]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/shmem.c
Merge tag 'for-5.16/block-2021-10-29' of git://git.kernel.dk/linux-block
[mirror_ubuntu-kernels.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81
82 #include <linux/uaccess.h>
83
84 #include "internal.h"
85
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94
95 /*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_rwsem making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100 struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106 };
107
108 struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
112 kuid_t uid;
113 kgid_t gid;
114 umode_t mode;
115 bool full_inums;
116 int huge;
117 int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 return totalram_pages() / 2;
128 }
129
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 unsigned long nr_pages = totalram_pages();
133
134 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137
138 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
139 struct page **pagep, enum sgp_type sgp,
140 gfp_t gfp, struct vm_area_struct *vma,
141 vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 struct vm_fault *vmf, vm_fault_t *fault_type);
146
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp)
149 {
150 return shmem_getpage_gfp(inode, index, pagep, sgp,
151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 return sb->s_fs_info;
157 }
158
159 /*
160 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161 * for shared memory and for shared anonymous (/dev/zero) mappings
162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163 * consistent with the pre-accounting of private mappings ...
164 */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 return (flags & VM_NORESERVE) ?
168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 if (!(flags & VM_NORESERVE))
174 vm_unacct_memory(VM_ACCT(size));
175 }
176
177 static inline int shmem_reacct_size(unsigned long flags,
178 loff_t oldsize, loff_t newsize)
179 {
180 if (!(flags & VM_NORESERVE)) {
181 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 return security_vm_enough_memory_mm(current->mm,
183 VM_ACCT(newsize) - VM_ACCT(oldsize));
184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 }
187 return 0;
188 }
189
190 /*
191 * ... whereas tmpfs objects are accounted incrementally as
192 * pages are allocated, in order to allow large sparse files.
193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195 */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 if (!(flags & VM_NORESERVE))
199 return 0;
200
201 return security_vm_enough_memory_mm(current->mm,
202 pages * VM_ACCT(PAGE_SIZE));
203 }
204
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 if (flags & VM_NORESERVE)
208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 struct shmem_inode_info *info = SHMEM_I(inode);
214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215
216 if (shmem_acct_block(info->flags, pages))
217 return false;
218
219 if (sbinfo->max_blocks) {
220 if (percpu_counter_compare(&sbinfo->used_blocks,
221 sbinfo->max_blocks - pages) > 0)
222 goto unacct;
223 percpu_counter_add(&sbinfo->used_blocks, pages);
224 }
225
226 return true;
227
228 unacct:
229 shmem_unacct_blocks(info->flags, pages);
230 return false;
231 }
232
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237
238 if (sbinfo->max_blocks)
239 percpu_counter_sub(&sbinfo->used_blocks, pages);
240 shmem_unacct_blocks(info->flags, pages);
241 }
242
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 return vma->vm_ops == &shmem_vm_ops;
255 }
256
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259
260 /*
261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262 * produces a novel ino for the newly allocated inode.
263 *
264 * It may also be called when making a hard link to permit the space needed by
265 * each dentry. However, in that case, no new inode number is needed since that
266 * internally draws from another pool of inode numbers (currently global
267 * get_next_ino()). This case is indicated by passing NULL as inop.
268 */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 ino_t ino;
274
275 if (!(sb->s_flags & SB_KERNMOUNT)) {
276 raw_spin_lock(&sbinfo->stat_lock);
277 if (sbinfo->max_inodes) {
278 if (!sbinfo->free_inodes) {
279 raw_spin_unlock(&sbinfo->stat_lock);
280 return -ENOSPC;
281 }
282 sbinfo->free_inodes--;
283 }
284 if (inop) {
285 ino = sbinfo->next_ino++;
286 if (unlikely(is_zero_ino(ino)))
287 ino = sbinfo->next_ino++;
288 if (unlikely(!sbinfo->full_inums &&
289 ino > UINT_MAX)) {
290 /*
291 * Emulate get_next_ino uint wraparound for
292 * compatibility
293 */
294 if (IS_ENABLED(CONFIG_64BIT))
295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 __func__, MINOR(sb->s_dev));
297 sbinfo->next_ino = 1;
298 ino = sbinfo->next_ino++;
299 }
300 *inop = ino;
301 }
302 raw_spin_unlock(&sbinfo->stat_lock);
303 } else if (inop) {
304 /*
305 * __shmem_file_setup, one of our callers, is lock-free: it
306 * doesn't hold stat_lock in shmem_reserve_inode since
307 * max_inodes is always 0, and is called from potentially
308 * unknown contexts. As such, use a per-cpu batched allocator
309 * which doesn't require the per-sb stat_lock unless we are at
310 * the batch boundary.
311 *
312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 * shmem mounts are not exposed to userspace, so we don't need
314 * to worry about things like glibc compatibility.
315 */
316 ino_t *next_ino;
317
318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 ino = *next_ino;
320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 raw_spin_lock(&sbinfo->stat_lock);
322 ino = sbinfo->next_ino;
323 sbinfo->next_ino += SHMEM_INO_BATCH;
324 raw_spin_unlock(&sbinfo->stat_lock);
325 if (unlikely(is_zero_ino(ino)))
326 ino++;
327 }
328 *inop = ino;
329 *next_ino = ++ino;
330 put_cpu();
331 }
332
333 return 0;
334 }
335
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 if (sbinfo->max_inodes) {
340 raw_spin_lock(&sbinfo->stat_lock);
341 sbinfo->free_inodes++;
342 raw_spin_unlock(&sbinfo->stat_lock);
343 }
344 }
345
346 /**
347 * shmem_recalc_inode - recalculate the block usage of an inode
348 * @inode: inode to recalc
349 *
350 * We have to calculate the free blocks since the mm can drop
351 * undirtied hole pages behind our back.
352 *
353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355 *
356 * It has to be called with the spinlock held.
357 */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 struct shmem_inode_info *info = SHMEM_I(inode);
361 long freed;
362
363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 if (freed > 0) {
365 info->alloced -= freed;
366 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 shmem_inode_unacct_blocks(inode, freed);
368 }
369 }
370
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 struct shmem_inode_info *info = SHMEM_I(inode);
374 unsigned long flags;
375
376 if (!shmem_inode_acct_block(inode, pages))
377 return false;
378
379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 inode->i_mapping->nrpages += pages;
381
382 spin_lock_irqsave(&info->lock, flags);
383 info->alloced += pages;
384 inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 shmem_recalc_inode(inode);
386 spin_unlock_irqrestore(&info->lock, flags);
387
388 return true;
389 }
390
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 struct shmem_inode_info *info = SHMEM_I(inode);
394 unsigned long flags;
395
396 /* nrpages adjustment done by __delete_from_page_cache() or caller */
397
398 spin_lock_irqsave(&info->lock, flags);
399 info->alloced -= pages;
400 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 shmem_recalc_inode(inode);
402 spin_unlock_irqrestore(&info->lock, flags);
403
404 shmem_inode_unacct_blocks(inode, pages);
405 }
406
407 /*
408 * Replace item expected in xarray by a new item, while holding xa_lock.
409 */
410 static int shmem_replace_entry(struct address_space *mapping,
411 pgoff_t index, void *expected, void *replacement)
412 {
413 XA_STATE(xas, &mapping->i_pages, index);
414 void *item;
415
416 VM_BUG_ON(!expected);
417 VM_BUG_ON(!replacement);
418 item = xas_load(&xas);
419 if (item != expected)
420 return -ENOENT;
421 xas_store(&xas, replacement);
422 return 0;
423 }
424
425 /*
426 * Sometimes, before we decide whether to proceed or to fail, we must check
427 * that an entry was not already brought back from swap by a racing thread.
428 *
429 * Checking page is not enough: by the time a SwapCache page is locked, it
430 * might be reused, and again be SwapCache, using the same swap as before.
431 */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 pgoff_t index, swp_entry_t swap)
434 {
435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437
438 /*
439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440 *
441 * SHMEM_HUGE_NEVER:
442 * disables huge pages for the mount;
443 * SHMEM_HUGE_ALWAYS:
444 * enables huge pages for the mount;
445 * SHMEM_HUGE_WITHIN_SIZE:
446 * only allocate huge pages if the page will be fully within i_size,
447 * also respect fadvise()/madvise() hints;
448 * SHMEM_HUGE_ADVISE:
449 * only allocate huge pages if requested with fadvise()/madvise();
450 */
451
452 #define SHMEM_HUGE_NEVER 0
453 #define SHMEM_HUGE_ALWAYS 1
454 #define SHMEM_HUGE_WITHIN_SIZE 2
455 #define SHMEM_HUGE_ADVISE 3
456
457 /*
458 * Special values.
459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460 *
461 * SHMEM_HUGE_DENY:
462 * disables huge on shm_mnt and all mounts, for emergency use;
463 * SHMEM_HUGE_FORCE:
464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465 *
466 */
467 #define SHMEM_HUGE_DENY (-1)
468 #define SHMEM_HUGE_FORCE (-2)
469
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 struct inode *inode, pgoff_t index)
477 {
478 loff_t i_size;
479
480 if (shmem_huge == SHMEM_HUGE_DENY)
481 return false;
482 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
483 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
484 return false;
485 if (shmem_huge == SHMEM_HUGE_FORCE)
486 return true;
487
488 switch (SHMEM_SB(inode->i_sb)->huge) {
489 case SHMEM_HUGE_ALWAYS:
490 return true;
491 case SHMEM_HUGE_WITHIN_SIZE:
492 index = round_up(index + 1, HPAGE_PMD_NR);
493 i_size = round_up(i_size_read(inode), PAGE_SIZE);
494 if (i_size >> PAGE_SHIFT >= index)
495 return true;
496 fallthrough;
497 case SHMEM_HUGE_ADVISE:
498 if (vma && (vma->vm_flags & VM_HUGEPAGE))
499 return true;
500 fallthrough;
501 default:
502 return false;
503 }
504 }
505
506 #if defined(CONFIG_SYSFS)
507 static int shmem_parse_huge(const char *str)
508 {
509 if (!strcmp(str, "never"))
510 return SHMEM_HUGE_NEVER;
511 if (!strcmp(str, "always"))
512 return SHMEM_HUGE_ALWAYS;
513 if (!strcmp(str, "within_size"))
514 return SHMEM_HUGE_WITHIN_SIZE;
515 if (!strcmp(str, "advise"))
516 return SHMEM_HUGE_ADVISE;
517 if (!strcmp(str, "deny"))
518 return SHMEM_HUGE_DENY;
519 if (!strcmp(str, "force"))
520 return SHMEM_HUGE_FORCE;
521 return -EINVAL;
522 }
523 #endif
524
525 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
526 static const char *shmem_format_huge(int huge)
527 {
528 switch (huge) {
529 case SHMEM_HUGE_NEVER:
530 return "never";
531 case SHMEM_HUGE_ALWAYS:
532 return "always";
533 case SHMEM_HUGE_WITHIN_SIZE:
534 return "within_size";
535 case SHMEM_HUGE_ADVISE:
536 return "advise";
537 case SHMEM_HUGE_DENY:
538 return "deny";
539 case SHMEM_HUGE_FORCE:
540 return "force";
541 default:
542 VM_BUG_ON(1);
543 return "bad_val";
544 }
545 }
546 #endif
547
548 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
549 struct shrink_control *sc, unsigned long nr_to_split)
550 {
551 LIST_HEAD(list), *pos, *next;
552 LIST_HEAD(to_remove);
553 struct inode *inode;
554 struct shmem_inode_info *info;
555 struct page *page;
556 unsigned long batch = sc ? sc->nr_to_scan : 128;
557 int removed = 0, split = 0;
558
559 if (list_empty(&sbinfo->shrinklist))
560 return SHRINK_STOP;
561
562 spin_lock(&sbinfo->shrinklist_lock);
563 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
564 info = list_entry(pos, struct shmem_inode_info, shrinklist);
565
566 /* pin the inode */
567 inode = igrab(&info->vfs_inode);
568
569 /* inode is about to be evicted */
570 if (!inode) {
571 list_del_init(&info->shrinklist);
572 removed++;
573 goto next;
574 }
575
576 /* Check if there's anything to gain */
577 if (round_up(inode->i_size, PAGE_SIZE) ==
578 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 list_move(&info->shrinklist, &to_remove);
580 removed++;
581 goto next;
582 }
583
584 list_move(&info->shrinklist, &list);
585 next:
586 if (!--batch)
587 break;
588 }
589 spin_unlock(&sbinfo->shrinklist_lock);
590
591 list_for_each_safe(pos, next, &to_remove) {
592 info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 inode = &info->vfs_inode;
594 list_del_init(&info->shrinklist);
595 iput(inode);
596 }
597
598 list_for_each_safe(pos, next, &list) {
599 int ret;
600
601 info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 inode = &info->vfs_inode;
603
604 if (nr_to_split && split >= nr_to_split)
605 goto leave;
606
607 page = find_get_page(inode->i_mapping,
608 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 if (!page)
610 goto drop;
611
612 /* No huge page at the end of the file: nothing to split */
613 if (!PageTransHuge(page)) {
614 put_page(page);
615 goto drop;
616 }
617
618 /*
619 * Leave the inode on the list if we failed to lock
620 * the page at this time.
621 *
622 * Waiting for the lock may lead to deadlock in the
623 * reclaim path.
624 */
625 if (!trylock_page(page)) {
626 put_page(page);
627 goto leave;
628 }
629
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
633
634 /* If split failed leave the inode on the list */
635 if (ret)
636 goto leave;
637
638 split++;
639 drop:
640 list_del_init(&info->shrinklist);
641 removed++;
642 leave:
643 iput(inode);
644 }
645
646 spin_lock(&sbinfo->shrinklist_lock);
647 list_splice_tail(&list, &sbinfo->shrinklist);
648 sbinfo->shrinklist_len -= removed;
649 spin_unlock(&sbinfo->shrinklist_lock);
650
651 return split;
652 }
653
654 static long shmem_unused_huge_scan(struct super_block *sb,
655 struct shrink_control *sc)
656 {
657 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
658
659 if (!READ_ONCE(sbinfo->shrinklist_len))
660 return SHRINK_STOP;
661
662 return shmem_unused_huge_shrink(sbinfo, sc, 0);
663 }
664
665 static long shmem_unused_huge_count(struct super_block *sb,
666 struct shrink_control *sc)
667 {
668 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
669 return READ_ONCE(sbinfo->shrinklist_len);
670 }
671 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
672
673 #define shmem_huge SHMEM_HUGE_DENY
674
675 bool shmem_is_huge(struct vm_area_struct *vma,
676 struct inode *inode, pgoff_t index)
677 {
678 return false;
679 }
680
681 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
682 struct shrink_control *sc, unsigned long nr_to_split)
683 {
684 return 0;
685 }
686 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
687
688 /*
689 * Like add_to_page_cache_locked, but error if expected item has gone.
690 */
691 static int shmem_add_to_page_cache(struct page *page,
692 struct address_space *mapping,
693 pgoff_t index, void *expected, gfp_t gfp,
694 struct mm_struct *charge_mm)
695 {
696 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
697 unsigned long i = 0;
698 unsigned long nr = compound_nr(page);
699 int error;
700
701 VM_BUG_ON_PAGE(PageTail(page), page);
702 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
703 VM_BUG_ON_PAGE(!PageLocked(page), page);
704 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
705 VM_BUG_ON(expected && PageTransHuge(page));
706
707 page_ref_add(page, nr);
708 page->mapping = mapping;
709 page->index = index;
710
711 if (!PageSwapCache(page)) {
712 error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
713 if (error) {
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_FALLBACK);
716 count_vm_event(THP_FILE_FALLBACK_CHARGE);
717 }
718 goto error;
719 }
720 }
721 cgroup_throttle_swaprate(page, gfp);
722
723 do {
724 void *entry;
725 xas_lock_irq(&xas);
726 entry = xas_find_conflict(&xas);
727 if (entry != expected)
728 xas_set_err(&xas, -EEXIST);
729 xas_create_range(&xas);
730 if (xas_error(&xas))
731 goto unlock;
732 next:
733 xas_store(&xas, page);
734 if (++i < nr) {
735 xas_next(&xas);
736 goto next;
737 }
738 if (PageTransHuge(page)) {
739 count_vm_event(THP_FILE_ALLOC);
740 __mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
741 }
742 mapping->nrpages += nr;
743 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
744 __mod_lruvec_page_state(page, NR_SHMEM, nr);
745 unlock:
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
748
749 if (xas_error(&xas)) {
750 error = xas_error(&xas);
751 goto error;
752 }
753
754 return 0;
755 error:
756 page->mapping = NULL;
757 page_ref_sub(page, nr);
758 return error;
759 }
760
761 /*
762 * Like delete_from_page_cache, but substitutes swap for page.
763 */
764 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
765 {
766 struct address_space *mapping = page->mapping;
767 int error;
768
769 VM_BUG_ON_PAGE(PageCompound(page), page);
770
771 xa_lock_irq(&mapping->i_pages);
772 error = shmem_replace_entry(mapping, page->index, page, radswap);
773 page->mapping = NULL;
774 mapping->nrpages--;
775 __dec_lruvec_page_state(page, NR_FILE_PAGES);
776 __dec_lruvec_page_state(page, NR_SHMEM);
777 xa_unlock_irq(&mapping->i_pages);
778 put_page(page);
779 BUG_ON(error);
780 }
781
782 /*
783 * Remove swap entry from page cache, free the swap and its page cache.
784 */
785 static int shmem_free_swap(struct address_space *mapping,
786 pgoff_t index, void *radswap)
787 {
788 void *old;
789
790 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
791 if (old != radswap)
792 return -ENOENT;
793 free_swap_and_cache(radix_to_swp_entry(radswap));
794 return 0;
795 }
796
797 /*
798 * Determine (in bytes) how many of the shmem object's pages mapped by the
799 * given offsets are swapped out.
800 *
801 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
802 * as long as the inode doesn't go away and racy results are not a problem.
803 */
804 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
805 pgoff_t start, pgoff_t end)
806 {
807 XA_STATE(xas, &mapping->i_pages, start);
808 struct page *page;
809 unsigned long swapped = 0;
810
811 rcu_read_lock();
812 xas_for_each(&xas, page, end - 1) {
813 if (xas_retry(&xas, page))
814 continue;
815 if (xa_is_value(page))
816 swapped++;
817
818 if (need_resched()) {
819 xas_pause(&xas);
820 cond_resched_rcu();
821 }
822 }
823
824 rcu_read_unlock();
825
826 return swapped << PAGE_SHIFT;
827 }
828
829 /*
830 * Determine (in bytes) how many of the shmem object's pages mapped by the
831 * given vma is swapped out.
832 *
833 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
834 * as long as the inode doesn't go away and racy results are not a problem.
835 */
836 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
837 {
838 struct inode *inode = file_inode(vma->vm_file);
839 struct shmem_inode_info *info = SHMEM_I(inode);
840 struct address_space *mapping = inode->i_mapping;
841 unsigned long swapped;
842
843 /* Be careful as we don't hold info->lock */
844 swapped = READ_ONCE(info->swapped);
845
846 /*
847 * The easier cases are when the shmem object has nothing in swap, or
848 * the vma maps it whole. Then we can simply use the stats that we
849 * already track.
850 */
851 if (!swapped)
852 return 0;
853
854 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
855 return swapped << PAGE_SHIFT;
856
857 /* Here comes the more involved part */
858 return shmem_partial_swap_usage(mapping,
859 linear_page_index(vma, vma->vm_start),
860 linear_page_index(vma, vma->vm_end));
861 }
862
863 /*
864 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
865 */
866 void shmem_unlock_mapping(struct address_space *mapping)
867 {
868 struct pagevec pvec;
869 pgoff_t index = 0;
870
871 pagevec_init(&pvec);
872 /*
873 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
874 */
875 while (!mapping_unevictable(mapping)) {
876 if (!pagevec_lookup(&pvec, mapping, &index))
877 break;
878 check_move_unevictable_pages(&pvec);
879 pagevec_release(&pvec);
880 cond_resched();
881 }
882 }
883
884 /*
885 * Check whether a hole-punch or truncation needs to split a huge page,
886 * returning true if no split was required, or the split has been successful.
887 *
888 * Eviction (or truncation to 0 size) should never need to split a huge page;
889 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
890 * head, and then succeeded to trylock on tail.
891 *
892 * A split can only succeed when there are no additional references on the
893 * huge page: so the split below relies upon find_get_entries() having stopped
894 * when it found a subpage of the huge page, without getting further references.
895 */
896 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
897 {
898 if (!PageTransCompound(page))
899 return true;
900
901 /* Just proceed to delete a huge page wholly within the range punched */
902 if (PageHead(page) &&
903 page->index >= start && page->index + HPAGE_PMD_NR <= end)
904 return true;
905
906 /* Try to split huge page, so we can truly punch the hole or truncate */
907 return split_huge_page(page) >= 0;
908 }
909
910 /*
911 * Remove range of pages and swap entries from page cache, and free them.
912 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
913 */
914 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
915 bool unfalloc)
916 {
917 struct address_space *mapping = inode->i_mapping;
918 struct shmem_inode_info *info = SHMEM_I(inode);
919 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
920 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
921 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
922 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
923 struct pagevec pvec;
924 pgoff_t indices[PAGEVEC_SIZE];
925 long nr_swaps_freed = 0;
926 pgoff_t index;
927 int i;
928
929 if (lend == -1)
930 end = -1; /* unsigned, so actually very big */
931
932 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
933 info->fallocend = start;
934
935 pagevec_init(&pvec);
936 index = start;
937 while (index < end && find_lock_entries(mapping, index, end - 1,
938 &pvec, indices)) {
939 for (i = 0; i < pagevec_count(&pvec); i++) {
940 struct page *page = pvec.pages[i];
941
942 index = indices[i];
943
944 if (xa_is_value(page)) {
945 if (unfalloc)
946 continue;
947 nr_swaps_freed += !shmem_free_swap(mapping,
948 index, page);
949 continue;
950 }
951 index += thp_nr_pages(page) - 1;
952
953 if (!unfalloc || !PageUptodate(page))
954 truncate_inode_page(mapping, page);
955 unlock_page(page);
956 }
957 pagevec_remove_exceptionals(&pvec);
958 pagevec_release(&pvec);
959 cond_resched();
960 index++;
961 }
962
963 if (partial_start) {
964 struct page *page = NULL;
965 shmem_getpage(inode, start - 1, &page, SGP_READ);
966 if (page) {
967 unsigned int top = PAGE_SIZE;
968 if (start > end) {
969 top = partial_end;
970 partial_end = 0;
971 }
972 zero_user_segment(page, partial_start, top);
973 set_page_dirty(page);
974 unlock_page(page);
975 put_page(page);
976 }
977 }
978 if (partial_end) {
979 struct page *page = NULL;
980 shmem_getpage(inode, end, &page, SGP_READ);
981 if (page) {
982 zero_user_segment(page, 0, partial_end);
983 set_page_dirty(page);
984 unlock_page(page);
985 put_page(page);
986 }
987 }
988 if (start >= end)
989 return;
990
991 index = start;
992 while (index < end) {
993 cond_resched();
994
995 if (!find_get_entries(mapping, index, end - 1, &pvec,
996 indices)) {
997 /* If all gone or hole-punch or unfalloc, we're done */
998 if (index == start || end != -1)
999 break;
1000 /* But if truncating, restart to make sure all gone */
1001 index = start;
1002 continue;
1003 }
1004 for (i = 0; i < pagevec_count(&pvec); i++) {
1005 struct page *page = pvec.pages[i];
1006
1007 index = indices[i];
1008 if (xa_is_value(page)) {
1009 if (unfalloc)
1010 continue;
1011 if (shmem_free_swap(mapping, index, page)) {
1012 /* Swap was replaced by page: retry */
1013 index--;
1014 break;
1015 }
1016 nr_swaps_freed++;
1017 continue;
1018 }
1019
1020 lock_page(page);
1021
1022 if (!unfalloc || !PageUptodate(page)) {
1023 if (page_mapping(page) != mapping) {
1024 /* Page was replaced by swap: retry */
1025 unlock_page(page);
1026 index--;
1027 break;
1028 }
1029 VM_BUG_ON_PAGE(PageWriteback(page), page);
1030 if (shmem_punch_compound(page, start, end))
1031 truncate_inode_page(mapping, page);
1032 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1033 /* Wipe the page and don't get stuck */
1034 clear_highpage(page);
1035 flush_dcache_page(page);
1036 set_page_dirty(page);
1037 if (index <
1038 round_up(start, HPAGE_PMD_NR))
1039 start = index + 1;
1040 }
1041 }
1042 unlock_page(page);
1043 }
1044 pagevec_remove_exceptionals(&pvec);
1045 pagevec_release(&pvec);
1046 index++;
1047 }
1048
1049 spin_lock_irq(&info->lock);
1050 info->swapped -= nr_swaps_freed;
1051 shmem_recalc_inode(inode);
1052 spin_unlock_irq(&info->lock);
1053 }
1054
1055 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1056 {
1057 shmem_undo_range(inode, lstart, lend, false);
1058 inode->i_ctime = inode->i_mtime = current_time(inode);
1059 }
1060 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1061
1062 static int shmem_getattr(struct user_namespace *mnt_userns,
1063 const struct path *path, struct kstat *stat,
1064 u32 request_mask, unsigned int query_flags)
1065 {
1066 struct inode *inode = path->dentry->d_inode;
1067 struct shmem_inode_info *info = SHMEM_I(inode);
1068
1069 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1070 spin_lock_irq(&info->lock);
1071 shmem_recalc_inode(inode);
1072 spin_unlock_irq(&info->lock);
1073 }
1074 generic_fillattr(&init_user_ns, inode, stat);
1075
1076 if (shmem_is_huge(NULL, inode, 0))
1077 stat->blksize = HPAGE_PMD_SIZE;
1078
1079 return 0;
1080 }
1081
1082 static int shmem_setattr(struct user_namespace *mnt_userns,
1083 struct dentry *dentry, struct iattr *attr)
1084 {
1085 struct inode *inode = d_inode(dentry);
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 int error;
1088
1089 error = setattr_prepare(&init_user_ns, dentry, attr);
1090 if (error)
1091 return error;
1092
1093 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1094 loff_t oldsize = inode->i_size;
1095 loff_t newsize = attr->ia_size;
1096
1097 /* protected by i_rwsem */
1098 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1099 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1100 return -EPERM;
1101
1102 if (newsize != oldsize) {
1103 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1104 oldsize, newsize);
1105 if (error)
1106 return error;
1107 i_size_write(inode, newsize);
1108 inode->i_ctime = inode->i_mtime = current_time(inode);
1109 }
1110 if (newsize <= oldsize) {
1111 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1112 if (oldsize > holebegin)
1113 unmap_mapping_range(inode->i_mapping,
1114 holebegin, 0, 1);
1115 if (info->alloced)
1116 shmem_truncate_range(inode,
1117 newsize, (loff_t)-1);
1118 /* unmap again to remove racily COWed private pages */
1119 if (oldsize > holebegin)
1120 unmap_mapping_range(inode->i_mapping,
1121 holebegin, 0, 1);
1122 }
1123 }
1124
1125 setattr_copy(&init_user_ns, inode, attr);
1126 if (attr->ia_valid & ATTR_MODE)
1127 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1128 return error;
1129 }
1130
1131 static void shmem_evict_inode(struct inode *inode)
1132 {
1133 struct shmem_inode_info *info = SHMEM_I(inode);
1134 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1135
1136 if (shmem_mapping(inode->i_mapping)) {
1137 shmem_unacct_size(info->flags, inode->i_size);
1138 inode->i_size = 0;
1139 shmem_truncate_range(inode, 0, (loff_t)-1);
1140 if (!list_empty(&info->shrinklist)) {
1141 spin_lock(&sbinfo->shrinklist_lock);
1142 if (!list_empty(&info->shrinklist)) {
1143 list_del_init(&info->shrinklist);
1144 sbinfo->shrinklist_len--;
1145 }
1146 spin_unlock(&sbinfo->shrinklist_lock);
1147 }
1148 while (!list_empty(&info->swaplist)) {
1149 /* Wait while shmem_unuse() is scanning this inode... */
1150 wait_var_event(&info->stop_eviction,
1151 !atomic_read(&info->stop_eviction));
1152 mutex_lock(&shmem_swaplist_mutex);
1153 /* ...but beware of the race if we peeked too early */
1154 if (!atomic_read(&info->stop_eviction))
1155 list_del_init(&info->swaplist);
1156 mutex_unlock(&shmem_swaplist_mutex);
1157 }
1158 }
1159
1160 simple_xattrs_free(&info->xattrs);
1161 WARN_ON(inode->i_blocks);
1162 shmem_free_inode(inode->i_sb);
1163 clear_inode(inode);
1164 }
1165
1166 static int shmem_find_swap_entries(struct address_space *mapping,
1167 pgoff_t start, unsigned int nr_entries,
1168 struct page **entries, pgoff_t *indices,
1169 unsigned int type, bool frontswap)
1170 {
1171 XA_STATE(xas, &mapping->i_pages, start);
1172 struct page *page;
1173 swp_entry_t entry;
1174 unsigned int ret = 0;
1175
1176 if (!nr_entries)
1177 return 0;
1178
1179 rcu_read_lock();
1180 xas_for_each(&xas, page, ULONG_MAX) {
1181 if (xas_retry(&xas, page))
1182 continue;
1183
1184 if (!xa_is_value(page))
1185 continue;
1186
1187 entry = radix_to_swp_entry(page);
1188 if (swp_type(entry) != type)
1189 continue;
1190 if (frontswap &&
1191 !frontswap_test(swap_info[type], swp_offset(entry)))
1192 continue;
1193
1194 indices[ret] = xas.xa_index;
1195 entries[ret] = page;
1196
1197 if (need_resched()) {
1198 xas_pause(&xas);
1199 cond_resched_rcu();
1200 }
1201 if (++ret == nr_entries)
1202 break;
1203 }
1204 rcu_read_unlock();
1205
1206 return ret;
1207 }
1208
1209 /*
1210 * Move the swapped pages for an inode to page cache. Returns the count
1211 * of pages swapped in, or the error in case of failure.
1212 */
1213 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1214 pgoff_t *indices)
1215 {
1216 int i = 0;
1217 int ret = 0;
1218 int error = 0;
1219 struct address_space *mapping = inode->i_mapping;
1220
1221 for (i = 0; i < pvec.nr; i++) {
1222 struct page *page = pvec.pages[i];
1223
1224 if (!xa_is_value(page))
1225 continue;
1226 error = shmem_swapin_page(inode, indices[i],
1227 &page, SGP_CACHE,
1228 mapping_gfp_mask(mapping),
1229 NULL, NULL);
1230 if (error == 0) {
1231 unlock_page(page);
1232 put_page(page);
1233 ret++;
1234 }
1235 if (error == -ENOMEM)
1236 break;
1237 error = 0;
1238 }
1239 return error ? error : ret;
1240 }
1241
1242 /*
1243 * If swap found in inode, free it and move page from swapcache to filecache.
1244 */
1245 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1246 bool frontswap, unsigned long *fs_pages_to_unuse)
1247 {
1248 struct address_space *mapping = inode->i_mapping;
1249 pgoff_t start = 0;
1250 struct pagevec pvec;
1251 pgoff_t indices[PAGEVEC_SIZE];
1252 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1253 int ret = 0;
1254
1255 pagevec_init(&pvec);
1256 do {
1257 unsigned int nr_entries = PAGEVEC_SIZE;
1258
1259 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1260 nr_entries = *fs_pages_to_unuse;
1261
1262 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1263 pvec.pages, indices,
1264 type, frontswap);
1265 if (pvec.nr == 0) {
1266 ret = 0;
1267 break;
1268 }
1269
1270 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1271 if (ret < 0)
1272 break;
1273
1274 if (frontswap_partial) {
1275 *fs_pages_to_unuse -= ret;
1276 if (*fs_pages_to_unuse == 0) {
1277 ret = FRONTSWAP_PAGES_UNUSED;
1278 break;
1279 }
1280 }
1281
1282 start = indices[pvec.nr - 1];
1283 } while (true);
1284
1285 return ret;
1286 }
1287
1288 /*
1289 * Read all the shared memory data that resides in the swap
1290 * device 'type' back into memory, so the swap device can be
1291 * unused.
1292 */
1293 int shmem_unuse(unsigned int type, bool frontswap,
1294 unsigned long *fs_pages_to_unuse)
1295 {
1296 struct shmem_inode_info *info, *next;
1297 int error = 0;
1298
1299 if (list_empty(&shmem_swaplist))
1300 return 0;
1301
1302 mutex_lock(&shmem_swaplist_mutex);
1303 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1304 if (!info->swapped) {
1305 list_del_init(&info->swaplist);
1306 continue;
1307 }
1308 /*
1309 * Drop the swaplist mutex while searching the inode for swap;
1310 * but before doing so, make sure shmem_evict_inode() will not
1311 * remove placeholder inode from swaplist, nor let it be freed
1312 * (igrab() would protect from unlink, but not from unmount).
1313 */
1314 atomic_inc(&info->stop_eviction);
1315 mutex_unlock(&shmem_swaplist_mutex);
1316
1317 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1318 fs_pages_to_unuse);
1319 cond_resched();
1320
1321 mutex_lock(&shmem_swaplist_mutex);
1322 next = list_next_entry(info, swaplist);
1323 if (!info->swapped)
1324 list_del_init(&info->swaplist);
1325 if (atomic_dec_and_test(&info->stop_eviction))
1326 wake_up_var(&info->stop_eviction);
1327 if (error)
1328 break;
1329 }
1330 mutex_unlock(&shmem_swaplist_mutex);
1331
1332 return error;
1333 }
1334
1335 /*
1336 * Move the page from the page cache to the swap cache.
1337 */
1338 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1339 {
1340 struct shmem_inode_info *info;
1341 struct address_space *mapping;
1342 struct inode *inode;
1343 swp_entry_t swap;
1344 pgoff_t index;
1345
1346 /*
1347 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1348 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1349 * and its shmem_writeback() needs them to be split when swapping.
1350 */
1351 if (PageTransCompound(page)) {
1352 /* Ensure the subpages are still dirty */
1353 SetPageDirty(page);
1354 if (split_huge_page(page) < 0)
1355 goto redirty;
1356 ClearPageDirty(page);
1357 }
1358
1359 BUG_ON(!PageLocked(page));
1360 mapping = page->mapping;
1361 index = page->index;
1362 inode = mapping->host;
1363 info = SHMEM_I(inode);
1364 if (info->flags & VM_LOCKED)
1365 goto redirty;
1366 if (!total_swap_pages)
1367 goto redirty;
1368
1369 /*
1370 * Our capabilities prevent regular writeback or sync from ever calling
1371 * shmem_writepage; but a stacking filesystem might use ->writepage of
1372 * its underlying filesystem, in which case tmpfs should write out to
1373 * swap only in response to memory pressure, and not for the writeback
1374 * threads or sync.
1375 */
1376 if (!wbc->for_reclaim) {
1377 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1378 goto redirty;
1379 }
1380
1381 /*
1382 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 * value into swapfile.c, the only way we can correctly account for a
1384 * fallocated page arriving here is now to initialize it and write it.
1385 *
1386 * That's okay for a page already fallocated earlier, but if we have
1387 * not yet completed the fallocation, then (a) we want to keep track
1388 * of this page in case we have to undo it, and (b) it may not be a
1389 * good idea to continue anyway, once we're pushing into swap. So
1390 * reactivate the page, and let shmem_fallocate() quit when too many.
1391 */
1392 if (!PageUptodate(page)) {
1393 if (inode->i_private) {
1394 struct shmem_falloc *shmem_falloc;
1395 spin_lock(&inode->i_lock);
1396 shmem_falloc = inode->i_private;
1397 if (shmem_falloc &&
1398 !shmem_falloc->waitq &&
1399 index >= shmem_falloc->start &&
1400 index < shmem_falloc->next)
1401 shmem_falloc->nr_unswapped++;
1402 else
1403 shmem_falloc = NULL;
1404 spin_unlock(&inode->i_lock);
1405 if (shmem_falloc)
1406 goto redirty;
1407 }
1408 clear_highpage(page);
1409 flush_dcache_page(page);
1410 SetPageUptodate(page);
1411 }
1412
1413 swap = get_swap_page(page);
1414 if (!swap.val)
1415 goto redirty;
1416
1417 /*
1418 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419 * if it's not already there. Do it now before the page is
1420 * moved to swap cache, when its pagelock no longer protects
1421 * the inode from eviction. But don't unlock the mutex until
1422 * we've incremented swapped, because shmem_unuse_inode() will
1423 * prune a !swapped inode from the swaplist under this mutex.
1424 */
1425 mutex_lock(&shmem_swaplist_mutex);
1426 if (list_empty(&info->swaplist))
1427 list_add(&info->swaplist, &shmem_swaplist);
1428
1429 if (add_to_swap_cache(page, swap,
1430 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 NULL) == 0) {
1432 spin_lock_irq(&info->lock);
1433 shmem_recalc_inode(inode);
1434 info->swapped++;
1435 spin_unlock_irq(&info->lock);
1436
1437 swap_shmem_alloc(swap);
1438 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1439
1440 mutex_unlock(&shmem_swaplist_mutex);
1441 BUG_ON(page_mapped(page));
1442 swap_writepage(page, wbc);
1443 return 0;
1444 }
1445
1446 mutex_unlock(&shmem_swaplist_mutex);
1447 put_swap_page(page, swap);
1448 redirty:
1449 set_page_dirty(page);
1450 if (wbc->for_reclaim)
1451 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1452 unlock_page(page);
1453 return 0;
1454 }
1455
1456 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458 {
1459 char buffer[64];
1460
1461 if (!mpol || mpol->mode == MPOL_DEFAULT)
1462 return; /* show nothing */
1463
1464 mpol_to_str(buffer, sizeof(buffer), mpol);
1465
1466 seq_printf(seq, ",mpol=%s", buffer);
1467 }
1468
1469 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470 {
1471 struct mempolicy *mpol = NULL;
1472 if (sbinfo->mpol) {
1473 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1474 mpol = sbinfo->mpol;
1475 mpol_get(mpol);
1476 raw_spin_unlock(&sbinfo->stat_lock);
1477 }
1478 return mpol;
1479 }
1480 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482 {
1483 }
1484 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485 {
1486 return NULL;
1487 }
1488 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489 #ifndef CONFIG_NUMA
1490 #define vm_policy vm_private_data
1491 #endif
1492
1493 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 struct shmem_inode_info *info, pgoff_t index)
1495 {
1496 /* Create a pseudo vma that just contains the policy */
1497 vma_init(vma, NULL);
1498 /* Bias interleave by inode number to distribute better across nodes */
1499 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501 }
1502
1503 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504 {
1505 /* Drop reference taken by mpol_shared_policy_lookup() */
1506 mpol_cond_put(vma->vm_policy);
1507 }
1508
1509 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 struct shmem_inode_info *info, pgoff_t index)
1511 {
1512 struct vm_area_struct pvma;
1513 struct page *page;
1514 struct vm_fault vmf = {
1515 .vma = &pvma,
1516 };
1517
1518 shmem_pseudo_vma_init(&pvma, info, index);
1519 page = swap_cluster_readahead(swap, gfp, &vmf);
1520 shmem_pseudo_vma_destroy(&pvma);
1521
1522 return page;
1523 }
1524
1525 /*
1526 * Make sure huge_gfp is always more limited than limit_gfp.
1527 * Some of the flags set permissions, while others set limitations.
1528 */
1529 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1530 {
1531 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1532 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1533 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1534 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1535
1536 /* Allow allocations only from the originally specified zones. */
1537 result |= zoneflags;
1538
1539 /*
1540 * Minimize the result gfp by taking the union with the deny flags,
1541 * and the intersection of the allow flags.
1542 */
1543 result |= (limit_gfp & denyflags);
1544 result |= (huge_gfp & limit_gfp) & allowflags;
1545
1546 return result;
1547 }
1548
1549 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1550 struct shmem_inode_info *info, pgoff_t index)
1551 {
1552 struct vm_area_struct pvma;
1553 struct address_space *mapping = info->vfs_inode.i_mapping;
1554 pgoff_t hindex;
1555 struct page *page;
1556
1557 hindex = round_down(index, HPAGE_PMD_NR);
1558 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1559 XA_PRESENT))
1560 return NULL;
1561
1562 shmem_pseudo_vma_init(&pvma, info, hindex);
1563 page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1564 true);
1565 shmem_pseudo_vma_destroy(&pvma);
1566 if (page)
1567 prep_transhuge_page(page);
1568 else
1569 count_vm_event(THP_FILE_FALLBACK);
1570 return page;
1571 }
1572
1573 static struct page *shmem_alloc_page(gfp_t gfp,
1574 struct shmem_inode_info *info, pgoff_t index)
1575 {
1576 struct vm_area_struct pvma;
1577 struct page *page;
1578
1579 shmem_pseudo_vma_init(&pvma, info, index);
1580 page = alloc_page_vma(gfp, &pvma, 0);
1581 shmem_pseudo_vma_destroy(&pvma);
1582
1583 return page;
1584 }
1585
1586 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1587 struct inode *inode,
1588 pgoff_t index, bool huge)
1589 {
1590 struct shmem_inode_info *info = SHMEM_I(inode);
1591 struct page *page;
1592 int nr;
1593 int err = -ENOSPC;
1594
1595 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1596 huge = false;
1597 nr = huge ? HPAGE_PMD_NR : 1;
1598
1599 if (!shmem_inode_acct_block(inode, nr))
1600 goto failed;
1601
1602 if (huge)
1603 page = shmem_alloc_hugepage(gfp, info, index);
1604 else
1605 page = shmem_alloc_page(gfp, info, index);
1606 if (page) {
1607 __SetPageLocked(page);
1608 __SetPageSwapBacked(page);
1609 return page;
1610 }
1611
1612 err = -ENOMEM;
1613 shmem_inode_unacct_blocks(inode, nr);
1614 failed:
1615 return ERR_PTR(err);
1616 }
1617
1618 /*
1619 * When a page is moved from swapcache to shmem filecache (either by the
1620 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1621 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1622 * ignorance of the mapping it belongs to. If that mapping has special
1623 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1624 * we may need to copy to a suitable page before moving to filecache.
1625 *
1626 * In a future release, this may well be extended to respect cpuset and
1627 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1628 * but for now it is a simple matter of zone.
1629 */
1630 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1631 {
1632 return page_zonenum(page) > gfp_zone(gfp);
1633 }
1634
1635 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1636 struct shmem_inode_info *info, pgoff_t index)
1637 {
1638 struct page *oldpage, *newpage;
1639 struct folio *old, *new;
1640 struct address_space *swap_mapping;
1641 swp_entry_t entry;
1642 pgoff_t swap_index;
1643 int error;
1644
1645 oldpage = *pagep;
1646 entry.val = page_private(oldpage);
1647 swap_index = swp_offset(entry);
1648 swap_mapping = page_mapping(oldpage);
1649
1650 /*
1651 * We have arrived here because our zones are constrained, so don't
1652 * limit chance of success by further cpuset and node constraints.
1653 */
1654 gfp &= ~GFP_CONSTRAINT_MASK;
1655 newpage = shmem_alloc_page(gfp, info, index);
1656 if (!newpage)
1657 return -ENOMEM;
1658
1659 get_page(newpage);
1660 copy_highpage(newpage, oldpage);
1661 flush_dcache_page(newpage);
1662
1663 __SetPageLocked(newpage);
1664 __SetPageSwapBacked(newpage);
1665 SetPageUptodate(newpage);
1666 set_page_private(newpage, entry.val);
1667 SetPageSwapCache(newpage);
1668
1669 /*
1670 * Our caller will very soon move newpage out of swapcache, but it's
1671 * a nice clean interface for us to replace oldpage by newpage there.
1672 */
1673 xa_lock_irq(&swap_mapping->i_pages);
1674 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1675 if (!error) {
1676 old = page_folio(oldpage);
1677 new = page_folio(newpage);
1678 mem_cgroup_migrate(old, new);
1679 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1680 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1681 }
1682 xa_unlock_irq(&swap_mapping->i_pages);
1683
1684 if (unlikely(error)) {
1685 /*
1686 * Is this possible? I think not, now that our callers check
1687 * both PageSwapCache and page_private after getting page lock;
1688 * but be defensive. Reverse old to newpage for clear and free.
1689 */
1690 oldpage = newpage;
1691 } else {
1692 lru_cache_add(newpage);
1693 *pagep = newpage;
1694 }
1695
1696 ClearPageSwapCache(oldpage);
1697 set_page_private(oldpage, 0);
1698
1699 unlock_page(oldpage);
1700 put_page(oldpage);
1701 put_page(oldpage);
1702 return error;
1703 }
1704
1705 /*
1706 * Swap in the page pointed to by *pagep.
1707 * Caller has to make sure that *pagep contains a valid swapped page.
1708 * Returns 0 and the page in pagep if success. On failure, returns the
1709 * error code and NULL in *pagep.
1710 */
1711 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1712 struct page **pagep, enum sgp_type sgp,
1713 gfp_t gfp, struct vm_area_struct *vma,
1714 vm_fault_t *fault_type)
1715 {
1716 struct address_space *mapping = inode->i_mapping;
1717 struct shmem_inode_info *info = SHMEM_I(inode);
1718 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1719 struct page *page;
1720 swp_entry_t swap;
1721 int error;
1722
1723 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1724 swap = radix_to_swp_entry(*pagep);
1725 *pagep = NULL;
1726
1727 /* Look it up and read it in.. */
1728 page = lookup_swap_cache(swap, NULL, 0);
1729 if (!page) {
1730 /* Or update major stats only when swapin succeeds?? */
1731 if (fault_type) {
1732 *fault_type |= VM_FAULT_MAJOR;
1733 count_vm_event(PGMAJFAULT);
1734 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1735 }
1736 /* Here we actually start the io */
1737 page = shmem_swapin(swap, gfp, info, index);
1738 if (!page) {
1739 error = -ENOMEM;
1740 goto failed;
1741 }
1742 }
1743
1744 /* We have to do this with page locked to prevent races */
1745 lock_page(page);
1746 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1747 !shmem_confirm_swap(mapping, index, swap)) {
1748 error = -EEXIST;
1749 goto unlock;
1750 }
1751 if (!PageUptodate(page)) {
1752 error = -EIO;
1753 goto failed;
1754 }
1755 wait_on_page_writeback(page);
1756
1757 /*
1758 * Some architectures may have to restore extra metadata to the
1759 * physical page after reading from swap.
1760 */
1761 arch_swap_restore(swap, page);
1762
1763 if (shmem_should_replace_page(page, gfp)) {
1764 error = shmem_replace_page(&page, gfp, info, index);
1765 if (error)
1766 goto failed;
1767 }
1768
1769 error = shmem_add_to_page_cache(page, mapping, index,
1770 swp_to_radix_entry(swap), gfp,
1771 charge_mm);
1772 if (error)
1773 goto failed;
1774
1775 spin_lock_irq(&info->lock);
1776 info->swapped--;
1777 shmem_recalc_inode(inode);
1778 spin_unlock_irq(&info->lock);
1779
1780 if (sgp == SGP_WRITE)
1781 mark_page_accessed(page);
1782
1783 delete_from_swap_cache(page);
1784 set_page_dirty(page);
1785 swap_free(swap);
1786
1787 *pagep = page;
1788 return 0;
1789 failed:
1790 if (!shmem_confirm_swap(mapping, index, swap))
1791 error = -EEXIST;
1792 unlock:
1793 if (page) {
1794 unlock_page(page);
1795 put_page(page);
1796 }
1797
1798 return error;
1799 }
1800
1801 /*
1802 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1803 *
1804 * If we allocate a new one we do not mark it dirty. That's up to the
1805 * vm. If we swap it in we mark it dirty since we also free the swap
1806 * entry since a page cannot live in both the swap and page cache.
1807 *
1808 * vma, vmf, and fault_type are only supplied by shmem_fault:
1809 * otherwise they are NULL.
1810 */
1811 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1812 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1813 struct vm_area_struct *vma, struct vm_fault *vmf,
1814 vm_fault_t *fault_type)
1815 {
1816 struct address_space *mapping = inode->i_mapping;
1817 struct shmem_inode_info *info = SHMEM_I(inode);
1818 struct shmem_sb_info *sbinfo;
1819 struct mm_struct *charge_mm;
1820 struct page *page;
1821 pgoff_t hindex = index;
1822 gfp_t huge_gfp;
1823 int error;
1824 int once = 0;
1825 int alloced = 0;
1826
1827 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1828 return -EFBIG;
1829 repeat:
1830 if (sgp <= SGP_CACHE &&
1831 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1832 return -EINVAL;
1833 }
1834
1835 sbinfo = SHMEM_SB(inode->i_sb);
1836 charge_mm = vma ? vma->vm_mm : NULL;
1837
1838 page = pagecache_get_page(mapping, index,
1839 FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1840
1841 if (page && vma && userfaultfd_minor(vma)) {
1842 if (!xa_is_value(page)) {
1843 unlock_page(page);
1844 put_page(page);
1845 }
1846 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1847 return 0;
1848 }
1849
1850 if (xa_is_value(page)) {
1851 error = shmem_swapin_page(inode, index, &page,
1852 sgp, gfp, vma, fault_type);
1853 if (error == -EEXIST)
1854 goto repeat;
1855
1856 *pagep = page;
1857 return error;
1858 }
1859
1860 if (page) {
1861 hindex = page->index;
1862 if (sgp == SGP_WRITE)
1863 mark_page_accessed(page);
1864 if (PageUptodate(page))
1865 goto out;
1866 /* fallocated page */
1867 if (sgp != SGP_READ)
1868 goto clear;
1869 unlock_page(page);
1870 put_page(page);
1871 }
1872
1873 /*
1874 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1875 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1876 */
1877 *pagep = NULL;
1878 if (sgp == SGP_READ)
1879 return 0;
1880 if (sgp == SGP_NOALLOC)
1881 return -ENOENT;
1882
1883 /*
1884 * Fast cache lookup and swap lookup did not find it: allocate.
1885 */
1886
1887 if (vma && userfaultfd_missing(vma)) {
1888 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1889 return 0;
1890 }
1891
1892 /* Never use a huge page for shmem_symlink() */
1893 if (S_ISLNK(inode->i_mode))
1894 goto alloc_nohuge;
1895 if (!shmem_is_huge(vma, inode, index))
1896 goto alloc_nohuge;
1897
1898 huge_gfp = vma_thp_gfp_mask(vma);
1899 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1900 page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1901 if (IS_ERR(page)) {
1902 alloc_nohuge:
1903 page = shmem_alloc_and_acct_page(gfp, inode,
1904 index, false);
1905 }
1906 if (IS_ERR(page)) {
1907 int retry = 5;
1908
1909 error = PTR_ERR(page);
1910 page = NULL;
1911 if (error != -ENOSPC)
1912 goto unlock;
1913 /*
1914 * Try to reclaim some space by splitting a huge page
1915 * beyond i_size on the filesystem.
1916 */
1917 while (retry--) {
1918 int ret;
1919
1920 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1921 if (ret == SHRINK_STOP)
1922 break;
1923 if (ret)
1924 goto alloc_nohuge;
1925 }
1926 goto unlock;
1927 }
1928
1929 if (PageTransHuge(page))
1930 hindex = round_down(index, HPAGE_PMD_NR);
1931 else
1932 hindex = index;
1933
1934 if (sgp == SGP_WRITE)
1935 __SetPageReferenced(page);
1936
1937 error = shmem_add_to_page_cache(page, mapping, hindex,
1938 NULL, gfp & GFP_RECLAIM_MASK,
1939 charge_mm);
1940 if (error)
1941 goto unacct;
1942 lru_cache_add(page);
1943
1944 spin_lock_irq(&info->lock);
1945 info->alloced += compound_nr(page);
1946 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1947 shmem_recalc_inode(inode);
1948 spin_unlock_irq(&info->lock);
1949 alloced = true;
1950
1951 if (PageTransHuge(page) &&
1952 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1953 hindex + HPAGE_PMD_NR - 1) {
1954 /*
1955 * Part of the huge page is beyond i_size: subject
1956 * to shrink under memory pressure.
1957 */
1958 spin_lock(&sbinfo->shrinklist_lock);
1959 /*
1960 * _careful to defend against unlocked access to
1961 * ->shrink_list in shmem_unused_huge_shrink()
1962 */
1963 if (list_empty_careful(&info->shrinklist)) {
1964 list_add_tail(&info->shrinklist,
1965 &sbinfo->shrinklist);
1966 sbinfo->shrinklist_len++;
1967 }
1968 spin_unlock(&sbinfo->shrinklist_lock);
1969 }
1970
1971 /*
1972 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1973 */
1974 if (sgp == SGP_FALLOC)
1975 sgp = SGP_WRITE;
1976 clear:
1977 /*
1978 * Let SGP_WRITE caller clear ends if write does not fill page;
1979 * but SGP_FALLOC on a page fallocated earlier must initialize
1980 * it now, lest undo on failure cancel our earlier guarantee.
1981 */
1982 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1983 int i;
1984
1985 for (i = 0; i < compound_nr(page); i++) {
1986 clear_highpage(page + i);
1987 flush_dcache_page(page + i);
1988 }
1989 SetPageUptodate(page);
1990 }
1991
1992 /* Perhaps the file has been truncated since we checked */
1993 if (sgp <= SGP_CACHE &&
1994 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1995 if (alloced) {
1996 ClearPageDirty(page);
1997 delete_from_page_cache(page);
1998 spin_lock_irq(&info->lock);
1999 shmem_recalc_inode(inode);
2000 spin_unlock_irq(&info->lock);
2001 }
2002 error = -EINVAL;
2003 goto unlock;
2004 }
2005 out:
2006 *pagep = page + index - hindex;
2007 return 0;
2008
2009 /*
2010 * Error recovery.
2011 */
2012 unacct:
2013 shmem_inode_unacct_blocks(inode, compound_nr(page));
2014
2015 if (PageTransHuge(page)) {
2016 unlock_page(page);
2017 put_page(page);
2018 goto alloc_nohuge;
2019 }
2020 unlock:
2021 if (page) {
2022 unlock_page(page);
2023 put_page(page);
2024 }
2025 if (error == -ENOSPC && !once++) {
2026 spin_lock_irq(&info->lock);
2027 shmem_recalc_inode(inode);
2028 spin_unlock_irq(&info->lock);
2029 goto repeat;
2030 }
2031 if (error == -EEXIST)
2032 goto repeat;
2033 return error;
2034 }
2035
2036 /*
2037 * This is like autoremove_wake_function, but it removes the wait queue
2038 * entry unconditionally - even if something else had already woken the
2039 * target.
2040 */
2041 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2042 {
2043 int ret = default_wake_function(wait, mode, sync, key);
2044 list_del_init(&wait->entry);
2045 return ret;
2046 }
2047
2048 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2049 {
2050 struct vm_area_struct *vma = vmf->vma;
2051 struct inode *inode = file_inode(vma->vm_file);
2052 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2053 int err;
2054 vm_fault_t ret = VM_FAULT_LOCKED;
2055
2056 /*
2057 * Trinity finds that probing a hole which tmpfs is punching can
2058 * prevent the hole-punch from ever completing: which in turn
2059 * locks writers out with its hold on i_rwsem. So refrain from
2060 * faulting pages into the hole while it's being punched. Although
2061 * shmem_undo_range() does remove the additions, it may be unable to
2062 * keep up, as each new page needs its own unmap_mapping_range() call,
2063 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2064 *
2065 * It does not matter if we sometimes reach this check just before the
2066 * hole-punch begins, so that one fault then races with the punch:
2067 * we just need to make racing faults a rare case.
2068 *
2069 * The implementation below would be much simpler if we just used a
2070 * standard mutex or completion: but we cannot take i_rwsem in fault,
2071 * and bloating every shmem inode for this unlikely case would be sad.
2072 */
2073 if (unlikely(inode->i_private)) {
2074 struct shmem_falloc *shmem_falloc;
2075
2076 spin_lock(&inode->i_lock);
2077 shmem_falloc = inode->i_private;
2078 if (shmem_falloc &&
2079 shmem_falloc->waitq &&
2080 vmf->pgoff >= shmem_falloc->start &&
2081 vmf->pgoff < shmem_falloc->next) {
2082 struct file *fpin;
2083 wait_queue_head_t *shmem_falloc_waitq;
2084 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2085
2086 ret = VM_FAULT_NOPAGE;
2087 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2088 if (fpin)
2089 ret = VM_FAULT_RETRY;
2090
2091 shmem_falloc_waitq = shmem_falloc->waitq;
2092 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2093 TASK_UNINTERRUPTIBLE);
2094 spin_unlock(&inode->i_lock);
2095 schedule();
2096
2097 /*
2098 * shmem_falloc_waitq points into the shmem_fallocate()
2099 * stack of the hole-punching task: shmem_falloc_waitq
2100 * is usually invalid by the time we reach here, but
2101 * finish_wait() does not dereference it in that case;
2102 * though i_lock needed lest racing with wake_up_all().
2103 */
2104 spin_lock(&inode->i_lock);
2105 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2106 spin_unlock(&inode->i_lock);
2107
2108 if (fpin)
2109 fput(fpin);
2110 return ret;
2111 }
2112 spin_unlock(&inode->i_lock);
2113 }
2114
2115 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2116 gfp, vma, vmf, &ret);
2117 if (err)
2118 return vmf_error(err);
2119 return ret;
2120 }
2121
2122 unsigned long shmem_get_unmapped_area(struct file *file,
2123 unsigned long uaddr, unsigned long len,
2124 unsigned long pgoff, unsigned long flags)
2125 {
2126 unsigned long (*get_area)(struct file *,
2127 unsigned long, unsigned long, unsigned long, unsigned long);
2128 unsigned long addr;
2129 unsigned long offset;
2130 unsigned long inflated_len;
2131 unsigned long inflated_addr;
2132 unsigned long inflated_offset;
2133
2134 if (len > TASK_SIZE)
2135 return -ENOMEM;
2136
2137 get_area = current->mm->get_unmapped_area;
2138 addr = get_area(file, uaddr, len, pgoff, flags);
2139
2140 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2141 return addr;
2142 if (IS_ERR_VALUE(addr))
2143 return addr;
2144 if (addr & ~PAGE_MASK)
2145 return addr;
2146 if (addr > TASK_SIZE - len)
2147 return addr;
2148
2149 if (shmem_huge == SHMEM_HUGE_DENY)
2150 return addr;
2151 if (len < HPAGE_PMD_SIZE)
2152 return addr;
2153 if (flags & MAP_FIXED)
2154 return addr;
2155 /*
2156 * Our priority is to support MAP_SHARED mapped hugely;
2157 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2158 * But if caller specified an address hint and we allocated area there
2159 * successfully, respect that as before.
2160 */
2161 if (uaddr == addr)
2162 return addr;
2163
2164 if (shmem_huge != SHMEM_HUGE_FORCE) {
2165 struct super_block *sb;
2166
2167 if (file) {
2168 VM_BUG_ON(file->f_op != &shmem_file_operations);
2169 sb = file_inode(file)->i_sb;
2170 } else {
2171 /*
2172 * Called directly from mm/mmap.c, or drivers/char/mem.c
2173 * for "/dev/zero", to create a shared anonymous object.
2174 */
2175 if (IS_ERR(shm_mnt))
2176 return addr;
2177 sb = shm_mnt->mnt_sb;
2178 }
2179 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2180 return addr;
2181 }
2182
2183 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2184 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2185 return addr;
2186 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2187 return addr;
2188
2189 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2190 if (inflated_len > TASK_SIZE)
2191 return addr;
2192 if (inflated_len < len)
2193 return addr;
2194
2195 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2196 if (IS_ERR_VALUE(inflated_addr))
2197 return addr;
2198 if (inflated_addr & ~PAGE_MASK)
2199 return addr;
2200
2201 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2202 inflated_addr += offset - inflated_offset;
2203 if (inflated_offset > offset)
2204 inflated_addr += HPAGE_PMD_SIZE;
2205
2206 if (inflated_addr > TASK_SIZE - len)
2207 return addr;
2208 return inflated_addr;
2209 }
2210
2211 #ifdef CONFIG_NUMA
2212 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2213 {
2214 struct inode *inode = file_inode(vma->vm_file);
2215 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2216 }
2217
2218 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2219 unsigned long addr)
2220 {
2221 struct inode *inode = file_inode(vma->vm_file);
2222 pgoff_t index;
2223
2224 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2225 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2226 }
2227 #endif
2228
2229 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2230 {
2231 struct inode *inode = file_inode(file);
2232 struct shmem_inode_info *info = SHMEM_I(inode);
2233 int retval = -ENOMEM;
2234
2235 /*
2236 * What serializes the accesses to info->flags?
2237 * ipc_lock_object() when called from shmctl_do_lock(),
2238 * no serialization needed when called from shm_destroy().
2239 */
2240 if (lock && !(info->flags & VM_LOCKED)) {
2241 if (!user_shm_lock(inode->i_size, ucounts))
2242 goto out_nomem;
2243 info->flags |= VM_LOCKED;
2244 mapping_set_unevictable(file->f_mapping);
2245 }
2246 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2247 user_shm_unlock(inode->i_size, ucounts);
2248 info->flags &= ~VM_LOCKED;
2249 mapping_clear_unevictable(file->f_mapping);
2250 }
2251 retval = 0;
2252
2253 out_nomem:
2254 return retval;
2255 }
2256
2257 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2258 {
2259 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2260 int ret;
2261
2262 ret = seal_check_future_write(info->seals, vma);
2263 if (ret)
2264 return ret;
2265
2266 /* arm64 - allow memory tagging on RAM-based files */
2267 vma->vm_flags |= VM_MTE_ALLOWED;
2268
2269 file_accessed(file);
2270 vma->vm_ops = &shmem_vm_ops;
2271 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2272 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2273 (vma->vm_end & HPAGE_PMD_MASK)) {
2274 khugepaged_enter(vma, vma->vm_flags);
2275 }
2276 return 0;
2277 }
2278
2279 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2280 umode_t mode, dev_t dev, unsigned long flags)
2281 {
2282 struct inode *inode;
2283 struct shmem_inode_info *info;
2284 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2285 ino_t ino;
2286
2287 if (shmem_reserve_inode(sb, &ino))
2288 return NULL;
2289
2290 inode = new_inode(sb);
2291 if (inode) {
2292 inode->i_ino = ino;
2293 inode_init_owner(&init_user_ns, inode, dir, mode);
2294 inode->i_blocks = 0;
2295 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2296 inode->i_generation = prandom_u32();
2297 info = SHMEM_I(inode);
2298 memset(info, 0, (char *)inode - (char *)info);
2299 spin_lock_init(&info->lock);
2300 atomic_set(&info->stop_eviction, 0);
2301 info->seals = F_SEAL_SEAL;
2302 info->flags = flags & VM_NORESERVE;
2303 INIT_LIST_HEAD(&info->shrinklist);
2304 INIT_LIST_HEAD(&info->swaplist);
2305 simple_xattrs_init(&info->xattrs);
2306 cache_no_acl(inode);
2307
2308 switch (mode & S_IFMT) {
2309 default:
2310 inode->i_op = &shmem_special_inode_operations;
2311 init_special_inode(inode, mode, dev);
2312 break;
2313 case S_IFREG:
2314 inode->i_mapping->a_ops = &shmem_aops;
2315 inode->i_op = &shmem_inode_operations;
2316 inode->i_fop = &shmem_file_operations;
2317 mpol_shared_policy_init(&info->policy,
2318 shmem_get_sbmpol(sbinfo));
2319 break;
2320 case S_IFDIR:
2321 inc_nlink(inode);
2322 /* Some things misbehave if size == 0 on a directory */
2323 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2324 inode->i_op = &shmem_dir_inode_operations;
2325 inode->i_fop = &simple_dir_operations;
2326 break;
2327 case S_IFLNK:
2328 /*
2329 * Must not load anything in the rbtree,
2330 * mpol_free_shared_policy will not be called.
2331 */
2332 mpol_shared_policy_init(&info->policy, NULL);
2333 break;
2334 }
2335
2336 lockdep_annotate_inode_mutex_key(inode);
2337 } else
2338 shmem_free_inode(sb);
2339 return inode;
2340 }
2341
2342 #ifdef CONFIG_USERFAULTFD
2343 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2344 pmd_t *dst_pmd,
2345 struct vm_area_struct *dst_vma,
2346 unsigned long dst_addr,
2347 unsigned long src_addr,
2348 bool zeropage,
2349 struct page **pagep)
2350 {
2351 struct inode *inode = file_inode(dst_vma->vm_file);
2352 struct shmem_inode_info *info = SHMEM_I(inode);
2353 struct address_space *mapping = inode->i_mapping;
2354 gfp_t gfp = mapping_gfp_mask(mapping);
2355 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2356 void *page_kaddr;
2357 struct page *page;
2358 int ret;
2359 pgoff_t max_off;
2360
2361 if (!shmem_inode_acct_block(inode, 1)) {
2362 /*
2363 * We may have got a page, returned -ENOENT triggering a retry,
2364 * and now we find ourselves with -ENOMEM. Release the page, to
2365 * avoid a BUG_ON in our caller.
2366 */
2367 if (unlikely(*pagep)) {
2368 put_page(*pagep);
2369 *pagep = NULL;
2370 }
2371 return -ENOMEM;
2372 }
2373
2374 if (!*pagep) {
2375 ret = -ENOMEM;
2376 page = shmem_alloc_page(gfp, info, pgoff);
2377 if (!page)
2378 goto out_unacct_blocks;
2379
2380 if (!zeropage) { /* COPY */
2381 page_kaddr = kmap_atomic(page);
2382 ret = copy_from_user(page_kaddr,
2383 (const void __user *)src_addr,
2384 PAGE_SIZE);
2385 kunmap_atomic(page_kaddr);
2386
2387 /* fallback to copy_from_user outside mmap_lock */
2388 if (unlikely(ret)) {
2389 *pagep = page;
2390 ret = -ENOENT;
2391 /* don't free the page */
2392 goto out_unacct_blocks;
2393 }
2394 } else { /* ZEROPAGE */
2395 clear_highpage(page);
2396 }
2397 } else {
2398 page = *pagep;
2399 *pagep = NULL;
2400 }
2401
2402 VM_BUG_ON(PageLocked(page));
2403 VM_BUG_ON(PageSwapBacked(page));
2404 __SetPageLocked(page);
2405 __SetPageSwapBacked(page);
2406 __SetPageUptodate(page);
2407
2408 ret = -EFAULT;
2409 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2410 if (unlikely(pgoff >= max_off))
2411 goto out_release;
2412
2413 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2414 gfp & GFP_RECLAIM_MASK, dst_mm);
2415 if (ret)
2416 goto out_release;
2417
2418 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2419 page, true, false);
2420 if (ret)
2421 goto out_delete_from_cache;
2422
2423 spin_lock_irq(&info->lock);
2424 info->alloced++;
2425 inode->i_blocks += BLOCKS_PER_PAGE;
2426 shmem_recalc_inode(inode);
2427 spin_unlock_irq(&info->lock);
2428
2429 SetPageDirty(page);
2430 unlock_page(page);
2431 return 0;
2432 out_delete_from_cache:
2433 delete_from_page_cache(page);
2434 out_release:
2435 unlock_page(page);
2436 put_page(page);
2437 out_unacct_blocks:
2438 shmem_inode_unacct_blocks(inode, 1);
2439 return ret;
2440 }
2441 #endif /* CONFIG_USERFAULTFD */
2442
2443 #ifdef CONFIG_TMPFS
2444 static const struct inode_operations shmem_symlink_inode_operations;
2445 static const struct inode_operations shmem_short_symlink_operations;
2446
2447 #ifdef CONFIG_TMPFS_XATTR
2448 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2449 #else
2450 #define shmem_initxattrs NULL
2451 #endif
2452
2453 static int
2454 shmem_write_begin(struct file *file, struct address_space *mapping,
2455 loff_t pos, unsigned len, unsigned flags,
2456 struct page **pagep, void **fsdata)
2457 {
2458 struct inode *inode = mapping->host;
2459 struct shmem_inode_info *info = SHMEM_I(inode);
2460 pgoff_t index = pos >> PAGE_SHIFT;
2461
2462 /* i_rwsem is held by caller */
2463 if (unlikely(info->seals & (F_SEAL_GROW |
2464 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2465 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2466 return -EPERM;
2467 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2468 return -EPERM;
2469 }
2470
2471 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2472 }
2473
2474 static int
2475 shmem_write_end(struct file *file, struct address_space *mapping,
2476 loff_t pos, unsigned len, unsigned copied,
2477 struct page *page, void *fsdata)
2478 {
2479 struct inode *inode = mapping->host;
2480
2481 if (pos + copied > inode->i_size)
2482 i_size_write(inode, pos + copied);
2483
2484 if (!PageUptodate(page)) {
2485 struct page *head = compound_head(page);
2486 if (PageTransCompound(page)) {
2487 int i;
2488
2489 for (i = 0; i < HPAGE_PMD_NR; i++) {
2490 if (head + i == page)
2491 continue;
2492 clear_highpage(head + i);
2493 flush_dcache_page(head + i);
2494 }
2495 }
2496 if (copied < PAGE_SIZE) {
2497 unsigned from = pos & (PAGE_SIZE - 1);
2498 zero_user_segments(page, 0, from,
2499 from + copied, PAGE_SIZE);
2500 }
2501 SetPageUptodate(head);
2502 }
2503 set_page_dirty(page);
2504 unlock_page(page);
2505 put_page(page);
2506
2507 return copied;
2508 }
2509
2510 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2511 {
2512 struct file *file = iocb->ki_filp;
2513 struct inode *inode = file_inode(file);
2514 struct address_space *mapping = inode->i_mapping;
2515 pgoff_t index;
2516 unsigned long offset;
2517 enum sgp_type sgp = SGP_READ;
2518 int error = 0;
2519 ssize_t retval = 0;
2520 loff_t *ppos = &iocb->ki_pos;
2521
2522 /*
2523 * Might this read be for a stacking filesystem? Then when reading
2524 * holes of a sparse file, we actually need to allocate those pages,
2525 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2526 */
2527 if (!iter_is_iovec(to))
2528 sgp = SGP_CACHE;
2529
2530 index = *ppos >> PAGE_SHIFT;
2531 offset = *ppos & ~PAGE_MASK;
2532
2533 for (;;) {
2534 struct page *page = NULL;
2535 pgoff_t end_index;
2536 unsigned long nr, ret;
2537 loff_t i_size = i_size_read(inode);
2538
2539 end_index = i_size >> PAGE_SHIFT;
2540 if (index > end_index)
2541 break;
2542 if (index == end_index) {
2543 nr = i_size & ~PAGE_MASK;
2544 if (nr <= offset)
2545 break;
2546 }
2547
2548 error = shmem_getpage(inode, index, &page, sgp);
2549 if (error) {
2550 if (error == -EINVAL)
2551 error = 0;
2552 break;
2553 }
2554 if (page) {
2555 if (sgp == SGP_CACHE)
2556 set_page_dirty(page);
2557 unlock_page(page);
2558 }
2559
2560 /*
2561 * We must evaluate after, since reads (unlike writes)
2562 * are called without i_rwsem protection against truncate
2563 */
2564 nr = PAGE_SIZE;
2565 i_size = i_size_read(inode);
2566 end_index = i_size >> PAGE_SHIFT;
2567 if (index == end_index) {
2568 nr = i_size & ~PAGE_MASK;
2569 if (nr <= offset) {
2570 if (page)
2571 put_page(page);
2572 break;
2573 }
2574 }
2575 nr -= offset;
2576
2577 if (page) {
2578 /*
2579 * If users can be writing to this page using arbitrary
2580 * virtual addresses, take care about potential aliasing
2581 * before reading the page on the kernel side.
2582 */
2583 if (mapping_writably_mapped(mapping))
2584 flush_dcache_page(page);
2585 /*
2586 * Mark the page accessed if we read the beginning.
2587 */
2588 if (!offset)
2589 mark_page_accessed(page);
2590 } else {
2591 page = ZERO_PAGE(0);
2592 get_page(page);
2593 }
2594
2595 /*
2596 * Ok, we have the page, and it's up-to-date, so
2597 * now we can copy it to user space...
2598 */
2599 ret = copy_page_to_iter(page, offset, nr, to);
2600 retval += ret;
2601 offset += ret;
2602 index += offset >> PAGE_SHIFT;
2603 offset &= ~PAGE_MASK;
2604
2605 put_page(page);
2606 if (!iov_iter_count(to))
2607 break;
2608 if (ret < nr) {
2609 error = -EFAULT;
2610 break;
2611 }
2612 cond_resched();
2613 }
2614
2615 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2616 file_accessed(file);
2617 return retval ? retval : error;
2618 }
2619
2620 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2621 {
2622 struct address_space *mapping = file->f_mapping;
2623 struct inode *inode = mapping->host;
2624
2625 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2626 return generic_file_llseek_size(file, offset, whence,
2627 MAX_LFS_FILESIZE, i_size_read(inode));
2628 if (offset < 0)
2629 return -ENXIO;
2630
2631 inode_lock(inode);
2632 /* We're holding i_rwsem so we can access i_size directly */
2633 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2634 if (offset >= 0)
2635 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2636 inode_unlock(inode);
2637 return offset;
2638 }
2639
2640 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2641 loff_t len)
2642 {
2643 struct inode *inode = file_inode(file);
2644 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2645 struct shmem_inode_info *info = SHMEM_I(inode);
2646 struct shmem_falloc shmem_falloc;
2647 pgoff_t start, index, end, undo_fallocend;
2648 int error;
2649
2650 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2651 return -EOPNOTSUPP;
2652
2653 inode_lock(inode);
2654
2655 if (mode & FALLOC_FL_PUNCH_HOLE) {
2656 struct address_space *mapping = file->f_mapping;
2657 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2658 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2659 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2660
2661 /* protected by i_rwsem */
2662 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2663 error = -EPERM;
2664 goto out;
2665 }
2666
2667 shmem_falloc.waitq = &shmem_falloc_waitq;
2668 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2669 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2670 spin_lock(&inode->i_lock);
2671 inode->i_private = &shmem_falloc;
2672 spin_unlock(&inode->i_lock);
2673
2674 if ((u64)unmap_end > (u64)unmap_start)
2675 unmap_mapping_range(mapping, unmap_start,
2676 1 + unmap_end - unmap_start, 0);
2677 shmem_truncate_range(inode, offset, offset + len - 1);
2678 /* No need to unmap again: hole-punching leaves COWed pages */
2679
2680 spin_lock(&inode->i_lock);
2681 inode->i_private = NULL;
2682 wake_up_all(&shmem_falloc_waitq);
2683 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2684 spin_unlock(&inode->i_lock);
2685 error = 0;
2686 goto out;
2687 }
2688
2689 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2690 error = inode_newsize_ok(inode, offset + len);
2691 if (error)
2692 goto out;
2693
2694 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2695 error = -EPERM;
2696 goto out;
2697 }
2698
2699 start = offset >> PAGE_SHIFT;
2700 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2701 /* Try to avoid a swapstorm if len is impossible to satisfy */
2702 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2703 error = -ENOSPC;
2704 goto out;
2705 }
2706
2707 shmem_falloc.waitq = NULL;
2708 shmem_falloc.start = start;
2709 shmem_falloc.next = start;
2710 shmem_falloc.nr_falloced = 0;
2711 shmem_falloc.nr_unswapped = 0;
2712 spin_lock(&inode->i_lock);
2713 inode->i_private = &shmem_falloc;
2714 spin_unlock(&inode->i_lock);
2715
2716 /*
2717 * info->fallocend is only relevant when huge pages might be
2718 * involved: to prevent split_huge_page() freeing fallocated
2719 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2720 */
2721 undo_fallocend = info->fallocend;
2722 if (info->fallocend < end)
2723 info->fallocend = end;
2724
2725 for (index = start; index < end; ) {
2726 struct page *page;
2727
2728 /*
2729 * Good, the fallocate(2) manpage permits EINTR: we may have
2730 * been interrupted because we are using up too much memory.
2731 */
2732 if (signal_pending(current))
2733 error = -EINTR;
2734 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2735 error = -ENOMEM;
2736 else
2737 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2738 if (error) {
2739 info->fallocend = undo_fallocend;
2740 /* Remove the !PageUptodate pages we added */
2741 if (index > start) {
2742 shmem_undo_range(inode,
2743 (loff_t)start << PAGE_SHIFT,
2744 ((loff_t)index << PAGE_SHIFT) - 1, true);
2745 }
2746 goto undone;
2747 }
2748
2749 index++;
2750 /*
2751 * Here is a more important optimization than it appears:
2752 * a second SGP_FALLOC on the same huge page will clear it,
2753 * making it PageUptodate and un-undoable if we fail later.
2754 */
2755 if (PageTransCompound(page)) {
2756 index = round_up(index, HPAGE_PMD_NR);
2757 /* Beware 32-bit wraparound */
2758 if (!index)
2759 index--;
2760 }
2761
2762 /*
2763 * Inform shmem_writepage() how far we have reached.
2764 * No need for lock or barrier: we have the page lock.
2765 */
2766 if (!PageUptodate(page))
2767 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2768 shmem_falloc.next = index;
2769
2770 /*
2771 * If !PageUptodate, leave it that way so that freeable pages
2772 * can be recognized if we need to rollback on error later.
2773 * But set_page_dirty so that memory pressure will swap rather
2774 * than free the pages we are allocating (and SGP_CACHE pages
2775 * might still be clean: we now need to mark those dirty too).
2776 */
2777 set_page_dirty(page);
2778 unlock_page(page);
2779 put_page(page);
2780 cond_resched();
2781 }
2782
2783 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2784 i_size_write(inode, offset + len);
2785 inode->i_ctime = current_time(inode);
2786 undone:
2787 spin_lock(&inode->i_lock);
2788 inode->i_private = NULL;
2789 spin_unlock(&inode->i_lock);
2790 out:
2791 inode_unlock(inode);
2792 return error;
2793 }
2794
2795 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2796 {
2797 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2798
2799 buf->f_type = TMPFS_MAGIC;
2800 buf->f_bsize = PAGE_SIZE;
2801 buf->f_namelen = NAME_MAX;
2802 if (sbinfo->max_blocks) {
2803 buf->f_blocks = sbinfo->max_blocks;
2804 buf->f_bavail =
2805 buf->f_bfree = sbinfo->max_blocks -
2806 percpu_counter_sum(&sbinfo->used_blocks);
2807 }
2808 if (sbinfo->max_inodes) {
2809 buf->f_files = sbinfo->max_inodes;
2810 buf->f_ffree = sbinfo->free_inodes;
2811 }
2812 /* else leave those fields 0 like simple_statfs */
2813
2814 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2815
2816 return 0;
2817 }
2818
2819 /*
2820 * File creation. Allocate an inode, and we're done..
2821 */
2822 static int
2823 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2824 struct dentry *dentry, umode_t mode, dev_t dev)
2825 {
2826 struct inode *inode;
2827 int error = -ENOSPC;
2828
2829 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2830 if (inode) {
2831 error = simple_acl_create(dir, inode);
2832 if (error)
2833 goto out_iput;
2834 error = security_inode_init_security(inode, dir,
2835 &dentry->d_name,
2836 shmem_initxattrs, NULL);
2837 if (error && error != -EOPNOTSUPP)
2838 goto out_iput;
2839
2840 error = 0;
2841 dir->i_size += BOGO_DIRENT_SIZE;
2842 dir->i_ctime = dir->i_mtime = current_time(dir);
2843 d_instantiate(dentry, inode);
2844 dget(dentry); /* Extra count - pin the dentry in core */
2845 }
2846 return error;
2847 out_iput:
2848 iput(inode);
2849 return error;
2850 }
2851
2852 static int
2853 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2854 struct dentry *dentry, umode_t mode)
2855 {
2856 struct inode *inode;
2857 int error = -ENOSPC;
2858
2859 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2860 if (inode) {
2861 error = security_inode_init_security(inode, dir,
2862 NULL,
2863 shmem_initxattrs, NULL);
2864 if (error && error != -EOPNOTSUPP)
2865 goto out_iput;
2866 error = simple_acl_create(dir, inode);
2867 if (error)
2868 goto out_iput;
2869 d_tmpfile(dentry, inode);
2870 }
2871 return error;
2872 out_iput:
2873 iput(inode);
2874 return error;
2875 }
2876
2877 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2878 struct dentry *dentry, umode_t mode)
2879 {
2880 int error;
2881
2882 if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2883 mode | S_IFDIR, 0)))
2884 return error;
2885 inc_nlink(dir);
2886 return 0;
2887 }
2888
2889 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2890 struct dentry *dentry, umode_t mode, bool excl)
2891 {
2892 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2893 }
2894
2895 /*
2896 * Link a file..
2897 */
2898 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2899 {
2900 struct inode *inode = d_inode(old_dentry);
2901 int ret = 0;
2902
2903 /*
2904 * No ordinary (disk based) filesystem counts links as inodes;
2905 * but each new link needs a new dentry, pinning lowmem, and
2906 * tmpfs dentries cannot be pruned until they are unlinked.
2907 * But if an O_TMPFILE file is linked into the tmpfs, the
2908 * first link must skip that, to get the accounting right.
2909 */
2910 if (inode->i_nlink) {
2911 ret = shmem_reserve_inode(inode->i_sb, NULL);
2912 if (ret)
2913 goto out;
2914 }
2915
2916 dir->i_size += BOGO_DIRENT_SIZE;
2917 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2918 inc_nlink(inode);
2919 ihold(inode); /* New dentry reference */
2920 dget(dentry); /* Extra pinning count for the created dentry */
2921 d_instantiate(dentry, inode);
2922 out:
2923 return ret;
2924 }
2925
2926 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2927 {
2928 struct inode *inode = d_inode(dentry);
2929
2930 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2931 shmem_free_inode(inode->i_sb);
2932
2933 dir->i_size -= BOGO_DIRENT_SIZE;
2934 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2935 drop_nlink(inode);
2936 dput(dentry); /* Undo the count from "create" - this does all the work */
2937 return 0;
2938 }
2939
2940 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2941 {
2942 if (!simple_empty(dentry))
2943 return -ENOTEMPTY;
2944
2945 drop_nlink(d_inode(dentry));
2946 drop_nlink(dir);
2947 return shmem_unlink(dir, dentry);
2948 }
2949
2950 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2951 {
2952 bool old_is_dir = d_is_dir(old_dentry);
2953 bool new_is_dir = d_is_dir(new_dentry);
2954
2955 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2956 if (old_is_dir) {
2957 drop_nlink(old_dir);
2958 inc_nlink(new_dir);
2959 } else {
2960 drop_nlink(new_dir);
2961 inc_nlink(old_dir);
2962 }
2963 }
2964 old_dir->i_ctime = old_dir->i_mtime =
2965 new_dir->i_ctime = new_dir->i_mtime =
2966 d_inode(old_dentry)->i_ctime =
2967 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2968
2969 return 0;
2970 }
2971
2972 static int shmem_whiteout(struct user_namespace *mnt_userns,
2973 struct inode *old_dir, struct dentry *old_dentry)
2974 {
2975 struct dentry *whiteout;
2976 int error;
2977
2978 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2979 if (!whiteout)
2980 return -ENOMEM;
2981
2982 error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2983 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2984 dput(whiteout);
2985 if (error)
2986 return error;
2987
2988 /*
2989 * Cheat and hash the whiteout while the old dentry is still in
2990 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2991 *
2992 * d_lookup() will consistently find one of them at this point,
2993 * not sure which one, but that isn't even important.
2994 */
2995 d_rehash(whiteout);
2996 return 0;
2997 }
2998
2999 /*
3000 * The VFS layer already does all the dentry stuff for rename,
3001 * we just have to decrement the usage count for the target if
3002 * it exists so that the VFS layer correctly free's it when it
3003 * gets overwritten.
3004 */
3005 static int shmem_rename2(struct user_namespace *mnt_userns,
3006 struct inode *old_dir, struct dentry *old_dentry,
3007 struct inode *new_dir, struct dentry *new_dentry,
3008 unsigned int flags)
3009 {
3010 struct inode *inode = d_inode(old_dentry);
3011 int they_are_dirs = S_ISDIR(inode->i_mode);
3012
3013 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3014 return -EINVAL;
3015
3016 if (flags & RENAME_EXCHANGE)
3017 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3018
3019 if (!simple_empty(new_dentry))
3020 return -ENOTEMPTY;
3021
3022 if (flags & RENAME_WHITEOUT) {
3023 int error;
3024
3025 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3026 if (error)
3027 return error;
3028 }
3029
3030 if (d_really_is_positive(new_dentry)) {
3031 (void) shmem_unlink(new_dir, new_dentry);
3032 if (they_are_dirs) {
3033 drop_nlink(d_inode(new_dentry));
3034 drop_nlink(old_dir);
3035 }
3036 } else if (they_are_dirs) {
3037 drop_nlink(old_dir);
3038 inc_nlink(new_dir);
3039 }
3040
3041 old_dir->i_size -= BOGO_DIRENT_SIZE;
3042 new_dir->i_size += BOGO_DIRENT_SIZE;
3043 old_dir->i_ctime = old_dir->i_mtime =
3044 new_dir->i_ctime = new_dir->i_mtime =
3045 inode->i_ctime = current_time(old_dir);
3046 return 0;
3047 }
3048
3049 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3050 struct dentry *dentry, const char *symname)
3051 {
3052 int error;
3053 int len;
3054 struct inode *inode;
3055 struct page *page;
3056
3057 len = strlen(symname) + 1;
3058 if (len > PAGE_SIZE)
3059 return -ENAMETOOLONG;
3060
3061 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3062 VM_NORESERVE);
3063 if (!inode)
3064 return -ENOSPC;
3065
3066 error = security_inode_init_security(inode, dir, &dentry->d_name,
3067 shmem_initxattrs, NULL);
3068 if (error && error != -EOPNOTSUPP) {
3069 iput(inode);
3070 return error;
3071 }
3072
3073 inode->i_size = len-1;
3074 if (len <= SHORT_SYMLINK_LEN) {
3075 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3076 if (!inode->i_link) {
3077 iput(inode);
3078 return -ENOMEM;
3079 }
3080 inode->i_op = &shmem_short_symlink_operations;
3081 } else {
3082 inode_nohighmem(inode);
3083 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3084 if (error) {
3085 iput(inode);
3086 return error;
3087 }
3088 inode->i_mapping->a_ops = &shmem_aops;
3089 inode->i_op = &shmem_symlink_inode_operations;
3090 memcpy(page_address(page), symname, len);
3091 SetPageUptodate(page);
3092 set_page_dirty(page);
3093 unlock_page(page);
3094 put_page(page);
3095 }
3096 dir->i_size += BOGO_DIRENT_SIZE;
3097 dir->i_ctime = dir->i_mtime = current_time(dir);
3098 d_instantiate(dentry, inode);
3099 dget(dentry);
3100 return 0;
3101 }
3102
3103 static void shmem_put_link(void *arg)
3104 {
3105 mark_page_accessed(arg);
3106 put_page(arg);
3107 }
3108
3109 static const char *shmem_get_link(struct dentry *dentry,
3110 struct inode *inode,
3111 struct delayed_call *done)
3112 {
3113 struct page *page = NULL;
3114 int error;
3115 if (!dentry) {
3116 page = find_get_page(inode->i_mapping, 0);
3117 if (!page)
3118 return ERR_PTR(-ECHILD);
3119 if (!PageUptodate(page)) {
3120 put_page(page);
3121 return ERR_PTR(-ECHILD);
3122 }
3123 } else {
3124 error = shmem_getpage(inode, 0, &page, SGP_READ);
3125 if (error)
3126 return ERR_PTR(error);
3127 unlock_page(page);
3128 }
3129 set_delayed_call(done, shmem_put_link, page);
3130 return page_address(page);
3131 }
3132
3133 #ifdef CONFIG_TMPFS_XATTR
3134 /*
3135 * Superblocks without xattr inode operations may get some security.* xattr
3136 * support from the LSM "for free". As soon as we have any other xattrs
3137 * like ACLs, we also need to implement the security.* handlers at
3138 * filesystem level, though.
3139 */
3140
3141 /*
3142 * Callback for security_inode_init_security() for acquiring xattrs.
3143 */
3144 static int shmem_initxattrs(struct inode *inode,
3145 const struct xattr *xattr_array,
3146 void *fs_info)
3147 {
3148 struct shmem_inode_info *info = SHMEM_I(inode);
3149 const struct xattr *xattr;
3150 struct simple_xattr *new_xattr;
3151 size_t len;
3152
3153 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3154 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3155 if (!new_xattr)
3156 return -ENOMEM;
3157
3158 len = strlen(xattr->name) + 1;
3159 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3160 GFP_KERNEL);
3161 if (!new_xattr->name) {
3162 kvfree(new_xattr);
3163 return -ENOMEM;
3164 }
3165
3166 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3167 XATTR_SECURITY_PREFIX_LEN);
3168 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3169 xattr->name, len);
3170
3171 simple_xattr_list_add(&info->xattrs, new_xattr);
3172 }
3173
3174 return 0;
3175 }
3176
3177 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3178 struct dentry *unused, struct inode *inode,
3179 const char *name, void *buffer, size_t size)
3180 {
3181 struct shmem_inode_info *info = SHMEM_I(inode);
3182
3183 name = xattr_full_name(handler, name);
3184 return simple_xattr_get(&info->xattrs, name, buffer, size);
3185 }
3186
3187 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3188 struct user_namespace *mnt_userns,
3189 struct dentry *unused, struct inode *inode,
3190 const char *name, const void *value,
3191 size_t size, int flags)
3192 {
3193 struct shmem_inode_info *info = SHMEM_I(inode);
3194
3195 name = xattr_full_name(handler, name);
3196 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3197 }
3198
3199 static const struct xattr_handler shmem_security_xattr_handler = {
3200 .prefix = XATTR_SECURITY_PREFIX,
3201 .get = shmem_xattr_handler_get,
3202 .set = shmem_xattr_handler_set,
3203 };
3204
3205 static const struct xattr_handler shmem_trusted_xattr_handler = {
3206 .prefix = XATTR_TRUSTED_PREFIX,
3207 .get = shmem_xattr_handler_get,
3208 .set = shmem_xattr_handler_set,
3209 };
3210
3211 static const struct xattr_handler *shmem_xattr_handlers[] = {
3212 #ifdef CONFIG_TMPFS_POSIX_ACL
3213 &posix_acl_access_xattr_handler,
3214 &posix_acl_default_xattr_handler,
3215 #endif
3216 &shmem_security_xattr_handler,
3217 &shmem_trusted_xattr_handler,
3218 NULL
3219 };
3220
3221 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3222 {
3223 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3224 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3225 }
3226 #endif /* CONFIG_TMPFS_XATTR */
3227
3228 static const struct inode_operations shmem_short_symlink_operations = {
3229 .get_link = simple_get_link,
3230 #ifdef CONFIG_TMPFS_XATTR
3231 .listxattr = shmem_listxattr,
3232 #endif
3233 };
3234
3235 static const struct inode_operations shmem_symlink_inode_operations = {
3236 .get_link = shmem_get_link,
3237 #ifdef CONFIG_TMPFS_XATTR
3238 .listxattr = shmem_listxattr,
3239 #endif
3240 };
3241
3242 static struct dentry *shmem_get_parent(struct dentry *child)
3243 {
3244 return ERR_PTR(-ESTALE);
3245 }
3246
3247 static int shmem_match(struct inode *ino, void *vfh)
3248 {
3249 __u32 *fh = vfh;
3250 __u64 inum = fh[2];
3251 inum = (inum << 32) | fh[1];
3252 return ino->i_ino == inum && fh[0] == ino->i_generation;
3253 }
3254
3255 /* Find any alias of inode, but prefer a hashed alias */
3256 static struct dentry *shmem_find_alias(struct inode *inode)
3257 {
3258 struct dentry *alias = d_find_alias(inode);
3259
3260 return alias ?: d_find_any_alias(inode);
3261 }
3262
3263
3264 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3265 struct fid *fid, int fh_len, int fh_type)
3266 {
3267 struct inode *inode;
3268 struct dentry *dentry = NULL;
3269 u64 inum;
3270
3271 if (fh_len < 3)
3272 return NULL;
3273
3274 inum = fid->raw[2];
3275 inum = (inum << 32) | fid->raw[1];
3276
3277 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3278 shmem_match, fid->raw);
3279 if (inode) {
3280 dentry = shmem_find_alias(inode);
3281 iput(inode);
3282 }
3283
3284 return dentry;
3285 }
3286
3287 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3288 struct inode *parent)
3289 {
3290 if (*len < 3) {
3291 *len = 3;
3292 return FILEID_INVALID;
3293 }
3294
3295 if (inode_unhashed(inode)) {
3296 /* Unfortunately insert_inode_hash is not idempotent,
3297 * so as we hash inodes here rather than at creation
3298 * time, we need a lock to ensure we only try
3299 * to do it once
3300 */
3301 static DEFINE_SPINLOCK(lock);
3302 spin_lock(&lock);
3303 if (inode_unhashed(inode))
3304 __insert_inode_hash(inode,
3305 inode->i_ino + inode->i_generation);
3306 spin_unlock(&lock);
3307 }
3308
3309 fh[0] = inode->i_generation;
3310 fh[1] = inode->i_ino;
3311 fh[2] = ((__u64)inode->i_ino) >> 32;
3312
3313 *len = 3;
3314 return 1;
3315 }
3316
3317 static const struct export_operations shmem_export_ops = {
3318 .get_parent = shmem_get_parent,
3319 .encode_fh = shmem_encode_fh,
3320 .fh_to_dentry = shmem_fh_to_dentry,
3321 };
3322
3323 enum shmem_param {
3324 Opt_gid,
3325 Opt_huge,
3326 Opt_mode,
3327 Opt_mpol,
3328 Opt_nr_blocks,
3329 Opt_nr_inodes,
3330 Opt_size,
3331 Opt_uid,
3332 Opt_inode32,
3333 Opt_inode64,
3334 };
3335
3336 static const struct constant_table shmem_param_enums_huge[] = {
3337 {"never", SHMEM_HUGE_NEVER },
3338 {"always", SHMEM_HUGE_ALWAYS },
3339 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3340 {"advise", SHMEM_HUGE_ADVISE },
3341 {}
3342 };
3343
3344 const struct fs_parameter_spec shmem_fs_parameters[] = {
3345 fsparam_u32 ("gid", Opt_gid),
3346 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3347 fsparam_u32oct("mode", Opt_mode),
3348 fsparam_string("mpol", Opt_mpol),
3349 fsparam_string("nr_blocks", Opt_nr_blocks),
3350 fsparam_string("nr_inodes", Opt_nr_inodes),
3351 fsparam_string("size", Opt_size),
3352 fsparam_u32 ("uid", Opt_uid),
3353 fsparam_flag ("inode32", Opt_inode32),
3354 fsparam_flag ("inode64", Opt_inode64),
3355 {}
3356 };
3357
3358 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3359 {
3360 struct shmem_options *ctx = fc->fs_private;
3361 struct fs_parse_result result;
3362 unsigned long long size;
3363 char *rest;
3364 int opt;
3365
3366 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3367 if (opt < 0)
3368 return opt;
3369
3370 switch (opt) {
3371 case Opt_size:
3372 size = memparse(param->string, &rest);
3373 if (*rest == '%') {
3374 size <<= PAGE_SHIFT;
3375 size *= totalram_pages();
3376 do_div(size, 100);
3377 rest++;
3378 }
3379 if (*rest)
3380 goto bad_value;
3381 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3382 ctx->seen |= SHMEM_SEEN_BLOCKS;
3383 break;
3384 case Opt_nr_blocks:
3385 ctx->blocks = memparse(param->string, &rest);
3386 if (*rest)
3387 goto bad_value;
3388 ctx->seen |= SHMEM_SEEN_BLOCKS;
3389 break;
3390 case Opt_nr_inodes:
3391 ctx->inodes = memparse(param->string, &rest);
3392 if (*rest)
3393 goto bad_value;
3394 ctx->seen |= SHMEM_SEEN_INODES;
3395 break;
3396 case Opt_mode:
3397 ctx->mode = result.uint_32 & 07777;
3398 break;
3399 case Opt_uid:
3400 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3401 if (!uid_valid(ctx->uid))
3402 goto bad_value;
3403 break;
3404 case Opt_gid:
3405 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3406 if (!gid_valid(ctx->gid))
3407 goto bad_value;
3408 break;
3409 case Opt_huge:
3410 ctx->huge = result.uint_32;
3411 if (ctx->huge != SHMEM_HUGE_NEVER &&
3412 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3413 has_transparent_hugepage()))
3414 goto unsupported_parameter;
3415 ctx->seen |= SHMEM_SEEN_HUGE;
3416 break;
3417 case Opt_mpol:
3418 if (IS_ENABLED(CONFIG_NUMA)) {
3419 mpol_put(ctx->mpol);
3420 ctx->mpol = NULL;
3421 if (mpol_parse_str(param->string, &ctx->mpol))
3422 goto bad_value;
3423 break;
3424 }
3425 goto unsupported_parameter;
3426 case Opt_inode32:
3427 ctx->full_inums = false;
3428 ctx->seen |= SHMEM_SEEN_INUMS;
3429 break;
3430 case Opt_inode64:
3431 if (sizeof(ino_t) < 8) {
3432 return invalfc(fc,
3433 "Cannot use inode64 with <64bit inums in kernel\n");
3434 }
3435 ctx->full_inums = true;
3436 ctx->seen |= SHMEM_SEEN_INUMS;
3437 break;
3438 }
3439 return 0;
3440
3441 unsupported_parameter:
3442 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3443 bad_value:
3444 return invalfc(fc, "Bad value for '%s'", param->key);
3445 }
3446
3447 static int shmem_parse_options(struct fs_context *fc, void *data)
3448 {
3449 char *options = data;
3450
3451 if (options) {
3452 int err = security_sb_eat_lsm_opts(options, &fc->security);
3453 if (err)
3454 return err;
3455 }
3456
3457 while (options != NULL) {
3458 char *this_char = options;
3459 for (;;) {
3460 /*
3461 * NUL-terminate this option: unfortunately,
3462 * mount options form a comma-separated list,
3463 * but mpol's nodelist may also contain commas.
3464 */
3465 options = strchr(options, ',');
3466 if (options == NULL)
3467 break;
3468 options++;
3469 if (!isdigit(*options)) {
3470 options[-1] = '\0';
3471 break;
3472 }
3473 }
3474 if (*this_char) {
3475 char *value = strchr(this_char, '=');
3476 size_t len = 0;
3477 int err;
3478
3479 if (value) {
3480 *value++ = '\0';
3481 len = strlen(value);
3482 }
3483 err = vfs_parse_fs_string(fc, this_char, value, len);
3484 if (err < 0)
3485 return err;
3486 }
3487 }
3488 return 0;
3489 }
3490
3491 /*
3492 * Reconfigure a shmem filesystem.
3493 *
3494 * Note that we disallow change from limited->unlimited blocks/inodes while any
3495 * are in use; but we must separately disallow unlimited->limited, because in
3496 * that case we have no record of how much is already in use.
3497 */
3498 static int shmem_reconfigure(struct fs_context *fc)
3499 {
3500 struct shmem_options *ctx = fc->fs_private;
3501 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3502 unsigned long inodes;
3503 struct mempolicy *mpol = NULL;
3504 const char *err;
3505
3506 raw_spin_lock(&sbinfo->stat_lock);
3507 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3508 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3509 if (!sbinfo->max_blocks) {
3510 err = "Cannot retroactively limit size";
3511 goto out;
3512 }
3513 if (percpu_counter_compare(&sbinfo->used_blocks,
3514 ctx->blocks) > 0) {
3515 err = "Too small a size for current use";
3516 goto out;
3517 }
3518 }
3519 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3520 if (!sbinfo->max_inodes) {
3521 err = "Cannot retroactively limit inodes";
3522 goto out;
3523 }
3524 if (ctx->inodes < inodes) {
3525 err = "Too few inodes for current use";
3526 goto out;
3527 }
3528 }
3529
3530 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3531 sbinfo->next_ino > UINT_MAX) {
3532 err = "Current inum too high to switch to 32-bit inums";
3533 goto out;
3534 }
3535
3536 if (ctx->seen & SHMEM_SEEN_HUGE)
3537 sbinfo->huge = ctx->huge;
3538 if (ctx->seen & SHMEM_SEEN_INUMS)
3539 sbinfo->full_inums = ctx->full_inums;
3540 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3541 sbinfo->max_blocks = ctx->blocks;
3542 if (ctx->seen & SHMEM_SEEN_INODES) {
3543 sbinfo->max_inodes = ctx->inodes;
3544 sbinfo->free_inodes = ctx->inodes - inodes;
3545 }
3546
3547 /*
3548 * Preserve previous mempolicy unless mpol remount option was specified.
3549 */
3550 if (ctx->mpol) {
3551 mpol = sbinfo->mpol;
3552 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3553 ctx->mpol = NULL;
3554 }
3555 raw_spin_unlock(&sbinfo->stat_lock);
3556 mpol_put(mpol);
3557 return 0;
3558 out:
3559 raw_spin_unlock(&sbinfo->stat_lock);
3560 return invalfc(fc, "%s", err);
3561 }
3562
3563 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3564 {
3565 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3566
3567 if (sbinfo->max_blocks != shmem_default_max_blocks())
3568 seq_printf(seq, ",size=%luk",
3569 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3570 if (sbinfo->max_inodes != shmem_default_max_inodes())
3571 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3572 if (sbinfo->mode != (0777 | S_ISVTX))
3573 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3574 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3575 seq_printf(seq, ",uid=%u",
3576 from_kuid_munged(&init_user_ns, sbinfo->uid));
3577 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3578 seq_printf(seq, ",gid=%u",
3579 from_kgid_munged(&init_user_ns, sbinfo->gid));
3580
3581 /*
3582 * Showing inode{64,32} might be useful even if it's the system default,
3583 * since then people don't have to resort to checking both here and
3584 * /proc/config.gz to confirm 64-bit inums were successfully applied
3585 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3586 *
3587 * We hide it when inode64 isn't the default and we are using 32-bit
3588 * inodes, since that probably just means the feature isn't even under
3589 * consideration.
3590 *
3591 * As such:
3592 *
3593 * +-----------------+-----------------+
3594 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3595 * +------------------+-----------------+-----------------+
3596 * | full_inums=true | show | show |
3597 * | full_inums=false | show | hide |
3598 * +------------------+-----------------+-----------------+
3599 *
3600 */
3601 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3602 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3604 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3605 if (sbinfo->huge)
3606 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3607 #endif
3608 shmem_show_mpol(seq, sbinfo->mpol);
3609 return 0;
3610 }
3611
3612 #endif /* CONFIG_TMPFS */
3613
3614 static void shmem_put_super(struct super_block *sb)
3615 {
3616 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3617
3618 free_percpu(sbinfo->ino_batch);
3619 percpu_counter_destroy(&sbinfo->used_blocks);
3620 mpol_put(sbinfo->mpol);
3621 kfree(sbinfo);
3622 sb->s_fs_info = NULL;
3623 }
3624
3625 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3626 {
3627 struct shmem_options *ctx = fc->fs_private;
3628 struct inode *inode;
3629 struct shmem_sb_info *sbinfo;
3630
3631 /* Round up to L1_CACHE_BYTES to resist false sharing */
3632 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3633 L1_CACHE_BYTES), GFP_KERNEL);
3634 if (!sbinfo)
3635 return -ENOMEM;
3636
3637 sb->s_fs_info = sbinfo;
3638
3639 #ifdef CONFIG_TMPFS
3640 /*
3641 * Per default we only allow half of the physical ram per
3642 * tmpfs instance, limiting inodes to one per page of lowmem;
3643 * but the internal instance is left unlimited.
3644 */
3645 if (!(sb->s_flags & SB_KERNMOUNT)) {
3646 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3647 ctx->blocks = shmem_default_max_blocks();
3648 if (!(ctx->seen & SHMEM_SEEN_INODES))
3649 ctx->inodes = shmem_default_max_inodes();
3650 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3651 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3652 } else {
3653 sb->s_flags |= SB_NOUSER;
3654 }
3655 sb->s_export_op = &shmem_export_ops;
3656 sb->s_flags |= SB_NOSEC;
3657 #else
3658 sb->s_flags |= SB_NOUSER;
3659 #endif
3660 sbinfo->max_blocks = ctx->blocks;
3661 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3662 if (sb->s_flags & SB_KERNMOUNT) {
3663 sbinfo->ino_batch = alloc_percpu(ino_t);
3664 if (!sbinfo->ino_batch)
3665 goto failed;
3666 }
3667 sbinfo->uid = ctx->uid;
3668 sbinfo->gid = ctx->gid;
3669 sbinfo->full_inums = ctx->full_inums;
3670 sbinfo->mode = ctx->mode;
3671 sbinfo->huge = ctx->huge;
3672 sbinfo->mpol = ctx->mpol;
3673 ctx->mpol = NULL;
3674
3675 raw_spin_lock_init(&sbinfo->stat_lock);
3676 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3677 goto failed;
3678 spin_lock_init(&sbinfo->shrinklist_lock);
3679 INIT_LIST_HEAD(&sbinfo->shrinklist);
3680
3681 sb->s_maxbytes = MAX_LFS_FILESIZE;
3682 sb->s_blocksize = PAGE_SIZE;
3683 sb->s_blocksize_bits = PAGE_SHIFT;
3684 sb->s_magic = TMPFS_MAGIC;
3685 sb->s_op = &shmem_ops;
3686 sb->s_time_gran = 1;
3687 #ifdef CONFIG_TMPFS_XATTR
3688 sb->s_xattr = shmem_xattr_handlers;
3689 #endif
3690 #ifdef CONFIG_TMPFS_POSIX_ACL
3691 sb->s_flags |= SB_POSIXACL;
3692 #endif
3693 uuid_gen(&sb->s_uuid);
3694
3695 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3696 if (!inode)
3697 goto failed;
3698 inode->i_uid = sbinfo->uid;
3699 inode->i_gid = sbinfo->gid;
3700 sb->s_root = d_make_root(inode);
3701 if (!sb->s_root)
3702 goto failed;
3703 return 0;
3704
3705 failed:
3706 shmem_put_super(sb);
3707 return -ENOMEM;
3708 }
3709
3710 static int shmem_get_tree(struct fs_context *fc)
3711 {
3712 return get_tree_nodev(fc, shmem_fill_super);
3713 }
3714
3715 static void shmem_free_fc(struct fs_context *fc)
3716 {
3717 struct shmem_options *ctx = fc->fs_private;
3718
3719 if (ctx) {
3720 mpol_put(ctx->mpol);
3721 kfree(ctx);
3722 }
3723 }
3724
3725 static const struct fs_context_operations shmem_fs_context_ops = {
3726 .free = shmem_free_fc,
3727 .get_tree = shmem_get_tree,
3728 #ifdef CONFIG_TMPFS
3729 .parse_monolithic = shmem_parse_options,
3730 .parse_param = shmem_parse_one,
3731 .reconfigure = shmem_reconfigure,
3732 #endif
3733 };
3734
3735 static struct kmem_cache *shmem_inode_cachep;
3736
3737 static struct inode *shmem_alloc_inode(struct super_block *sb)
3738 {
3739 struct shmem_inode_info *info;
3740 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3741 if (!info)
3742 return NULL;
3743 return &info->vfs_inode;
3744 }
3745
3746 static void shmem_free_in_core_inode(struct inode *inode)
3747 {
3748 if (S_ISLNK(inode->i_mode))
3749 kfree(inode->i_link);
3750 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3751 }
3752
3753 static void shmem_destroy_inode(struct inode *inode)
3754 {
3755 if (S_ISREG(inode->i_mode))
3756 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3757 }
3758
3759 static void shmem_init_inode(void *foo)
3760 {
3761 struct shmem_inode_info *info = foo;
3762 inode_init_once(&info->vfs_inode);
3763 }
3764
3765 static void shmem_init_inodecache(void)
3766 {
3767 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3768 sizeof(struct shmem_inode_info),
3769 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3770 }
3771
3772 static void shmem_destroy_inodecache(void)
3773 {
3774 kmem_cache_destroy(shmem_inode_cachep);
3775 }
3776
3777 const struct address_space_operations shmem_aops = {
3778 .writepage = shmem_writepage,
3779 .set_page_dirty = __set_page_dirty_no_writeback,
3780 #ifdef CONFIG_TMPFS
3781 .write_begin = shmem_write_begin,
3782 .write_end = shmem_write_end,
3783 #endif
3784 #ifdef CONFIG_MIGRATION
3785 .migratepage = migrate_page,
3786 #endif
3787 .error_remove_page = generic_error_remove_page,
3788 };
3789 EXPORT_SYMBOL(shmem_aops);
3790
3791 static const struct file_operations shmem_file_operations = {
3792 .mmap = shmem_mmap,
3793 .get_unmapped_area = shmem_get_unmapped_area,
3794 #ifdef CONFIG_TMPFS
3795 .llseek = shmem_file_llseek,
3796 .read_iter = shmem_file_read_iter,
3797 .write_iter = generic_file_write_iter,
3798 .fsync = noop_fsync,
3799 .splice_read = generic_file_splice_read,
3800 .splice_write = iter_file_splice_write,
3801 .fallocate = shmem_fallocate,
3802 #endif
3803 };
3804
3805 static const struct inode_operations shmem_inode_operations = {
3806 .getattr = shmem_getattr,
3807 .setattr = shmem_setattr,
3808 #ifdef CONFIG_TMPFS_XATTR
3809 .listxattr = shmem_listxattr,
3810 .set_acl = simple_set_acl,
3811 #endif
3812 };
3813
3814 static const struct inode_operations shmem_dir_inode_operations = {
3815 #ifdef CONFIG_TMPFS
3816 .create = shmem_create,
3817 .lookup = simple_lookup,
3818 .link = shmem_link,
3819 .unlink = shmem_unlink,
3820 .symlink = shmem_symlink,
3821 .mkdir = shmem_mkdir,
3822 .rmdir = shmem_rmdir,
3823 .mknod = shmem_mknod,
3824 .rename = shmem_rename2,
3825 .tmpfile = shmem_tmpfile,
3826 #endif
3827 #ifdef CONFIG_TMPFS_XATTR
3828 .listxattr = shmem_listxattr,
3829 #endif
3830 #ifdef CONFIG_TMPFS_POSIX_ACL
3831 .setattr = shmem_setattr,
3832 .set_acl = simple_set_acl,
3833 #endif
3834 };
3835
3836 static const struct inode_operations shmem_special_inode_operations = {
3837 #ifdef CONFIG_TMPFS_XATTR
3838 .listxattr = shmem_listxattr,
3839 #endif
3840 #ifdef CONFIG_TMPFS_POSIX_ACL
3841 .setattr = shmem_setattr,
3842 .set_acl = simple_set_acl,
3843 #endif
3844 };
3845
3846 static const struct super_operations shmem_ops = {
3847 .alloc_inode = shmem_alloc_inode,
3848 .free_inode = shmem_free_in_core_inode,
3849 .destroy_inode = shmem_destroy_inode,
3850 #ifdef CONFIG_TMPFS
3851 .statfs = shmem_statfs,
3852 .show_options = shmem_show_options,
3853 #endif
3854 .evict_inode = shmem_evict_inode,
3855 .drop_inode = generic_delete_inode,
3856 .put_super = shmem_put_super,
3857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3858 .nr_cached_objects = shmem_unused_huge_count,
3859 .free_cached_objects = shmem_unused_huge_scan,
3860 #endif
3861 };
3862
3863 static const struct vm_operations_struct shmem_vm_ops = {
3864 .fault = shmem_fault,
3865 .map_pages = filemap_map_pages,
3866 #ifdef CONFIG_NUMA
3867 .set_policy = shmem_set_policy,
3868 .get_policy = shmem_get_policy,
3869 #endif
3870 };
3871
3872 int shmem_init_fs_context(struct fs_context *fc)
3873 {
3874 struct shmem_options *ctx;
3875
3876 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3877 if (!ctx)
3878 return -ENOMEM;
3879
3880 ctx->mode = 0777 | S_ISVTX;
3881 ctx->uid = current_fsuid();
3882 ctx->gid = current_fsgid();
3883
3884 fc->fs_private = ctx;
3885 fc->ops = &shmem_fs_context_ops;
3886 return 0;
3887 }
3888
3889 static struct file_system_type shmem_fs_type = {
3890 .owner = THIS_MODULE,
3891 .name = "tmpfs",
3892 .init_fs_context = shmem_init_fs_context,
3893 #ifdef CONFIG_TMPFS
3894 .parameters = shmem_fs_parameters,
3895 #endif
3896 .kill_sb = kill_litter_super,
3897 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3898 };
3899
3900 int __init shmem_init(void)
3901 {
3902 int error;
3903
3904 shmem_init_inodecache();
3905
3906 error = register_filesystem(&shmem_fs_type);
3907 if (error) {
3908 pr_err("Could not register tmpfs\n");
3909 goto out2;
3910 }
3911
3912 shm_mnt = kern_mount(&shmem_fs_type);
3913 if (IS_ERR(shm_mnt)) {
3914 error = PTR_ERR(shm_mnt);
3915 pr_err("Could not kern_mount tmpfs\n");
3916 goto out1;
3917 }
3918
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3921 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3922 else
3923 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3924 #endif
3925 return 0;
3926
3927 out1:
3928 unregister_filesystem(&shmem_fs_type);
3929 out2:
3930 shmem_destroy_inodecache();
3931 shm_mnt = ERR_PTR(error);
3932 return error;
3933 }
3934
3935 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3936 static ssize_t shmem_enabled_show(struct kobject *kobj,
3937 struct kobj_attribute *attr, char *buf)
3938 {
3939 static const int values[] = {
3940 SHMEM_HUGE_ALWAYS,
3941 SHMEM_HUGE_WITHIN_SIZE,
3942 SHMEM_HUGE_ADVISE,
3943 SHMEM_HUGE_NEVER,
3944 SHMEM_HUGE_DENY,
3945 SHMEM_HUGE_FORCE,
3946 };
3947 int len = 0;
3948 int i;
3949
3950 for (i = 0; i < ARRAY_SIZE(values); i++) {
3951 len += sysfs_emit_at(buf, len,
3952 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3953 i ? " " : "",
3954 shmem_format_huge(values[i]));
3955 }
3956
3957 len += sysfs_emit_at(buf, len, "\n");
3958
3959 return len;
3960 }
3961
3962 static ssize_t shmem_enabled_store(struct kobject *kobj,
3963 struct kobj_attribute *attr, const char *buf, size_t count)
3964 {
3965 char tmp[16];
3966 int huge;
3967
3968 if (count + 1 > sizeof(tmp))
3969 return -EINVAL;
3970 memcpy(tmp, buf, count);
3971 tmp[count] = '\0';
3972 if (count && tmp[count - 1] == '\n')
3973 tmp[count - 1] = '\0';
3974
3975 huge = shmem_parse_huge(tmp);
3976 if (huge == -EINVAL)
3977 return -EINVAL;
3978 if (!has_transparent_hugepage() &&
3979 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3980 return -EINVAL;
3981
3982 shmem_huge = huge;
3983 if (shmem_huge > SHMEM_HUGE_DENY)
3984 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3985 return count;
3986 }
3987
3988 struct kobj_attribute shmem_enabled_attr =
3989 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3990 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3991
3992 #else /* !CONFIG_SHMEM */
3993
3994 /*
3995 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3996 *
3997 * This is intended for small system where the benefits of the full
3998 * shmem code (swap-backed and resource-limited) are outweighed by
3999 * their complexity. On systems without swap this code should be
4000 * effectively equivalent, but much lighter weight.
4001 */
4002
4003 static struct file_system_type shmem_fs_type = {
4004 .name = "tmpfs",
4005 .init_fs_context = ramfs_init_fs_context,
4006 .parameters = ramfs_fs_parameters,
4007 .kill_sb = kill_litter_super,
4008 .fs_flags = FS_USERNS_MOUNT,
4009 };
4010
4011 int __init shmem_init(void)
4012 {
4013 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4014
4015 shm_mnt = kern_mount(&shmem_fs_type);
4016 BUG_ON(IS_ERR(shm_mnt));
4017
4018 return 0;
4019 }
4020
4021 int shmem_unuse(unsigned int type, bool frontswap,
4022 unsigned long *fs_pages_to_unuse)
4023 {
4024 return 0;
4025 }
4026
4027 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4028 {
4029 return 0;
4030 }
4031
4032 void shmem_unlock_mapping(struct address_space *mapping)
4033 {
4034 }
4035
4036 #ifdef CONFIG_MMU
4037 unsigned long shmem_get_unmapped_area(struct file *file,
4038 unsigned long addr, unsigned long len,
4039 unsigned long pgoff, unsigned long flags)
4040 {
4041 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4042 }
4043 #endif
4044
4045 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4046 {
4047 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4048 }
4049 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4050
4051 #define shmem_vm_ops generic_file_vm_ops
4052 #define shmem_file_operations ramfs_file_operations
4053 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4054 #define shmem_acct_size(flags, size) 0
4055 #define shmem_unacct_size(flags, size) do {} while (0)
4056
4057 #endif /* CONFIG_SHMEM */
4058
4059 /* common code */
4060
4061 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4062 unsigned long flags, unsigned int i_flags)
4063 {
4064 struct inode *inode;
4065 struct file *res;
4066
4067 if (IS_ERR(mnt))
4068 return ERR_CAST(mnt);
4069
4070 if (size < 0 || size > MAX_LFS_FILESIZE)
4071 return ERR_PTR(-EINVAL);
4072
4073 if (shmem_acct_size(flags, size))
4074 return ERR_PTR(-ENOMEM);
4075
4076 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4077 flags);
4078 if (unlikely(!inode)) {
4079 shmem_unacct_size(flags, size);
4080 return ERR_PTR(-ENOSPC);
4081 }
4082 inode->i_flags |= i_flags;
4083 inode->i_size = size;
4084 clear_nlink(inode); /* It is unlinked */
4085 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4086 if (!IS_ERR(res))
4087 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4088 &shmem_file_operations);
4089 if (IS_ERR(res))
4090 iput(inode);
4091 return res;
4092 }
4093
4094 /**
4095 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4096 * kernel internal. There will be NO LSM permission checks against the
4097 * underlying inode. So users of this interface must do LSM checks at a
4098 * higher layer. The users are the big_key and shm implementations. LSM
4099 * checks are provided at the key or shm level rather than the inode.
4100 * @name: name for dentry (to be seen in /proc/<pid>/maps
4101 * @size: size to be set for the file
4102 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103 */
4104 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4105 {
4106 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4107 }
4108
4109 /**
4110 * shmem_file_setup - get an unlinked file living in tmpfs
4111 * @name: name for dentry (to be seen in /proc/<pid>/maps
4112 * @size: size to be set for the file
4113 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4114 */
4115 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4116 {
4117 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4118 }
4119 EXPORT_SYMBOL_GPL(shmem_file_setup);
4120
4121 /**
4122 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4123 * @mnt: the tmpfs mount where the file will be created
4124 * @name: name for dentry (to be seen in /proc/<pid>/maps
4125 * @size: size to be set for the file
4126 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4127 */
4128 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4129 loff_t size, unsigned long flags)
4130 {
4131 return __shmem_file_setup(mnt, name, size, flags, 0);
4132 }
4133 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4134
4135 /**
4136 * shmem_zero_setup - setup a shared anonymous mapping
4137 * @vma: the vma to be mmapped is prepared by do_mmap
4138 */
4139 int shmem_zero_setup(struct vm_area_struct *vma)
4140 {
4141 struct file *file;
4142 loff_t size = vma->vm_end - vma->vm_start;
4143
4144 /*
4145 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4146 * between XFS directory reading and selinux: since this file is only
4147 * accessible to the user through its mapping, use S_PRIVATE flag to
4148 * bypass file security, in the same way as shmem_kernel_file_setup().
4149 */
4150 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4151 if (IS_ERR(file))
4152 return PTR_ERR(file);
4153
4154 if (vma->vm_file)
4155 fput(vma->vm_file);
4156 vma->vm_file = file;
4157 vma->vm_ops = &shmem_vm_ops;
4158
4159 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4160 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4161 (vma->vm_end & HPAGE_PMD_MASK)) {
4162 khugepaged_enter(vma, vma->vm_flags);
4163 }
4164
4165 return 0;
4166 }
4167
4168 /**
4169 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4170 * @mapping: the page's address_space
4171 * @index: the page index
4172 * @gfp: the page allocator flags to use if allocating
4173 *
4174 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4175 * with any new page allocations done using the specified allocation flags.
4176 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4177 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4178 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4179 *
4180 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4181 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4182 */
4183 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4184 pgoff_t index, gfp_t gfp)
4185 {
4186 #ifdef CONFIG_SHMEM
4187 struct inode *inode = mapping->host;
4188 struct page *page;
4189 int error;
4190
4191 BUG_ON(!shmem_mapping(mapping));
4192 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4193 gfp, NULL, NULL, NULL);
4194 if (error)
4195 page = ERR_PTR(error);
4196 else
4197 unlock_page(page);
4198 return page;
4199 #else
4200 /*
4201 * The tiny !SHMEM case uses ramfs without swap
4202 */
4203 return read_cache_page_gfp(mapping, index, gfp);
4204 #endif
4205 }
4206 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);