]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/shmem.c
191663a8def3ad851c2c667783c31014f3bfda2f
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79
80 struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85 };
86
87 /*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
97 };
98
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 return sb->s_fs_info;
136 }
137
138 /*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 return (flags & VM_NORESERVE) ?
147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 if (!(flags & VM_NORESERVE))
153 vm_unacct_memory(VM_ACCT(size));
154 }
155
156 /*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 return (flags & VM_NORESERVE) ?
165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 if (flags & VM_NORESERVE)
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
183 .ra_pages = 0, /* No readahead */
184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
198 }
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
201 }
202 return 0;
203 }
204
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
212 }
213 }
214
215 /**
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
231
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
237 info->alloced -= freed;
238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 shmem_unacct_blocks(info->flags, freed);
240 }
241 }
242
243 /*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
248 {
249 void **pslot;
250 void *item = NULL;
251
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
264 }
265
266 /*
267 * Like add_to_page_cache_locked, but error if expected item has gone.
268 */
269 static int shmem_add_to_page_cache(struct page *page,
270 struct address_space *mapping,
271 pgoff_t index, gfp_t gfp, void *expected)
272 {
273 int error = 0;
274
275 VM_BUG_ON(!PageLocked(page));
276 VM_BUG_ON(!PageSwapBacked(page));
277
278 if (!expected)
279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 if (!error) {
281 page_cache_get(page);
282 page->mapping = mapping;
283 page->index = index;
284
285 spin_lock_irq(&mapping->tree_lock);
286 if (!expected)
287 error = radix_tree_insert(&mapping->page_tree,
288 index, page);
289 else
290 error = shmem_radix_tree_replace(mapping, index,
291 expected, page);
292 if (!error) {
293 mapping->nrpages++;
294 __inc_zone_page_state(page, NR_FILE_PAGES);
295 __inc_zone_page_state(page, NR_SHMEM);
296 spin_unlock_irq(&mapping->tree_lock);
297 } else {
298 page->mapping = NULL;
299 spin_unlock_irq(&mapping->tree_lock);
300 page_cache_release(page);
301 }
302 if (!expected)
303 radix_tree_preload_end();
304 }
305 if (error)
306 mem_cgroup_uncharge_cache_page(page);
307 return error;
308 }
309
310 /*
311 * Like delete_from_page_cache, but substitutes swap for page.
312 */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 struct address_space *mapping = page->mapping;
316 int error;
317
318 spin_lock_irq(&mapping->tree_lock);
319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 page->mapping = NULL;
321 mapping->nrpages--;
322 __dec_zone_page_state(page, NR_FILE_PAGES);
323 __dec_zone_page_state(page, NR_SHMEM);
324 spin_unlock_irq(&mapping->tree_lock);
325 page_cache_release(page);
326 BUG_ON(error);
327 }
328
329 /*
330 * Like find_get_pages, but collecting swap entries as well as pages.
331 */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 pgoff_t start, unsigned int nr_pages,
334 struct page **pages, pgoff_t *indices)
335 {
336 unsigned int i;
337 unsigned int ret;
338 unsigned int nr_found;
339
340 rcu_read_lock();
341 restart:
342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 (void ***)pages, indices, start, nr_pages);
344 ret = 0;
345 for (i = 0; i < nr_found; i++) {
346 struct page *page;
347 repeat:
348 page = radix_tree_deref_slot((void **)pages[i]);
349 if (unlikely(!page))
350 continue;
351 if (radix_tree_exception(page)) {
352 if (radix_tree_deref_retry(page))
353 goto restart;
354 /*
355 * Otherwise, we must be storing a swap entry
356 * here as an exceptional entry: so return it
357 * without attempting to raise page count.
358 */
359 goto export;
360 }
361 if (!page_cache_get_speculative(page))
362 goto repeat;
363
364 /* Has the page moved? */
365 if (unlikely(page != *((void **)pages[i]))) {
366 page_cache_release(page);
367 goto repeat;
368 }
369 export:
370 indices[ret] = indices[i];
371 pages[ret] = page;
372 ret++;
373 }
374 if (unlikely(!ret && nr_found))
375 goto restart;
376 rcu_read_unlock();
377 return ret;
378 }
379
380 /*
381 * Remove swap entry from radix tree, free the swap and its page cache.
382 */
383 static int shmem_free_swap(struct address_space *mapping,
384 pgoff_t index, void *radswap)
385 {
386 int error;
387
388 spin_lock_irq(&mapping->tree_lock);
389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 spin_unlock_irq(&mapping->tree_lock);
391 if (!error)
392 free_swap_and_cache(radix_to_swp_entry(radswap));
393 return error;
394 }
395
396 /*
397 * Pagevec may contain swap entries, so shuffle up pages before releasing.
398 */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 int i, j;
402
403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 struct page *page = pvec->pages[i];
405 if (!radix_tree_exceptional_entry(page))
406 pvec->pages[j++] = page;
407 }
408 pvec->nr = j;
409 }
410
411 /*
412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413 */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 struct pagevec pvec;
417 pgoff_t indices[PAGEVEC_SIZE];
418 pgoff_t index = 0;
419
420 pagevec_init(&pvec, 0);
421 /*
422 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 */
424 while (!mapping_unevictable(mapping)) {
425 /*
426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 */
429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 PAGEVEC_SIZE, pvec.pages, indices);
431 if (!pvec.nr)
432 break;
433 index = indices[pvec.nr - 1] + 1;
434 shmem_deswap_pagevec(&pvec);
435 check_move_unevictable_pages(pvec.pages, pvec.nr);
436 pagevec_release(&pvec);
437 cond_resched();
438 }
439 }
440
441 /*
442 * Remove range of pages and swap entries from radix tree, and free them.
443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444 */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 bool unfalloc)
447 {
448 struct address_space *mapping = inode->i_mapping;
449 struct shmem_inode_info *info = SHMEM_I(inode);
450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 struct pagevec pvec;
455 pgoff_t indices[PAGEVEC_SIZE];
456 long nr_swaps_freed = 0;
457 pgoff_t index;
458 int i;
459
460 if (lend == -1)
461 end = -1; /* unsigned, so actually very big */
462
463 pagevec_init(&pvec, 0);
464 index = start;
465 while (index < end) {
466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 pvec.pages, indices);
469 if (!pvec.nr)
470 break;
471 mem_cgroup_uncharge_start();
472 for (i = 0; i < pagevec_count(&pvec); i++) {
473 struct page *page = pvec.pages[i];
474
475 index = indices[i];
476 if (index >= end)
477 break;
478
479 if (radix_tree_exceptional_entry(page)) {
480 if (unfalloc)
481 continue;
482 nr_swaps_freed += !shmem_free_swap(mapping,
483 index, page);
484 continue;
485 }
486
487 if (!trylock_page(page))
488 continue;
489 if (!unfalloc || !PageUptodate(page)) {
490 if (page->mapping == mapping) {
491 VM_BUG_ON(PageWriteback(page));
492 truncate_inode_page(mapping, page);
493 }
494 }
495 unlock_page(page);
496 }
497 shmem_deswap_pagevec(&pvec);
498 pagevec_release(&pvec);
499 mem_cgroup_uncharge_end();
500 cond_resched();
501 index++;
502 }
503
504 if (partial_start) {
505 struct page *page = NULL;
506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 if (page) {
508 unsigned int top = PAGE_CACHE_SIZE;
509 if (start > end) {
510 top = partial_end;
511 partial_end = 0;
512 }
513 zero_user_segment(page, partial_start, top);
514 set_page_dirty(page);
515 unlock_page(page);
516 page_cache_release(page);
517 }
518 }
519 if (partial_end) {
520 struct page *page = NULL;
521 shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 if (page) {
523 zero_user_segment(page, 0, partial_end);
524 set_page_dirty(page);
525 unlock_page(page);
526 page_cache_release(page);
527 }
528 }
529 if (start >= end)
530 return;
531
532 index = start;
533 for ( ; ; ) {
534 cond_resched();
535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 pvec.pages, indices);
538 if (!pvec.nr) {
539 if (index == start || unfalloc)
540 break;
541 index = start;
542 continue;
543 }
544 if ((index == start || unfalloc) && indices[0] >= end) {
545 shmem_deswap_pagevec(&pvec);
546 pagevec_release(&pvec);
547 break;
548 }
549 mem_cgroup_uncharge_start();
550 for (i = 0; i < pagevec_count(&pvec); i++) {
551 struct page *page = pvec.pages[i];
552
553 index = indices[i];
554 if (index >= end)
555 break;
556
557 if (radix_tree_exceptional_entry(page)) {
558 if (unfalloc)
559 continue;
560 nr_swaps_freed += !shmem_free_swap(mapping,
561 index, page);
562 continue;
563 }
564
565 lock_page(page);
566 if (!unfalloc || !PageUptodate(page)) {
567 if (page->mapping == mapping) {
568 VM_BUG_ON(PageWriteback(page));
569 truncate_inode_page(mapping, page);
570 }
571 }
572 unlock_page(page);
573 }
574 shmem_deswap_pagevec(&pvec);
575 pagevec_release(&pvec);
576 mem_cgroup_uncharge_end();
577 index++;
578 }
579
580 spin_lock(&info->lock);
581 info->swapped -= nr_swaps_freed;
582 shmem_recalc_inode(inode);
583 spin_unlock(&info->lock);
584 }
585
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 shmem_undo_range(inode, lstart, lend, false);
589 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 struct inode *inode = dentry->d_inode;
596 int error;
597
598 error = inode_change_ok(inode, attr);
599 if (error)
600 return error;
601
602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 loff_t oldsize = inode->i_size;
604 loff_t newsize = attr->ia_size;
605
606 if (newsize != oldsize) {
607 i_size_write(inode, newsize);
608 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 }
610 if (newsize < oldsize) {
611 loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 shmem_truncate_range(inode, newsize, (loff_t)-1);
614 /* unmap again to remove racily COWed private pages */
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 }
617 }
618
619 setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 if (attr->ia_valid & ATTR_MODE)
622 error = generic_acl_chmod(inode);
623 #endif
624 return error;
625 }
626
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 struct shmem_inode_info *info = SHMEM_I(inode);
630 struct shmem_xattr *xattr, *nxattr;
631
632 if (inode->i_mapping->a_ops == &shmem_aops) {
633 shmem_unacct_size(info->flags, inode->i_size);
634 inode->i_size = 0;
635 shmem_truncate_range(inode, 0, (loff_t)-1);
636 if (!list_empty(&info->swaplist)) {
637 mutex_lock(&shmem_swaplist_mutex);
638 list_del_init(&info->swaplist);
639 mutex_unlock(&shmem_swaplist_mutex);
640 }
641 } else
642 kfree(info->symlink);
643
644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 kfree(xattr->name);
646 kfree(xattr);
647 }
648 BUG_ON(inode->i_blocks);
649 shmem_free_inode(inode->i_sb);
650 clear_inode(inode);
651 }
652
653 /*
654 * If swap found in inode, free it and move page from swapcache to filecache.
655 */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 swp_entry_t swap, struct page **pagep)
658 {
659 struct address_space *mapping = info->vfs_inode.i_mapping;
660 void *radswap;
661 pgoff_t index;
662 gfp_t gfp;
663 int error = 0;
664
665 radswap = swp_to_radix_entry(swap);
666 index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 if (index == -1)
668 return 0;
669
670 /*
671 * Move _head_ to start search for next from here.
672 * But be careful: shmem_evict_inode checks list_empty without taking
673 * mutex, and there's an instant in list_move_tail when info->swaplist
674 * would appear empty, if it were the only one on shmem_swaplist.
675 */
676 if (shmem_swaplist.next != &info->swaplist)
677 list_move_tail(&shmem_swaplist, &info->swaplist);
678
679 gfp = mapping_gfp_mask(mapping);
680 if (shmem_should_replace_page(*pagep, gfp)) {
681 mutex_unlock(&shmem_swaplist_mutex);
682 error = shmem_replace_page(pagep, gfp, info, index);
683 mutex_lock(&shmem_swaplist_mutex);
684 /*
685 * We needed to drop mutex to make that restrictive page
686 * allocation; but the inode might already be freed by now,
687 * and we cannot refer to inode or mapping or info to check.
688 * However, we do hold page lock on the PageSwapCache page,
689 * so can check if that still has our reference remaining.
690 */
691 if (!page_swapcount(*pagep))
692 error = -ENOENT;
693 }
694
695 /*
696 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
697 * but also to hold up shmem_evict_inode(): so inode cannot be freed
698 * beneath us (pagelock doesn't help until the page is in pagecache).
699 */
700 if (!error)
701 error = shmem_add_to_page_cache(*pagep, mapping, index,
702 GFP_NOWAIT, radswap);
703 if (error != -ENOMEM) {
704 /*
705 * Truncation and eviction use free_swap_and_cache(), which
706 * only does trylock page: if we raced, best clean up here.
707 */
708 delete_from_swap_cache(*pagep);
709 set_page_dirty(*pagep);
710 if (!error) {
711 spin_lock(&info->lock);
712 info->swapped--;
713 spin_unlock(&info->lock);
714 swap_free(swap);
715 }
716 error = 1; /* not an error, but entry was found */
717 }
718 return error;
719 }
720
721 /*
722 * Search through swapped inodes to find and replace swap by page.
723 */
724 int shmem_unuse(swp_entry_t swap, struct page *page)
725 {
726 struct list_head *this, *next;
727 struct shmem_inode_info *info;
728 int found = 0;
729 int error = 0;
730
731 /*
732 * There's a faint possibility that swap page was replaced before
733 * caller locked it: it will come back later with the right page.
734 */
735 if (unlikely(!PageSwapCache(page)))
736 goto out;
737
738 /*
739 * Charge page using GFP_KERNEL while we can wait, before taking
740 * the shmem_swaplist_mutex which might hold up shmem_writepage().
741 * Charged back to the user (not to caller) when swap account is used.
742 */
743 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
744 if (error)
745 goto out;
746 /* No radix_tree_preload: swap entry keeps a place for page in tree */
747
748 mutex_lock(&shmem_swaplist_mutex);
749 list_for_each_safe(this, next, &shmem_swaplist) {
750 info = list_entry(this, struct shmem_inode_info, swaplist);
751 if (info->swapped)
752 found = shmem_unuse_inode(info, swap, &page);
753 else
754 list_del_init(&info->swaplist);
755 cond_resched();
756 if (found)
757 break;
758 }
759 mutex_unlock(&shmem_swaplist_mutex);
760
761 if (found < 0)
762 error = found;
763 out:
764 unlock_page(page);
765 page_cache_release(page);
766 return error;
767 }
768
769 /*
770 * Move the page from the page cache to the swap cache.
771 */
772 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
773 {
774 struct shmem_inode_info *info;
775 struct address_space *mapping;
776 struct inode *inode;
777 swp_entry_t swap;
778 pgoff_t index;
779
780 BUG_ON(!PageLocked(page));
781 mapping = page->mapping;
782 index = page->index;
783 inode = mapping->host;
784 info = SHMEM_I(inode);
785 if (info->flags & VM_LOCKED)
786 goto redirty;
787 if (!total_swap_pages)
788 goto redirty;
789
790 /*
791 * shmem_backing_dev_info's capabilities prevent regular writeback or
792 * sync from ever calling shmem_writepage; but a stacking filesystem
793 * might use ->writepage of its underlying filesystem, in which case
794 * tmpfs should write out to swap only in response to memory pressure,
795 * and not for the writeback threads or sync.
796 */
797 if (!wbc->for_reclaim) {
798 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
799 goto redirty;
800 }
801
802 /*
803 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
804 * value into swapfile.c, the only way we can correctly account for a
805 * fallocated page arriving here is now to initialize it and write it.
806 *
807 * That's okay for a page already fallocated earlier, but if we have
808 * not yet completed the fallocation, then (a) we want to keep track
809 * of this page in case we have to undo it, and (b) it may not be a
810 * good idea to continue anyway, once we're pushing into swap. So
811 * reactivate the page, and let shmem_fallocate() quit when too many.
812 */
813 if (!PageUptodate(page)) {
814 if (inode->i_private) {
815 struct shmem_falloc *shmem_falloc;
816 spin_lock(&inode->i_lock);
817 shmem_falloc = inode->i_private;
818 if (shmem_falloc &&
819 index >= shmem_falloc->start &&
820 index < shmem_falloc->next)
821 shmem_falloc->nr_unswapped++;
822 else
823 shmem_falloc = NULL;
824 spin_unlock(&inode->i_lock);
825 if (shmem_falloc)
826 goto redirty;
827 }
828 clear_highpage(page);
829 flush_dcache_page(page);
830 SetPageUptodate(page);
831 }
832
833 swap = get_swap_page();
834 if (!swap.val)
835 goto redirty;
836
837 /*
838 * Add inode to shmem_unuse()'s list of swapped-out inodes,
839 * if it's not already there. Do it now before the page is
840 * moved to swap cache, when its pagelock no longer protects
841 * the inode from eviction. But don't unlock the mutex until
842 * we've incremented swapped, because shmem_unuse_inode() will
843 * prune a !swapped inode from the swaplist under this mutex.
844 */
845 mutex_lock(&shmem_swaplist_mutex);
846 if (list_empty(&info->swaplist))
847 list_add_tail(&info->swaplist, &shmem_swaplist);
848
849 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
850 swap_shmem_alloc(swap);
851 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
852
853 spin_lock(&info->lock);
854 info->swapped++;
855 shmem_recalc_inode(inode);
856 spin_unlock(&info->lock);
857
858 mutex_unlock(&shmem_swaplist_mutex);
859 BUG_ON(page_mapped(page));
860 swap_writepage(page, wbc);
861 return 0;
862 }
863
864 mutex_unlock(&shmem_swaplist_mutex);
865 swapcache_free(swap, NULL);
866 redirty:
867 set_page_dirty(page);
868 if (wbc->for_reclaim)
869 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
870 unlock_page(page);
871 return 0;
872 }
873
874 #ifdef CONFIG_NUMA
875 #ifdef CONFIG_TMPFS
876 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
877 {
878 char buffer[64];
879
880 if (!mpol || mpol->mode == MPOL_DEFAULT)
881 return; /* show nothing */
882
883 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
884
885 seq_printf(seq, ",mpol=%s", buffer);
886 }
887
888 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
889 {
890 struct mempolicy *mpol = NULL;
891 if (sbinfo->mpol) {
892 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
893 mpol = sbinfo->mpol;
894 mpol_get(mpol);
895 spin_unlock(&sbinfo->stat_lock);
896 }
897 return mpol;
898 }
899 #endif /* CONFIG_TMPFS */
900
901 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
902 struct shmem_inode_info *info, pgoff_t index)
903 {
904 struct mempolicy mpol, *spol;
905 struct vm_area_struct pvma;
906
907 spol = mpol_cond_copy(&mpol,
908 mpol_shared_policy_lookup(&info->policy, index));
909
910 /* Create a pseudo vma that just contains the policy */
911 pvma.vm_start = 0;
912 pvma.vm_pgoff = index;
913 pvma.vm_ops = NULL;
914 pvma.vm_policy = spol;
915 return swapin_readahead(swap, gfp, &pvma, 0);
916 }
917
918 static struct page *shmem_alloc_page(gfp_t gfp,
919 struct shmem_inode_info *info, pgoff_t index)
920 {
921 struct vm_area_struct pvma;
922
923 /* Create a pseudo vma that just contains the policy */
924 pvma.vm_start = 0;
925 pvma.vm_pgoff = index;
926 pvma.vm_ops = NULL;
927 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
928
929 /*
930 * alloc_page_vma() will drop the shared policy reference
931 */
932 return alloc_page_vma(gfp, &pvma, 0);
933 }
934 #else /* !CONFIG_NUMA */
935 #ifdef CONFIG_TMPFS
936 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
937 {
938 }
939 #endif /* CONFIG_TMPFS */
940
941 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
942 struct shmem_inode_info *info, pgoff_t index)
943 {
944 return swapin_readahead(swap, gfp, NULL, 0);
945 }
946
947 static inline struct page *shmem_alloc_page(gfp_t gfp,
948 struct shmem_inode_info *info, pgoff_t index)
949 {
950 return alloc_page(gfp);
951 }
952 #endif /* CONFIG_NUMA */
953
954 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
955 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
956 {
957 return NULL;
958 }
959 #endif
960
961 /*
962 * When a page is moved from swapcache to shmem filecache (either by the
963 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
964 * shmem_unuse_inode()), it may have been read in earlier from swap, in
965 * ignorance of the mapping it belongs to. If that mapping has special
966 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
967 * we may need to copy to a suitable page before moving to filecache.
968 *
969 * In a future release, this may well be extended to respect cpuset and
970 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
971 * but for now it is a simple matter of zone.
972 */
973 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
974 {
975 return page_zonenum(page) > gfp_zone(gfp);
976 }
977
978 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
979 struct shmem_inode_info *info, pgoff_t index)
980 {
981 struct page *oldpage, *newpage;
982 struct address_space *swap_mapping;
983 pgoff_t swap_index;
984 int error;
985
986 oldpage = *pagep;
987 swap_index = page_private(oldpage);
988 swap_mapping = page_mapping(oldpage);
989
990 /*
991 * We have arrived here because our zones are constrained, so don't
992 * limit chance of success by further cpuset and node constraints.
993 */
994 gfp &= ~GFP_CONSTRAINT_MASK;
995 newpage = shmem_alloc_page(gfp, info, index);
996 if (!newpage)
997 return -ENOMEM;
998 VM_BUG_ON(shmem_should_replace_page(newpage, gfp));
999
1000 *pagep = newpage;
1001 page_cache_get(newpage);
1002 copy_highpage(newpage, oldpage);
1003
1004 VM_BUG_ON(!PageLocked(oldpage));
1005 __set_page_locked(newpage);
1006 VM_BUG_ON(!PageUptodate(oldpage));
1007 SetPageUptodate(newpage);
1008 VM_BUG_ON(!PageSwapBacked(oldpage));
1009 SetPageSwapBacked(newpage);
1010 VM_BUG_ON(!swap_index);
1011 set_page_private(newpage, swap_index);
1012 VM_BUG_ON(!PageSwapCache(oldpage));
1013 SetPageSwapCache(newpage);
1014
1015 /*
1016 * Our caller will very soon move newpage out of swapcache, but it's
1017 * a nice clean interface for us to replace oldpage by newpage there.
1018 */
1019 spin_lock_irq(&swap_mapping->tree_lock);
1020 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1021 newpage);
1022 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1023 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1024 spin_unlock_irq(&swap_mapping->tree_lock);
1025 BUG_ON(error);
1026
1027 mem_cgroup_replace_page_cache(oldpage, newpage);
1028 lru_cache_add_anon(newpage);
1029
1030 ClearPageSwapCache(oldpage);
1031 set_page_private(oldpage, 0);
1032
1033 unlock_page(oldpage);
1034 page_cache_release(oldpage);
1035 page_cache_release(oldpage);
1036 return 0;
1037 }
1038
1039 /*
1040 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1041 *
1042 * If we allocate a new one we do not mark it dirty. That's up to the
1043 * vm. If we swap it in we mark it dirty since we also free the swap
1044 * entry since a page cannot live in both the swap and page cache
1045 */
1046 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1047 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1048 {
1049 struct address_space *mapping = inode->i_mapping;
1050 struct shmem_inode_info *info;
1051 struct shmem_sb_info *sbinfo;
1052 struct page *page;
1053 swp_entry_t swap;
1054 int error;
1055 int once = 0;
1056 int alloced = 0;
1057
1058 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1059 return -EFBIG;
1060 repeat:
1061 swap.val = 0;
1062 page = find_lock_page(mapping, index);
1063 if (radix_tree_exceptional_entry(page)) {
1064 swap = radix_to_swp_entry(page);
1065 page = NULL;
1066 }
1067
1068 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1069 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1070 error = -EINVAL;
1071 goto failed;
1072 }
1073
1074 /* fallocated page? */
1075 if (page && !PageUptodate(page)) {
1076 if (sgp != SGP_READ)
1077 goto clear;
1078 unlock_page(page);
1079 page_cache_release(page);
1080 page = NULL;
1081 }
1082 if (page || (sgp == SGP_READ && !swap.val)) {
1083 *pagep = page;
1084 return 0;
1085 }
1086
1087 /*
1088 * Fast cache lookup did not find it:
1089 * bring it back from swap or allocate.
1090 */
1091 info = SHMEM_I(inode);
1092 sbinfo = SHMEM_SB(inode->i_sb);
1093
1094 if (swap.val) {
1095 /* Look it up and read it in.. */
1096 page = lookup_swap_cache(swap);
1097 if (!page) {
1098 /* here we actually do the io */
1099 if (fault_type)
1100 *fault_type |= VM_FAULT_MAJOR;
1101 page = shmem_swapin(swap, gfp, info, index);
1102 if (!page) {
1103 error = -ENOMEM;
1104 goto failed;
1105 }
1106 }
1107
1108 /* We have to do this with page locked to prevent races */
1109 lock_page(page);
1110 if (!PageSwapCache(page) || page->mapping) {
1111 error = -EEXIST; /* try again */
1112 goto failed;
1113 }
1114 if (!PageUptodate(page)) {
1115 error = -EIO;
1116 goto failed;
1117 }
1118 wait_on_page_writeback(page);
1119
1120 if (shmem_should_replace_page(page, gfp)) {
1121 error = shmem_replace_page(&page, gfp, info, index);
1122 if (error)
1123 goto failed;
1124 }
1125
1126 error = mem_cgroup_cache_charge(page, current->mm,
1127 gfp & GFP_RECLAIM_MASK);
1128 if (!error)
1129 error = shmem_add_to_page_cache(page, mapping, index,
1130 gfp, swp_to_radix_entry(swap));
1131 if (error)
1132 goto failed;
1133
1134 spin_lock(&info->lock);
1135 info->swapped--;
1136 shmem_recalc_inode(inode);
1137 spin_unlock(&info->lock);
1138
1139 delete_from_swap_cache(page);
1140 set_page_dirty(page);
1141 swap_free(swap);
1142
1143 } else {
1144 if (shmem_acct_block(info->flags)) {
1145 error = -ENOSPC;
1146 goto failed;
1147 }
1148 if (sbinfo->max_blocks) {
1149 if (percpu_counter_compare(&sbinfo->used_blocks,
1150 sbinfo->max_blocks) >= 0) {
1151 error = -ENOSPC;
1152 goto unacct;
1153 }
1154 percpu_counter_inc(&sbinfo->used_blocks);
1155 }
1156
1157 page = shmem_alloc_page(gfp, info, index);
1158 if (!page) {
1159 error = -ENOMEM;
1160 goto decused;
1161 }
1162
1163 SetPageSwapBacked(page);
1164 __set_page_locked(page);
1165 error = mem_cgroup_cache_charge(page, current->mm,
1166 gfp & GFP_RECLAIM_MASK);
1167 if (!error)
1168 error = shmem_add_to_page_cache(page, mapping, index,
1169 gfp, NULL);
1170 if (error)
1171 goto decused;
1172 lru_cache_add_anon(page);
1173
1174 spin_lock(&info->lock);
1175 info->alloced++;
1176 inode->i_blocks += BLOCKS_PER_PAGE;
1177 shmem_recalc_inode(inode);
1178 spin_unlock(&info->lock);
1179 alloced = true;
1180
1181 /*
1182 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1183 */
1184 if (sgp == SGP_FALLOC)
1185 sgp = SGP_WRITE;
1186 clear:
1187 /*
1188 * Let SGP_WRITE caller clear ends if write does not fill page;
1189 * but SGP_FALLOC on a page fallocated earlier must initialize
1190 * it now, lest undo on failure cancel our earlier guarantee.
1191 */
1192 if (sgp != SGP_WRITE) {
1193 clear_highpage(page);
1194 flush_dcache_page(page);
1195 SetPageUptodate(page);
1196 }
1197 if (sgp == SGP_DIRTY)
1198 set_page_dirty(page);
1199 }
1200
1201 /* Perhaps the file has been truncated since we checked */
1202 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1203 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1204 error = -EINVAL;
1205 if (alloced)
1206 goto trunc;
1207 else
1208 goto failed;
1209 }
1210 *pagep = page;
1211 return 0;
1212
1213 /*
1214 * Error recovery.
1215 */
1216 trunc:
1217 info = SHMEM_I(inode);
1218 ClearPageDirty(page);
1219 delete_from_page_cache(page);
1220 spin_lock(&info->lock);
1221 info->alloced--;
1222 inode->i_blocks -= BLOCKS_PER_PAGE;
1223 spin_unlock(&info->lock);
1224 decused:
1225 sbinfo = SHMEM_SB(inode->i_sb);
1226 if (sbinfo->max_blocks)
1227 percpu_counter_add(&sbinfo->used_blocks, -1);
1228 unacct:
1229 shmem_unacct_blocks(info->flags, 1);
1230 failed:
1231 if (swap.val && error != -EINVAL) {
1232 struct page *test = find_get_page(mapping, index);
1233 if (test && !radix_tree_exceptional_entry(test))
1234 page_cache_release(test);
1235 /* Have another try if the entry has changed */
1236 if (test != swp_to_radix_entry(swap))
1237 error = -EEXIST;
1238 }
1239 if (page) {
1240 unlock_page(page);
1241 page_cache_release(page);
1242 }
1243 if (error == -ENOSPC && !once++) {
1244 info = SHMEM_I(inode);
1245 spin_lock(&info->lock);
1246 shmem_recalc_inode(inode);
1247 spin_unlock(&info->lock);
1248 goto repeat;
1249 }
1250 if (error == -EEXIST)
1251 goto repeat;
1252 return error;
1253 }
1254
1255 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1256 {
1257 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1258 int error;
1259 int ret = VM_FAULT_LOCKED;
1260
1261 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1262 if (error)
1263 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1264
1265 if (ret & VM_FAULT_MAJOR) {
1266 count_vm_event(PGMAJFAULT);
1267 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1268 }
1269 return ret;
1270 }
1271
1272 #ifdef CONFIG_NUMA
1273 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1274 {
1275 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1276 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1277 }
1278
1279 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1280 unsigned long addr)
1281 {
1282 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1283 pgoff_t index;
1284
1285 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1286 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1287 }
1288 #endif
1289
1290 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1291 {
1292 struct inode *inode = file->f_path.dentry->d_inode;
1293 struct shmem_inode_info *info = SHMEM_I(inode);
1294 int retval = -ENOMEM;
1295
1296 spin_lock(&info->lock);
1297 if (lock && !(info->flags & VM_LOCKED)) {
1298 if (!user_shm_lock(inode->i_size, user))
1299 goto out_nomem;
1300 info->flags |= VM_LOCKED;
1301 mapping_set_unevictable(file->f_mapping);
1302 }
1303 if (!lock && (info->flags & VM_LOCKED) && user) {
1304 user_shm_unlock(inode->i_size, user);
1305 info->flags &= ~VM_LOCKED;
1306 mapping_clear_unevictable(file->f_mapping);
1307 }
1308 retval = 0;
1309
1310 out_nomem:
1311 spin_unlock(&info->lock);
1312 return retval;
1313 }
1314
1315 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1316 {
1317 file_accessed(file);
1318 vma->vm_ops = &shmem_vm_ops;
1319 vma->vm_flags |= VM_CAN_NONLINEAR;
1320 return 0;
1321 }
1322
1323 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1324 umode_t mode, dev_t dev, unsigned long flags)
1325 {
1326 struct inode *inode;
1327 struct shmem_inode_info *info;
1328 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1329
1330 if (shmem_reserve_inode(sb))
1331 return NULL;
1332
1333 inode = new_inode(sb);
1334 if (inode) {
1335 inode->i_ino = get_next_ino();
1336 inode_init_owner(inode, dir, mode);
1337 inode->i_blocks = 0;
1338 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1339 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1340 inode->i_generation = get_seconds();
1341 info = SHMEM_I(inode);
1342 memset(info, 0, (char *)inode - (char *)info);
1343 spin_lock_init(&info->lock);
1344 info->flags = flags & VM_NORESERVE;
1345 INIT_LIST_HEAD(&info->swaplist);
1346 INIT_LIST_HEAD(&info->xattr_list);
1347 cache_no_acl(inode);
1348
1349 switch (mode & S_IFMT) {
1350 default:
1351 inode->i_op = &shmem_special_inode_operations;
1352 init_special_inode(inode, mode, dev);
1353 break;
1354 case S_IFREG:
1355 inode->i_mapping->a_ops = &shmem_aops;
1356 inode->i_op = &shmem_inode_operations;
1357 inode->i_fop = &shmem_file_operations;
1358 mpol_shared_policy_init(&info->policy,
1359 shmem_get_sbmpol(sbinfo));
1360 break;
1361 case S_IFDIR:
1362 inc_nlink(inode);
1363 /* Some things misbehave if size == 0 on a directory */
1364 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1365 inode->i_op = &shmem_dir_inode_operations;
1366 inode->i_fop = &simple_dir_operations;
1367 break;
1368 case S_IFLNK:
1369 /*
1370 * Must not load anything in the rbtree,
1371 * mpol_free_shared_policy will not be called.
1372 */
1373 mpol_shared_policy_init(&info->policy, NULL);
1374 break;
1375 }
1376 } else
1377 shmem_free_inode(sb);
1378 return inode;
1379 }
1380
1381 #ifdef CONFIG_TMPFS
1382 static const struct inode_operations shmem_symlink_inode_operations;
1383 static const struct inode_operations shmem_short_symlink_operations;
1384
1385 #ifdef CONFIG_TMPFS_XATTR
1386 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1387 #else
1388 #define shmem_initxattrs NULL
1389 #endif
1390
1391 static int
1392 shmem_write_begin(struct file *file, struct address_space *mapping,
1393 loff_t pos, unsigned len, unsigned flags,
1394 struct page **pagep, void **fsdata)
1395 {
1396 struct inode *inode = mapping->host;
1397 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1398 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1399 }
1400
1401 static int
1402 shmem_write_end(struct file *file, struct address_space *mapping,
1403 loff_t pos, unsigned len, unsigned copied,
1404 struct page *page, void *fsdata)
1405 {
1406 struct inode *inode = mapping->host;
1407
1408 if (pos + copied > inode->i_size)
1409 i_size_write(inode, pos + copied);
1410
1411 if (!PageUptodate(page)) {
1412 if (copied < PAGE_CACHE_SIZE) {
1413 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1414 zero_user_segments(page, 0, from,
1415 from + copied, PAGE_CACHE_SIZE);
1416 }
1417 SetPageUptodate(page);
1418 }
1419 set_page_dirty(page);
1420 unlock_page(page);
1421 page_cache_release(page);
1422
1423 return copied;
1424 }
1425
1426 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1427 {
1428 struct inode *inode = filp->f_path.dentry->d_inode;
1429 struct address_space *mapping = inode->i_mapping;
1430 pgoff_t index;
1431 unsigned long offset;
1432 enum sgp_type sgp = SGP_READ;
1433
1434 /*
1435 * Might this read be for a stacking filesystem? Then when reading
1436 * holes of a sparse file, we actually need to allocate those pages,
1437 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1438 */
1439 if (segment_eq(get_fs(), KERNEL_DS))
1440 sgp = SGP_DIRTY;
1441
1442 index = *ppos >> PAGE_CACHE_SHIFT;
1443 offset = *ppos & ~PAGE_CACHE_MASK;
1444
1445 for (;;) {
1446 struct page *page = NULL;
1447 pgoff_t end_index;
1448 unsigned long nr, ret;
1449 loff_t i_size = i_size_read(inode);
1450
1451 end_index = i_size >> PAGE_CACHE_SHIFT;
1452 if (index > end_index)
1453 break;
1454 if (index == end_index) {
1455 nr = i_size & ~PAGE_CACHE_MASK;
1456 if (nr <= offset)
1457 break;
1458 }
1459
1460 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1461 if (desc->error) {
1462 if (desc->error == -EINVAL)
1463 desc->error = 0;
1464 break;
1465 }
1466 if (page)
1467 unlock_page(page);
1468
1469 /*
1470 * We must evaluate after, since reads (unlike writes)
1471 * are called without i_mutex protection against truncate
1472 */
1473 nr = PAGE_CACHE_SIZE;
1474 i_size = i_size_read(inode);
1475 end_index = i_size >> PAGE_CACHE_SHIFT;
1476 if (index == end_index) {
1477 nr = i_size & ~PAGE_CACHE_MASK;
1478 if (nr <= offset) {
1479 if (page)
1480 page_cache_release(page);
1481 break;
1482 }
1483 }
1484 nr -= offset;
1485
1486 if (page) {
1487 /*
1488 * If users can be writing to this page using arbitrary
1489 * virtual addresses, take care about potential aliasing
1490 * before reading the page on the kernel side.
1491 */
1492 if (mapping_writably_mapped(mapping))
1493 flush_dcache_page(page);
1494 /*
1495 * Mark the page accessed if we read the beginning.
1496 */
1497 if (!offset)
1498 mark_page_accessed(page);
1499 } else {
1500 page = ZERO_PAGE(0);
1501 page_cache_get(page);
1502 }
1503
1504 /*
1505 * Ok, we have the page, and it's up-to-date, so
1506 * now we can copy it to user space...
1507 *
1508 * The actor routine returns how many bytes were actually used..
1509 * NOTE! This may not be the same as how much of a user buffer
1510 * we filled up (we may be padding etc), so we can only update
1511 * "pos" here (the actor routine has to update the user buffer
1512 * pointers and the remaining count).
1513 */
1514 ret = actor(desc, page, offset, nr);
1515 offset += ret;
1516 index += offset >> PAGE_CACHE_SHIFT;
1517 offset &= ~PAGE_CACHE_MASK;
1518
1519 page_cache_release(page);
1520 if (ret != nr || !desc->count)
1521 break;
1522
1523 cond_resched();
1524 }
1525
1526 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1527 file_accessed(filp);
1528 }
1529
1530 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1531 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1532 {
1533 struct file *filp = iocb->ki_filp;
1534 ssize_t retval;
1535 unsigned long seg;
1536 size_t count;
1537 loff_t *ppos = &iocb->ki_pos;
1538
1539 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1540 if (retval)
1541 return retval;
1542
1543 for (seg = 0; seg < nr_segs; seg++) {
1544 read_descriptor_t desc;
1545
1546 desc.written = 0;
1547 desc.arg.buf = iov[seg].iov_base;
1548 desc.count = iov[seg].iov_len;
1549 if (desc.count == 0)
1550 continue;
1551 desc.error = 0;
1552 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1553 retval += desc.written;
1554 if (desc.error) {
1555 retval = retval ?: desc.error;
1556 break;
1557 }
1558 if (desc.count > 0)
1559 break;
1560 }
1561 return retval;
1562 }
1563
1564 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1565 struct pipe_inode_info *pipe, size_t len,
1566 unsigned int flags)
1567 {
1568 struct address_space *mapping = in->f_mapping;
1569 struct inode *inode = mapping->host;
1570 unsigned int loff, nr_pages, req_pages;
1571 struct page *pages[PIPE_DEF_BUFFERS];
1572 struct partial_page partial[PIPE_DEF_BUFFERS];
1573 struct page *page;
1574 pgoff_t index, end_index;
1575 loff_t isize, left;
1576 int error, page_nr;
1577 struct splice_pipe_desc spd = {
1578 .pages = pages,
1579 .partial = partial,
1580 .flags = flags,
1581 .ops = &page_cache_pipe_buf_ops,
1582 .spd_release = spd_release_page,
1583 };
1584
1585 isize = i_size_read(inode);
1586 if (unlikely(*ppos >= isize))
1587 return 0;
1588
1589 left = isize - *ppos;
1590 if (unlikely(left < len))
1591 len = left;
1592
1593 if (splice_grow_spd(pipe, &spd))
1594 return -ENOMEM;
1595
1596 index = *ppos >> PAGE_CACHE_SHIFT;
1597 loff = *ppos & ~PAGE_CACHE_MASK;
1598 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1599 nr_pages = min(req_pages, pipe->buffers);
1600
1601 spd.nr_pages = find_get_pages_contig(mapping, index,
1602 nr_pages, spd.pages);
1603 index += spd.nr_pages;
1604 error = 0;
1605
1606 while (spd.nr_pages < nr_pages) {
1607 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1608 if (error)
1609 break;
1610 unlock_page(page);
1611 spd.pages[spd.nr_pages++] = page;
1612 index++;
1613 }
1614
1615 index = *ppos >> PAGE_CACHE_SHIFT;
1616 nr_pages = spd.nr_pages;
1617 spd.nr_pages = 0;
1618
1619 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1620 unsigned int this_len;
1621
1622 if (!len)
1623 break;
1624
1625 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1626 page = spd.pages[page_nr];
1627
1628 if (!PageUptodate(page) || page->mapping != mapping) {
1629 error = shmem_getpage(inode, index, &page,
1630 SGP_CACHE, NULL);
1631 if (error)
1632 break;
1633 unlock_page(page);
1634 page_cache_release(spd.pages[page_nr]);
1635 spd.pages[page_nr] = page;
1636 }
1637
1638 isize = i_size_read(inode);
1639 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1640 if (unlikely(!isize || index > end_index))
1641 break;
1642
1643 if (end_index == index) {
1644 unsigned int plen;
1645
1646 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1647 if (plen <= loff)
1648 break;
1649
1650 this_len = min(this_len, plen - loff);
1651 len = this_len;
1652 }
1653
1654 spd.partial[page_nr].offset = loff;
1655 spd.partial[page_nr].len = this_len;
1656 len -= this_len;
1657 loff = 0;
1658 spd.nr_pages++;
1659 index++;
1660 }
1661
1662 while (page_nr < nr_pages)
1663 page_cache_release(spd.pages[page_nr++]);
1664
1665 if (spd.nr_pages)
1666 error = splice_to_pipe(pipe, &spd);
1667
1668 splice_shrink_spd(pipe, &spd);
1669
1670 if (error > 0) {
1671 *ppos += error;
1672 file_accessed(in);
1673 }
1674 return error;
1675 }
1676
1677 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1678 loff_t len)
1679 {
1680 struct inode *inode = file->f_path.dentry->d_inode;
1681 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1682 struct shmem_falloc shmem_falloc;
1683 pgoff_t start, index, end;
1684 int error;
1685
1686 mutex_lock(&inode->i_mutex);
1687
1688 if (mode & FALLOC_FL_PUNCH_HOLE) {
1689 struct address_space *mapping = file->f_mapping;
1690 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1691 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1692
1693 if ((u64)unmap_end > (u64)unmap_start)
1694 unmap_mapping_range(mapping, unmap_start,
1695 1 + unmap_end - unmap_start, 0);
1696 shmem_truncate_range(inode, offset, offset + len - 1);
1697 /* No need to unmap again: hole-punching leaves COWed pages */
1698 error = 0;
1699 goto out;
1700 }
1701
1702 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1703 error = inode_newsize_ok(inode, offset + len);
1704 if (error)
1705 goto out;
1706
1707 start = offset >> PAGE_CACHE_SHIFT;
1708 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1709 /* Try to avoid a swapstorm if len is impossible to satisfy */
1710 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1711 error = -ENOSPC;
1712 goto out;
1713 }
1714
1715 shmem_falloc.start = start;
1716 shmem_falloc.next = start;
1717 shmem_falloc.nr_falloced = 0;
1718 shmem_falloc.nr_unswapped = 0;
1719 spin_lock(&inode->i_lock);
1720 inode->i_private = &shmem_falloc;
1721 spin_unlock(&inode->i_lock);
1722
1723 for (index = start; index < end; index++) {
1724 struct page *page;
1725
1726 /*
1727 * Good, the fallocate(2) manpage permits EINTR: we may have
1728 * been interrupted because we are using up too much memory.
1729 */
1730 if (signal_pending(current))
1731 error = -EINTR;
1732 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1733 error = -ENOMEM;
1734 else
1735 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1736 NULL);
1737 if (error) {
1738 /* Remove the !PageUptodate pages we added */
1739 shmem_undo_range(inode,
1740 (loff_t)start << PAGE_CACHE_SHIFT,
1741 (loff_t)index << PAGE_CACHE_SHIFT, true);
1742 goto undone;
1743 }
1744
1745 /*
1746 * Inform shmem_writepage() how far we have reached.
1747 * No need for lock or barrier: we have the page lock.
1748 */
1749 shmem_falloc.next++;
1750 if (!PageUptodate(page))
1751 shmem_falloc.nr_falloced++;
1752
1753 /*
1754 * If !PageUptodate, leave it that way so that freeable pages
1755 * can be recognized if we need to rollback on error later.
1756 * But set_page_dirty so that memory pressure will swap rather
1757 * than free the pages we are allocating (and SGP_CACHE pages
1758 * might still be clean: we now need to mark those dirty too).
1759 */
1760 set_page_dirty(page);
1761 unlock_page(page);
1762 page_cache_release(page);
1763 cond_resched();
1764 }
1765
1766 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1767 i_size_write(inode, offset + len);
1768 inode->i_ctime = CURRENT_TIME;
1769 undone:
1770 spin_lock(&inode->i_lock);
1771 inode->i_private = NULL;
1772 spin_unlock(&inode->i_lock);
1773 out:
1774 mutex_unlock(&inode->i_mutex);
1775 return error;
1776 }
1777
1778 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1779 {
1780 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1781
1782 buf->f_type = TMPFS_MAGIC;
1783 buf->f_bsize = PAGE_CACHE_SIZE;
1784 buf->f_namelen = NAME_MAX;
1785 if (sbinfo->max_blocks) {
1786 buf->f_blocks = sbinfo->max_blocks;
1787 buf->f_bavail =
1788 buf->f_bfree = sbinfo->max_blocks -
1789 percpu_counter_sum(&sbinfo->used_blocks);
1790 }
1791 if (sbinfo->max_inodes) {
1792 buf->f_files = sbinfo->max_inodes;
1793 buf->f_ffree = sbinfo->free_inodes;
1794 }
1795 /* else leave those fields 0 like simple_statfs */
1796 return 0;
1797 }
1798
1799 /*
1800 * File creation. Allocate an inode, and we're done..
1801 */
1802 static int
1803 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1804 {
1805 struct inode *inode;
1806 int error = -ENOSPC;
1807
1808 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1809 if (inode) {
1810 error = security_inode_init_security(inode, dir,
1811 &dentry->d_name,
1812 shmem_initxattrs, NULL);
1813 if (error) {
1814 if (error != -EOPNOTSUPP) {
1815 iput(inode);
1816 return error;
1817 }
1818 }
1819 #ifdef CONFIG_TMPFS_POSIX_ACL
1820 error = generic_acl_init(inode, dir);
1821 if (error) {
1822 iput(inode);
1823 return error;
1824 }
1825 #else
1826 error = 0;
1827 #endif
1828 dir->i_size += BOGO_DIRENT_SIZE;
1829 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1830 d_instantiate(dentry, inode);
1831 dget(dentry); /* Extra count - pin the dentry in core */
1832 }
1833 return error;
1834 }
1835
1836 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1837 {
1838 int error;
1839
1840 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1841 return error;
1842 inc_nlink(dir);
1843 return 0;
1844 }
1845
1846 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1847 struct nameidata *nd)
1848 {
1849 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1850 }
1851
1852 /*
1853 * Link a file..
1854 */
1855 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1856 {
1857 struct inode *inode = old_dentry->d_inode;
1858 int ret;
1859
1860 /*
1861 * No ordinary (disk based) filesystem counts links as inodes;
1862 * but each new link needs a new dentry, pinning lowmem, and
1863 * tmpfs dentries cannot be pruned until they are unlinked.
1864 */
1865 ret = shmem_reserve_inode(inode->i_sb);
1866 if (ret)
1867 goto out;
1868
1869 dir->i_size += BOGO_DIRENT_SIZE;
1870 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1871 inc_nlink(inode);
1872 ihold(inode); /* New dentry reference */
1873 dget(dentry); /* Extra pinning count for the created dentry */
1874 d_instantiate(dentry, inode);
1875 out:
1876 return ret;
1877 }
1878
1879 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1880 {
1881 struct inode *inode = dentry->d_inode;
1882
1883 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1884 shmem_free_inode(inode->i_sb);
1885
1886 dir->i_size -= BOGO_DIRENT_SIZE;
1887 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1888 drop_nlink(inode);
1889 dput(dentry); /* Undo the count from "create" - this does all the work */
1890 return 0;
1891 }
1892
1893 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1894 {
1895 if (!simple_empty(dentry))
1896 return -ENOTEMPTY;
1897
1898 drop_nlink(dentry->d_inode);
1899 drop_nlink(dir);
1900 return shmem_unlink(dir, dentry);
1901 }
1902
1903 /*
1904 * The VFS layer already does all the dentry stuff for rename,
1905 * we just have to decrement the usage count for the target if
1906 * it exists so that the VFS layer correctly free's it when it
1907 * gets overwritten.
1908 */
1909 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1910 {
1911 struct inode *inode = old_dentry->d_inode;
1912 int they_are_dirs = S_ISDIR(inode->i_mode);
1913
1914 if (!simple_empty(new_dentry))
1915 return -ENOTEMPTY;
1916
1917 if (new_dentry->d_inode) {
1918 (void) shmem_unlink(new_dir, new_dentry);
1919 if (they_are_dirs)
1920 drop_nlink(old_dir);
1921 } else if (they_are_dirs) {
1922 drop_nlink(old_dir);
1923 inc_nlink(new_dir);
1924 }
1925
1926 old_dir->i_size -= BOGO_DIRENT_SIZE;
1927 new_dir->i_size += BOGO_DIRENT_SIZE;
1928 old_dir->i_ctime = old_dir->i_mtime =
1929 new_dir->i_ctime = new_dir->i_mtime =
1930 inode->i_ctime = CURRENT_TIME;
1931 return 0;
1932 }
1933
1934 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1935 {
1936 int error;
1937 int len;
1938 struct inode *inode;
1939 struct page *page;
1940 char *kaddr;
1941 struct shmem_inode_info *info;
1942
1943 len = strlen(symname) + 1;
1944 if (len > PAGE_CACHE_SIZE)
1945 return -ENAMETOOLONG;
1946
1947 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1948 if (!inode)
1949 return -ENOSPC;
1950
1951 error = security_inode_init_security(inode, dir, &dentry->d_name,
1952 shmem_initxattrs, NULL);
1953 if (error) {
1954 if (error != -EOPNOTSUPP) {
1955 iput(inode);
1956 return error;
1957 }
1958 error = 0;
1959 }
1960
1961 info = SHMEM_I(inode);
1962 inode->i_size = len-1;
1963 if (len <= SHORT_SYMLINK_LEN) {
1964 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1965 if (!info->symlink) {
1966 iput(inode);
1967 return -ENOMEM;
1968 }
1969 inode->i_op = &shmem_short_symlink_operations;
1970 } else {
1971 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1972 if (error) {
1973 iput(inode);
1974 return error;
1975 }
1976 inode->i_mapping->a_ops = &shmem_aops;
1977 inode->i_op = &shmem_symlink_inode_operations;
1978 kaddr = kmap_atomic(page);
1979 memcpy(kaddr, symname, len);
1980 kunmap_atomic(kaddr);
1981 SetPageUptodate(page);
1982 set_page_dirty(page);
1983 unlock_page(page);
1984 page_cache_release(page);
1985 }
1986 dir->i_size += BOGO_DIRENT_SIZE;
1987 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1988 d_instantiate(dentry, inode);
1989 dget(dentry);
1990 return 0;
1991 }
1992
1993 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1994 {
1995 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1996 return NULL;
1997 }
1998
1999 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2000 {
2001 struct page *page = NULL;
2002 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2003 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2004 if (page)
2005 unlock_page(page);
2006 return page;
2007 }
2008
2009 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2010 {
2011 if (!IS_ERR(nd_get_link(nd))) {
2012 struct page *page = cookie;
2013 kunmap(page);
2014 mark_page_accessed(page);
2015 page_cache_release(page);
2016 }
2017 }
2018
2019 #ifdef CONFIG_TMPFS_XATTR
2020 /*
2021 * Superblocks without xattr inode operations may get some security.* xattr
2022 * support from the LSM "for free". As soon as we have any other xattrs
2023 * like ACLs, we also need to implement the security.* handlers at
2024 * filesystem level, though.
2025 */
2026
2027 /*
2028 * Allocate new xattr and copy in the value; but leave the name to callers.
2029 */
2030 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2031 {
2032 struct shmem_xattr *new_xattr;
2033 size_t len;
2034
2035 /* wrap around? */
2036 len = sizeof(*new_xattr) + size;
2037 if (len <= sizeof(*new_xattr))
2038 return NULL;
2039
2040 new_xattr = kmalloc(len, GFP_KERNEL);
2041 if (!new_xattr)
2042 return NULL;
2043
2044 new_xattr->size = size;
2045 memcpy(new_xattr->value, value, size);
2046 return new_xattr;
2047 }
2048
2049 /*
2050 * Callback for security_inode_init_security() for acquiring xattrs.
2051 */
2052 static int shmem_initxattrs(struct inode *inode,
2053 const struct xattr *xattr_array,
2054 void *fs_info)
2055 {
2056 struct shmem_inode_info *info = SHMEM_I(inode);
2057 const struct xattr *xattr;
2058 struct shmem_xattr *new_xattr;
2059 size_t len;
2060
2061 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2062 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2063 if (!new_xattr)
2064 return -ENOMEM;
2065
2066 len = strlen(xattr->name) + 1;
2067 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2068 GFP_KERNEL);
2069 if (!new_xattr->name) {
2070 kfree(new_xattr);
2071 return -ENOMEM;
2072 }
2073
2074 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2075 XATTR_SECURITY_PREFIX_LEN);
2076 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2077 xattr->name, len);
2078
2079 spin_lock(&info->lock);
2080 list_add(&new_xattr->list, &info->xattr_list);
2081 spin_unlock(&info->lock);
2082 }
2083
2084 return 0;
2085 }
2086
2087 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2088 void *buffer, size_t size)
2089 {
2090 struct shmem_inode_info *info;
2091 struct shmem_xattr *xattr;
2092 int ret = -ENODATA;
2093
2094 info = SHMEM_I(dentry->d_inode);
2095
2096 spin_lock(&info->lock);
2097 list_for_each_entry(xattr, &info->xattr_list, list) {
2098 if (strcmp(name, xattr->name))
2099 continue;
2100
2101 ret = xattr->size;
2102 if (buffer) {
2103 if (size < xattr->size)
2104 ret = -ERANGE;
2105 else
2106 memcpy(buffer, xattr->value, xattr->size);
2107 }
2108 break;
2109 }
2110 spin_unlock(&info->lock);
2111 return ret;
2112 }
2113
2114 static int shmem_xattr_set(struct inode *inode, const char *name,
2115 const void *value, size_t size, int flags)
2116 {
2117 struct shmem_inode_info *info = SHMEM_I(inode);
2118 struct shmem_xattr *xattr;
2119 struct shmem_xattr *new_xattr = NULL;
2120 int err = 0;
2121
2122 /* value == NULL means remove */
2123 if (value) {
2124 new_xattr = shmem_xattr_alloc(value, size);
2125 if (!new_xattr)
2126 return -ENOMEM;
2127
2128 new_xattr->name = kstrdup(name, GFP_KERNEL);
2129 if (!new_xattr->name) {
2130 kfree(new_xattr);
2131 return -ENOMEM;
2132 }
2133 }
2134
2135 spin_lock(&info->lock);
2136 list_for_each_entry(xattr, &info->xattr_list, list) {
2137 if (!strcmp(name, xattr->name)) {
2138 if (flags & XATTR_CREATE) {
2139 xattr = new_xattr;
2140 err = -EEXIST;
2141 } else if (new_xattr) {
2142 list_replace(&xattr->list, &new_xattr->list);
2143 } else {
2144 list_del(&xattr->list);
2145 }
2146 goto out;
2147 }
2148 }
2149 if (flags & XATTR_REPLACE) {
2150 xattr = new_xattr;
2151 err = -ENODATA;
2152 } else {
2153 list_add(&new_xattr->list, &info->xattr_list);
2154 xattr = NULL;
2155 }
2156 out:
2157 spin_unlock(&info->lock);
2158 if (xattr)
2159 kfree(xattr->name);
2160 kfree(xattr);
2161 return err;
2162 }
2163
2164 static const struct xattr_handler *shmem_xattr_handlers[] = {
2165 #ifdef CONFIG_TMPFS_POSIX_ACL
2166 &generic_acl_access_handler,
2167 &generic_acl_default_handler,
2168 #endif
2169 NULL
2170 };
2171
2172 static int shmem_xattr_validate(const char *name)
2173 {
2174 struct { const char *prefix; size_t len; } arr[] = {
2175 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2176 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2177 };
2178 int i;
2179
2180 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2181 size_t preflen = arr[i].len;
2182 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2183 if (!name[preflen])
2184 return -EINVAL;
2185 return 0;
2186 }
2187 }
2188 return -EOPNOTSUPP;
2189 }
2190
2191 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2192 void *buffer, size_t size)
2193 {
2194 int err;
2195
2196 /*
2197 * If this is a request for a synthetic attribute in the system.*
2198 * namespace use the generic infrastructure to resolve a handler
2199 * for it via sb->s_xattr.
2200 */
2201 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2202 return generic_getxattr(dentry, name, buffer, size);
2203
2204 err = shmem_xattr_validate(name);
2205 if (err)
2206 return err;
2207
2208 return shmem_xattr_get(dentry, name, buffer, size);
2209 }
2210
2211 static int shmem_setxattr(struct dentry *dentry, const char *name,
2212 const void *value, size_t size, int flags)
2213 {
2214 int err;
2215
2216 /*
2217 * If this is a request for a synthetic attribute in the system.*
2218 * namespace use the generic infrastructure to resolve a handler
2219 * for it via sb->s_xattr.
2220 */
2221 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2222 return generic_setxattr(dentry, name, value, size, flags);
2223
2224 err = shmem_xattr_validate(name);
2225 if (err)
2226 return err;
2227
2228 if (size == 0)
2229 value = ""; /* empty EA, do not remove */
2230
2231 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2232
2233 }
2234
2235 static int shmem_removexattr(struct dentry *dentry, const char *name)
2236 {
2237 int err;
2238
2239 /*
2240 * If this is a request for a synthetic attribute in the system.*
2241 * namespace use the generic infrastructure to resolve a handler
2242 * for it via sb->s_xattr.
2243 */
2244 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2245 return generic_removexattr(dentry, name);
2246
2247 err = shmem_xattr_validate(name);
2248 if (err)
2249 return err;
2250
2251 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2252 }
2253
2254 static bool xattr_is_trusted(const char *name)
2255 {
2256 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2257 }
2258
2259 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2260 {
2261 bool trusted = capable(CAP_SYS_ADMIN);
2262 struct shmem_xattr *xattr;
2263 struct shmem_inode_info *info;
2264 size_t used = 0;
2265
2266 info = SHMEM_I(dentry->d_inode);
2267
2268 spin_lock(&info->lock);
2269 list_for_each_entry(xattr, &info->xattr_list, list) {
2270 size_t len;
2271
2272 /* skip "trusted." attributes for unprivileged callers */
2273 if (!trusted && xattr_is_trusted(xattr->name))
2274 continue;
2275
2276 len = strlen(xattr->name) + 1;
2277 used += len;
2278 if (buffer) {
2279 if (size < used) {
2280 used = -ERANGE;
2281 break;
2282 }
2283 memcpy(buffer, xattr->name, len);
2284 buffer += len;
2285 }
2286 }
2287 spin_unlock(&info->lock);
2288
2289 return used;
2290 }
2291 #endif /* CONFIG_TMPFS_XATTR */
2292
2293 static const struct inode_operations shmem_short_symlink_operations = {
2294 .readlink = generic_readlink,
2295 .follow_link = shmem_follow_short_symlink,
2296 #ifdef CONFIG_TMPFS_XATTR
2297 .setxattr = shmem_setxattr,
2298 .getxattr = shmem_getxattr,
2299 .listxattr = shmem_listxattr,
2300 .removexattr = shmem_removexattr,
2301 #endif
2302 };
2303
2304 static const struct inode_operations shmem_symlink_inode_operations = {
2305 .readlink = generic_readlink,
2306 .follow_link = shmem_follow_link,
2307 .put_link = shmem_put_link,
2308 #ifdef CONFIG_TMPFS_XATTR
2309 .setxattr = shmem_setxattr,
2310 .getxattr = shmem_getxattr,
2311 .listxattr = shmem_listxattr,
2312 .removexattr = shmem_removexattr,
2313 #endif
2314 };
2315
2316 static struct dentry *shmem_get_parent(struct dentry *child)
2317 {
2318 return ERR_PTR(-ESTALE);
2319 }
2320
2321 static int shmem_match(struct inode *ino, void *vfh)
2322 {
2323 __u32 *fh = vfh;
2324 __u64 inum = fh[2];
2325 inum = (inum << 32) | fh[1];
2326 return ino->i_ino == inum && fh[0] == ino->i_generation;
2327 }
2328
2329 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2330 struct fid *fid, int fh_len, int fh_type)
2331 {
2332 struct inode *inode;
2333 struct dentry *dentry = NULL;
2334 u64 inum = fid->raw[2];
2335 inum = (inum << 32) | fid->raw[1];
2336
2337 if (fh_len < 3)
2338 return NULL;
2339
2340 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2341 shmem_match, fid->raw);
2342 if (inode) {
2343 dentry = d_find_alias(inode);
2344 iput(inode);
2345 }
2346
2347 return dentry;
2348 }
2349
2350 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2351 int connectable)
2352 {
2353 struct inode *inode = dentry->d_inode;
2354
2355 if (*len < 3) {
2356 *len = 3;
2357 return 255;
2358 }
2359
2360 if (inode_unhashed(inode)) {
2361 /* Unfortunately insert_inode_hash is not idempotent,
2362 * so as we hash inodes here rather than at creation
2363 * time, we need a lock to ensure we only try
2364 * to do it once
2365 */
2366 static DEFINE_SPINLOCK(lock);
2367 spin_lock(&lock);
2368 if (inode_unhashed(inode))
2369 __insert_inode_hash(inode,
2370 inode->i_ino + inode->i_generation);
2371 spin_unlock(&lock);
2372 }
2373
2374 fh[0] = inode->i_generation;
2375 fh[1] = inode->i_ino;
2376 fh[2] = ((__u64)inode->i_ino) >> 32;
2377
2378 *len = 3;
2379 return 1;
2380 }
2381
2382 static const struct export_operations shmem_export_ops = {
2383 .get_parent = shmem_get_parent,
2384 .encode_fh = shmem_encode_fh,
2385 .fh_to_dentry = shmem_fh_to_dentry,
2386 };
2387
2388 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2389 bool remount)
2390 {
2391 char *this_char, *value, *rest;
2392 uid_t uid;
2393 gid_t gid;
2394
2395 while (options != NULL) {
2396 this_char = options;
2397 for (;;) {
2398 /*
2399 * NUL-terminate this option: unfortunately,
2400 * mount options form a comma-separated list,
2401 * but mpol's nodelist may also contain commas.
2402 */
2403 options = strchr(options, ',');
2404 if (options == NULL)
2405 break;
2406 options++;
2407 if (!isdigit(*options)) {
2408 options[-1] = '\0';
2409 break;
2410 }
2411 }
2412 if (!*this_char)
2413 continue;
2414 if ((value = strchr(this_char,'=')) != NULL) {
2415 *value++ = 0;
2416 } else {
2417 printk(KERN_ERR
2418 "tmpfs: No value for mount option '%s'\n",
2419 this_char);
2420 return 1;
2421 }
2422
2423 if (!strcmp(this_char,"size")) {
2424 unsigned long long size;
2425 size = memparse(value,&rest);
2426 if (*rest == '%') {
2427 size <<= PAGE_SHIFT;
2428 size *= totalram_pages;
2429 do_div(size, 100);
2430 rest++;
2431 }
2432 if (*rest)
2433 goto bad_val;
2434 sbinfo->max_blocks =
2435 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2436 } else if (!strcmp(this_char,"nr_blocks")) {
2437 sbinfo->max_blocks = memparse(value, &rest);
2438 if (*rest)
2439 goto bad_val;
2440 } else if (!strcmp(this_char,"nr_inodes")) {
2441 sbinfo->max_inodes = memparse(value, &rest);
2442 if (*rest)
2443 goto bad_val;
2444 } else if (!strcmp(this_char,"mode")) {
2445 if (remount)
2446 continue;
2447 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2448 if (*rest)
2449 goto bad_val;
2450 } else if (!strcmp(this_char,"uid")) {
2451 if (remount)
2452 continue;
2453 uid = simple_strtoul(value, &rest, 0);
2454 if (*rest)
2455 goto bad_val;
2456 sbinfo->uid = make_kuid(current_user_ns(), uid);
2457 if (!uid_valid(sbinfo->uid))
2458 goto bad_val;
2459 } else if (!strcmp(this_char,"gid")) {
2460 if (remount)
2461 continue;
2462 gid = simple_strtoul(value, &rest, 0);
2463 if (*rest)
2464 goto bad_val;
2465 sbinfo->gid = make_kgid(current_user_ns(), gid);
2466 if (!gid_valid(sbinfo->gid))
2467 goto bad_val;
2468 } else if (!strcmp(this_char,"mpol")) {
2469 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2470 goto bad_val;
2471 } else {
2472 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2473 this_char);
2474 return 1;
2475 }
2476 }
2477 return 0;
2478
2479 bad_val:
2480 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2481 value, this_char);
2482 return 1;
2483
2484 }
2485
2486 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2487 {
2488 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2489 struct shmem_sb_info config = *sbinfo;
2490 unsigned long inodes;
2491 int error = -EINVAL;
2492
2493 if (shmem_parse_options(data, &config, true))
2494 return error;
2495
2496 spin_lock(&sbinfo->stat_lock);
2497 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2498 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2499 goto out;
2500 if (config.max_inodes < inodes)
2501 goto out;
2502 /*
2503 * Those tests disallow limited->unlimited while any are in use;
2504 * but we must separately disallow unlimited->limited, because
2505 * in that case we have no record of how much is already in use.
2506 */
2507 if (config.max_blocks && !sbinfo->max_blocks)
2508 goto out;
2509 if (config.max_inodes && !sbinfo->max_inodes)
2510 goto out;
2511
2512 error = 0;
2513 sbinfo->max_blocks = config.max_blocks;
2514 sbinfo->max_inodes = config.max_inodes;
2515 sbinfo->free_inodes = config.max_inodes - inodes;
2516
2517 mpol_put(sbinfo->mpol);
2518 sbinfo->mpol = config.mpol; /* transfers initial ref */
2519 out:
2520 spin_unlock(&sbinfo->stat_lock);
2521 return error;
2522 }
2523
2524 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2525 {
2526 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2527
2528 if (sbinfo->max_blocks != shmem_default_max_blocks())
2529 seq_printf(seq, ",size=%luk",
2530 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2531 if (sbinfo->max_inodes != shmem_default_max_inodes())
2532 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2533 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2534 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2535 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2536 seq_printf(seq, ",uid=%u",
2537 from_kuid_munged(&init_user_ns, sbinfo->uid));
2538 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2539 seq_printf(seq, ",gid=%u",
2540 from_kgid_munged(&init_user_ns, sbinfo->gid));
2541 shmem_show_mpol(seq, sbinfo->mpol);
2542 return 0;
2543 }
2544 #endif /* CONFIG_TMPFS */
2545
2546 static void shmem_put_super(struct super_block *sb)
2547 {
2548 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2549
2550 percpu_counter_destroy(&sbinfo->used_blocks);
2551 kfree(sbinfo);
2552 sb->s_fs_info = NULL;
2553 }
2554
2555 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2556 {
2557 struct inode *inode;
2558 struct shmem_sb_info *sbinfo;
2559 int err = -ENOMEM;
2560
2561 /* Round up to L1_CACHE_BYTES to resist false sharing */
2562 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2563 L1_CACHE_BYTES), GFP_KERNEL);
2564 if (!sbinfo)
2565 return -ENOMEM;
2566
2567 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2568 sbinfo->uid = current_fsuid();
2569 sbinfo->gid = current_fsgid();
2570 sb->s_fs_info = sbinfo;
2571
2572 #ifdef CONFIG_TMPFS
2573 /*
2574 * Per default we only allow half of the physical ram per
2575 * tmpfs instance, limiting inodes to one per page of lowmem;
2576 * but the internal instance is left unlimited.
2577 */
2578 if (!(sb->s_flags & MS_NOUSER)) {
2579 sbinfo->max_blocks = shmem_default_max_blocks();
2580 sbinfo->max_inodes = shmem_default_max_inodes();
2581 if (shmem_parse_options(data, sbinfo, false)) {
2582 err = -EINVAL;
2583 goto failed;
2584 }
2585 }
2586 sb->s_export_op = &shmem_export_ops;
2587 sb->s_flags |= MS_NOSEC;
2588 #else
2589 sb->s_flags |= MS_NOUSER;
2590 #endif
2591
2592 spin_lock_init(&sbinfo->stat_lock);
2593 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2594 goto failed;
2595 sbinfo->free_inodes = sbinfo->max_inodes;
2596
2597 sb->s_maxbytes = MAX_LFS_FILESIZE;
2598 sb->s_blocksize = PAGE_CACHE_SIZE;
2599 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2600 sb->s_magic = TMPFS_MAGIC;
2601 sb->s_op = &shmem_ops;
2602 sb->s_time_gran = 1;
2603 #ifdef CONFIG_TMPFS_XATTR
2604 sb->s_xattr = shmem_xattr_handlers;
2605 #endif
2606 #ifdef CONFIG_TMPFS_POSIX_ACL
2607 sb->s_flags |= MS_POSIXACL;
2608 #endif
2609
2610 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2611 if (!inode)
2612 goto failed;
2613 inode->i_uid = sbinfo->uid;
2614 inode->i_gid = sbinfo->gid;
2615 sb->s_root = d_make_root(inode);
2616 if (!sb->s_root)
2617 goto failed;
2618 return 0;
2619
2620 failed:
2621 shmem_put_super(sb);
2622 return err;
2623 }
2624
2625 static struct kmem_cache *shmem_inode_cachep;
2626
2627 static struct inode *shmem_alloc_inode(struct super_block *sb)
2628 {
2629 struct shmem_inode_info *info;
2630 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2631 if (!info)
2632 return NULL;
2633 return &info->vfs_inode;
2634 }
2635
2636 static void shmem_destroy_callback(struct rcu_head *head)
2637 {
2638 struct inode *inode = container_of(head, struct inode, i_rcu);
2639 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2640 }
2641
2642 static void shmem_destroy_inode(struct inode *inode)
2643 {
2644 if (S_ISREG(inode->i_mode))
2645 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2646 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2647 }
2648
2649 static void shmem_init_inode(void *foo)
2650 {
2651 struct shmem_inode_info *info = foo;
2652 inode_init_once(&info->vfs_inode);
2653 }
2654
2655 static int shmem_init_inodecache(void)
2656 {
2657 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2658 sizeof(struct shmem_inode_info),
2659 0, SLAB_PANIC, shmem_init_inode);
2660 return 0;
2661 }
2662
2663 static void shmem_destroy_inodecache(void)
2664 {
2665 kmem_cache_destroy(shmem_inode_cachep);
2666 }
2667
2668 static const struct address_space_operations shmem_aops = {
2669 .writepage = shmem_writepage,
2670 .set_page_dirty = __set_page_dirty_no_writeback,
2671 #ifdef CONFIG_TMPFS
2672 .write_begin = shmem_write_begin,
2673 .write_end = shmem_write_end,
2674 #endif
2675 .migratepage = migrate_page,
2676 .error_remove_page = generic_error_remove_page,
2677 };
2678
2679 static const struct file_operations shmem_file_operations = {
2680 .mmap = shmem_mmap,
2681 #ifdef CONFIG_TMPFS
2682 .llseek = generic_file_llseek,
2683 .read = do_sync_read,
2684 .write = do_sync_write,
2685 .aio_read = shmem_file_aio_read,
2686 .aio_write = generic_file_aio_write,
2687 .fsync = noop_fsync,
2688 .splice_read = shmem_file_splice_read,
2689 .splice_write = generic_file_splice_write,
2690 .fallocate = shmem_fallocate,
2691 #endif
2692 };
2693
2694 static const struct inode_operations shmem_inode_operations = {
2695 .setattr = shmem_setattr,
2696 #ifdef CONFIG_TMPFS_XATTR
2697 .setxattr = shmem_setxattr,
2698 .getxattr = shmem_getxattr,
2699 .listxattr = shmem_listxattr,
2700 .removexattr = shmem_removexattr,
2701 #endif
2702 };
2703
2704 static const struct inode_operations shmem_dir_inode_operations = {
2705 #ifdef CONFIG_TMPFS
2706 .create = shmem_create,
2707 .lookup = simple_lookup,
2708 .link = shmem_link,
2709 .unlink = shmem_unlink,
2710 .symlink = shmem_symlink,
2711 .mkdir = shmem_mkdir,
2712 .rmdir = shmem_rmdir,
2713 .mknod = shmem_mknod,
2714 .rename = shmem_rename,
2715 #endif
2716 #ifdef CONFIG_TMPFS_XATTR
2717 .setxattr = shmem_setxattr,
2718 .getxattr = shmem_getxattr,
2719 .listxattr = shmem_listxattr,
2720 .removexattr = shmem_removexattr,
2721 #endif
2722 #ifdef CONFIG_TMPFS_POSIX_ACL
2723 .setattr = shmem_setattr,
2724 #endif
2725 };
2726
2727 static const struct inode_operations shmem_special_inode_operations = {
2728 #ifdef CONFIG_TMPFS_XATTR
2729 .setxattr = shmem_setxattr,
2730 .getxattr = shmem_getxattr,
2731 .listxattr = shmem_listxattr,
2732 .removexattr = shmem_removexattr,
2733 #endif
2734 #ifdef CONFIG_TMPFS_POSIX_ACL
2735 .setattr = shmem_setattr,
2736 #endif
2737 };
2738
2739 static const struct super_operations shmem_ops = {
2740 .alloc_inode = shmem_alloc_inode,
2741 .destroy_inode = shmem_destroy_inode,
2742 #ifdef CONFIG_TMPFS
2743 .statfs = shmem_statfs,
2744 .remount_fs = shmem_remount_fs,
2745 .show_options = shmem_show_options,
2746 #endif
2747 .evict_inode = shmem_evict_inode,
2748 .drop_inode = generic_delete_inode,
2749 .put_super = shmem_put_super,
2750 };
2751
2752 static const struct vm_operations_struct shmem_vm_ops = {
2753 .fault = shmem_fault,
2754 #ifdef CONFIG_NUMA
2755 .set_policy = shmem_set_policy,
2756 .get_policy = shmem_get_policy,
2757 #endif
2758 };
2759
2760 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2761 int flags, const char *dev_name, void *data)
2762 {
2763 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2764 }
2765
2766 static struct file_system_type shmem_fs_type = {
2767 .owner = THIS_MODULE,
2768 .name = "tmpfs",
2769 .mount = shmem_mount,
2770 .kill_sb = kill_litter_super,
2771 };
2772
2773 int __init shmem_init(void)
2774 {
2775 int error;
2776
2777 error = bdi_init(&shmem_backing_dev_info);
2778 if (error)
2779 goto out4;
2780
2781 error = shmem_init_inodecache();
2782 if (error)
2783 goto out3;
2784
2785 error = register_filesystem(&shmem_fs_type);
2786 if (error) {
2787 printk(KERN_ERR "Could not register tmpfs\n");
2788 goto out2;
2789 }
2790
2791 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2792 shmem_fs_type.name, NULL);
2793 if (IS_ERR(shm_mnt)) {
2794 error = PTR_ERR(shm_mnt);
2795 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2796 goto out1;
2797 }
2798 return 0;
2799
2800 out1:
2801 unregister_filesystem(&shmem_fs_type);
2802 out2:
2803 shmem_destroy_inodecache();
2804 out3:
2805 bdi_destroy(&shmem_backing_dev_info);
2806 out4:
2807 shm_mnt = ERR_PTR(error);
2808 return error;
2809 }
2810
2811 #else /* !CONFIG_SHMEM */
2812
2813 /*
2814 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2815 *
2816 * This is intended for small system where the benefits of the full
2817 * shmem code (swap-backed and resource-limited) are outweighed by
2818 * their complexity. On systems without swap this code should be
2819 * effectively equivalent, but much lighter weight.
2820 */
2821
2822 #include <linux/ramfs.h>
2823
2824 static struct file_system_type shmem_fs_type = {
2825 .name = "tmpfs",
2826 .mount = ramfs_mount,
2827 .kill_sb = kill_litter_super,
2828 };
2829
2830 int __init shmem_init(void)
2831 {
2832 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2833
2834 shm_mnt = kern_mount(&shmem_fs_type);
2835 BUG_ON(IS_ERR(shm_mnt));
2836
2837 return 0;
2838 }
2839
2840 int shmem_unuse(swp_entry_t swap, struct page *page)
2841 {
2842 return 0;
2843 }
2844
2845 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2846 {
2847 return 0;
2848 }
2849
2850 void shmem_unlock_mapping(struct address_space *mapping)
2851 {
2852 }
2853
2854 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2855 {
2856 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2857 }
2858 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2859
2860 #define shmem_vm_ops generic_file_vm_ops
2861 #define shmem_file_operations ramfs_file_operations
2862 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2863 #define shmem_acct_size(flags, size) 0
2864 #define shmem_unacct_size(flags, size) do {} while (0)
2865
2866 #endif /* CONFIG_SHMEM */
2867
2868 /* common code */
2869
2870 /**
2871 * shmem_file_setup - get an unlinked file living in tmpfs
2872 * @name: name for dentry (to be seen in /proc/<pid>/maps
2873 * @size: size to be set for the file
2874 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2875 */
2876 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2877 {
2878 int error;
2879 struct file *file;
2880 struct inode *inode;
2881 struct path path;
2882 struct dentry *root;
2883 struct qstr this;
2884
2885 if (IS_ERR(shm_mnt))
2886 return (void *)shm_mnt;
2887
2888 if (size < 0 || size > MAX_LFS_FILESIZE)
2889 return ERR_PTR(-EINVAL);
2890
2891 if (shmem_acct_size(flags, size))
2892 return ERR_PTR(-ENOMEM);
2893
2894 error = -ENOMEM;
2895 this.name = name;
2896 this.len = strlen(name);
2897 this.hash = 0; /* will go */
2898 root = shm_mnt->mnt_root;
2899 path.dentry = d_alloc(root, &this);
2900 if (!path.dentry)
2901 goto put_memory;
2902 path.mnt = mntget(shm_mnt);
2903
2904 error = -ENOSPC;
2905 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2906 if (!inode)
2907 goto put_dentry;
2908
2909 d_instantiate(path.dentry, inode);
2910 inode->i_size = size;
2911 clear_nlink(inode); /* It is unlinked */
2912 #ifndef CONFIG_MMU
2913 error = ramfs_nommu_expand_for_mapping(inode, size);
2914 if (error)
2915 goto put_dentry;
2916 #endif
2917
2918 error = -ENFILE;
2919 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2920 &shmem_file_operations);
2921 if (!file)
2922 goto put_dentry;
2923
2924 return file;
2925
2926 put_dentry:
2927 path_put(&path);
2928 put_memory:
2929 shmem_unacct_size(flags, size);
2930 return ERR_PTR(error);
2931 }
2932 EXPORT_SYMBOL_GPL(shmem_file_setup);
2933
2934 /**
2935 * shmem_zero_setup - setup a shared anonymous mapping
2936 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2937 */
2938 int shmem_zero_setup(struct vm_area_struct *vma)
2939 {
2940 struct file *file;
2941 loff_t size = vma->vm_end - vma->vm_start;
2942
2943 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2944 if (IS_ERR(file))
2945 return PTR_ERR(file);
2946
2947 if (vma->vm_file)
2948 fput(vma->vm_file);
2949 vma->vm_file = file;
2950 vma->vm_ops = &shmem_vm_ops;
2951 vma->vm_flags |= VM_CAN_NONLINEAR;
2952 return 0;
2953 }
2954
2955 /**
2956 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2957 * @mapping: the page's address_space
2958 * @index: the page index
2959 * @gfp: the page allocator flags to use if allocating
2960 *
2961 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2962 * with any new page allocations done using the specified allocation flags.
2963 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2964 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2965 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2966 *
2967 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2968 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2969 */
2970 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2971 pgoff_t index, gfp_t gfp)
2972 {
2973 #ifdef CONFIG_SHMEM
2974 struct inode *inode = mapping->host;
2975 struct page *page;
2976 int error;
2977
2978 BUG_ON(mapping->a_ops != &shmem_aops);
2979 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2980 if (error)
2981 page = ERR_PTR(error);
2982 else
2983 unlock_page(page);
2984 return page;
2985 #else
2986 /*
2987 * The tiny !SHMEM case uses ramfs without swap
2988 */
2989 return read_cache_page_gfp(mapping, index, gfp);
2990 #endif
2991 }
2992 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);