struct shmem_inode_info *info;
1377 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1378
1379 if (shmem_reserve_inode(sb))
1380 return NULL;
1381
1382 inode = new_inode(sb);
1383 if (inode) {
1384 inode->i_ino = get_next_ino();
1385 inode_init_owner(inode, dir, mode);
1386 inode->i_blocks = 0;
1387 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1388 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1389 inode->i_generation = get_seconds();
1390 info = SHMEM_I(inode);
1391 memset(info, 0, (char *)inode - (char *)info);
1392 spin_lock_init(&info->lock);
1393 info->flags = flags & VM_NORESERVE;
1394 INIT_LIST_HEAD(&info->swaplist);
1395 simple_xattrs_init(&info->xattrs);
1396 cache_no_acl(inode);
1397
1398 switch (mode & S_IFMT) {
1399 default:
1400 inode->i_op = &shmem_special_inode_operations;
1401 init_special_inode(inode, mode, dev);
1402 break;
1403 case S_IFREG:
1404 inode->i_mapping->a_ops = &shmem_aops;
1405 inode->i_op = &shmem_inode_operations;
1406 inode->i_fop = &shmem_file_operations;
1407 mpol_shared_policy_init(&info->policy,
1408 shmem_get_sbmpol(sbinfo));
1409 break;
1410 case S_IFDIR:
1411 inc_nlink(inode);
1412 /* Some things misbehave if size == 0 on a directory */
1413 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1414 inode->i_op = &shmem_dir_inode_operations;
1415 inode->i_fop = &simple_dir_operations;
1416 break;
1417 case S_IFLNK:
1418 /*
1419 * Must not load anything in the rbtree,
1420 * mpol_free_shared_policy will not be called.
1421 */
1422 mpol_shared_policy_init(&info->policy, NULL);
1423 break;
1424 }
1425 } else
1426 shmem_free_inode(sb);
1427 return inode;
1428 }
1429
1430 bool shmem_mapping(struct address_space *mapping)
1431 {
1432 return mapping->backing_dev_info == &shmem_backing_dev_info;
1433 }
1434
1435 #ifdef CONFIG_TMPFS
1436 static const struct inode_operations shmem_symlink_inode_operations;
1437 static const struct inode_operations shmem_short_symlink_operations;
1438
1439 #ifdef CONFIG_TMPFS_XATTR
1440 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1441 #else
1442 #define shmem_initxattrs NULL
1443 #endif
1444
1445 static int
1446 shmem_write_begin(struct file *file, struct address_space *mapping,
1447 loff_t pos, unsigned len, unsigned flags,
1448 struct page **pagep, void **fsdata)
1449 {
1450 struct inode *inode = mapping->host;
1451 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1452 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1453 }
1454
1455 static int
1456 shmem_write_end(struct file *file, struct address_space *mapping,
1457 loff_t pos, unsigned len, unsigned copied,
1458 struct page *page, void *fsdata)
1459 {
1460 struct inode *inode = mapping->host;
1461
1462 if (pos + copied > inode->i_size)
1463 i_size_write(inode, pos + copied);
1464
1465 if (!PageUptodate(page)) {
1466 if (copied < PAGE_CACHE_SIZE) {
1467 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1468 zero_user_segments(page, 0, from,
1469 from + copied, PAGE_CACHE_SIZE);
1470 }
1471 SetPageUptodate(page);
1472 }
1473 set_page_dirty(page);
1474 unlock_page(page);
1475 page_cache_release(page);
1476
1477 return copied;
1478 }
1479
1480 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1481 {
1482 struct file *file = iocb->ki_filp;
1483 struct inode *inode = file_inode(file);
1484 struct address_space *mapping = inode->i_mapping;
1485 pgoff_t index;
1486 unsigned long offset;
1487 enum sgp_type sgp = SGP_READ;
1488 int error = 0;
1489 ssize_t retval = 0;
1490 loff_t *ppos = &iocb->ki_pos;
1491
1492 /*
1493 * Might this read be for a stacking filesystem? Then when reading
1494 * holes of a sparse file, we actually need to allocate those pages,
1495 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1496 */
1497 if (segment_eq(get_fs(), KERNEL_DS))
1498 sgp = SGP_DIRTY;
1499
1500 index = *ppos >> PAGE_CACHE_SHIFT;
1501 offset = *ppos & ~PAGE_CACHE_MASK;
1502
1503 for (;;) {
1504 struct page *page = NULL;
1505 pgoff_t end_index;
1506 unsigned long nr, ret;
1507 loff_t i_size = i_size_read(inode);
1508
1509 end_index = i_size >> PAGE_CACHE_SHIFT;
1510 if (index > end_index)
1511 break;
1512 if (index == end_index) {
1513 nr = i_size & ~PAGE_CACHE_MASK;
1514 if (nr <= offset)
1515 break;
1516 }
1517
1518 error = shmem_getpage(inode, index, &page, sgp, NULL);
1519 if (error) {
1520 if (error == -EINVAL)
1521 error = 0;
1522 break;
1523 }
1524 if (page)
1525 unlock_page(page);
1526
1527 /*
1528 * We must evaluate after, since reads (unlike writes)
1529 * are called without i_mutex protection against truncate
1530 */
1531 nr = PAGE_CACHE_SIZE;
1532 i_size = i_size_read(inode);
1533 end_index = i_size >> PAGE_CACHE_SHIFT;
1534 if (index == end_index) {
1535 nr = i_size & ~PAGE_CACHE_MASK;
1536 if (nr <= offset) {
1537 if (page)
1538 page_cache_release(page);
1539 break;
1540 }
1541 }
1542 nr -= offset;
1543
1544 if (page) {
1545 /*
1546 * If users can be writing to this page using arbitrary
1547 * virtual addresses, take care about potential aliasing
1548 * before reading the page on the kernel side.
1549 */
1550 if (mapping_writably_mapped(mapping))
1551 flush_dcache_page(page);
1552 /*
1553 * Mark the page accessed if we read the beginning.
1554 */
1555 if (!offset)
1556 mark_page_accessed(page);
1557 } else {
1558 page = ZERO_PAGE(0);
1559 page_cache_get(page);
1560 }
1561
1562 /*
1563 * Ok, we have the page, and it's up-to-date, so
1564 * now we can copy it to user space...
1565 */
1566 ret = copy_page_to_iter(page, offset, nr, to);
1567 retval += ret;
1568 offset += ret;
1569 index += offset >> PAGE_CACHE_SHIFT;
1570 offset &= ~PAGE_CACHE_MASK;
1571
1572 page_cache_release(page);
1573 if (!iov_iter_count(to))
1574 break;
1575 if (ret < nr) {
1576 error = -EFAULT;
1577 break;
1578 }
1579 cond_resched();
1580 }
1581
1582 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1583 file_accessed(file);
1584 return retval ? retval : error;
1585 }
1586
1587 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1588 struct pipe_inode_info *pipe, size_t len,
1589 unsigned int flags)
1590 {
1591 struct address_space *mapping = in->f_mapping;
1592 struct inode *inode = mapping->host;
1593 unsigned int loff, nr_pages, req_pages;
1594 struct page *pages[PIPE_DEF_BUFFERS];
1595 struct partial_page partial[PIPE_DEF_BUFFERS];
1596 struct page *page;
1597 pgoff_t index, end_index;
1598 loff_t isize, left;
1599 int error, page_nr;
1600 struct splice_pipe_desc spd = {
1601 .pages = pages,
1602 .partial = partial,
1603 .nr_pages_max = PIPE_DEF_BUFFERS,
1604 .flags = flags,
1605 .ops = &page_cache_pipe_buf_ops,
1606 .spd_release = spd_release_page,
1607 };
1608
1609 isize = i_size_read(inode);
1610 if (unlikely(*ppos >= isize))
1611 return 0;
1612
1613 left = isize - *ppos;
1614 if (unlikely(left < len))
1615 len = left;
1616
1617 if (splice_grow_spd(pipe, &spd))
1618 return -ENOMEM;
1619
1620 index = *ppos >> PAGE_CACHE_SHIFT;
1621 loff = *ppos & ~PAGE_CACHE_MASK;
1622 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1623 nr_pages = min(req_pages, spd.nr_pages_max);
1624
1625 spd.nr_pages = find_get_pages_contig(mapping, index,
1626 nr_pages, spd.pages);
1627 index += spd.nr_pages;
1628 error = 0;
1629
1630 while (spd.nr_pages < nr_pages) {
1631 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1632 if (error)
1633 break;
1634 unlock_page(page);
1635 spd.pages[spd.nr_pages++] = page;
1636 index++;
1637 }
1638
1639 index = *ppos >> PAGE_CACHE_SHIFT;
1640 nr_pages = spd.nr_pages;
1641 spd.nr_pages = 0;
1642
1643 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1644 unsigned int this_len;
1645
1646 if (!len)
1647 break;
1648
1649 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1650 page = spd.pages[page_nr];
1651
1652 if (!PageUptodate(page) || page->mapping != mapping) {
1653 error = shmem_getpage(inode, index, &page,
1654 SGP_CACHE, NULL);
1655 if (error)
1656 break;
1657 unlock_page(page);
1658 page_cache_release(spd.pages[page_nr]);
1659 spd.pages[page_nr] = page;
1660 }
1661
1662 isize = i_size_read(inode);
1663 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1664 if (unlikely(!isize || index > end_index))
1665 break;
1666
1667 if (end_index == index) {
1668 unsigned int plen;
1669
1670 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1671 if (plen <= loff)
1672 break;
1673
1674 this_len = min(this_len, plen - loff);
1675 len = this_len;
1676 }
1677
1678 spd.partial[page_nr].offset = loff;
1679 spd.partial[page_nr].len = this_len;
1680 len -= this_len;
1681 loff = 0;
1682 spd.nr_pages++;
1683 index++;
1684 }
1685
1686 while (page_nr < nr_pages)
1687 page_cache_release(spd.pages[page_nr++]);
1688
1689 if (spd.nr_pages)
1690 error = splice_to_pipe(pipe, &spd);
1691
1692 splice_shrink_spd(&spd);
1693
1694 if (error > 0) {
1695 *ppos += error;
1696 file_accessed(in);
1697 }
1698 return error;
1699 }
1700
1701 /*
1702 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1703 */
1704 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1705 pgoff_t index, pgoff_t end, int whence)
1706 {
1707 struct page *page;
1708 struct pagevec pvec;
1709 pgoff_t indices[PAGEVEC_SIZE];
1710 bool done = false;
1711 int i;
1712
1713 pagevec_init(&pvec, 0);
1714 pvec.nr = 1; /* start small: we may be there already */
1715 while (!done) {
1716 pvec.nr = find_get_entries(mapping, index,
1717 pvec.nr, pvec.pages, indices);
1718 if (!pvec.nr) {
1719 if (whence == SEEK_DATA)
1720 index = end;
1721 break;
1722 }
1723 for (i = 0; i < pvec.nr; i++, index++) {
1724 if (index < indices[i]) {
1725 if (whence == SEEK_HOLE) {
1726 done = true;
1727 break;
1728 }
1729 index = indices[i];
1730 }
1731 page = pvec.pages[i];
1732 if (page && !radix_tree_exceptional_entry(page)) {
1733 if (!PageUptodate(page))
1734 page = NULL;
1735 }
1736 if (index >= end ||
1737 (page && whence == SEEK_DATA) ||
1738 (!page && whence == SEEK_HOLE)) {
1739 done = true;
1740 break;
1741 }
1742 }
1743 pagevec_remove_exceptionals(&pvec);
1744 pagevec_release(&pvec);
1745 pvec.nr = PAGEVEC_SIZE;
1746 cond_resched();
1747 }
1748 return index;
1749 }
1750
1751 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1752 {
1753 struct address_space *mapping = file->f_mapping;
1754 struct inode *inode = mapping->host;
1755 pgoff_t start, end;
1756 loff_t new_offset;
1757
1758 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1759 return generic_file_llseek_size(file, offset, whence,
1760 MAX_LFS_FILESIZE, i_size_read(inode));
1761 mutex_lock(&inode->i_mutex);
1762 /* We're holding i_mutex so we can access i_size directly */
1763
1764 if (offset < 0)
1765 offset = -EINVAL;
1766 else if (offset >= inode->i_size)
1767 offset = -ENXIO;
1768 else {
1769 start = offset >> PAGE_CACHE_SHIFT;
1770 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1771 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1772 new_offset <<= PAGE_CACHE_SHIFT;
1773 if (new_offset > offset) {
1774 if (new_offset < inode->i_size)
1775 offset = new_offset;
1776 else if (whence == SEEK_DATA)
1777 offset = -ENXIO;
1778 else
1779 offset = inode->i_size;
1780 }
1781 }
1782
1783 if (offset >= 0)
1784 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1785 mutex_unlock(&inode->i_mutex);
1786 return offset;
1787 }
1788
1789 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1790 loff_t len)
1791 {
1792 struct inode *inode = file_inode(file);
1793 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1794 struct shmem_falloc shmem_falloc;
1795 pgoff_t start, index, end;
1796 int error;
1797
1798 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1799 return -EOPNOTSUPP;
1800
1801 mutex_lock(&inode->i_mutex);
1802
1803 if (mode & FALLOC_FL_PUNCH_HOLE) {
1804 struct address_space *mapping = file->f_mapping;
1805 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1806 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1807 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1808
1809 shmem_falloc.waitq = &shmem_falloc_waitq;
1810 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1811 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1812 spin_lock(&inode->i_lock);
1813 inode->i_private = &shmem_falloc;
1814 spin_unlock(&inode->i_lock);
1815
1816 if ((u64)unmap_end > (u64)unmap_start)
1817 unmap_mapping_range(mapping, unmap_start,
1818 1 + unmap_end - unmap_start, 0);
1819 shmem_truncate_range(inode, offset, offset + len - 1);
1820 /* No need to unmap again: hole-punching leaves COWed pages */
1821
1822 spin_lock(&inode->i_lock);
1823 inode->i_private = NULL;
1824 wake_up_all(&shmem_falloc_waitq);
1825 spin_unlock(&inode->i_lock);
1826 error = 0;
1827 goto out;
1828 }
1829
1830 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1831 error = inode_newsize_ok(inode, offset + len);
1832 if (error)
1833 goto out;
1834
1835 start = offset >> PAGE_CACHE_SHIFT;
1836 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1837 /* Try to avoid a swapstorm if len is impossible to satisfy */
1838 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1839 error = -ENOSPC;
1840 goto out;
1841 }
1842
1843 shmem_falloc.waitq = NULL;
1844 shmem_falloc.start = start;
1845 shmem_falloc.next = start;
1846 shmem_falloc.nr_falloced = 0;
1847 shmem_falloc.nr_unswapped = 0;
1848 spin_lock(&inode->i_lock);
1849 inode->i_private = &shmem_falloc;
1850 spin_unlock(&inode->i_lock);
1851
1852 for (index = start; index < end; index++) {
1853 struct page *page;
1854
1855 /*
1856 * Good, the fallocate(2) manpage permits EINTR: we may have
1857 * been interrupted because we are using up too much memory.
1858 */
1859 if (signal_pending(current))
1860 error = -EINTR;
1861 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1862 error = -ENOMEM;
1863 else
1864 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1865 NULL);
1866 if (error) {
1867 /* Remove the !PageUptodate pages we added */
1868 shmem_undo_range(inode,
1869 (loff_t)start << PAGE_CACHE_SHIFT,
1870 (loff_t)index << PAGE_CACHE_SHIFT, true);
1871 goto undone;
1872 }
1873
1874 /*
1875 * Inform shmem_writepage() how far we have reached.
1876 * No need for lock or barrier: we have the page lock.
1877 */
1878 shmem_falloc.next++;
1879 if (!PageUptodate(page))
1880 shmem_falloc.nr_falloced++;
1881
1882 /*
1883 * If !PageUptodate, leave it that way so that freeable pages
1884 * can be recognized if we need to rollback on error later.
1885 * But set_page_dirty so that memory pressure will swap rather
1886 * than free the pages we are allocating (and SGP_CACHE pages
1887 * might still be clean: we now need to mark those dirty too).
1888 */
1889 set_page_dirty(page);
1890 unlock_page(page);
1891 page_cache_release(page);
1892 cond_resched();
1893 }
1894
1895 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1896 i_size_write(inode, offset + len);
1897 inode->i_ctime = CURRENT_TIME;
1898 undone:
1899 spin_lock(&inode->i_lock);
1900 inode->i_private = NULL;
1901 spin_unlock(&inode->i_lock);
1902 out:
1903 mutex_unlock(&inode->i_mutex);
1904 return error;
1905 }
1906
1907 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1908 {
1909 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1910
1911 buf->f_type = TMPFS_MAGIC;
1912 buf->f_bsize = PAGE_CACHE_SIZE;
1913 buf->f_namelen = NAME_MAX;
1914 if (sbinfo->max_blocks) {
1915 buf->f_blocks = sbinfo->max_blocks;
1916 buf->f_bavail =
1917 buf->f_bfree = sbinfo->max_blocks -
1918 percpu_counter_sum(&sbinfo->used_blocks);
1919 }
1920 if (sbinfo->max_inodes) {
1921 buf->f_files = sbinfo->max_inodes;
1922 buf->f_ffree = sbinfo->free_inodes;
1923 }
1924 /* else leave those fields 0 like simple_statfs */
1925 return 0;
1926 }
1927
1928 /*
1929 * File creation. Allocate an inode, and we're done..
1930 */
1931 static int
1932 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1933 {
1934 struct inode *inode;
1935 int error = -ENOSPC;
1936
1937 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1938 if (inode) {
1939 error = simple_acl_create(dir, inode);
1940 if (error)
1941 goto out_iput;
1942 error = security_inode_init_security(inode, dir,
1943 &dentry->d_name,
1944 shmem_initxattrs, NULL);
1945 if (error && error != -EOPNOTSUPP)
1946 goto out_iput;
1947
1948 error = 0;
1949 dir->i_size += BOGO_DIRENT_SIZE;
1950 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1951 d_instantiate(dentry, inode);
1952 dget(dentry); /* Extra count - pin the dentry in core */
1953 }
1954 return error;
1955 out_iput:
1956 iput(inode);
1957 return error;
1958 }
1959
1960 static int
1961 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1962 {
1963 struct inode *inode;
1964 int error = -ENOSPC;
1965
1966 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1967 if (inode) {
1968 error = security_inode_init_security(inode, dir,
1969 NULL,
1970 shmem_initxattrs, NULL);
1971 if (error && error != -EOPNOTSUPP)
1972 goto out_iput;
1973 error = simple_acl_create(dir, inode);
1974 if (error)
1975 goto out_iput;
1976 d_tmpfile(dentry, inode);
1977 }
1978 return error;
1979 out_iput:
1980 iput(inode);
1981 return error;
1982 }
1983
1984 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1985 {
1986 int error;
1987
1988 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1989 return error;
1990 inc_nlink(dir);
1991 return 0;
1992 }
1993
1994 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1995 bool excl)
1996 {
1997 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1998 }
1999
2000 /*
2001 * Link a file..
2002 */
2003 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2004 {
2005 struct inode *inode = old_dentry->d_inode;
2006 int ret;
2007
2008 /*
2009 * No ordinary (disk based) filesystem counts links as inodes;
2010 * but each new link needs a new dentry, pinning lowmem, and
2011 * tmpfs dentries cannot be pruned until they are unlinked.
2012 */
2013 ret = shmem_reserve_inode(inode->i_sb);
2014 if (ret)
2015 goto out;
2016
2017 dir->i_size += BOGO_DIRENT_SIZE;
2018 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2019 inc_nlink(inode);
2020 ihold(inode); /* New dentry reference */
2021 dget(dentry); /* Extra pinning count for the created dentry */
2022 d_instantiate(dentry, inode);
2023 out:
2024 return ret;
2025 }
2026
2027 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2028 {
2029 struct inode *inode = dentry->d_inode;
2030
2031 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2032 shmem_free_inode(inode->i_sb);
2033
2034 dir->i_size -= BOGO_DIRENT_SIZE;
2035 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2036 drop_nlink(inode);
2037 dput(dentry); /* Undo the count from "create" - this does all the work */
2038 return 0;
2039 }
2040
2041 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2042 {
2043 if (!simple_empty(dentry))
2044 return -ENOTEMPTY;
2045
2046 drop_nlink(dentry->d_inode);
2047 drop_nlink(dir);
2048 return shmem_unlink(dir, dentry);
2049 }
2050
2051 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2052 {
2053 bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2054 bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2055
2056 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2057 if (old_is_dir) {
2058 drop_nlink(old_dir);
2059 inc_nlink(new_dir);
2060 } else {
2061 drop_nlink(new_dir);
2062 inc_nlink(old_dir);
2063 }
2064 }
2065 old_dir->i_ctime = old_dir->i_mtime =
2066 new_dir->i_ctime = new_dir->i_mtime =
2067 old_dentry->d_inode->i_ctime =
2068 new_dentry->d_inode->i_ctime = CURRENT_TIME;
2069
2070 return 0;
2071 }
2072
2073 /*
2074 * The VFS layer already does all the dentry stuff for rename,
2075 * we just have to decrement the usage count for the target if
2076 * it exists so that the VFS layer correctly free's it when it
2077 * gets overwritten.
2078 */
2079 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2080 {
2081 struct inode *inode = old_dentry->d_inode;
2082 int they_are_dirs = S_ISDIR(inode->i_mode);
2083
2084 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
2085 return -EINVAL;
2086
2087 if (flags & RENAME_EXCHANGE)
2088 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2089
2090 if (!simple_empty(new_dentry))
2091 return -ENOTEMPTY;
2092
2093 if (new_dentry->d_inode) {
2094 (void) shmem_unlink(new_dir, new_dentry);
2095 if (they_are_dirs)
2096 drop_nlink(old_dir);
2097 } else if (they_are_dirs) {
2098 drop_nlink(old_dir);
2099 inc_nlink(new_dir);
2100 }
2101
2102 old_dir->i_size -= BOGO_DIRENT_SIZE;
2103 new_dir->i_size += BOGO_DIRENT_SIZE;
2104 old_dir->i_ctime = old_dir->i_mtime =
2105 new_dir->i_ctime = new_dir->i_mtime =
2106 inode->i_ctime = CURRENT_TIME;
2107 return 0;
2108 }
2109
2110 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2111 {
2112 int error;
2113 int len;
2114 struct inode *inode;
2115 struct page *page;
2116 char *kaddr;
2117 struct shmem_inode_info *info;
2118
2119 len = strlen(symname) + 1;
2120 if (len > PAGE_CACHE_SIZE)
2121 return -ENAMETOOLONG;
2122
2123 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2124 if (!inode)
2125 return -ENOSPC;
2126
2127 error = security_inode_init_security(inode, dir, &dentry->d_name,
2128 shmem_initxattrs, NULL);
2129 if (error) {
2130 if (error != -EOPNOTSUPP) {
2131 iput(inode);
2132 return error;
2133 }
2134 error = 0;
2135 }
2136
2137 info = SHMEM_I(inode);
2138 inode->i_size = len-1;
2139 if (len <= SHORT_SYMLINK_LEN) {
2140 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2141 if (!info->symlink) {
2142 iput(inode);
2143 return -ENOMEM;
2144 }
2145 inode->i_op = &shmem_short_symlink_operations;
2146 } else {
2147 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2148 if (error) {
2149 iput(inode);
2150 return error;
2151 }
2152 inode->i_mapping->a_ops = &shmem_aops;
2153 inode->i_op = &shmem_symlink_inode_operations;
2154 kaddr = kmap_atomic(page);
2155 memcpy(kaddr, symname, len);
2156 kunmap_atomic(kaddr);
2157 SetPageUptodate(page);
2158 set_page_dirty(page);
2159 unlock_page(page);
2160 page_cache_release(page);
2161 }
2162 dir->i_size += BOGO_DIRENT_SIZE;
2163 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2164 d_instantiate(dentry, inode);
2165 dget(dentry);
2166 return 0;
2167 }
2168
2169 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2170 {
2171 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2172 return NULL;
2173 }
2174
2175 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2176 {
2177 struct page *page = NULL;
2178 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2179 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2180 if (page)
2181 unlock_page(page);
2182 return page;
2183 }
2184
2185 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2186 {
2187 if (!IS_ERR(nd_get_link(nd))) {
2188 struct page *page = cookie;
2189 kunmap(page);
2190 mark_page_accessed(page);
2191 page_cache_release(page);
2192 }
2193 }
2194
2195 #ifdef CONFIG_TMPFS_XATTR
2196 /*
2197 * Superblocks without xattr inode operations may get some security.* xattr
2198 * support from the LSM "for free". As soon as we have any other xattrs
2199 * like ACLs, we also need to implement the security.* handlers at
2200 * filesystem level, though.
2201 */
2202
2203 /*
2204 * Callback for security_inode_init_security() for acquiring xattrs.
2205 */
2206 static int shmem_initxattrs(struct inode *inode,
2207 const struct xattr *xattr_array,
2208 void *fs_info)
2209 {
2210 struct shmem_inode_info *info = SHMEM_I(inode);
2211 const struct xattr *xattr;
2212 struct simple_xattr *new_xattr;
2213 size_t len;
2214
2215 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2216 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2217 if (!new_xattr)
2218 return -ENOMEM;
2219
2220 len = strlen(xattr->name) + 1;
2221 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2222 GFP_KERNEL);
2223 if (!new_xattr->name) {
2224 kfree(new_xattr);
2225 return -ENOMEM;
2226 }
2227
2228 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2229 XATTR_SECURITY_PREFIX_LEN);
2230 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2231 xattr->name, len);
2232
2233 simple_xattr_list_add(&info->xattrs, new_xattr);
2234 }
2235
2236 return 0;
2237 }
2238
2239 static const struct xattr_handler *shmem_xattr_handlers[] = {
2240 #ifdef CONFIG_TMPFS_POSIX_ACL
2241 &posix_acl_access_xattr_handler,
2242 &posix_acl_default_xattr_handler,
2243 #endif
2244 NULL
2245 };
2246
2247 static int shmem_xattr_validate(const char *name)
2248 {
2249 struct { const char *prefix; size_t len; } arr[] = {
2250 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2251 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2252 };
2253 int i;
2254
2255 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2256 size_t preflen = arr[i].len;
2257 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2258 if (!name[preflen])
2259 return -EINVAL;
2260 return 0;
2261 }
2262 }
2263 return -EOPNOTSUPP;
2264 }
2265
2266 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2267 void *buffer, size_t size)
2268 {
2269 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2270 int err;
2271
2272 /*
2273 * If this is a request for a synthetic attribute in the system.*
2274 * namespace use the generic infrastructure to resolve a handler
2275 * for it via sb->s_xattr.
2276 */
2277 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2278 return generic_getxattr(dentry, name, buffer, size);
2279
2280 err = shmem_xattr_validate(name);
2281 if (err)
2282 return err;
2283
2284 return simple_xattr_get(&info->xattrs, name, buffer, size);
2285 }
2286
2287 static int shmem_setxattr(struct dentry *dentry, const char *name,
2288 const void *value, size_t size, int flags)
2289 {
2290 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2291 int err;
2292
2293 /*
2294 * If this is a request for a synthetic attribute in the system.*
2295 * namespace use the generic infrastructure to resolve a handler
2296 * for it via sb->s_xattr.
2297 */
2298 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2299 return generic_setxattr(dentry, name, value, size, flags);
2300
2301 err = shmem_xattr_validate(name);
2302 if (err)
2303 return err;
2304
2305 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2306 }
2307
2308 static int shmem_removexattr(struct dentry *dentry, const char *name)
2309 {
2310 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2311 int err;
2312
2313 /*
2314 * If this is a request for a synthetic attribute in the system.*
2315 * namespace use the generic infrastructure to resolve a handler
2316 * for it via sb->s_xattr.
2317 */
2318 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2319 return generic_removexattr(dentry, name);
2320
2321 err = shmem_xattr_validate(name);
2322 if (err)
2323 return err;
2324
2325 return simple_xattr_remove(&info->xattrs, name);
2326 }
2327
2328 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2329 {
2330 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2331 return simple_xattr_list(&info->xattrs, buffer, size);
2332 }
2333 #endif /* CONFIG_TMPFS_XATTR */
2334
2335 static const struct inode_operations shmem_short_symlink_operations = {
2336 .readlink = generic_readlink,
2337 .follow_link = shmem_follow_short_symlink,
2338 #ifdef CONFIG_TMPFS_XATTR
2339 .setxattr = shmem_setxattr,
2340 .getxattr = shmem_getxattr,
2341 .listxattr = shmem_listxattr,
2342 .removexattr = shmem_removexattr,
2343 #endif
2344 };
2345
2346 static const struct inode_operations shmem_symlink_inode_operations = {
2347 .readlink = generic_readlink,
2348 .follow_link = shmem_follow_link,
2349 .put_link = shmem_put_link,
2350 #ifdef CONFIG_TMPFS_XATTR
2351 .setxattr = shmem_setxattr,
2352 .getxattr = shmem_getxattr,
2353 .listxattr = shmem_listxattr,
2354 .removexattr = shmem_removexattr,
2355 #endif
2356 };
2357
2358 static struct dentry *shmem_get_parent(struct dentry *child)
2359 {
2360 return ERR_PTR(-ESTALE);
2361 }
2362
2363 static int shmem_match(struct inode *ino, void *vfh)
2364 {
2365 __u32 *fh = vfh;
2366 __u64 inum = fh[2];
2367 inum = (inum << 32) | fh[1];
2368 return ino->i_ino == inum && fh[0] == ino->i_generation;
2369 }
2370
2371 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2372 struct fid *fid, int fh_len, int fh_type)
2373 {
2374 struct inode *inode;
2375 struct dentry *dentry = NULL;
2376 u64 inum;
2377
2378 if (fh_len < 3)
2379 return NULL;
2380
2381 inum = fid->raw[2];
2382 inum = (inum << 32) | fid->raw[1];
2383
2384 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2385 shmem_match, fid->raw);
2386 if (inode) {
2387 dentry = d_find_alias(inode);
2388 iput(inode);
2389 }
2390
2391 return dentry;
2392 }
2393
2394 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2395 struct inode *parent)
2396 {
2397 if (*len < 3) {
2398 *len = 3;
2399 return FILEID_INVALID;
2400 }
2401
2402 if (inode_unhashed(inode)) {
2403 /* Unfortunately insert_inode_hash is not idempotent,
2404 * so as we hash inodes here rather than at creation
2405 * time, we need a lock to ensure we only try
2406 * to do it once
2407 */
2408 static DEFINE_SPINLOCK(lock);
2409 spin_lock(&lock);
2410 if (inode_unhashed(inode))
2411 __insert_inode_hash(inode,
2412 inode->i_ino + inode->i_generation);
2413 spin_unlock(&lock);
2414 }
2415
2416 fh[0] = inode->i_generation;
2417 fh[1] = inode->i_ino;
2418 fh[2] = ((__u64)inode->i_ino) >> 32;
2419
2420 *len = 3;
2421 return 1;
2422 }
2423
2424 static const struct export_operations shmem_export_ops = {
2425 .get_parent = shmem_get_parent,
2426 .encode_fh = shmem_encode_fh,
2427 .fh_to_dentry = shmem_fh_to_dentry,
2428 };
2429
2430 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2431 bool remount)
2432 {
2433 char *this_char, *value, *rest;
2434 struct mempolicy *mpol = NULL;
2435 uid_t uid;
2436 gid_t gid;
2437
2438 while (options != NULL) {
2439 this_char = options;
2440 for (;;) {
2441 /*
2442 * NUL-terminate this option: unfortunately,
2443 * mount options form a comma-separated list,
2444 * but mpol's nodelist may also contain commas.
2445 */
2446 options = strchr(options, ',');
2447 if (options == NULL)
2448 break;
2449 options++;
2450 if (!isdigit(*options)) {
2451 options[-1] = '\0';
2452 break;
2453 }
2454 }
2455 if (!*this_char)
2456 continue;
2457 if ((value = strchr(this_char,'=')) != NULL) {
2458 *value++ = 0;
2459 } else {
2460 printk(KERN_ERR
2461 "tmpfs: No value for mount option '%s'\n",
2462 this_char);
2463 goto error;
2464 }
2465
2466 if (!strcmp(this_char,"size")) {
2467 unsigned long long size;
2468 size = memparse(value,&rest);
2469 if (*rest == '%') {
2470 size <<= PAGE_SHIFT;
2471 size *= totalram_pages;
2472 do_div(size, 100);
2473 rest++;
2474 }
2475 if (*rest)
2476 goto bad_val;
2477 sbinfo->max_blocks =
2478 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2479 } else if (!strcmp(this_char,"nr_blocks")) {
2480 sbinfo->max_blocks = memparse(value, &rest);
2481 if (*rest)
2482 goto bad_val;
2483 } else if (!strcmp(this_char,"nr_inodes")) {
2484 sbinfo->max_inodes = memparse(value, &rest);
2485 if (*rest)
2486 goto bad_val;
2487 } else if (!strcmp(this_char,"mode")) {
2488 if (remount)
2489 continue;
2490 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2491 if (*rest)
2492 goto bad_val;
2493 } else if (!strcmp(this_char,"uid")) {
2494 if (remount)
2495 continue;
2496 uid = simple_strtoul(value, &rest, 0);
2497 if (*rest)
2498 goto bad_val;
2499 sbinfo->uid = make_kuid(current_user_ns(), uid);
2500 if (!uid_valid(sbinfo->uid))
2501 goto bad_val;
2502 } else if (!strcmp(this_char,"gid")) {
2503 if (remount)
2504 continue;
2505 gid = simple_strtoul(value, &rest, 0);
2506 if (*rest)
2507 goto bad_val;
2508 sbinfo->gid = make_kgid(current_user_ns(), gid);
2509 if (!gid_valid(sbinfo->gid))
2510 goto bad_val;
2511 } else if (!strcmp(this_char,"mpol")) {
2512 mpol_put(mpol);
2513 mpol = NULL;
2514 if (mpol_parse_str(value, &mpol))
2515 goto bad_val;
2516 } else {
2517 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2518 this_char);
2519 goto error;
2520 }
2521 }
2522 sbinfo->mpol = mpol;
2523 return 0;
2524
2525 bad_val:
2526 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2527 value, this_char);
2528 error:
2529 mpol_put(mpol);
2530 return 1;
2531
2532 }
2533
2534 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2535 {
2536 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2537 struct shmem_sb_info config = *sbinfo;
2538 unsigned long inodes;
2539 int error = -EINVAL;
2540
2541 config.mpol = NULL;
2542 if (shmem_parse_options(data, &config, true))
2543 return error;
2544
2545 spin_lock(&sbinfo->stat_lock);
2546 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2547 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2548 goto out;
2549 if (config.max_inodes < inodes)
2550 goto out;
2551 /*
2552 * Those tests disallow limited->unlimited while any are in use;
2553 * but we must separately disallow unlimited->limited, because
2554 * in that case we have no record of how much is already in use.
2555 */
2556 if (config.max_blocks && !sbinfo->max_blocks)
2557 goto out;
2558 if (config.max_inodes && !sbinfo->max_inodes)
2559 goto out;
2560
2561 error = 0;
2562 sbinfo->max_blocks = config.max_blocks;
2563 sbinfo->max_inodes = config.max_inodes;
2564 sbinfo->free_inodes = config.max_inodes - inodes;
2565
2566 /*
2567 * Preserve previous mempolicy unless mpol remount option was specified.
2568 */
2569 if (config.mpol) {
2570 mpol_put(sbinfo->mpol);
2571 sbinfo->mpol = config.mpol; /* transfers initial ref */
2572 }
2573 out:
2574 spin_unlock(&sbinfo->stat_lock);
2575 return error;
2576 }
2577
2578 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2579 {
2580 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2581
2582 if (sbinfo->max_blocks != shmem_default_max_blocks())
2583 seq_printf(seq, ",size=%luk",
2584 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2585 if (sbinfo->max_inodes != shmem_default_max_inodes())
2586 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2587 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2588 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2589 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2590 seq_printf(seq, ",uid=%u",
2591 from_kuid_munged(&init_user_ns, sbinfo->uid));
2592 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2593 seq_printf(seq, ",gid=%u",
2594 from_kgid_munged(&init_user_ns, sbinfo->gid));
2595 shmem_show_mpol(seq, sbinfo->mpol);
2596 return 0;
2597 }
2598 #endif /* CONFIG_TMPFS */
2599
2600 static void shmem_put_super(struct super_block *sb)
2601 {
2602 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2603
2604 percpu_counter_destroy(&sbinfo->used_blocks);
2605 mpol_put(sbinfo->mpol);
2606 kfree(sbinfo);
2607 sb->s_fs_info = NULL;
2608 }
2609
2610 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2611 {
2612 struct inode *inode;
2613 struct shmem_sb_info *sbinfo;
2614 int err = -ENOMEM;
2615
2616 /* Round up to L1_CACHE_BYTES to resist false sharing */
2617 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2618 L1_CACHE_BYTES), GFP_KERNEL);
2619 if (!sbinfo)
2620 return -ENOMEM;
2621
2622 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2623 sbinfo->uid = current_fsuid();
2624 sbinfo->gid = current_fsgid();
2625 sb->s_fs_info = sbinfo;
2626
2627 #ifdef CONFIG_TMPFS
2628 /*
2629 * Per default we only allow half of the physical ram per
2630 * tmpfs instance, limiting inodes to one per page of lowmem;
2631 * but the internal instance is left unlimited.
2632 */
2633 if (!(sb->s_flags & MS_KERNMOUNT)) {
2634 sbinfo->max_blocks = shmem_default_max_blocks();
2635 sbinfo->max_inodes = shmem_default_max_inodes();
2636 if (shmem_parse_options(data, sbinfo, false)) {
2637 err = -EINVAL;
2638 goto failed;
2639 }
2640 } else {
2641 sb->s_flags |= MS_NOUSER;
2642 }
2643 sb->s_export_op = &shmem_export_ops;
2644 sb->s_flags |= MS_NOSEC;
2645 #else
2646 sb->s_flags |= MS_NOUSER;
2647 #endif
2648
2649 spin_lock_init(&sbinfo->stat_lock);
2650 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2651 goto failed;
2652 sbinfo->free_inodes = sbinfo->max_inodes;
2653
2654 sb->s_maxbytes = MAX_LFS_FILESIZE;
2655 sb->s_blocksize = PAGE_CACHE_SIZE;
2656 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2657 sb->s_magic = TMPFS_MAGIC;
2658 sb->s_op = &shmem_ops;
2659 sb->s_time_gran = 1;
2660 #ifdef CONFIG_TMPFS_XATTR
2661 sb->s_xattr = shmem_xattr_handlers;
2662 #endif
2663 #ifdef CONFIG_TMPFS_POSIX_ACL
2664 sb->s_flags |= MS_POSIXACL;
2665 #endif
2666
2667 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2668 if (!inode)
2669 goto failed;
2670 inode->i_uid = sbinfo->uid;
2671 inode->i_gid = sbinfo->gid;
2672 sb->s_root = d_make_root(inode);
2673 if (!sb->s_root)
2674 goto failed;
2675 return 0;
2676
2677 failed:
2678 shmem_put_super(sb);
2679 return err;
2680 }
2681
2682 static struct kmem_cache *shmem_inode_cachep;
2683
2684 static struct inode *shmem_alloc_inode(struct super_block *sb)
2685 {
2686 struct shmem_inode_info *info;
2687 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2688 if (!info)
2689 return NULL;
2690 return &info->vfs_inode;
2691 }
2692
2693 static void shmem_destroy_callback(struct rcu_head *head)
2694 {
2695 struct inode *inode = container_of(head, struct inode, i_rcu);
2696 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2697 }
2698
2699 static void shmem_destroy_inode(struct inode *inode)
2700 {
2701 if (S_ISREG(inode->i_mode))
2702 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2703 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2704 }
2705
2706 static void shmem_init_inode(void *foo)
2707 {
2708 struct shmem_inode_info *info = foo;
2709 inode_init_once(&info->vfs_inode);
2710 }
2711
2712 static int shmem_init_inodecache(void)
2713 {
2714 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2715 sizeof(struct shmem_inode_info),
2716 0, SLAB_PANIC, shmem_init_inode);
2717 return 0;
2718 }
2719
2720 static void shmem_destroy_inodecache(void)
2721 {
2722 kmem_cache_destroy(shmem_inode_cachep);
2723 }
2724
2725 static const struct address_space_operations shmem_aops = {
2726 .writepage = shmem_writepage,
2727 .set_page_dirty = __set_page_dirty_no_writeback,
2728 #ifdef CONFIG_TMPFS
2729 .write_begin = shmem_write_begin,
2730 .write_end = shmem_write_end,
2731 #endif
2732 .migratepage = migrate_page,
2733 .error_remove_page = generic_error_remove_page,
2734 };
2735
2736 static const struct file_operations shmem_file_operations = {
2737 .mmap = shmem_mmap,
2738 #ifdef CONFIG_TMPFS
2739 .llseek = shmem_file_llseek,
2740 .read = new_sync_read,
2741 .write = new_sync_write,
2742 .read_iter = shmem_file_read_iter,
2743 .write_iter = generic_file_write_iter,
2744 .fsync = noop_fsync,
2745 .splice_read = shmem_file_splice_read,
2746 .splice_write = iter_file_splice_write,
2747 .fallocate = shmem_fallocate,
2748 #endif
2749 };
2750
2751 static const struct inode_operations shmem_inode_operations = {
2752 .setattr = shmem_setattr,
2753 #ifdef CONFIG_TMPFS_XATTR
2754 .setxattr = shmem_setxattr,
2755 .getxattr = shmem_getxattr,
2756 .listxattr = shmem_listxattr,
2757 .removexattr = shmem_removexattr,
2758 .set_acl = simple_set_acl,
2759 #endif
2760 };
2761
2762 static const struct inode_operations shmem_dir_inode_operations = {
2763 #ifdef CONFIG_TMPFS
2764 .create = shmem_create,
2765 .lookup = simple_lookup,
2766 .link = shmem_link,
2767 .unlink = shmem_unlink,
2768 .symlink = shmem_symlink,
2769 .mkdir = shmem_mkdir,
2770 .rmdir = shmem_rmdir,
2771 .mknod = shmem_mknod,
2772 .rename2 = shmem_rename2,
2773 .tmpfile = shmem_tmpfile,
2774 #endif
2775 #ifdef CONFIG_TMPFS_XATTR
2776 .setxattr = shmem_setxattr,
2777 .getxattr = shmem_getxattr,
2778 .listxattr = shmem_listxattr,
2779 .removexattr = shmem_removexattr,
2780 #endif
2781 #ifdef CONFIG_TMPFS_POSIX_ACL
2782 .setattr = shmem_setattr,
2783 .set_acl = simple_set_acl,
2784 #endif
2785 };
2786
2787 static const struct inode_operations shmem_special_inode_operations = {
2788 #ifdef CONFIG_TMPFS_XATTR
2789 .setxattr = shmem_setxattr,
2790 .getxattr = shmem_getxattr,
2791 .listxattr = shmem_listxattr,
2792 .removexattr = shmem_removexattr,
2793 #endif
2794 #ifdef CONFIG_TMPFS_POSIX_ACL
2795 .setattr = shmem_setattr,
2796 .set_acl = simple_set_acl,
2797 #endif
2798 };
2799
2800 static const struct super_operations shmem_ops = {
2801 .alloc_inode = shmem_alloc_inode,
2802 .destroy_inode = shmem_destroy_inode,
2803 #ifdef CONFIG_TMPFS
2804 .statfs = shmem_statfs,
2805 .remount_fs = shmem_remount_fs,
2806 .show_options = shmem_show_options,
2807 #endif
2808 .evict_inode = shmem_evict_inode,
2809 .drop_inode = generic_delete_inode,
2810 .put_super = shmem_put_super,
2811 };
2812
2813 static const struct vm_operations_struct shmem_vm_ops = {
2814 .fault = shmem_fault,
2815 .map_pages = filemap_map_pages,
2816 #ifdef CONFIG_NUMA
2817 .set_policy = shmem_set_policy,
2818 .get_policy = shmem_get_policy,
2819 #endif
2820 .remap_pages = generic_file_remap_pages,
2821 };
2822
2823 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2824 int flags, const char *dev_name, void *data)
2825 {
2826 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2827 }
2828
2829 static struct file_system_type shmem_fs_type = {
2830 .owner = THIS_MODULE,
2831 .name = "tmpfs",
2832 .mount = shmem_mount,
2833 .kill_sb = kill_litter_super,
2834 .fs_flags = FS_USERNS_MOUNT,
2835 };
2836
2837 int __init shmem_init(void)
2838 {
2839 int error;
2840
2841 /* If rootfs called this, don't re-init */
2842 if (shmem_inode_cachep)
2843 return 0;
2844
2845 error = bdi_init(&shmem_backing_dev_info);
2846 if (error)
2847 goto out4;
2848
2849 error = shmem_init_inodecache();
2850 if (error)
2851 goto out3;
2852
2853 error = register_filesystem(&shmem_fs_type);
2854 if (error) {
2855 printk(KERN_ERR "Could not register tmpfs\n");
2856 goto out2;
2857 }
2858
2859 shm_mnt = kern_mount(&shmem_fs_type);
2860 if (IS_ERR(shm_mnt)) {
2861 error = PTR_ERR(shm_mnt);
2862 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2863 goto out1;
2864 }
2865 return 0;
2866
2867 out1:
2868 unregister_filesystem(&shmem_fs_type);
2869 out2:
2870 shmem_destroy_inodecache();
2871 out3:
2872 bdi_destroy(&shmem_backing_dev_info);
2873 out4:
2874 shm_mnt = ERR_PTR(error);
2875 return error;
2876 }
2877
2878 #else /* !CONFIG_SHMEM */
2879
2880 /*
2881 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2882 *
2883 * This is intended for small system where the benefits of the full
2884 * shmem code (swap-backed and resource-limited) are outweighed by
2885 * their complexity. On systems without swap this code should be
2886 * effectively equivalent, but much lighter weight.
2887 */
2888
2889 static struct file_system_type shmem_fs_type = {
2890 .name = "tmpfs",
2891 .mount = ramfs_mount,
2892 .kill_sb = kill_litter_super,
2893 .fs_flags = FS_USERNS_MOUNT,
2894 };
2895
2896 int __init shmem_init(void)
2897 {
2898 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2899
2900 shm_mnt = kern_mount(&shmem_fs_type);
2901 BUG_ON(IS_ERR(shm_mnt));
2902
2903 return 0;
2904 }
2905
2906 int shmem_unuse(swp_entry_t swap, struct page *page)
2907 {
2908 return 0;
2909 }
2910
2911 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2912 {
2913 return 0;
2914 }
2915
2916 void shmem_unlock_mapping(struct address_space *mapping)
2917 {
2918 }
2919
2920 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2921 {
2922 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2923 }
2924 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2925
2926 #define shmem_vm_ops generic_file_vm_ops
2927 #define shmem_file_operations ramfs_file_operations
2928 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2929 #define shmem_acct_size(flags, size) 0
2930 #define shmem_unacct_size(flags, size) do {} while (0)
2931
2932 #endif /* CONFIG_SHMEM */
2933
2934 /* common code */
2935
2936 static struct dentry_operations anon_ops = {
2937 .d_dname = simple_dname
2938 };
2939
2940 static struct file *__shmem_file_setup(const char *name, loff_t size,
2941 unsigned long flags, unsigned int i_flags)
2942 {
2943 struct file *res;
2944 struct inode *inode;
2945 struct path path;
2946 struct super_block *sb;
2947 struct qstr this;
2948
2949 if (IS_ERR(shm_mnt))
2950 return ERR_CAST(shm_mnt);
2951
2952 if (size < 0 || size > MAX_LFS_FILESIZE)
2953 return ERR_PTR(-EINVAL);
2954
2955 if (shmem_acct_size(flags, size))
2956 return ERR_PTR(-ENOMEM);
2957
2958 res = ERR_PTR(-ENOMEM);
2959 this.name = name;
2960 this.len = strlen(name);
2961 this.hash = 0; /* will go */
2962 sb = shm_mnt->mnt_sb;
2963 path.dentry = d_alloc_pseudo(sb, &this);
2964 if (!path.dentry)
2965 goto put_memory;
2966 d_set_d_op(path.dentry, &anon_ops);
2967 path.mnt = mntget(shm_mnt);
2968
2969 res = ERR_PTR(-ENOSPC);
2970 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2971 if (!inode)
2972 goto put_dentry;
2973
2974 inode->i_flags |= i_flags;
2975 d_instantiate(path.dentry, inode);
2976 inode->i_size = size;
2977 clear_nlink(inode); /* It is unlinked */
2978 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2979 if (IS_ERR(res))
2980 goto put_dentry;
2981
2982 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2983 &shmem_file_operations);
2984 if (IS_ERR(res))
2985 goto put_dentry;
2986
2987 return res;
2988
2989 put_dentry:
2990 path_put(&path);
2991 put_memory:
2992 shmem_unacct_size(flags, size);
2993 return res;
2994 }
2995
2996 /**
2997 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2998 * kernel internal. There will be NO LSM permission checks against the
2999 * underlying inode. So users of this interface must do LSM checks at a
3000 * higher layer. The one user is the big_key implementation. LSM checks
3001 * are provided at the key level rather than the inode level.
3002 * @name: name for dentry (to be seen in /proc/<pid>/maps
3003 * @size: size to be set for the file
3004 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3005 */
3006 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3007 {
3008 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3009 }
3010
3011 /**
3012 * shmem_file_setup - get an unlinked file living in tmpfs
3013 * @name: name for dentry (to be seen in /proc/<pid>/maps
3014 * @size: size to be set for the file
3015 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3016 */
3017 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3018 {
3019 return __shmem_file_setup(name, size, flags, 0);
3020 }
3021 EXPORT_SYMBOL_GPL(shmem_file_setup);
3022
3023 /**
3024 * shmem_zero_setup - setup a shared anonymous mapping
3025 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3026 */
3027 int shmem_zero_setup(struct vm_area_struct *vma)
3028 {
3029 struct file *file;
3030 loff_t size = vma->vm_end - vma->vm_start;
3031
3032 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3033 if (IS_ERR(file))
3034 return PTR_ERR(file);
3035
3036 if (vma->vm_file)
3037 fput(vma->vm_file);
3038 vma->vm_file = file;
3039 vma->vm_ops = &shmem_vm_ops;
3040 return 0;
3041 }
3042
3043 /**
3044 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3045 * @mapping: the page's address_space
3046 * @index: the page index
3047 * @gfp: the page allocator flags to use if allocating
3048 *
3049 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3050 * with any new page allocations done using the specified allocation flags.
3051 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3052 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3053 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3054 *
3055 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3056 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3057 */
3058 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3059 pgoff_t index, gfp_t gfp)
3060 {
3061 #ifdef CONFIG_SHMEM
3062 struct inode *inode = mapping->host;
3063 struct page *page;
3064 int error;
3065
3066 BUG_ON(mapping->a_ops != &shmem_aops);
3067 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3068 if (error)
3069 page = ERR_PTR(error);
3070 else
3071 unlock_page(page);
3072 return page;
3073 #else
3074 /*
3075 * The tiny !SHMEM case uses ramfs without swap
3076 */
3077 return read_cache_page_gfp(mapping, index, gfp);
3078 #endif
3079 }
3080 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);