]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/shmem.c
mm: memcontrol: fix warning when allocating the root cgroup
[mirror_ubuntu-hirsute-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (!sbinfo->free_inodes) {
283 spin_unlock(&sbinfo->stat_lock);
284 return -ENOSPC;
285 }
286 sbinfo->free_inodes--;
287 if (inop) {
288 ino = sbinfo->next_ino++;
289 if (unlikely(is_zero_ino(ino)))
290 ino = sbinfo->next_ino++;
291 if (unlikely(!sbinfo->full_inums &&
292 ino > UINT_MAX)) {
293 /*
294 * Emulate get_next_ino uint wraparound for
295 * compatibility
296 */
297 if (IS_ENABLED(CONFIG_64BIT))
298 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
299 __func__, MINOR(sb->s_dev));
300 sbinfo->next_ino = 1;
301 ino = sbinfo->next_ino++;
302 }
303 *inop = ino;
304 }
305 spin_unlock(&sbinfo->stat_lock);
306 } else if (inop) {
307 /*
308 * __shmem_file_setup, one of our callers, is lock-free: it
309 * doesn't hold stat_lock in shmem_reserve_inode since
310 * max_inodes is always 0, and is called from potentially
311 * unknown contexts. As such, use a per-cpu batched allocator
312 * which doesn't require the per-sb stat_lock unless we are at
313 * the batch boundary.
314 *
315 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
316 * shmem mounts are not exposed to userspace, so we don't need
317 * to worry about things like glibc compatibility.
318 */
319 ino_t *next_ino;
320 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
321 ino = *next_ino;
322 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
323 spin_lock(&sbinfo->stat_lock);
324 ino = sbinfo->next_ino;
325 sbinfo->next_ino += SHMEM_INO_BATCH;
326 spin_unlock(&sbinfo->stat_lock);
327 if (unlikely(is_zero_ino(ino)))
328 ino++;
329 }
330 *inop = ino;
331 *next_ino = ++ino;
332 put_cpu();
333 }
334
335 return 0;
336 }
337
338 static void shmem_free_inode(struct super_block *sb)
339 {
340 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
341 if (sbinfo->max_inodes) {
342 spin_lock(&sbinfo->stat_lock);
343 sbinfo->free_inodes++;
344 spin_unlock(&sbinfo->stat_lock);
345 }
346 }
347
348 /**
349 * shmem_recalc_inode - recalculate the block usage of an inode
350 * @inode: inode to recalc
351 *
352 * We have to calculate the free blocks since the mm can drop
353 * undirtied hole pages behind our back.
354 *
355 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
356 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
357 *
358 * It has to be called with the spinlock held.
359 */
360 static void shmem_recalc_inode(struct inode *inode)
361 {
362 struct shmem_inode_info *info = SHMEM_I(inode);
363 long freed;
364
365 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
366 if (freed > 0) {
367 info->alloced -= freed;
368 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
369 shmem_inode_unacct_blocks(inode, freed);
370 }
371 }
372
373 bool shmem_charge(struct inode *inode, long pages)
374 {
375 struct shmem_inode_info *info = SHMEM_I(inode);
376 unsigned long flags;
377
378 if (!shmem_inode_acct_block(inode, pages))
379 return false;
380
381 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
382 inode->i_mapping->nrpages += pages;
383
384 spin_lock_irqsave(&info->lock, flags);
385 info->alloced += pages;
386 inode->i_blocks += pages * BLOCKS_PER_PAGE;
387 shmem_recalc_inode(inode);
388 spin_unlock_irqrestore(&info->lock, flags);
389
390 return true;
391 }
392
393 void shmem_uncharge(struct inode *inode, long pages)
394 {
395 struct shmem_inode_info *info = SHMEM_I(inode);
396 unsigned long flags;
397
398 /* nrpages adjustment done by __delete_from_page_cache() or caller */
399
400 spin_lock_irqsave(&info->lock, flags);
401 info->alloced -= pages;
402 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
403 shmem_recalc_inode(inode);
404 spin_unlock_irqrestore(&info->lock, flags);
405
406 shmem_inode_unacct_blocks(inode, pages);
407 }
408
409 /*
410 * Replace item expected in xarray by a new item, while holding xa_lock.
411 */
412 static int shmem_replace_entry(struct address_space *mapping,
413 pgoff_t index, void *expected, void *replacement)
414 {
415 XA_STATE(xas, &mapping->i_pages, index);
416 void *item;
417
418 VM_BUG_ON(!expected);
419 VM_BUG_ON(!replacement);
420 item = xas_load(&xas);
421 if (item != expected)
422 return -ENOENT;
423 xas_store(&xas, replacement);
424 return 0;
425 }
426
427 /*
428 * Sometimes, before we decide whether to proceed or to fail, we must check
429 * that an entry was not already brought back from swap by a racing thread.
430 *
431 * Checking page is not enough: by the time a SwapCache page is locked, it
432 * might be reused, and again be SwapCache, using the same swap as before.
433 */
434 static bool shmem_confirm_swap(struct address_space *mapping,
435 pgoff_t index, swp_entry_t swap)
436 {
437 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
438 }
439
440 /*
441 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
442 *
443 * SHMEM_HUGE_NEVER:
444 * disables huge pages for the mount;
445 * SHMEM_HUGE_ALWAYS:
446 * enables huge pages for the mount;
447 * SHMEM_HUGE_WITHIN_SIZE:
448 * only allocate huge pages if the page will be fully within i_size,
449 * also respect fadvise()/madvise() hints;
450 * SHMEM_HUGE_ADVISE:
451 * only allocate huge pages if requested with fadvise()/madvise();
452 */
453
454 #define SHMEM_HUGE_NEVER 0
455 #define SHMEM_HUGE_ALWAYS 1
456 #define SHMEM_HUGE_WITHIN_SIZE 2
457 #define SHMEM_HUGE_ADVISE 3
458
459 /*
460 * Special values.
461 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
462 *
463 * SHMEM_HUGE_DENY:
464 * disables huge on shm_mnt and all mounts, for emergency use;
465 * SHMEM_HUGE_FORCE:
466 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
467 *
468 */
469 #define SHMEM_HUGE_DENY (-1)
470 #define SHMEM_HUGE_FORCE (-2)
471
472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
473 /* ifdef here to avoid bloating shmem.o when not necessary */
474
475 static int shmem_huge __read_mostly;
476
477 #if defined(CONFIG_SYSFS)
478 static int shmem_parse_huge(const char *str)
479 {
480 if (!strcmp(str, "never"))
481 return SHMEM_HUGE_NEVER;
482 if (!strcmp(str, "always"))
483 return SHMEM_HUGE_ALWAYS;
484 if (!strcmp(str, "within_size"))
485 return SHMEM_HUGE_WITHIN_SIZE;
486 if (!strcmp(str, "advise"))
487 return SHMEM_HUGE_ADVISE;
488 if (!strcmp(str, "deny"))
489 return SHMEM_HUGE_DENY;
490 if (!strcmp(str, "force"))
491 return SHMEM_HUGE_FORCE;
492 return -EINVAL;
493 }
494 #endif
495
496 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
497 static const char *shmem_format_huge(int huge)
498 {
499 switch (huge) {
500 case SHMEM_HUGE_NEVER:
501 return "never";
502 case SHMEM_HUGE_ALWAYS:
503 return "always";
504 case SHMEM_HUGE_WITHIN_SIZE:
505 return "within_size";
506 case SHMEM_HUGE_ADVISE:
507 return "advise";
508 case SHMEM_HUGE_DENY:
509 return "deny";
510 case SHMEM_HUGE_FORCE:
511 return "force";
512 default:
513 VM_BUG_ON(1);
514 return "bad_val";
515 }
516 }
517 #endif
518
519 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
520 struct shrink_control *sc, unsigned long nr_to_split)
521 {
522 LIST_HEAD(list), *pos, *next;
523 LIST_HEAD(to_remove);
524 struct inode *inode;
525 struct shmem_inode_info *info;
526 struct page *page;
527 unsigned long batch = sc ? sc->nr_to_scan : 128;
528 int removed = 0, split = 0;
529
530 if (list_empty(&sbinfo->shrinklist))
531 return SHRINK_STOP;
532
533 spin_lock(&sbinfo->shrinklist_lock);
534 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
535 info = list_entry(pos, struct shmem_inode_info, shrinklist);
536
537 /* pin the inode */
538 inode = igrab(&info->vfs_inode);
539
540 /* inode is about to be evicted */
541 if (!inode) {
542 list_del_init(&info->shrinklist);
543 removed++;
544 goto next;
545 }
546
547 /* Check if there's anything to gain */
548 if (round_up(inode->i_size, PAGE_SIZE) ==
549 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
550 list_move(&info->shrinklist, &to_remove);
551 removed++;
552 goto next;
553 }
554
555 list_move(&info->shrinklist, &list);
556 next:
557 if (!--batch)
558 break;
559 }
560 spin_unlock(&sbinfo->shrinklist_lock);
561
562 list_for_each_safe(pos, next, &to_remove) {
563 info = list_entry(pos, struct shmem_inode_info, shrinklist);
564 inode = &info->vfs_inode;
565 list_del_init(&info->shrinklist);
566 iput(inode);
567 }
568
569 list_for_each_safe(pos, next, &list) {
570 int ret;
571
572 info = list_entry(pos, struct shmem_inode_info, shrinklist);
573 inode = &info->vfs_inode;
574
575 if (nr_to_split && split >= nr_to_split)
576 goto leave;
577
578 page = find_get_page(inode->i_mapping,
579 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
580 if (!page)
581 goto drop;
582
583 /* No huge page at the end of the file: nothing to split */
584 if (!PageTransHuge(page)) {
585 put_page(page);
586 goto drop;
587 }
588
589 /*
590 * Leave the inode on the list if we failed to lock
591 * the page at this time.
592 *
593 * Waiting for the lock may lead to deadlock in the
594 * reclaim path.
595 */
596 if (!trylock_page(page)) {
597 put_page(page);
598 goto leave;
599 }
600
601 ret = split_huge_page(page);
602 unlock_page(page);
603 put_page(page);
604
605 /* If split failed leave the inode on the list */
606 if (ret)
607 goto leave;
608
609 split++;
610 drop:
611 list_del_init(&info->shrinklist);
612 removed++;
613 leave:
614 iput(inode);
615 }
616
617 spin_lock(&sbinfo->shrinklist_lock);
618 list_splice_tail(&list, &sbinfo->shrinklist);
619 sbinfo->shrinklist_len -= removed;
620 spin_unlock(&sbinfo->shrinklist_lock);
621
622 return split;
623 }
624
625 static long shmem_unused_huge_scan(struct super_block *sb,
626 struct shrink_control *sc)
627 {
628 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
629
630 if (!READ_ONCE(sbinfo->shrinklist_len))
631 return SHRINK_STOP;
632
633 return shmem_unused_huge_shrink(sbinfo, sc, 0);
634 }
635
636 static long shmem_unused_huge_count(struct super_block *sb,
637 struct shrink_control *sc)
638 {
639 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
640 return READ_ONCE(sbinfo->shrinklist_len);
641 }
642 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
643
644 #define shmem_huge SHMEM_HUGE_DENY
645
646 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
647 struct shrink_control *sc, unsigned long nr_to_split)
648 {
649 return 0;
650 }
651 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
652
653 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
654 {
655 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
656 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
657 shmem_huge != SHMEM_HUGE_DENY)
658 return true;
659 return false;
660 }
661
662 /*
663 * Like add_to_page_cache_locked, but error if expected item has gone.
664 */
665 static int shmem_add_to_page_cache(struct page *page,
666 struct address_space *mapping,
667 pgoff_t index, void *expected, gfp_t gfp,
668 struct mm_struct *charge_mm)
669 {
670 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
671 unsigned long i = 0;
672 unsigned long nr = compound_nr(page);
673 int error;
674
675 VM_BUG_ON_PAGE(PageTail(page), page);
676 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
677 VM_BUG_ON_PAGE(!PageLocked(page), page);
678 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
679 VM_BUG_ON(expected && PageTransHuge(page));
680
681 page_ref_add(page, nr);
682 page->mapping = mapping;
683 page->index = index;
684
685 if (!PageSwapCache(page)) {
686 error = mem_cgroup_charge(page, charge_mm, gfp);
687 if (error) {
688 if (PageTransHuge(page)) {
689 count_vm_event(THP_FILE_FALLBACK);
690 count_vm_event(THP_FILE_FALLBACK_CHARGE);
691 }
692 goto error;
693 }
694 }
695 cgroup_throttle_swaprate(page, gfp);
696
697 do {
698 void *entry;
699 xas_lock_irq(&xas);
700 entry = xas_find_conflict(&xas);
701 if (entry != expected)
702 xas_set_err(&xas, -EEXIST);
703 xas_create_range(&xas);
704 if (xas_error(&xas))
705 goto unlock;
706 next:
707 xas_store(&xas, page);
708 if (++i < nr) {
709 xas_next(&xas);
710 goto next;
711 }
712 if (PageTransHuge(page)) {
713 count_vm_event(THP_FILE_ALLOC);
714 __inc_node_page_state(page, NR_SHMEM_THPS);
715 }
716 mapping->nrpages += nr;
717 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
718 __mod_lruvec_page_state(page, NR_SHMEM, nr);
719 unlock:
720 xas_unlock_irq(&xas);
721 } while (xas_nomem(&xas, gfp));
722
723 if (xas_error(&xas)) {
724 error = xas_error(&xas);
725 goto error;
726 }
727
728 return 0;
729 error:
730 page->mapping = NULL;
731 page_ref_sub(page, nr);
732 return error;
733 }
734
735 /*
736 * Like delete_from_page_cache, but substitutes swap for page.
737 */
738 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
739 {
740 struct address_space *mapping = page->mapping;
741 int error;
742
743 VM_BUG_ON_PAGE(PageCompound(page), page);
744
745 xa_lock_irq(&mapping->i_pages);
746 error = shmem_replace_entry(mapping, page->index, page, radswap);
747 page->mapping = NULL;
748 mapping->nrpages--;
749 __dec_lruvec_page_state(page, NR_FILE_PAGES);
750 __dec_lruvec_page_state(page, NR_SHMEM);
751 xa_unlock_irq(&mapping->i_pages);
752 put_page(page);
753 BUG_ON(error);
754 }
755
756 /*
757 * Remove swap entry from page cache, free the swap and its page cache.
758 */
759 static int shmem_free_swap(struct address_space *mapping,
760 pgoff_t index, void *radswap)
761 {
762 void *old;
763
764 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
765 if (old != radswap)
766 return -ENOENT;
767 free_swap_and_cache(radix_to_swp_entry(radswap));
768 return 0;
769 }
770
771 /*
772 * Determine (in bytes) how many of the shmem object's pages mapped by the
773 * given offsets are swapped out.
774 *
775 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
776 * as long as the inode doesn't go away and racy results are not a problem.
777 */
778 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
779 pgoff_t start, pgoff_t end)
780 {
781 XA_STATE(xas, &mapping->i_pages, start);
782 struct page *page;
783 unsigned long swapped = 0;
784
785 rcu_read_lock();
786 xas_for_each(&xas, page, end - 1) {
787 if (xas_retry(&xas, page))
788 continue;
789 if (xa_is_value(page))
790 swapped++;
791
792 if (need_resched()) {
793 xas_pause(&xas);
794 cond_resched_rcu();
795 }
796 }
797
798 rcu_read_unlock();
799
800 return swapped << PAGE_SHIFT;
801 }
802
803 /*
804 * Determine (in bytes) how many of the shmem object's pages mapped by the
805 * given vma is swapped out.
806 *
807 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
808 * as long as the inode doesn't go away and racy results are not a problem.
809 */
810 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
811 {
812 struct inode *inode = file_inode(vma->vm_file);
813 struct shmem_inode_info *info = SHMEM_I(inode);
814 struct address_space *mapping = inode->i_mapping;
815 unsigned long swapped;
816
817 /* Be careful as we don't hold info->lock */
818 swapped = READ_ONCE(info->swapped);
819
820 /*
821 * The easier cases are when the shmem object has nothing in swap, or
822 * the vma maps it whole. Then we can simply use the stats that we
823 * already track.
824 */
825 if (!swapped)
826 return 0;
827
828 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
829 return swapped << PAGE_SHIFT;
830
831 /* Here comes the more involved part */
832 return shmem_partial_swap_usage(mapping,
833 linear_page_index(vma, vma->vm_start),
834 linear_page_index(vma, vma->vm_end));
835 }
836
837 /*
838 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
839 */
840 void shmem_unlock_mapping(struct address_space *mapping)
841 {
842 struct pagevec pvec;
843 pgoff_t indices[PAGEVEC_SIZE];
844 pgoff_t index = 0;
845
846 pagevec_init(&pvec);
847 /*
848 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
849 */
850 while (!mapping_unevictable(mapping)) {
851 /*
852 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
853 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
854 */
855 pvec.nr = find_get_entries(mapping, index,
856 PAGEVEC_SIZE, pvec.pages, indices);
857 if (!pvec.nr)
858 break;
859 index = indices[pvec.nr - 1] + 1;
860 pagevec_remove_exceptionals(&pvec);
861 check_move_unevictable_pages(&pvec);
862 pagevec_release(&pvec);
863 cond_resched();
864 }
865 }
866
867 /*
868 * Check whether a hole-punch or truncation needs to split a huge page,
869 * returning true if no split was required, or the split has been successful.
870 *
871 * Eviction (or truncation to 0 size) should never need to split a huge page;
872 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
873 * head, and then succeeded to trylock on tail.
874 *
875 * A split can only succeed when there are no additional references on the
876 * huge page: so the split below relies upon find_get_entries() having stopped
877 * when it found a subpage of the huge page, without getting further references.
878 */
879 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
880 {
881 if (!PageTransCompound(page))
882 return true;
883
884 /* Just proceed to delete a huge page wholly within the range punched */
885 if (PageHead(page) &&
886 page->index >= start && page->index + HPAGE_PMD_NR <= end)
887 return true;
888
889 /* Try to split huge page, so we can truly punch the hole or truncate */
890 return split_huge_page(page) >= 0;
891 }
892
893 /*
894 * Remove range of pages and swap entries from page cache, and free them.
895 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
896 */
897 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
898 bool unfalloc)
899 {
900 struct address_space *mapping = inode->i_mapping;
901 struct shmem_inode_info *info = SHMEM_I(inode);
902 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
903 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
904 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
905 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
906 struct pagevec pvec;
907 pgoff_t indices[PAGEVEC_SIZE];
908 long nr_swaps_freed = 0;
909 pgoff_t index;
910 int i;
911
912 if (lend == -1)
913 end = -1; /* unsigned, so actually very big */
914
915 pagevec_init(&pvec);
916 index = start;
917 while (index < end) {
918 pvec.nr = find_get_entries(mapping, index,
919 min(end - index, (pgoff_t)PAGEVEC_SIZE),
920 pvec.pages, indices);
921 if (!pvec.nr)
922 break;
923 for (i = 0; i < pagevec_count(&pvec); i++) {
924 struct page *page = pvec.pages[i];
925
926 index = indices[i];
927 if (index >= end)
928 break;
929
930 if (xa_is_value(page)) {
931 if (unfalloc)
932 continue;
933 nr_swaps_freed += !shmem_free_swap(mapping,
934 index, page);
935 continue;
936 }
937
938 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
939
940 if (!trylock_page(page))
941 continue;
942
943 if ((!unfalloc || !PageUptodate(page)) &&
944 page_mapping(page) == mapping) {
945 VM_BUG_ON_PAGE(PageWriteback(page), page);
946 if (shmem_punch_compound(page, start, end))
947 truncate_inode_page(mapping, page);
948 }
949 unlock_page(page);
950 }
951 pagevec_remove_exceptionals(&pvec);
952 pagevec_release(&pvec);
953 cond_resched();
954 index++;
955 }
956
957 if (partial_start) {
958 struct page *page = NULL;
959 shmem_getpage(inode, start - 1, &page, SGP_READ);
960 if (page) {
961 unsigned int top = PAGE_SIZE;
962 if (start > end) {
963 top = partial_end;
964 partial_end = 0;
965 }
966 zero_user_segment(page, partial_start, top);
967 set_page_dirty(page);
968 unlock_page(page);
969 put_page(page);
970 }
971 }
972 if (partial_end) {
973 struct page *page = NULL;
974 shmem_getpage(inode, end, &page, SGP_READ);
975 if (page) {
976 zero_user_segment(page, 0, partial_end);
977 set_page_dirty(page);
978 unlock_page(page);
979 put_page(page);
980 }
981 }
982 if (start >= end)
983 return;
984
985 index = start;
986 while (index < end) {
987 cond_resched();
988
989 pvec.nr = find_get_entries(mapping, index,
990 min(end - index, (pgoff_t)PAGEVEC_SIZE),
991 pvec.pages, indices);
992 if (!pvec.nr) {
993 /* If all gone or hole-punch or unfalloc, we're done */
994 if (index == start || end != -1)
995 break;
996 /* But if truncating, restart to make sure all gone */
997 index = start;
998 continue;
999 }
1000 for (i = 0; i < pagevec_count(&pvec); i++) {
1001 struct page *page = pvec.pages[i];
1002
1003 index = indices[i];
1004 if (index >= end)
1005 break;
1006
1007 if (xa_is_value(page)) {
1008 if (unfalloc)
1009 continue;
1010 if (shmem_free_swap(mapping, index, page)) {
1011 /* Swap was replaced by page: retry */
1012 index--;
1013 break;
1014 }
1015 nr_swaps_freed++;
1016 continue;
1017 }
1018
1019 lock_page(page);
1020
1021 if (!unfalloc || !PageUptodate(page)) {
1022 if (page_mapping(page) != mapping) {
1023 /* Page was replaced by swap: retry */
1024 unlock_page(page);
1025 index--;
1026 break;
1027 }
1028 VM_BUG_ON_PAGE(PageWriteback(page), page);
1029 if (shmem_punch_compound(page, start, end))
1030 truncate_inode_page(mapping, page);
1031 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1032 /* Wipe the page and don't get stuck */
1033 clear_highpage(page);
1034 flush_dcache_page(page);
1035 set_page_dirty(page);
1036 if (index <
1037 round_up(start, HPAGE_PMD_NR))
1038 start = index + 1;
1039 }
1040 }
1041 unlock_page(page);
1042 }
1043 pagevec_remove_exceptionals(&pvec);
1044 pagevec_release(&pvec);
1045 index++;
1046 }
1047
1048 spin_lock_irq(&info->lock);
1049 info->swapped -= nr_swaps_freed;
1050 shmem_recalc_inode(inode);
1051 spin_unlock_irq(&info->lock);
1052 }
1053
1054 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1055 {
1056 shmem_undo_range(inode, lstart, lend, false);
1057 inode->i_ctime = inode->i_mtime = current_time(inode);
1058 }
1059 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1060
1061 static int shmem_getattr(const struct path *path, struct kstat *stat,
1062 u32 request_mask, unsigned int query_flags)
1063 {
1064 struct inode *inode = path->dentry->d_inode;
1065 struct shmem_inode_info *info = SHMEM_I(inode);
1066 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1067
1068 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1069 spin_lock_irq(&info->lock);
1070 shmem_recalc_inode(inode);
1071 spin_unlock_irq(&info->lock);
1072 }
1073 generic_fillattr(inode, stat);
1074
1075 if (is_huge_enabled(sb_info))
1076 stat->blksize = HPAGE_PMD_SIZE;
1077
1078 return 0;
1079 }
1080
1081 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1082 {
1083 struct inode *inode = d_inode(dentry);
1084 struct shmem_inode_info *info = SHMEM_I(inode);
1085 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1086 int error;
1087
1088 error = setattr_prepare(dentry, attr);
1089 if (error)
1090 return error;
1091
1092 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1093 loff_t oldsize = inode->i_size;
1094 loff_t newsize = attr->ia_size;
1095
1096 /* protected by i_mutex */
1097 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1098 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1099 return -EPERM;
1100
1101 if (newsize != oldsize) {
1102 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1103 oldsize, newsize);
1104 if (error)
1105 return error;
1106 i_size_write(inode, newsize);
1107 inode->i_ctime = inode->i_mtime = current_time(inode);
1108 }
1109 if (newsize <= oldsize) {
1110 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1111 if (oldsize > holebegin)
1112 unmap_mapping_range(inode->i_mapping,
1113 holebegin, 0, 1);
1114 if (info->alloced)
1115 shmem_truncate_range(inode,
1116 newsize, (loff_t)-1);
1117 /* unmap again to remove racily COWed private pages */
1118 if (oldsize > holebegin)
1119 unmap_mapping_range(inode->i_mapping,
1120 holebegin, 0, 1);
1121
1122 /*
1123 * Part of the huge page can be beyond i_size: subject
1124 * to shrink under memory pressure.
1125 */
1126 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1127 spin_lock(&sbinfo->shrinklist_lock);
1128 /*
1129 * _careful to defend against unlocked access to
1130 * ->shrink_list in shmem_unused_huge_shrink()
1131 */
1132 if (list_empty_careful(&info->shrinklist)) {
1133 list_add_tail(&info->shrinklist,
1134 &sbinfo->shrinklist);
1135 sbinfo->shrinklist_len++;
1136 }
1137 spin_unlock(&sbinfo->shrinklist_lock);
1138 }
1139 }
1140 }
1141
1142 setattr_copy(inode, attr);
1143 if (attr->ia_valid & ATTR_MODE)
1144 error = posix_acl_chmod(inode, inode->i_mode);
1145 return error;
1146 }
1147
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150 struct shmem_inode_info *info = SHMEM_I(inode);
1151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152
1153 if (inode->i_mapping->a_ops == &shmem_aops) {
1154 shmem_unacct_size(info->flags, inode->i_size);
1155 inode->i_size = 0;
1156 shmem_truncate_range(inode, 0, (loff_t)-1);
1157 if (!list_empty(&info->shrinklist)) {
1158 spin_lock(&sbinfo->shrinklist_lock);
1159 if (!list_empty(&info->shrinklist)) {
1160 list_del_init(&info->shrinklist);
1161 sbinfo->shrinklist_len--;
1162 }
1163 spin_unlock(&sbinfo->shrinklist_lock);
1164 }
1165 while (!list_empty(&info->swaplist)) {
1166 /* Wait while shmem_unuse() is scanning this inode... */
1167 wait_var_event(&info->stop_eviction,
1168 !atomic_read(&info->stop_eviction));
1169 mutex_lock(&shmem_swaplist_mutex);
1170 /* ...but beware of the race if we peeked too early */
1171 if (!atomic_read(&info->stop_eviction))
1172 list_del_init(&info->swaplist);
1173 mutex_unlock(&shmem_swaplist_mutex);
1174 }
1175 }
1176
1177 simple_xattrs_free(&info->xattrs);
1178 WARN_ON(inode->i_blocks);
1179 shmem_free_inode(inode->i_sb);
1180 clear_inode(inode);
1181 }
1182
1183 extern struct swap_info_struct *swap_info[];
1184
1185 static int shmem_find_swap_entries(struct address_space *mapping,
1186 pgoff_t start, unsigned int nr_entries,
1187 struct page **entries, pgoff_t *indices,
1188 unsigned int type, bool frontswap)
1189 {
1190 XA_STATE(xas, &mapping->i_pages, start);
1191 struct page *page;
1192 swp_entry_t entry;
1193 unsigned int ret = 0;
1194
1195 if (!nr_entries)
1196 return 0;
1197
1198 rcu_read_lock();
1199 xas_for_each(&xas, page, ULONG_MAX) {
1200 if (xas_retry(&xas, page))
1201 continue;
1202
1203 if (!xa_is_value(page))
1204 continue;
1205
1206 entry = radix_to_swp_entry(page);
1207 if (swp_type(entry) != type)
1208 continue;
1209 if (frontswap &&
1210 !frontswap_test(swap_info[type], swp_offset(entry)))
1211 continue;
1212
1213 indices[ret] = xas.xa_index;
1214 entries[ret] = page;
1215
1216 if (need_resched()) {
1217 xas_pause(&xas);
1218 cond_resched_rcu();
1219 }
1220 if (++ret == nr_entries)
1221 break;
1222 }
1223 rcu_read_unlock();
1224
1225 return ret;
1226 }
1227
1228 /*
1229 * Move the swapped pages for an inode to page cache. Returns the count
1230 * of pages swapped in, or the error in case of failure.
1231 */
1232 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1233 pgoff_t *indices)
1234 {
1235 int i = 0;
1236 int ret = 0;
1237 int error = 0;
1238 struct address_space *mapping = inode->i_mapping;
1239
1240 for (i = 0; i < pvec.nr; i++) {
1241 struct page *page = pvec.pages[i];
1242
1243 if (!xa_is_value(page))
1244 continue;
1245 error = shmem_swapin_page(inode, indices[i],
1246 &page, SGP_CACHE,
1247 mapping_gfp_mask(mapping),
1248 NULL, NULL);
1249 if (error == 0) {
1250 unlock_page(page);
1251 put_page(page);
1252 ret++;
1253 }
1254 if (error == -ENOMEM)
1255 break;
1256 error = 0;
1257 }
1258 return error ? error : ret;
1259 }
1260
1261 /*
1262 * If swap found in inode, free it and move page from swapcache to filecache.
1263 */
1264 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1265 bool frontswap, unsigned long *fs_pages_to_unuse)
1266 {
1267 struct address_space *mapping = inode->i_mapping;
1268 pgoff_t start = 0;
1269 struct pagevec pvec;
1270 pgoff_t indices[PAGEVEC_SIZE];
1271 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1272 int ret = 0;
1273
1274 pagevec_init(&pvec);
1275 do {
1276 unsigned int nr_entries = PAGEVEC_SIZE;
1277
1278 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1279 nr_entries = *fs_pages_to_unuse;
1280
1281 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1282 pvec.pages, indices,
1283 type, frontswap);
1284 if (pvec.nr == 0) {
1285 ret = 0;
1286 break;
1287 }
1288
1289 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1290 if (ret < 0)
1291 break;
1292
1293 if (frontswap_partial) {
1294 *fs_pages_to_unuse -= ret;
1295 if (*fs_pages_to_unuse == 0) {
1296 ret = FRONTSWAP_PAGES_UNUSED;
1297 break;
1298 }
1299 }
1300
1301 start = indices[pvec.nr - 1];
1302 } while (true);
1303
1304 return ret;
1305 }
1306
1307 /*
1308 * Read all the shared memory data that resides in the swap
1309 * device 'type' back into memory, so the swap device can be
1310 * unused.
1311 */
1312 int shmem_unuse(unsigned int type, bool frontswap,
1313 unsigned long *fs_pages_to_unuse)
1314 {
1315 struct shmem_inode_info *info, *next;
1316 int error = 0;
1317
1318 if (list_empty(&shmem_swaplist))
1319 return 0;
1320
1321 mutex_lock(&shmem_swaplist_mutex);
1322 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1323 if (!info->swapped) {
1324 list_del_init(&info->swaplist);
1325 continue;
1326 }
1327 /*
1328 * Drop the swaplist mutex while searching the inode for swap;
1329 * but before doing so, make sure shmem_evict_inode() will not
1330 * remove placeholder inode from swaplist, nor let it be freed
1331 * (igrab() would protect from unlink, but not from unmount).
1332 */
1333 atomic_inc(&info->stop_eviction);
1334 mutex_unlock(&shmem_swaplist_mutex);
1335
1336 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1337 fs_pages_to_unuse);
1338 cond_resched();
1339
1340 mutex_lock(&shmem_swaplist_mutex);
1341 next = list_next_entry(info, swaplist);
1342 if (!info->swapped)
1343 list_del_init(&info->swaplist);
1344 if (atomic_dec_and_test(&info->stop_eviction))
1345 wake_up_var(&info->stop_eviction);
1346 if (error)
1347 break;
1348 }
1349 mutex_unlock(&shmem_swaplist_mutex);
1350
1351 return error;
1352 }
1353
1354 /*
1355 * Move the page from the page cache to the swap cache.
1356 */
1357 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1358 {
1359 struct shmem_inode_info *info;
1360 struct address_space *mapping;
1361 struct inode *inode;
1362 swp_entry_t swap;
1363 pgoff_t index;
1364
1365 VM_BUG_ON_PAGE(PageCompound(page), page);
1366 BUG_ON(!PageLocked(page));
1367 mapping = page->mapping;
1368 index = page->index;
1369 inode = mapping->host;
1370 info = SHMEM_I(inode);
1371 if (info->flags & VM_LOCKED)
1372 goto redirty;
1373 if (!total_swap_pages)
1374 goto redirty;
1375
1376 /*
1377 * Our capabilities prevent regular writeback or sync from ever calling
1378 * shmem_writepage; but a stacking filesystem might use ->writepage of
1379 * its underlying filesystem, in which case tmpfs should write out to
1380 * swap only in response to memory pressure, and not for the writeback
1381 * threads or sync.
1382 */
1383 if (!wbc->for_reclaim) {
1384 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1385 goto redirty;
1386 }
1387
1388 /*
1389 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1390 * value into swapfile.c, the only way we can correctly account for a
1391 * fallocated page arriving here is now to initialize it and write it.
1392 *
1393 * That's okay for a page already fallocated earlier, but if we have
1394 * not yet completed the fallocation, then (a) we want to keep track
1395 * of this page in case we have to undo it, and (b) it may not be a
1396 * good idea to continue anyway, once we're pushing into swap. So
1397 * reactivate the page, and let shmem_fallocate() quit when too many.
1398 */
1399 if (!PageUptodate(page)) {
1400 if (inode->i_private) {
1401 struct shmem_falloc *shmem_falloc;
1402 spin_lock(&inode->i_lock);
1403 shmem_falloc = inode->i_private;
1404 if (shmem_falloc &&
1405 !shmem_falloc->waitq &&
1406 index >= shmem_falloc->start &&
1407 index < shmem_falloc->next)
1408 shmem_falloc->nr_unswapped++;
1409 else
1410 shmem_falloc = NULL;
1411 spin_unlock(&inode->i_lock);
1412 if (shmem_falloc)
1413 goto redirty;
1414 }
1415 clear_highpage(page);
1416 flush_dcache_page(page);
1417 SetPageUptodate(page);
1418 }
1419
1420 swap = get_swap_page(page);
1421 if (!swap.val)
1422 goto redirty;
1423
1424 /*
1425 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1426 * if it's not already there. Do it now before the page is
1427 * moved to swap cache, when its pagelock no longer protects
1428 * the inode from eviction. But don't unlock the mutex until
1429 * we've incremented swapped, because shmem_unuse_inode() will
1430 * prune a !swapped inode from the swaplist under this mutex.
1431 */
1432 mutex_lock(&shmem_swaplist_mutex);
1433 if (list_empty(&info->swaplist))
1434 list_add(&info->swaplist, &shmem_swaplist);
1435
1436 if (add_to_swap_cache(page, swap,
1437 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1438 NULL) == 0) {
1439 spin_lock_irq(&info->lock);
1440 shmem_recalc_inode(inode);
1441 info->swapped++;
1442 spin_unlock_irq(&info->lock);
1443
1444 swap_shmem_alloc(swap);
1445 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1446
1447 mutex_unlock(&shmem_swaplist_mutex);
1448 BUG_ON(page_mapped(page));
1449 swap_writepage(page, wbc);
1450 return 0;
1451 }
1452
1453 mutex_unlock(&shmem_swaplist_mutex);
1454 put_swap_page(page, swap);
1455 redirty:
1456 set_page_dirty(page);
1457 if (wbc->for_reclaim)
1458 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1459 unlock_page(page);
1460 return 0;
1461 }
1462
1463 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1464 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1465 {
1466 char buffer[64];
1467
1468 if (!mpol || mpol->mode == MPOL_DEFAULT)
1469 return; /* show nothing */
1470
1471 mpol_to_str(buffer, sizeof(buffer), mpol);
1472
1473 seq_printf(seq, ",mpol=%s", buffer);
1474 }
1475
1476 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1477 {
1478 struct mempolicy *mpol = NULL;
1479 if (sbinfo->mpol) {
1480 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1481 mpol = sbinfo->mpol;
1482 mpol_get(mpol);
1483 spin_unlock(&sbinfo->stat_lock);
1484 }
1485 return mpol;
1486 }
1487 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1488 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1489 {
1490 }
1491 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1492 {
1493 return NULL;
1494 }
1495 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1496 #ifndef CONFIG_NUMA
1497 #define vm_policy vm_private_data
1498 #endif
1499
1500 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1501 struct shmem_inode_info *info, pgoff_t index)
1502 {
1503 /* Create a pseudo vma that just contains the policy */
1504 vma_init(vma, NULL);
1505 /* Bias interleave by inode number to distribute better across nodes */
1506 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1507 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1508 }
1509
1510 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1511 {
1512 /* Drop reference taken by mpol_shared_policy_lookup() */
1513 mpol_cond_put(vma->vm_policy);
1514 }
1515
1516 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1517 struct shmem_inode_info *info, pgoff_t index)
1518 {
1519 struct vm_area_struct pvma;
1520 struct page *page;
1521 struct vm_fault vmf;
1522
1523 shmem_pseudo_vma_init(&pvma, info, index);
1524 vmf.vma = &pvma;
1525 vmf.address = 0;
1526 page = swap_cluster_readahead(swap, gfp, &vmf);
1527 shmem_pseudo_vma_destroy(&pvma);
1528
1529 return page;
1530 }
1531
1532 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1533 struct shmem_inode_info *info, pgoff_t index)
1534 {
1535 struct vm_area_struct pvma;
1536 struct address_space *mapping = info->vfs_inode.i_mapping;
1537 pgoff_t hindex;
1538 struct page *page;
1539
1540 hindex = round_down(index, HPAGE_PMD_NR);
1541 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1542 XA_PRESENT))
1543 return NULL;
1544
1545 shmem_pseudo_vma_init(&pvma, info, hindex);
1546 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1547 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1548 shmem_pseudo_vma_destroy(&pvma);
1549 if (page)
1550 prep_transhuge_page(page);
1551 else
1552 count_vm_event(THP_FILE_FALLBACK);
1553 return page;
1554 }
1555
1556 static struct page *shmem_alloc_page(gfp_t gfp,
1557 struct shmem_inode_info *info, pgoff_t index)
1558 {
1559 struct vm_area_struct pvma;
1560 struct page *page;
1561
1562 shmem_pseudo_vma_init(&pvma, info, index);
1563 page = alloc_page_vma(gfp, &pvma, 0);
1564 shmem_pseudo_vma_destroy(&pvma);
1565
1566 return page;
1567 }
1568
1569 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1570 struct inode *inode,
1571 pgoff_t index, bool huge)
1572 {
1573 struct shmem_inode_info *info = SHMEM_I(inode);
1574 struct page *page;
1575 int nr;
1576 int err = -ENOSPC;
1577
1578 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1579 huge = false;
1580 nr = huge ? HPAGE_PMD_NR : 1;
1581
1582 if (!shmem_inode_acct_block(inode, nr))
1583 goto failed;
1584
1585 if (huge)
1586 page = shmem_alloc_hugepage(gfp, info, index);
1587 else
1588 page = shmem_alloc_page(gfp, info, index);
1589 if (page) {
1590 __SetPageLocked(page);
1591 __SetPageSwapBacked(page);
1592 return page;
1593 }
1594
1595 err = -ENOMEM;
1596 shmem_inode_unacct_blocks(inode, nr);
1597 failed:
1598 return ERR_PTR(err);
1599 }
1600
1601 /*
1602 * When a page is moved from swapcache to shmem filecache (either by the
1603 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1604 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1605 * ignorance of the mapping it belongs to. If that mapping has special
1606 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1607 * we may need to copy to a suitable page before moving to filecache.
1608 *
1609 * In a future release, this may well be extended to respect cpuset and
1610 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1611 * but for now it is a simple matter of zone.
1612 */
1613 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1614 {
1615 return page_zonenum(page) > gfp_zone(gfp);
1616 }
1617
1618 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1619 struct shmem_inode_info *info, pgoff_t index)
1620 {
1621 struct page *oldpage, *newpage;
1622 struct address_space *swap_mapping;
1623 swp_entry_t entry;
1624 pgoff_t swap_index;
1625 int error;
1626
1627 oldpage = *pagep;
1628 entry.val = page_private(oldpage);
1629 swap_index = swp_offset(entry);
1630 swap_mapping = page_mapping(oldpage);
1631
1632 /*
1633 * We have arrived here because our zones are constrained, so don't
1634 * limit chance of success by further cpuset and node constraints.
1635 */
1636 gfp &= ~GFP_CONSTRAINT_MASK;
1637 newpage = shmem_alloc_page(gfp, info, index);
1638 if (!newpage)
1639 return -ENOMEM;
1640
1641 get_page(newpage);
1642 copy_highpage(newpage, oldpage);
1643 flush_dcache_page(newpage);
1644
1645 __SetPageLocked(newpage);
1646 __SetPageSwapBacked(newpage);
1647 SetPageUptodate(newpage);
1648 set_page_private(newpage, entry.val);
1649 SetPageSwapCache(newpage);
1650
1651 /*
1652 * Our caller will very soon move newpage out of swapcache, but it's
1653 * a nice clean interface for us to replace oldpage by newpage there.
1654 */
1655 xa_lock_irq(&swap_mapping->i_pages);
1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 if (!error) {
1658 mem_cgroup_migrate(oldpage, newpage);
1659 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1660 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1661 }
1662 xa_unlock_irq(&swap_mapping->i_pages);
1663
1664 if (unlikely(error)) {
1665 /*
1666 * Is this possible? I think not, now that our callers check
1667 * both PageSwapCache and page_private after getting page lock;
1668 * but be defensive. Reverse old to newpage for clear and free.
1669 */
1670 oldpage = newpage;
1671 } else {
1672 lru_cache_add(newpage);
1673 *pagep = newpage;
1674 }
1675
1676 ClearPageSwapCache(oldpage);
1677 set_page_private(oldpage, 0);
1678
1679 unlock_page(oldpage);
1680 put_page(oldpage);
1681 put_page(oldpage);
1682 return error;
1683 }
1684
1685 /*
1686 * Swap in the page pointed to by *pagep.
1687 * Caller has to make sure that *pagep contains a valid swapped page.
1688 * Returns 0 and the page in pagep if success. On failure, returns the
1689 * error code and NULL in *pagep.
1690 */
1691 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1692 struct page **pagep, enum sgp_type sgp,
1693 gfp_t gfp, struct vm_area_struct *vma,
1694 vm_fault_t *fault_type)
1695 {
1696 struct address_space *mapping = inode->i_mapping;
1697 struct shmem_inode_info *info = SHMEM_I(inode);
1698 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1699 struct page *page;
1700 swp_entry_t swap;
1701 int error;
1702
1703 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1704 swap = radix_to_swp_entry(*pagep);
1705 *pagep = NULL;
1706
1707 /* Look it up and read it in.. */
1708 page = lookup_swap_cache(swap, NULL, 0);
1709 if (!page) {
1710 /* Or update major stats only when swapin succeeds?? */
1711 if (fault_type) {
1712 *fault_type |= VM_FAULT_MAJOR;
1713 count_vm_event(PGMAJFAULT);
1714 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1715 }
1716 /* Here we actually start the io */
1717 page = shmem_swapin(swap, gfp, info, index);
1718 if (!page) {
1719 error = -ENOMEM;
1720 goto failed;
1721 }
1722 }
1723
1724 /* We have to do this with page locked to prevent races */
1725 lock_page(page);
1726 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1727 !shmem_confirm_swap(mapping, index, swap)) {
1728 error = -EEXIST;
1729 goto unlock;
1730 }
1731 if (!PageUptodate(page)) {
1732 error = -EIO;
1733 goto failed;
1734 }
1735 wait_on_page_writeback(page);
1736
1737 if (shmem_should_replace_page(page, gfp)) {
1738 error = shmem_replace_page(&page, gfp, info, index);
1739 if (error)
1740 goto failed;
1741 }
1742
1743 error = shmem_add_to_page_cache(page, mapping, index,
1744 swp_to_radix_entry(swap), gfp,
1745 charge_mm);
1746 if (error)
1747 goto failed;
1748
1749 spin_lock_irq(&info->lock);
1750 info->swapped--;
1751 shmem_recalc_inode(inode);
1752 spin_unlock_irq(&info->lock);
1753
1754 if (sgp == SGP_WRITE)
1755 mark_page_accessed(page);
1756
1757 delete_from_swap_cache(page);
1758 set_page_dirty(page);
1759 swap_free(swap);
1760
1761 *pagep = page;
1762 return 0;
1763 failed:
1764 if (!shmem_confirm_swap(mapping, index, swap))
1765 error = -EEXIST;
1766 unlock:
1767 if (page) {
1768 unlock_page(page);
1769 put_page(page);
1770 }
1771
1772 return error;
1773 }
1774
1775 /*
1776 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1777 *
1778 * If we allocate a new one we do not mark it dirty. That's up to the
1779 * vm. If we swap it in we mark it dirty since we also free the swap
1780 * entry since a page cannot live in both the swap and page cache.
1781 *
1782 * vmf and fault_type are only supplied by shmem_fault:
1783 * otherwise they are NULL.
1784 */
1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1786 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1787 struct vm_area_struct *vma, struct vm_fault *vmf,
1788 vm_fault_t *fault_type)
1789 {
1790 struct address_space *mapping = inode->i_mapping;
1791 struct shmem_inode_info *info = SHMEM_I(inode);
1792 struct shmem_sb_info *sbinfo;
1793 struct mm_struct *charge_mm;
1794 struct page *page;
1795 enum sgp_type sgp_huge = sgp;
1796 pgoff_t hindex = index;
1797 int error;
1798 int once = 0;
1799 int alloced = 0;
1800
1801 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1802 return -EFBIG;
1803 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1804 sgp = SGP_CACHE;
1805 repeat:
1806 if (sgp <= SGP_CACHE &&
1807 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1808 return -EINVAL;
1809 }
1810
1811 sbinfo = SHMEM_SB(inode->i_sb);
1812 charge_mm = vma ? vma->vm_mm : current->mm;
1813
1814 page = find_lock_entry(mapping, index);
1815 if (xa_is_value(page)) {
1816 error = shmem_swapin_page(inode, index, &page,
1817 sgp, gfp, vma, fault_type);
1818 if (error == -EEXIST)
1819 goto repeat;
1820
1821 *pagep = page;
1822 return error;
1823 }
1824
1825 if (page && sgp == SGP_WRITE)
1826 mark_page_accessed(page);
1827
1828 /* fallocated page? */
1829 if (page && !PageUptodate(page)) {
1830 if (sgp != SGP_READ)
1831 goto clear;
1832 unlock_page(page);
1833 put_page(page);
1834 page = NULL;
1835 }
1836 if (page || sgp == SGP_READ) {
1837 *pagep = page;
1838 return 0;
1839 }
1840
1841 /*
1842 * Fast cache lookup did not find it:
1843 * bring it back from swap or allocate.
1844 */
1845
1846 if (vma && userfaultfd_missing(vma)) {
1847 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1848 return 0;
1849 }
1850
1851 /* shmem_symlink() */
1852 if (mapping->a_ops != &shmem_aops)
1853 goto alloc_nohuge;
1854 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1855 goto alloc_nohuge;
1856 if (shmem_huge == SHMEM_HUGE_FORCE)
1857 goto alloc_huge;
1858 switch (sbinfo->huge) {
1859 case SHMEM_HUGE_NEVER:
1860 goto alloc_nohuge;
1861 case SHMEM_HUGE_WITHIN_SIZE: {
1862 loff_t i_size;
1863 pgoff_t off;
1864
1865 off = round_up(index, HPAGE_PMD_NR);
1866 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1867 if (i_size >= HPAGE_PMD_SIZE &&
1868 i_size >> PAGE_SHIFT >= off)
1869 goto alloc_huge;
1870
1871 fallthrough;
1872 }
1873 case SHMEM_HUGE_ADVISE:
1874 if (sgp_huge == SGP_HUGE)
1875 goto alloc_huge;
1876 /* TODO: implement fadvise() hints */
1877 goto alloc_nohuge;
1878 }
1879
1880 alloc_huge:
1881 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1882 if (IS_ERR(page)) {
1883 alloc_nohuge:
1884 page = shmem_alloc_and_acct_page(gfp, inode,
1885 index, false);
1886 }
1887 if (IS_ERR(page)) {
1888 int retry = 5;
1889
1890 error = PTR_ERR(page);
1891 page = NULL;
1892 if (error != -ENOSPC)
1893 goto unlock;
1894 /*
1895 * Try to reclaim some space by splitting a huge page
1896 * beyond i_size on the filesystem.
1897 */
1898 while (retry--) {
1899 int ret;
1900
1901 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1902 if (ret == SHRINK_STOP)
1903 break;
1904 if (ret)
1905 goto alloc_nohuge;
1906 }
1907 goto unlock;
1908 }
1909
1910 if (PageTransHuge(page))
1911 hindex = round_down(index, HPAGE_PMD_NR);
1912 else
1913 hindex = index;
1914
1915 if (sgp == SGP_WRITE)
1916 __SetPageReferenced(page);
1917
1918 error = shmem_add_to_page_cache(page, mapping, hindex,
1919 NULL, gfp & GFP_RECLAIM_MASK,
1920 charge_mm);
1921 if (error)
1922 goto unacct;
1923 lru_cache_add(page);
1924
1925 spin_lock_irq(&info->lock);
1926 info->alloced += compound_nr(page);
1927 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1928 shmem_recalc_inode(inode);
1929 spin_unlock_irq(&info->lock);
1930 alloced = true;
1931
1932 if (PageTransHuge(page) &&
1933 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1934 hindex + HPAGE_PMD_NR - 1) {
1935 /*
1936 * Part of the huge page is beyond i_size: subject
1937 * to shrink under memory pressure.
1938 */
1939 spin_lock(&sbinfo->shrinklist_lock);
1940 /*
1941 * _careful to defend against unlocked access to
1942 * ->shrink_list in shmem_unused_huge_shrink()
1943 */
1944 if (list_empty_careful(&info->shrinklist)) {
1945 list_add_tail(&info->shrinklist,
1946 &sbinfo->shrinklist);
1947 sbinfo->shrinklist_len++;
1948 }
1949 spin_unlock(&sbinfo->shrinklist_lock);
1950 }
1951
1952 /*
1953 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1954 */
1955 if (sgp == SGP_FALLOC)
1956 sgp = SGP_WRITE;
1957 clear:
1958 /*
1959 * Let SGP_WRITE caller clear ends if write does not fill page;
1960 * but SGP_FALLOC on a page fallocated earlier must initialize
1961 * it now, lest undo on failure cancel our earlier guarantee.
1962 */
1963 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1964 struct page *head = compound_head(page);
1965 int i;
1966
1967 for (i = 0; i < compound_nr(head); i++) {
1968 clear_highpage(head + i);
1969 flush_dcache_page(head + i);
1970 }
1971 SetPageUptodate(head);
1972 }
1973
1974 /* Perhaps the file has been truncated since we checked */
1975 if (sgp <= SGP_CACHE &&
1976 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1977 if (alloced) {
1978 ClearPageDirty(page);
1979 delete_from_page_cache(page);
1980 spin_lock_irq(&info->lock);
1981 shmem_recalc_inode(inode);
1982 spin_unlock_irq(&info->lock);
1983 }
1984 error = -EINVAL;
1985 goto unlock;
1986 }
1987 *pagep = page + index - hindex;
1988 return 0;
1989
1990 /*
1991 * Error recovery.
1992 */
1993 unacct:
1994 shmem_inode_unacct_blocks(inode, compound_nr(page));
1995
1996 if (PageTransHuge(page)) {
1997 unlock_page(page);
1998 put_page(page);
1999 goto alloc_nohuge;
2000 }
2001 unlock:
2002 if (page) {
2003 unlock_page(page);
2004 put_page(page);
2005 }
2006 if (error == -ENOSPC && !once++) {
2007 spin_lock_irq(&info->lock);
2008 shmem_recalc_inode(inode);
2009 spin_unlock_irq(&info->lock);
2010 goto repeat;
2011 }
2012 if (error == -EEXIST)
2013 goto repeat;
2014 return error;
2015 }
2016
2017 /*
2018 * This is like autoremove_wake_function, but it removes the wait queue
2019 * entry unconditionally - even if something else had already woken the
2020 * target.
2021 */
2022 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2023 {
2024 int ret = default_wake_function(wait, mode, sync, key);
2025 list_del_init(&wait->entry);
2026 return ret;
2027 }
2028
2029 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2030 {
2031 struct vm_area_struct *vma = vmf->vma;
2032 struct inode *inode = file_inode(vma->vm_file);
2033 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2034 enum sgp_type sgp;
2035 int err;
2036 vm_fault_t ret = VM_FAULT_LOCKED;
2037
2038 /*
2039 * Trinity finds that probing a hole which tmpfs is punching can
2040 * prevent the hole-punch from ever completing: which in turn
2041 * locks writers out with its hold on i_mutex. So refrain from
2042 * faulting pages into the hole while it's being punched. Although
2043 * shmem_undo_range() does remove the additions, it may be unable to
2044 * keep up, as each new page needs its own unmap_mapping_range() call,
2045 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2046 *
2047 * It does not matter if we sometimes reach this check just before the
2048 * hole-punch begins, so that one fault then races with the punch:
2049 * we just need to make racing faults a rare case.
2050 *
2051 * The implementation below would be much simpler if we just used a
2052 * standard mutex or completion: but we cannot take i_mutex in fault,
2053 * and bloating every shmem inode for this unlikely case would be sad.
2054 */
2055 if (unlikely(inode->i_private)) {
2056 struct shmem_falloc *shmem_falloc;
2057
2058 spin_lock(&inode->i_lock);
2059 shmem_falloc = inode->i_private;
2060 if (shmem_falloc &&
2061 shmem_falloc->waitq &&
2062 vmf->pgoff >= shmem_falloc->start &&
2063 vmf->pgoff < shmem_falloc->next) {
2064 struct file *fpin;
2065 wait_queue_head_t *shmem_falloc_waitq;
2066 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2067
2068 ret = VM_FAULT_NOPAGE;
2069 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2070 if (fpin)
2071 ret = VM_FAULT_RETRY;
2072
2073 shmem_falloc_waitq = shmem_falloc->waitq;
2074 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2075 TASK_UNINTERRUPTIBLE);
2076 spin_unlock(&inode->i_lock);
2077 schedule();
2078
2079 /*
2080 * shmem_falloc_waitq points into the shmem_fallocate()
2081 * stack of the hole-punching task: shmem_falloc_waitq
2082 * is usually invalid by the time we reach here, but
2083 * finish_wait() does not dereference it in that case;
2084 * though i_lock needed lest racing with wake_up_all().
2085 */
2086 spin_lock(&inode->i_lock);
2087 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2088 spin_unlock(&inode->i_lock);
2089
2090 if (fpin)
2091 fput(fpin);
2092 return ret;
2093 }
2094 spin_unlock(&inode->i_lock);
2095 }
2096
2097 sgp = SGP_CACHE;
2098
2099 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2100 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2101 sgp = SGP_NOHUGE;
2102 else if (vma->vm_flags & VM_HUGEPAGE)
2103 sgp = SGP_HUGE;
2104
2105 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2106 gfp, vma, vmf, &ret);
2107 if (err)
2108 return vmf_error(err);
2109 return ret;
2110 }
2111
2112 unsigned long shmem_get_unmapped_area(struct file *file,
2113 unsigned long uaddr, unsigned long len,
2114 unsigned long pgoff, unsigned long flags)
2115 {
2116 unsigned long (*get_area)(struct file *,
2117 unsigned long, unsigned long, unsigned long, unsigned long);
2118 unsigned long addr;
2119 unsigned long offset;
2120 unsigned long inflated_len;
2121 unsigned long inflated_addr;
2122 unsigned long inflated_offset;
2123
2124 if (len > TASK_SIZE)
2125 return -ENOMEM;
2126
2127 get_area = current->mm->get_unmapped_area;
2128 addr = get_area(file, uaddr, len, pgoff, flags);
2129
2130 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2131 return addr;
2132 if (IS_ERR_VALUE(addr))
2133 return addr;
2134 if (addr & ~PAGE_MASK)
2135 return addr;
2136 if (addr > TASK_SIZE - len)
2137 return addr;
2138
2139 if (shmem_huge == SHMEM_HUGE_DENY)
2140 return addr;
2141 if (len < HPAGE_PMD_SIZE)
2142 return addr;
2143 if (flags & MAP_FIXED)
2144 return addr;
2145 /*
2146 * Our priority is to support MAP_SHARED mapped hugely;
2147 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2148 * But if caller specified an address hint and we allocated area there
2149 * successfully, respect that as before.
2150 */
2151 if (uaddr == addr)
2152 return addr;
2153
2154 if (shmem_huge != SHMEM_HUGE_FORCE) {
2155 struct super_block *sb;
2156
2157 if (file) {
2158 VM_BUG_ON(file->f_op != &shmem_file_operations);
2159 sb = file_inode(file)->i_sb;
2160 } else {
2161 /*
2162 * Called directly from mm/mmap.c, or drivers/char/mem.c
2163 * for "/dev/zero", to create a shared anonymous object.
2164 */
2165 if (IS_ERR(shm_mnt))
2166 return addr;
2167 sb = shm_mnt->mnt_sb;
2168 }
2169 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2170 return addr;
2171 }
2172
2173 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2174 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2175 return addr;
2176 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2177 return addr;
2178
2179 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2180 if (inflated_len > TASK_SIZE)
2181 return addr;
2182 if (inflated_len < len)
2183 return addr;
2184
2185 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2186 if (IS_ERR_VALUE(inflated_addr))
2187 return addr;
2188 if (inflated_addr & ~PAGE_MASK)
2189 return addr;
2190
2191 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2192 inflated_addr += offset - inflated_offset;
2193 if (inflated_offset > offset)
2194 inflated_addr += HPAGE_PMD_SIZE;
2195
2196 if (inflated_addr > TASK_SIZE - len)
2197 return addr;
2198 return inflated_addr;
2199 }
2200
2201 #ifdef CONFIG_NUMA
2202 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2203 {
2204 struct inode *inode = file_inode(vma->vm_file);
2205 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2206 }
2207
2208 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2209 unsigned long addr)
2210 {
2211 struct inode *inode = file_inode(vma->vm_file);
2212 pgoff_t index;
2213
2214 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2215 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2216 }
2217 #endif
2218
2219 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2220 {
2221 struct inode *inode = file_inode(file);
2222 struct shmem_inode_info *info = SHMEM_I(inode);
2223 int retval = -ENOMEM;
2224
2225 /*
2226 * What serializes the accesses to info->flags?
2227 * ipc_lock_object() when called from shmctl_do_lock(),
2228 * no serialization needed when called from shm_destroy().
2229 */
2230 if (lock && !(info->flags & VM_LOCKED)) {
2231 if (!user_shm_lock(inode->i_size, user))
2232 goto out_nomem;
2233 info->flags |= VM_LOCKED;
2234 mapping_set_unevictable(file->f_mapping);
2235 }
2236 if (!lock && (info->flags & VM_LOCKED) && user) {
2237 user_shm_unlock(inode->i_size, user);
2238 info->flags &= ~VM_LOCKED;
2239 mapping_clear_unevictable(file->f_mapping);
2240 }
2241 retval = 0;
2242
2243 out_nomem:
2244 return retval;
2245 }
2246
2247 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2248 {
2249 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2250
2251 if (info->seals & F_SEAL_FUTURE_WRITE) {
2252 /*
2253 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2254 * "future write" seal active.
2255 */
2256 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2257 return -EPERM;
2258
2259 /*
2260 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2261 * MAP_SHARED and read-only, take care to not allow mprotect to
2262 * revert protections on such mappings. Do this only for shared
2263 * mappings. For private mappings, don't need to mask
2264 * VM_MAYWRITE as we still want them to be COW-writable.
2265 */
2266 if (vma->vm_flags & VM_SHARED)
2267 vma->vm_flags &= ~(VM_MAYWRITE);
2268 }
2269
2270 file_accessed(file);
2271 vma->vm_ops = &shmem_vm_ops;
2272 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2273 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2274 (vma->vm_end & HPAGE_PMD_MASK)) {
2275 khugepaged_enter(vma, vma->vm_flags);
2276 }
2277 return 0;
2278 }
2279
2280 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2281 umode_t mode, dev_t dev, unsigned long flags)
2282 {
2283 struct inode *inode;
2284 struct shmem_inode_info *info;
2285 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2286 ino_t ino;
2287
2288 if (shmem_reserve_inode(sb, &ino))
2289 return NULL;
2290
2291 inode = new_inode(sb);
2292 if (inode) {
2293 inode->i_ino = ino;
2294 inode_init_owner(inode, dir, mode);
2295 inode->i_blocks = 0;
2296 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2297 inode->i_generation = prandom_u32();
2298 info = SHMEM_I(inode);
2299 memset(info, 0, (char *)inode - (char *)info);
2300 spin_lock_init(&info->lock);
2301 atomic_set(&info->stop_eviction, 0);
2302 info->seals = F_SEAL_SEAL;
2303 info->flags = flags & VM_NORESERVE;
2304 INIT_LIST_HEAD(&info->shrinklist);
2305 INIT_LIST_HEAD(&info->swaplist);
2306 simple_xattrs_init(&info->xattrs);
2307 cache_no_acl(inode);
2308
2309 switch (mode & S_IFMT) {
2310 default:
2311 inode->i_op = &shmem_special_inode_operations;
2312 init_special_inode(inode, mode, dev);
2313 break;
2314 case S_IFREG:
2315 inode->i_mapping->a_ops = &shmem_aops;
2316 inode->i_op = &shmem_inode_operations;
2317 inode->i_fop = &shmem_file_operations;
2318 mpol_shared_policy_init(&info->policy,
2319 shmem_get_sbmpol(sbinfo));
2320 break;
2321 case S_IFDIR:
2322 inc_nlink(inode);
2323 /* Some things misbehave if size == 0 on a directory */
2324 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2325 inode->i_op = &shmem_dir_inode_operations;
2326 inode->i_fop = &simple_dir_operations;
2327 break;
2328 case S_IFLNK:
2329 /*
2330 * Must not load anything in the rbtree,
2331 * mpol_free_shared_policy will not be called.
2332 */
2333 mpol_shared_policy_init(&info->policy, NULL);
2334 break;
2335 }
2336
2337 lockdep_annotate_inode_mutex_key(inode);
2338 } else
2339 shmem_free_inode(sb);
2340 return inode;
2341 }
2342
2343 bool shmem_mapping(struct address_space *mapping)
2344 {
2345 return mapping->a_ops == &shmem_aops;
2346 }
2347
2348 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2349 pmd_t *dst_pmd,
2350 struct vm_area_struct *dst_vma,
2351 unsigned long dst_addr,
2352 unsigned long src_addr,
2353 bool zeropage,
2354 struct page **pagep)
2355 {
2356 struct inode *inode = file_inode(dst_vma->vm_file);
2357 struct shmem_inode_info *info = SHMEM_I(inode);
2358 struct address_space *mapping = inode->i_mapping;
2359 gfp_t gfp = mapping_gfp_mask(mapping);
2360 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2361 spinlock_t *ptl;
2362 void *page_kaddr;
2363 struct page *page;
2364 pte_t _dst_pte, *dst_pte;
2365 int ret;
2366 pgoff_t offset, max_off;
2367
2368 ret = -ENOMEM;
2369 if (!shmem_inode_acct_block(inode, 1))
2370 goto out;
2371
2372 if (!*pagep) {
2373 page = shmem_alloc_page(gfp, info, pgoff);
2374 if (!page)
2375 goto out_unacct_blocks;
2376
2377 if (!zeropage) { /* mcopy_atomic */
2378 page_kaddr = kmap_atomic(page);
2379 ret = copy_from_user(page_kaddr,
2380 (const void __user *)src_addr,
2381 PAGE_SIZE);
2382 kunmap_atomic(page_kaddr);
2383
2384 /* fallback to copy_from_user outside mmap_lock */
2385 if (unlikely(ret)) {
2386 *pagep = page;
2387 shmem_inode_unacct_blocks(inode, 1);
2388 /* don't free the page */
2389 return -ENOENT;
2390 }
2391 } else { /* mfill_zeropage_atomic */
2392 clear_highpage(page);
2393 }
2394 } else {
2395 page = *pagep;
2396 *pagep = NULL;
2397 }
2398
2399 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2400 __SetPageLocked(page);
2401 __SetPageSwapBacked(page);
2402 __SetPageUptodate(page);
2403
2404 ret = -EFAULT;
2405 offset = linear_page_index(dst_vma, dst_addr);
2406 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2407 if (unlikely(offset >= max_off))
2408 goto out_release;
2409
2410 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2411 gfp & GFP_RECLAIM_MASK, dst_mm);
2412 if (ret)
2413 goto out_release;
2414
2415 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2416 if (dst_vma->vm_flags & VM_WRITE)
2417 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2418 else {
2419 /*
2420 * We don't set the pte dirty if the vma has no
2421 * VM_WRITE permission, so mark the page dirty or it
2422 * could be freed from under us. We could do it
2423 * unconditionally before unlock_page(), but doing it
2424 * only if VM_WRITE is not set is faster.
2425 */
2426 set_page_dirty(page);
2427 }
2428
2429 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2430
2431 ret = -EFAULT;
2432 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2433 if (unlikely(offset >= max_off))
2434 goto out_release_unlock;
2435
2436 ret = -EEXIST;
2437 if (!pte_none(*dst_pte))
2438 goto out_release_unlock;
2439
2440 lru_cache_add(page);
2441
2442 spin_lock_irq(&info->lock);
2443 info->alloced++;
2444 inode->i_blocks += BLOCKS_PER_PAGE;
2445 shmem_recalc_inode(inode);
2446 spin_unlock_irq(&info->lock);
2447
2448 inc_mm_counter(dst_mm, mm_counter_file(page));
2449 page_add_file_rmap(page, false);
2450 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2451
2452 /* No need to invalidate - it was non-present before */
2453 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2454 pte_unmap_unlock(dst_pte, ptl);
2455 unlock_page(page);
2456 ret = 0;
2457 out:
2458 return ret;
2459 out_release_unlock:
2460 pte_unmap_unlock(dst_pte, ptl);
2461 ClearPageDirty(page);
2462 delete_from_page_cache(page);
2463 out_release:
2464 unlock_page(page);
2465 put_page(page);
2466 out_unacct_blocks:
2467 shmem_inode_unacct_blocks(inode, 1);
2468 goto out;
2469 }
2470
2471 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2472 pmd_t *dst_pmd,
2473 struct vm_area_struct *dst_vma,
2474 unsigned long dst_addr,
2475 unsigned long src_addr,
2476 struct page **pagep)
2477 {
2478 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2479 dst_addr, src_addr, false, pagep);
2480 }
2481
2482 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2483 pmd_t *dst_pmd,
2484 struct vm_area_struct *dst_vma,
2485 unsigned long dst_addr)
2486 {
2487 struct page *page = NULL;
2488
2489 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2490 dst_addr, 0, true, &page);
2491 }
2492
2493 #ifdef CONFIG_TMPFS
2494 static const struct inode_operations shmem_symlink_inode_operations;
2495 static const struct inode_operations shmem_short_symlink_operations;
2496
2497 #ifdef CONFIG_TMPFS_XATTR
2498 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2499 #else
2500 #define shmem_initxattrs NULL
2501 #endif
2502
2503 static int
2504 shmem_write_begin(struct file *file, struct address_space *mapping,
2505 loff_t pos, unsigned len, unsigned flags,
2506 struct page **pagep, void **fsdata)
2507 {
2508 struct inode *inode = mapping->host;
2509 struct shmem_inode_info *info = SHMEM_I(inode);
2510 pgoff_t index = pos >> PAGE_SHIFT;
2511
2512 /* i_mutex is held by caller */
2513 if (unlikely(info->seals & (F_SEAL_GROW |
2514 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2515 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2516 return -EPERM;
2517 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2518 return -EPERM;
2519 }
2520
2521 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2522 }
2523
2524 static int
2525 shmem_write_end(struct file *file, struct address_space *mapping,
2526 loff_t pos, unsigned len, unsigned copied,
2527 struct page *page, void *fsdata)
2528 {
2529 struct inode *inode = mapping->host;
2530
2531 if (pos + copied > inode->i_size)
2532 i_size_write(inode, pos + copied);
2533
2534 if (!PageUptodate(page)) {
2535 struct page *head = compound_head(page);
2536 if (PageTransCompound(page)) {
2537 int i;
2538
2539 for (i = 0; i < HPAGE_PMD_NR; i++) {
2540 if (head + i == page)
2541 continue;
2542 clear_highpage(head + i);
2543 flush_dcache_page(head + i);
2544 }
2545 }
2546 if (copied < PAGE_SIZE) {
2547 unsigned from = pos & (PAGE_SIZE - 1);
2548 zero_user_segments(page, 0, from,
2549 from + copied, PAGE_SIZE);
2550 }
2551 SetPageUptodate(head);
2552 }
2553 set_page_dirty(page);
2554 unlock_page(page);
2555 put_page(page);
2556
2557 return copied;
2558 }
2559
2560 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2561 {
2562 struct file *file = iocb->ki_filp;
2563 struct inode *inode = file_inode(file);
2564 struct address_space *mapping = inode->i_mapping;
2565 pgoff_t index;
2566 unsigned long offset;
2567 enum sgp_type sgp = SGP_READ;
2568 int error = 0;
2569 ssize_t retval = 0;
2570 loff_t *ppos = &iocb->ki_pos;
2571
2572 /*
2573 * Might this read be for a stacking filesystem? Then when reading
2574 * holes of a sparse file, we actually need to allocate those pages,
2575 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2576 */
2577 if (!iter_is_iovec(to))
2578 sgp = SGP_CACHE;
2579
2580 index = *ppos >> PAGE_SHIFT;
2581 offset = *ppos & ~PAGE_MASK;
2582
2583 for (;;) {
2584 struct page *page = NULL;
2585 pgoff_t end_index;
2586 unsigned long nr, ret;
2587 loff_t i_size = i_size_read(inode);
2588
2589 end_index = i_size >> PAGE_SHIFT;
2590 if (index > end_index)
2591 break;
2592 if (index == end_index) {
2593 nr = i_size & ~PAGE_MASK;
2594 if (nr <= offset)
2595 break;
2596 }
2597
2598 error = shmem_getpage(inode, index, &page, sgp);
2599 if (error) {
2600 if (error == -EINVAL)
2601 error = 0;
2602 break;
2603 }
2604 if (page) {
2605 if (sgp == SGP_CACHE)
2606 set_page_dirty(page);
2607 unlock_page(page);
2608 }
2609
2610 /*
2611 * We must evaluate after, since reads (unlike writes)
2612 * are called without i_mutex protection against truncate
2613 */
2614 nr = PAGE_SIZE;
2615 i_size = i_size_read(inode);
2616 end_index = i_size >> PAGE_SHIFT;
2617 if (index == end_index) {
2618 nr = i_size & ~PAGE_MASK;
2619 if (nr <= offset) {
2620 if (page)
2621 put_page(page);
2622 break;
2623 }
2624 }
2625 nr -= offset;
2626
2627 if (page) {
2628 /*
2629 * If users can be writing to this page using arbitrary
2630 * virtual addresses, take care about potential aliasing
2631 * before reading the page on the kernel side.
2632 */
2633 if (mapping_writably_mapped(mapping))
2634 flush_dcache_page(page);
2635 /*
2636 * Mark the page accessed if we read the beginning.
2637 */
2638 if (!offset)
2639 mark_page_accessed(page);
2640 } else {
2641 page = ZERO_PAGE(0);
2642 get_page(page);
2643 }
2644
2645 /*
2646 * Ok, we have the page, and it's up-to-date, so
2647 * now we can copy it to user space...
2648 */
2649 ret = copy_page_to_iter(page, offset, nr, to);
2650 retval += ret;
2651 offset += ret;
2652 index += offset >> PAGE_SHIFT;
2653 offset &= ~PAGE_MASK;
2654
2655 put_page(page);
2656 if (!iov_iter_count(to))
2657 break;
2658 if (ret < nr) {
2659 error = -EFAULT;
2660 break;
2661 }
2662 cond_resched();
2663 }
2664
2665 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2666 file_accessed(file);
2667 return retval ? retval : error;
2668 }
2669
2670 /*
2671 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2672 */
2673 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2674 pgoff_t index, pgoff_t end, int whence)
2675 {
2676 struct page *page;
2677 struct pagevec pvec;
2678 pgoff_t indices[PAGEVEC_SIZE];
2679 bool done = false;
2680 int i;
2681
2682 pagevec_init(&pvec);
2683 pvec.nr = 1; /* start small: we may be there already */
2684 while (!done) {
2685 pvec.nr = find_get_entries(mapping, index,
2686 pvec.nr, pvec.pages, indices);
2687 if (!pvec.nr) {
2688 if (whence == SEEK_DATA)
2689 index = end;
2690 break;
2691 }
2692 for (i = 0; i < pvec.nr; i++, index++) {
2693 if (index < indices[i]) {
2694 if (whence == SEEK_HOLE) {
2695 done = true;
2696 break;
2697 }
2698 index = indices[i];
2699 }
2700 page = pvec.pages[i];
2701 if (page && !xa_is_value(page)) {
2702 if (!PageUptodate(page))
2703 page = NULL;
2704 }
2705 if (index >= end ||
2706 (page && whence == SEEK_DATA) ||
2707 (!page && whence == SEEK_HOLE)) {
2708 done = true;
2709 break;
2710 }
2711 }
2712 pagevec_remove_exceptionals(&pvec);
2713 pagevec_release(&pvec);
2714 pvec.nr = PAGEVEC_SIZE;
2715 cond_resched();
2716 }
2717 return index;
2718 }
2719
2720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2721 {
2722 struct address_space *mapping = file->f_mapping;
2723 struct inode *inode = mapping->host;
2724 pgoff_t start, end;
2725 loff_t new_offset;
2726
2727 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2728 return generic_file_llseek_size(file, offset, whence,
2729 MAX_LFS_FILESIZE, i_size_read(inode));
2730 inode_lock(inode);
2731 /* We're holding i_mutex so we can access i_size directly */
2732
2733 if (offset < 0 || offset >= inode->i_size)
2734 offset = -ENXIO;
2735 else {
2736 start = offset >> PAGE_SHIFT;
2737 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2738 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2739 new_offset <<= PAGE_SHIFT;
2740 if (new_offset > offset) {
2741 if (new_offset < inode->i_size)
2742 offset = new_offset;
2743 else if (whence == SEEK_DATA)
2744 offset = -ENXIO;
2745 else
2746 offset = inode->i_size;
2747 }
2748 }
2749
2750 if (offset >= 0)
2751 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2752 inode_unlock(inode);
2753 return offset;
2754 }
2755
2756 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2757 loff_t len)
2758 {
2759 struct inode *inode = file_inode(file);
2760 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2761 struct shmem_inode_info *info = SHMEM_I(inode);
2762 struct shmem_falloc shmem_falloc;
2763 pgoff_t start, index, end;
2764 int error;
2765
2766 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2767 return -EOPNOTSUPP;
2768
2769 inode_lock(inode);
2770
2771 if (mode & FALLOC_FL_PUNCH_HOLE) {
2772 struct address_space *mapping = file->f_mapping;
2773 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2774 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2775 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2776
2777 /* protected by i_mutex */
2778 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2779 error = -EPERM;
2780 goto out;
2781 }
2782
2783 shmem_falloc.waitq = &shmem_falloc_waitq;
2784 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2785 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2786 spin_lock(&inode->i_lock);
2787 inode->i_private = &shmem_falloc;
2788 spin_unlock(&inode->i_lock);
2789
2790 if ((u64)unmap_end > (u64)unmap_start)
2791 unmap_mapping_range(mapping, unmap_start,
2792 1 + unmap_end - unmap_start, 0);
2793 shmem_truncate_range(inode, offset, offset + len - 1);
2794 /* No need to unmap again: hole-punching leaves COWed pages */
2795
2796 spin_lock(&inode->i_lock);
2797 inode->i_private = NULL;
2798 wake_up_all(&shmem_falloc_waitq);
2799 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2800 spin_unlock(&inode->i_lock);
2801 error = 0;
2802 goto out;
2803 }
2804
2805 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2806 error = inode_newsize_ok(inode, offset + len);
2807 if (error)
2808 goto out;
2809
2810 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2811 error = -EPERM;
2812 goto out;
2813 }
2814
2815 start = offset >> PAGE_SHIFT;
2816 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817 /* Try to avoid a swapstorm if len is impossible to satisfy */
2818 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2819 error = -ENOSPC;
2820 goto out;
2821 }
2822
2823 shmem_falloc.waitq = NULL;
2824 shmem_falloc.start = start;
2825 shmem_falloc.next = start;
2826 shmem_falloc.nr_falloced = 0;
2827 shmem_falloc.nr_unswapped = 0;
2828 spin_lock(&inode->i_lock);
2829 inode->i_private = &shmem_falloc;
2830 spin_unlock(&inode->i_lock);
2831
2832 for (index = start; index < end; index++) {
2833 struct page *page;
2834
2835 /*
2836 * Good, the fallocate(2) manpage permits EINTR: we may have
2837 * been interrupted because we are using up too much memory.
2838 */
2839 if (signal_pending(current))
2840 error = -EINTR;
2841 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2842 error = -ENOMEM;
2843 else
2844 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2845 if (error) {
2846 /* Remove the !PageUptodate pages we added */
2847 if (index > start) {
2848 shmem_undo_range(inode,
2849 (loff_t)start << PAGE_SHIFT,
2850 ((loff_t)index << PAGE_SHIFT) - 1, true);
2851 }
2852 goto undone;
2853 }
2854
2855 /*
2856 * Inform shmem_writepage() how far we have reached.
2857 * No need for lock or barrier: we have the page lock.
2858 */
2859 shmem_falloc.next++;
2860 if (!PageUptodate(page))
2861 shmem_falloc.nr_falloced++;
2862
2863 /*
2864 * If !PageUptodate, leave it that way so that freeable pages
2865 * can be recognized if we need to rollback on error later.
2866 * But set_page_dirty so that memory pressure will swap rather
2867 * than free the pages we are allocating (and SGP_CACHE pages
2868 * might still be clean: we now need to mark those dirty too).
2869 */
2870 set_page_dirty(page);
2871 unlock_page(page);
2872 put_page(page);
2873 cond_resched();
2874 }
2875
2876 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2877 i_size_write(inode, offset + len);
2878 inode->i_ctime = current_time(inode);
2879 undone:
2880 spin_lock(&inode->i_lock);
2881 inode->i_private = NULL;
2882 spin_unlock(&inode->i_lock);
2883 out:
2884 inode_unlock(inode);
2885 return error;
2886 }
2887
2888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2889 {
2890 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2891
2892 buf->f_type = TMPFS_MAGIC;
2893 buf->f_bsize = PAGE_SIZE;
2894 buf->f_namelen = NAME_MAX;
2895 if (sbinfo->max_blocks) {
2896 buf->f_blocks = sbinfo->max_blocks;
2897 buf->f_bavail =
2898 buf->f_bfree = sbinfo->max_blocks -
2899 percpu_counter_sum(&sbinfo->used_blocks);
2900 }
2901 if (sbinfo->max_inodes) {
2902 buf->f_files = sbinfo->max_inodes;
2903 buf->f_ffree = sbinfo->free_inodes;
2904 }
2905 /* else leave those fields 0 like simple_statfs */
2906 return 0;
2907 }
2908
2909 /*
2910 * File creation. Allocate an inode, and we're done..
2911 */
2912 static int
2913 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2914 {
2915 struct inode *inode;
2916 int error = -ENOSPC;
2917
2918 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2919 if (inode) {
2920 error = simple_acl_create(dir, inode);
2921 if (error)
2922 goto out_iput;
2923 error = security_inode_init_security(inode, dir,
2924 &dentry->d_name,
2925 shmem_initxattrs, NULL);
2926 if (error && error != -EOPNOTSUPP)
2927 goto out_iput;
2928
2929 error = 0;
2930 dir->i_size += BOGO_DIRENT_SIZE;
2931 dir->i_ctime = dir->i_mtime = current_time(dir);
2932 d_instantiate(dentry, inode);
2933 dget(dentry); /* Extra count - pin the dentry in core */
2934 }
2935 return error;
2936 out_iput:
2937 iput(inode);
2938 return error;
2939 }
2940
2941 static int
2942 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2943 {
2944 struct inode *inode;
2945 int error = -ENOSPC;
2946
2947 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2948 if (inode) {
2949 error = security_inode_init_security(inode, dir,
2950 NULL,
2951 shmem_initxattrs, NULL);
2952 if (error && error != -EOPNOTSUPP)
2953 goto out_iput;
2954 error = simple_acl_create(dir, inode);
2955 if (error)
2956 goto out_iput;
2957 d_tmpfile(dentry, inode);
2958 }
2959 return error;
2960 out_iput:
2961 iput(inode);
2962 return error;
2963 }
2964
2965 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2966 {
2967 int error;
2968
2969 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2970 return error;
2971 inc_nlink(dir);
2972 return 0;
2973 }
2974
2975 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2976 bool excl)
2977 {
2978 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2979 }
2980
2981 /*
2982 * Link a file..
2983 */
2984 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2985 {
2986 struct inode *inode = d_inode(old_dentry);
2987 int ret = 0;
2988
2989 /*
2990 * No ordinary (disk based) filesystem counts links as inodes;
2991 * but each new link needs a new dentry, pinning lowmem, and
2992 * tmpfs dentries cannot be pruned until they are unlinked.
2993 * But if an O_TMPFILE file is linked into the tmpfs, the
2994 * first link must skip that, to get the accounting right.
2995 */
2996 if (inode->i_nlink) {
2997 ret = shmem_reserve_inode(inode->i_sb, NULL);
2998 if (ret)
2999 goto out;
3000 }
3001
3002 dir->i_size += BOGO_DIRENT_SIZE;
3003 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3004 inc_nlink(inode);
3005 ihold(inode); /* New dentry reference */
3006 dget(dentry); /* Extra pinning count for the created dentry */
3007 d_instantiate(dentry, inode);
3008 out:
3009 return ret;
3010 }
3011
3012 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3013 {
3014 struct inode *inode = d_inode(dentry);
3015
3016 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3017 shmem_free_inode(inode->i_sb);
3018
3019 dir->i_size -= BOGO_DIRENT_SIZE;
3020 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3021 drop_nlink(inode);
3022 dput(dentry); /* Undo the count from "create" - this does all the work */
3023 return 0;
3024 }
3025
3026 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3027 {
3028 if (!simple_empty(dentry))
3029 return -ENOTEMPTY;
3030
3031 drop_nlink(d_inode(dentry));
3032 drop_nlink(dir);
3033 return shmem_unlink(dir, dentry);
3034 }
3035
3036 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3037 {
3038 bool old_is_dir = d_is_dir(old_dentry);
3039 bool new_is_dir = d_is_dir(new_dentry);
3040
3041 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3042 if (old_is_dir) {
3043 drop_nlink(old_dir);
3044 inc_nlink(new_dir);
3045 } else {
3046 drop_nlink(new_dir);
3047 inc_nlink(old_dir);
3048 }
3049 }
3050 old_dir->i_ctime = old_dir->i_mtime =
3051 new_dir->i_ctime = new_dir->i_mtime =
3052 d_inode(old_dentry)->i_ctime =
3053 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3054
3055 return 0;
3056 }
3057
3058 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3059 {
3060 struct dentry *whiteout;
3061 int error;
3062
3063 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3064 if (!whiteout)
3065 return -ENOMEM;
3066
3067 error = shmem_mknod(old_dir, whiteout,
3068 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3069 dput(whiteout);
3070 if (error)
3071 return error;
3072
3073 /*
3074 * Cheat and hash the whiteout while the old dentry is still in
3075 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3076 *
3077 * d_lookup() will consistently find one of them at this point,
3078 * not sure which one, but that isn't even important.
3079 */
3080 d_rehash(whiteout);
3081 return 0;
3082 }
3083
3084 /*
3085 * The VFS layer already does all the dentry stuff for rename,
3086 * we just have to decrement the usage count for the target if
3087 * it exists so that the VFS layer correctly free's it when it
3088 * gets overwritten.
3089 */
3090 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3091 {
3092 struct inode *inode = d_inode(old_dentry);
3093 int they_are_dirs = S_ISDIR(inode->i_mode);
3094
3095 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3096 return -EINVAL;
3097
3098 if (flags & RENAME_EXCHANGE)
3099 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3100
3101 if (!simple_empty(new_dentry))
3102 return -ENOTEMPTY;
3103
3104 if (flags & RENAME_WHITEOUT) {
3105 int error;
3106
3107 error = shmem_whiteout(old_dir, old_dentry);
3108 if (error)
3109 return error;
3110 }
3111
3112 if (d_really_is_positive(new_dentry)) {
3113 (void) shmem_unlink(new_dir, new_dentry);
3114 if (they_are_dirs) {
3115 drop_nlink(d_inode(new_dentry));
3116 drop_nlink(old_dir);
3117 }
3118 } else if (they_are_dirs) {
3119 drop_nlink(old_dir);
3120 inc_nlink(new_dir);
3121 }
3122
3123 old_dir->i_size -= BOGO_DIRENT_SIZE;
3124 new_dir->i_size += BOGO_DIRENT_SIZE;
3125 old_dir->i_ctime = old_dir->i_mtime =
3126 new_dir->i_ctime = new_dir->i_mtime =
3127 inode->i_ctime = current_time(old_dir);
3128 return 0;
3129 }
3130
3131 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3132 {
3133 int error;
3134 int len;
3135 struct inode *inode;
3136 struct page *page;
3137
3138 len = strlen(symname) + 1;
3139 if (len > PAGE_SIZE)
3140 return -ENAMETOOLONG;
3141
3142 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3143 VM_NORESERVE);
3144 if (!inode)
3145 return -ENOSPC;
3146
3147 error = security_inode_init_security(inode, dir, &dentry->d_name,
3148 shmem_initxattrs, NULL);
3149 if (error && error != -EOPNOTSUPP) {
3150 iput(inode);
3151 return error;
3152 }
3153
3154 inode->i_size = len-1;
3155 if (len <= SHORT_SYMLINK_LEN) {
3156 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3157 if (!inode->i_link) {
3158 iput(inode);
3159 return -ENOMEM;
3160 }
3161 inode->i_op = &shmem_short_symlink_operations;
3162 } else {
3163 inode_nohighmem(inode);
3164 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3165 if (error) {
3166 iput(inode);
3167 return error;
3168 }
3169 inode->i_mapping->a_ops = &shmem_aops;
3170 inode->i_op = &shmem_symlink_inode_operations;
3171 memcpy(page_address(page), symname, len);
3172 SetPageUptodate(page);
3173 set_page_dirty(page);
3174 unlock_page(page);
3175 put_page(page);
3176 }
3177 dir->i_size += BOGO_DIRENT_SIZE;
3178 dir->i_ctime = dir->i_mtime = current_time(dir);
3179 d_instantiate(dentry, inode);
3180 dget(dentry);
3181 return 0;
3182 }
3183
3184 static void shmem_put_link(void *arg)
3185 {
3186 mark_page_accessed(arg);
3187 put_page(arg);
3188 }
3189
3190 static const char *shmem_get_link(struct dentry *dentry,
3191 struct inode *inode,
3192 struct delayed_call *done)
3193 {
3194 struct page *page = NULL;
3195 int error;
3196 if (!dentry) {
3197 page = find_get_page(inode->i_mapping, 0);
3198 if (!page)
3199 return ERR_PTR(-ECHILD);
3200 if (!PageUptodate(page)) {
3201 put_page(page);
3202 return ERR_PTR(-ECHILD);
3203 }
3204 } else {
3205 error = shmem_getpage(inode, 0, &page, SGP_READ);
3206 if (error)
3207 return ERR_PTR(error);
3208 unlock_page(page);
3209 }
3210 set_delayed_call(done, shmem_put_link, page);
3211 return page_address(page);
3212 }
3213
3214 #ifdef CONFIG_TMPFS_XATTR
3215 /*
3216 * Superblocks without xattr inode operations may get some security.* xattr
3217 * support from the LSM "for free". As soon as we have any other xattrs
3218 * like ACLs, we also need to implement the security.* handlers at
3219 * filesystem level, though.
3220 */
3221
3222 /*
3223 * Callback for security_inode_init_security() for acquiring xattrs.
3224 */
3225 static int shmem_initxattrs(struct inode *inode,
3226 const struct xattr *xattr_array,
3227 void *fs_info)
3228 {
3229 struct shmem_inode_info *info = SHMEM_I(inode);
3230 const struct xattr *xattr;
3231 struct simple_xattr *new_xattr;
3232 size_t len;
3233
3234 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3235 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3236 if (!new_xattr)
3237 return -ENOMEM;
3238
3239 len = strlen(xattr->name) + 1;
3240 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3241 GFP_KERNEL);
3242 if (!new_xattr->name) {
3243 kvfree(new_xattr);
3244 return -ENOMEM;
3245 }
3246
3247 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3248 XATTR_SECURITY_PREFIX_LEN);
3249 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3250 xattr->name, len);
3251
3252 simple_xattr_list_add(&info->xattrs, new_xattr);
3253 }
3254
3255 return 0;
3256 }
3257
3258 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3259 struct dentry *unused, struct inode *inode,
3260 const char *name, void *buffer, size_t size)
3261 {
3262 struct shmem_inode_info *info = SHMEM_I(inode);
3263
3264 name = xattr_full_name(handler, name);
3265 return simple_xattr_get(&info->xattrs, name, buffer, size);
3266 }
3267
3268 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3269 struct dentry *unused, struct inode *inode,
3270 const char *name, const void *value,
3271 size_t size, int flags)
3272 {
3273 struct shmem_inode_info *info = SHMEM_I(inode);
3274
3275 name = xattr_full_name(handler, name);
3276 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3277 }
3278
3279 static const struct xattr_handler shmem_security_xattr_handler = {
3280 .prefix = XATTR_SECURITY_PREFIX,
3281 .get = shmem_xattr_handler_get,
3282 .set = shmem_xattr_handler_set,
3283 };
3284
3285 static const struct xattr_handler shmem_trusted_xattr_handler = {
3286 .prefix = XATTR_TRUSTED_PREFIX,
3287 .get = shmem_xattr_handler_get,
3288 .set = shmem_xattr_handler_set,
3289 };
3290
3291 static const struct xattr_handler *shmem_xattr_handlers[] = {
3292 #ifdef CONFIG_TMPFS_POSIX_ACL
3293 &posix_acl_access_xattr_handler,
3294 &posix_acl_default_xattr_handler,
3295 #endif
3296 &shmem_security_xattr_handler,
3297 &shmem_trusted_xattr_handler,
3298 NULL
3299 };
3300
3301 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3302 {
3303 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3304 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3305 }
3306 #endif /* CONFIG_TMPFS_XATTR */
3307
3308 static const struct inode_operations shmem_short_symlink_operations = {
3309 .get_link = simple_get_link,
3310 #ifdef CONFIG_TMPFS_XATTR
3311 .listxattr = shmem_listxattr,
3312 #endif
3313 };
3314
3315 static const struct inode_operations shmem_symlink_inode_operations = {
3316 .get_link = shmem_get_link,
3317 #ifdef CONFIG_TMPFS_XATTR
3318 .listxattr = shmem_listxattr,
3319 #endif
3320 };
3321
3322 static struct dentry *shmem_get_parent(struct dentry *child)
3323 {
3324 return ERR_PTR(-ESTALE);
3325 }
3326
3327 static int shmem_match(struct inode *ino, void *vfh)
3328 {
3329 __u32 *fh = vfh;
3330 __u64 inum = fh[2];
3331 inum = (inum << 32) | fh[1];
3332 return ino->i_ino == inum && fh[0] == ino->i_generation;
3333 }
3334
3335 /* Find any alias of inode, but prefer a hashed alias */
3336 static struct dentry *shmem_find_alias(struct inode *inode)
3337 {
3338 struct dentry *alias = d_find_alias(inode);
3339
3340 return alias ?: d_find_any_alias(inode);
3341 }
3342
3343
3344 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3345 struct fid *fid, int fh_len, int fh_type)
3346 {
3347 struct inode *inode;
3348 struct dentry *dentry = NULL;
3349 u64 inum;
3350
3351 if (fh_len < 3)
3352 return NULL;
3353
3354 inum = fid->raw[2];
3355 inum = (inum << 32) | fid->raw[1];
3356
3357 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3358 shmem_match, fid->raw);
3359 if (inode) {
3360 dentry = shmem_find_alias(inode);
3361 iput(inode);
3362 }
3363
3364 return dentry;
3365 }
3366
3367 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3368 struct inode *parent)
3369 {
3370 if (*len < 3) {
3371 *len = 3;
3372 return FILEID_INVALID;
3373 }
3374
3375 if (inode_unhashed(inode)) {
3376 /* Unfortunately insert_inode_hash is not idempotent,
3377 * so as we hash inodes here rather than at creation
3378 * time, we need a lock to ensure we only try
3379 * to do it once
3380 */
3381 static DEFINE_SPINLOCK(lock);
3382 spin_lock(&lock);
3383 if (inode_unhashed(inode))
3384 __insert_inode_hash(inode,
3385 inode->i_ino + inode->i_generation);
3386 spin_unlock(&lock);
3387 }
3388
3389 fh[0] = inode->i_generation;
3390 fh[1] = inode->i_ino;
3391 fh[2] = ((__u64)inode->i_ino) >> 32;
3392
3393 *len = 3;
3394 return 1;
3395 }
3396
3397 static const struct export_operations shmem_export_ops = {
3398 .get_parent = shmem_get_parent,
3399 .encode_fh = shmem_encode_fh,
3400 .fh_to_dentry = shmem_fh_to_dentry,
3401 };
3402
3403 enum shmem_param {
3404 Opt_gid,
3405 Opt_huge,
3406 Opt_mode,
3407 Opt_mpol,
3408 Opt_nr_blocks,
3409 Opt_nr_inodes,
3410 Opt_size,
3411 Opt_uid,
3412 Opt_inode32,
3413 Opt_inode64,
3414 };
3415
3416 static const struct constant_table shmem_param_enums_huge[] = {
3417 {"never", SHMEM_HUGE_NEVER },
3418 {"always", SHMEM_HUGE_ALWAYS },
3419 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3420 {"advise", SHMEM_HUGE_ADVISE },
3421 {}
3422 };
3423
3424 const struct fs_parameter_spec shmem_fs_parameters[] = {
3425 fsparam_u32 ("gid", Opt_gid),
3426 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3427 fsparam_u32oct("mode", Opt_mode),
3428 fsparam_string("mpol", Opt_mpol),
3429 fsparam_string("nr_blocks", Opt_nr_blocks),
3430 fsparam_string("nr_inodes", Opt_nr_inodes),
3431 fsparam_string("size", Opt_size),
3432 fsparam_u32 ("uid", Opt_uid),
3433 fsparam_flag ("inode32", Opt_inode32),
3434 fsparam_flag ("inode64", Opt_inode64),
3435 {}
3436 };
3437
3438 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3439 {
3440 struct shmem_options *ctx = fc->fs_private;
3441 struct fs_parse_result result;
3442 unsigned long long size;
3443 char *rest;
3444 int opt;
3445
3446 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3447 if (opt < 0)
3448 return opt;
3449
3450 switch (opt) {
3451 case Opt_size:
3452 size = memparse(param->string, &rest);
3453 if (*rest == '%') {
3454 size <<= PAGE_SHIFT;
3455 size *= totalram_pages();
3456 do_div(size, 100);
3457 rest++;
3458 }
3459 if (*rest)
3460 goto bad_value;
3461 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3462 ctx->seen |= SHMEM_SEEN_BLOCKS;
3463 break;
3464 case Opt_nr_blocks:
3465 ctx->blocks = memparse(param->string, &rest);
3466 if (*rest)
3467 goto bad_value;
3468 ctx->seen |= SHMEM_SEEN_BLOCKS;
3469 break;
3470 case Opt_nr_inodes:
3471 ctx->inodes = memparse(param->string, &rest);
3472 if (*rest)
3473 goto bad_value;
3474 ctx->seen |= SHMEM_SEEN_INODES;
3475 break;
3476 case Opt_mode:
3477 ctx->mode = result.uint_32 & 07777;
3478 break;
3479 case Opt_uid:
3480 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3481 if (!uid_valid(ctx->uid))
3482 goto bad_value;
3483 break;
3484 case Opt_gid:
3485 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3486 if (!gid_valid(ctx->gid))
3487 goto bad_value;
3488 break;
3489 case Opt_huge:
3490 ctx->huge = result.uint_32;
3491 if (ctx->huge != SHMEM_HUGE_NEVER &&
3492 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3493 has_transparent_hugepage()))
3494 goto unsupported_parameter;
3495 ctx->seen |= SHMEM_SEEN_HUGE;
3496 break;
3497 case Opt_mpol:
3498 if (IS_ENABLED(CONFIG_NUMA)) {
3499 mpol_put(ctx->mpol);
3500 ctx->mpol = NULL;
3501 if (mpol_parse_str(param->string, &ctx->mpol))
3502 goto bad_value;
3503 break;
3504 }
3505 goto unsupported_parameter;
3506 case Opt_inode32:
3507 ctx->full_inums = false;
3508 ctx->seen |= SHMEM_SEEN_INUMS;
3509 break;
3510 case Opt_inode64:
3511 if (sizeof(ino_t) < 8) {
3512 return invalfc(fc,
3513 "Cannot use inode64 with <64bit inums in kernel\n");
3514 }
3515 ctx->full_inums = true;
3516 ctx->seen |= SHMEM_SEEN_INUMS;
3517 break;
3518 }
3519 return 0;
3520
3521 unsupported_parameter:
3522 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3523 bad_value:
3524 return invalfc(fc, "Bad value for '%s'", param->key);
3525 }
3526
3527 static int shmem_parse_options(struct fs_context *fc, void *data)
3528 {
3529 char *options = data;
3530
3531 if (options) {
3532 int err = security_sb_eat_lsm_opts(options, &fc->security);
3533 if (err)
3534 return err;
3535 }
3536
3537 while (options != NULL) {
3538 char *this_char = options;
3539 for (;;) {
3540 /*
3541 * NUL-terminate this option: unfortunately,
3542 * mount options form a comma-separated list,
3543 * but mpol's nodelist may also contain commas.
3544 */
3545 options = strchr(options, ',');
3546 if (options == NULL)
3547 break;
3548 options++;
3549 if (!isdigit(*options)) {
3550 options[-1] = '\0';
3551 break;
3552 }
3553 }
3554 if (*this_char) {
3555 char *value = strchr(this_char,'=');
3556 size_t len = 0;
3557 int err;
3558
3559 if (value) {
3560 *value++ = '\0';
3561 len = strlen(value);
3562 }
3563 err = vfs_parse_fs_string(fc, this_char, value, len);
3564 if (err < 0)
3565 return err;
3566 }
3567 }
3568 return 0;
3569 }
3570
3571 /*
3572 * Reconfigure a shmem filesystem.
3573 *
3574 * Note that we disallow change from limited->unlimited blocks/inodes while any
3575 * are in use; but we must separately disallow unlimited->limited, because in
3576 * that case we have no record of how much is already in use.
3577 */
3578 static int shmem_reconfigure(struct fs_context *fc)
3579 {
3580 struct shmem_options *ctx = fc->fs_private;
3581 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3582 unsigned long inodes;
3583 const char *err;
3584
3585 spin_lock(&sbinfo->stat_lock);
3586 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3587 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3588 if (!sbinfo->max_blocks) {
3589 err = "Cannot retroactively limit size";
3590 goto out;
3591 }
3592 if (percpu_counter_compare(&sbinfo->used_blocks,
3593 ctx->blocks) > 0) {
3594 err = "Too small a size for current use";
3595 goto out;
3596 }
3597 }
3598 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3599 if (!sbinfo->max_inodes) {
3600 err = "Cannot retroactively limit inodes";
3601 goto out;
3602 }
3603 if (ctx->inodes < inodes) {
3604 err = "Too few inodes for current use";
3605 goto out;
3606 }
3607 }
3608
3609 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3610 sbinfo->next_ino > UINT_MAX) {
3611 err = "Current inum too high to switch to 32-bit inums";
3612 goto out;
3613 }
3614
3615 if (ctx->seen & SHMEM_SEEN_HUGE)
3616 sbinfo->huge = ctx->huge;
3617 if (ctx->seen & SHMEM_SEEN_INUMS)
3618 sbinfo->full_inums = ctx->full_inums;
3619 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3620 sbinfo->max_blocks = ctx->blocks;
3621 if (ctx->seen & SHMEM_SEEN_INODES) {
3622 sbinfo->max_inodes = ctx->inodes;
3623 sbinfo->free_inodes = ctx->inodes - inodes;
3624 }
3625
3626 /*
3627 * Preserve previous mempolicy unless mpol remount option was specified.
3628 */
3629 if (ctx->mpol) {
3630 mpol_put(sbinfo->mpol);
3631 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3632 ctx->mpol = NULL;
3633 }
3634 spin_unlock(&sbinfo->stat_lock);
3635 return 0;
3636 out:
3637 spin_unlock(&sbinfo->stat_lock);
3638 return invalfc(fc, "%s", err);
3639 }
3640
3641 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3642 {
3643 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3644
3645 if (sbinfo->max_blocks != shmem_default_max_blocks())
3646 seq_printf(seq, ",size=%luk",
3647 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3648 if (sbinfo->max_inodes != shmem_default_max_inodes())
3649 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3650 if (sbinfo->mode != (0777 | S_ISVTX))
3651 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3652 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3653 seq_printf(seq, ",uid=%u",
3654 from_kuid_munged(&init_user_ns, sbinfo->uid));
3655 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3656 seq_printf(seq, ",gid=%u",
3657 from_kgid_munged(&init_user_ns, sbinfo->gid));
3658
3659 /*
3660 * Showing inode{64,32} might be useful even if it's the system default,
3661 * since then people don't have to resort to checking both here and
3662 * /proc/config.gz to confirm 64-bit inums were successfully applied
3663 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3664 *
3665 * We hide it when inode64 isn't the default and we are using 32-bit
3666 * inodes, since that probably just means the feature isn't even under
3667 * consideration.
3668 *
3669 * As such:
3670 *
3671 * +-----------------+-----------------+
3672 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3673 * +------------------+-----------------+-----------------+
3674 * | full_inums=true | show | show |
3675 * | full_inums=false | show | hide |
3676 * +------------------+-----------------+-----------------+
3677 *
3678 */
3679 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3680 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3682 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3683 if (sbinfo->huge)
3684 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3685 #endif
3686 shmem_show_mpol(seq, sbinfo->mpol);
3687 return 0;
3688 }
3689
3690 #endif /* CONFIG_TMPFS */
3691
3692 static void shmem_put_super(struct super_block *sb)
3693 {
3694 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3695
3696 free_percpu(sbinfo->ino_batch);
3697 percpu_counter_destroy(&sbinfo->used_blocks);
3698 mpol_put(sbinfo->mpol);
3699 kfree(sbinfo);
3700 sb->s_fs_info = NULL;
3701 }
3702
3703 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3704 {
3705 struct shmem_options *ctx = fc->fs_private;
3706 struct inode *inode;
3707 struct shmem_sb_info *sbinfo;
3708 int err = -ENOMEM;
3709
3710 /* Round up to L1_CACHE_BYTES to resist false sharing */
3711 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3712 L1_CACHE_BYTES), GFP_KERNEL);
3713 if (!sbinfo)
3714 return -ENOMEM;
3715
3716 sb->s_fs_info = sbinfo;
3717
3718 #ifdef CONFIG_TMPFS
3719 /*
3720 * Per default we only allow half of the physical ram per
3721 * tmpfs instance, limiting inodes to one per page of lowmem;
3722 * but the internal instance is left unlimited.
3723 */
3724 if (!(sb->s_flags & SB_KERNMOUNT)) {
3725 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3726 ctx->blocks = shmem_default_max_blocks();
3727 if (!(ctx->seen & SHMEM_SEEN_INODES))
3728 ctx->inodes = shmem_default_max_inodes();
3729 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3730 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3731 } else {
3732 sb->s_flags |= SB_NOUSER;
3733 }
3734 sb->s_export_op = &shmem_export_ops;
3735 sb->s_flags |= SB_NOSEC;
3736 #else
3737 sb->s_flags |= SB_NOUSER;
3738 #endif
3739 sbinfo->max_blocks = ctx->blocks;
3740 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3741 if (sb->s_flags & SB_KERNMOUNT) {
3742 sbinfo->ino_batch = alloc_percpu(ino_t);
3743 if (!sbinfo->ino_batch)
3744 goto failed;
3745 }
3746 sbinfo->uid = ctx->uid;
3747 sbinfo->gid = ctx->gid;
3748 sbinfo->full_inums = ctx->full_inums;
3749 sbinfo->mode = ctx->mode;
3750 sbinfo->huge = ctx->huge;
3751 sbinfo->mpol = ctx->mpol;
3752 ctx->mpol = NULL;
3753
3754 spin_lock_init(&sbinfo->stat_lock);
3755 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3756 goto failed;
3757 spin_lock_init(&sbinfo->shrinklist_lock);
3758 INIT_LIST_HEAD(&sbinfo->shrinklist);
3759
3760 sb->s_maxbytes = MAX_LFS_FILESIZE;
3761 sb->s_blocksize = PAGE_SIZE;
3762 sb->s_blocksize_bits = PAGE_SHIFT;
3763 sb->s_magic = TMPFS_MAGIC;
3764 sb->s_op = &shmem_ops;
3765 sb->s_time_gran = 1;
3766 #ifdef CONFIG_TMPFS_XATTR
3767 sb->s_xattr = shmem_xattr_handlers;
3768 #endif
3769 #ifdef CONFIG_TMPFS_POSIX_ACL
3770 sb->s_flags |= SB_POSIXACL;
3771 #endif
3772 uuid_gen(&sb->s_uuid);
3773
3774 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3775 if (!inode)
3776 goto failed;
3777 inode->i_uid = sbinfo->uid;
3778 inode->i_gid = sbinfo->gid;
3779 sb->s_root = d_make_root(inode);
3780 if (!sb->s_root)
3781 goto failed;
3782 return 0;
3783
3784 failed:
3785 shmem_put_super(sb);
3786 return err;
3787 }
3788
3789 static int shmem_get_tree(struct fs_context *fc)
3790 {
3791 return get_tree_nodev(fc, shmem_fill_super);
3792 }
3793
3794 static void shmem_free_fc(struct fs_context *fc)
3795 {
3796 struct shmem_options *ctx = fc->fs_private;
3797
3798 if (ctx) {
3799 mpol_put(ctx->mpol);
3800 kfree(ctx);
3801 }
3802 }
3803
3804 static const struct fs_context_operations shmem_fs_context_ops = {
3805 .free = shmem_free_fc,
3806 .get_tree = shmem_get_tree,
3807 #ifdef CONFIG_TMPFS
3808 .parse_monolithic = shmem_parse_options,
3809 .parse_param = shmem_parse_one,
3810 .reconfigure = shmem_reconfigure,
3811 #endif
3812 };
3813
3814 static struct kmem_cache *shmem_inode_cachep;
3815
3816 static struct inode *shmem_alloc_inode(struct super_block *sb)
3817 {
3818 struct shmem_inode_info *info;
3819 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3820 if (!info)
3821 return NULL;
3822 return &info->vfs_inode;
3823 }
3824
3825 static void shmem_free_in_core_inode(struct inode *inode)
3826 {
3827 if (S_ISLNK(inode->i_mode))
3828 kfree(inode->i_link);
3829 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3830 }
3831
3832 static void shmem_destroy_inode(struct inode *inode)
3833 {
3834 if (S_ISREG(inode->i_mode))
3835 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3836 }
3837
3838 static void shmem_init_inode(void *foo)
3839 {
3840 struct shmem_inode_info *info = foo;
3841 inode_init_once(&info->vfs_inode);
3842 }
3843
3844 static void shmem_init_inodecache(void)
3845 {
3846 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3847 sizeof(struct shmem_inode_info),
3848 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3849 }
3850
3851 static void shmem_destroy_inodecache(void)
3852 {
3853 kmem_cache_destroy(shmem_inode_cachep);
3854 }
3855
3856 static const struct address_space_operations shmem_aops = {
3857 .writepage = shmem_writepage,
3858 .set_page_dirty = __set_page_dirty_no_writeback,
3859 #ifdef CONFIG_TMPFS
3860 .write_begin = shmem_write_begin,
3861 .write_end = shmem_write_end,
3862 #endif
3863 #ifdef CONFIG_MIGRATION
3864 .migratepage = migrate_page,
3865 #endif
3866 .error_remove_page = generic_error_remove_page,
3867 };
3868
3869 static const struct file_operations shmem_file_operations = {
3870 .mmap = shmem_mmap,
3871 .get_unmapped_area = shmem_get_unmapped_area,
3872 #ifdef CONFIG_TMPFS
3873 .llseek = shmem_file_llseek,
3874 .read_iter = shmem_file_read_iter,
3875 .write_iter = generic_file_write_iter,
3876 .fsync = noop_fsync,
3877 .splice_read = generic_file_splice_read,
3878 .splice_write = iter_file_splice_write,
3879 .fallocate = shmem_fallocate,
3880 #endif
3881 };
3882
3883 static const struct inode_operations shmem_inode_operations = {
3884 .getattr = shmem_getattr,
3885 .setattr = shmem_setattr,
3886 #ifdef CONFIG_TMPFS_XATTR
3887 .listxattr = shmem_listxattr,
3888 .set_acl = simple_set_acl,
3889 #endif
3890 };
3891
3892 static const struct inode_operations shmem_dir_inode_operations = {
3893 #ifdef CONFIG_TMPFS
3894 .create = shmem_create,
3895 .lookup = simple_lookup,
3896 .link = shmem_link,
3897 .unlink = shmem_unlink,
3898 .symlink = shmem_symlink,
3899 .mkdir = shmem_mkdir,
3900 .rmdir = shmem_rmdir,
3901 .mknod = shmem_mknod,
3902 .rename = shmem_rename2,
3903 .tmpfile = shmem_tmpfile,
3904 #endif
3905 #ifdef CONFIG_TMPFS_XATTR
3906 .listxattr = shmem_listxattr,
3907 #endif
3908 #ifdef CONFIG_TMPFS_POSIX_ACL
3909 .setattr = shmem_setattr,
3910 .set_acl = simple_set_acl,
3911 #endif
3912 };
3913
3914 static const struct inode_operations shmem_special_inode_operations = {
3915 #ifdef CONFIG_TMPFS_XATTR
3916 .listxattr = shmem_listxattr,
3917 #endif
3918 #ifdef CONFIG_TMPFS_POSIX_ACL
3919 .setattr = shmem_setattr,
3920 .set_acl = simple_set_acl,
3921 #endif
3922 };
3923
3924 static const struct super_operations shmem_ops = {
3925 .alloc_inode = shmem_alloc_inode,
3926 .free_inode = shmem_free_in_core_inode,
3927 .destroy_inode = shmem_destroy_inode,
3928 #ifdef CONFIG_TMPFS
3929 .statfs = shmem_statfs,
3930 .show_options = shmem_show_options,
3931 #endif
3932 .evict_inode = shmem_evict_inode,
3933 .drop_inode = generic_delete_inode,
3934 .put_super = shmem_put_super,
3935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3936 .nr_cached_objects = shmem_unused_huge_count,
3937 .free_cached_objects = shmem_unused_huge_scan,
3938 #endif
3939 };
3940
3941 static const struct vm_operations_struct shmem_vm_ops = {
3942 .fault = shmem_fault,
3943 .map_pages = filemap_map_pages,
3944 #ifdef CONFIG_NUMA
3945 .set_policy = shmem_set_policy,
3946 .get_policy = shmem_get_policy,
3947 #endif
3948 };
3949
3950 int shmem_init_fs_context(struct fs_context *fc)
3951 {
3952 struct shmem_options *ctx;
3953
3954 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3955 if (!ctx)
3956 return -ENOMEM;
3957
3958 ctx->mode = 0777 | S_ISVTX;
3959 ctx->uid = current_fsuid();
3960 ctx->gid = current_fsgid();
3961
3962 fc->fs_private = ctx;
3963 fc->ops = &shmem_fs_context_ops;
3964 return 0;
3965 }
3966
3967 static struct file_system_type shmem_fs_type = {
3968 .owner = THIS_MODULE,
3969 .name = "tmpfs",
3970 .init_fs_context = shmem_init_fs_context,
3971 #ifdef CONFIG_TMPFS
3972 .parameters = shmem_fs_parameters,
3973 #endif
3974 .kill_sb = kill_litter_super,
3975 .fs_flags = FS_USERNS_MOUNT,
3976 };
3977
3978 int __init shmem_init(void)
3979 {
3980 int error;
3981
3982 shmem_init_inodecache();
3983
3984 error = register_filesystem(&shmem_fs_type);
3985 if (error) {
3986 pr_err("Could not register tmpfs\n");
3987 goto out2;
3988 }
3989
3990 shm_mnt = kern_mount(&shmem_fs_type);
3991 if (IS_ERR(shm_mnt)) {
3992 error = PTR_ERR(shm_mnt);
3993 pr_err("Could not kern_mount tmpfs\n");
3994 goto out1;
3995 }
3996
3997 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3998 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3999 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4000 else
4001 shmem_huge = 0; /* just in case it was patched */
4002 #endif
4003 return 0;
4004
4005 out1:
4006 unregister_filesystem(&shmem_fs_type);
4007 out2:
4008 shmem_destroy_inodecache();
4009 shm_mnt = ERR_PTR(error);
4010 return error;
4011 }
4012
4013 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4014 static ssize_t shmem_enabled_show(struct kobject *kobj,
4015 struct kobj_attribute *attr, char *buf)
4016 {
4017 static const int values[] = {
4018 SHMEM_HUGE_ALWAYS,
4019 SHMEM_HUGE_WITHIN_SIZE,
4020 SHMEM_HUGE_ADVISE,
4021 SHMEM_HUGE_NEVER,
4022 SHMEM_HUGE_DENY,
4023 SHMEM_HUGE_FORCE,
4024 };
4025 int i, count;
4026
4027 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4028 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4029
4030 count += sprintf(buf + count, fmt,
4031 shmem_format_huge(values[i]));
4032 }
4033 buf[count - 1] = '\n';
4034 return count;
4035 }
4036
4037 static ssize_t shmem_enabled_store(struct kobject *kobj,
4038 struct kobj_attribute *attr, const char *buf, size_t count)
4039 {
4040 char tmp[16];
4041 int huge;
4042
4043 if (count + 1 > sizeof(tmp))
4044 return -EINVAL;
4045 memcpy(tmp, buf, count);
4046 tmp[count] = '\0';
4047 if (count && tmp[count - 1] == '\n')
4048 tmp[count - 1] = '\0';
4049
4050 huge = shmem_parse_huge(tmp);
4051 if (huge == -EINVAL)
4052 return -EINVAL;
4053 if (!has_transparent_hugepage() &&
4054 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4055 return -EINVAL;
4056
4057 shmem_huge = huge;
4058 if (shmem_huge > SHMEM_HUGE_DENY)
4059 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4060 return count;
4061 }
4062
4063 struct kobj_attribute shmem_enabled_attr =
4064 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4065 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4066
4067 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4068 bool shmem_huge_enabled(struct vm_area_struct *vma)
4069 {
4070 struct inode *inode = file_inode(vma->vm_file);
4071 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4072 loff_t i_size;
4073 pgoff_t off;
4074
4075 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4076 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4077 return false;
4078 if (shmem_huge == SHMEM_HUGE_FORCE)
4079 return true;
4080 if (shmem_huge == SHMEM_HUGE_DENY)
4081 return false;
4082 switch (sbinfo->huge) {
4083 case SHMEM_HUGE_NEVER:
4084 return false;
4085 case SHMEM_HUGE_ALWAYS:
4086 return true;
4087 case SHMEM_HUGE_WITHIN_SIZE:
4088 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4089 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4090 if (i_size >= HPAGE_PMD_SIZE &&
4091 i_size >> PAGE_SHIFT >= off)
4092 return true;
4093 fallthrough;
4094 case SHMEM_HUGE_ADVISE:
4095 /* TODO: implement fadvise() hints */
4096 return (vma->vm_flags & VM_HUGEPAGE);
4097 default:
4098 VM_BUG_ON(1);
4099 return false;
4100 }
4101 }
4102 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4103
4104 #else /* !CONFIG_SHMEM */
4105
4106 /*
4107 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4108 *
4109 * This is intended for small system where the benefits of the full
4110 * shmem code (swap-backed and resource-limited) are outweighed by
4111 * their complexity. On systems without swap this code should be
4112 * effectively equivalent, but much lighter weight.
4113 */
4114
4115 static struct file_system_type shmem_fs_type = {
4116 .name = "tmpfs",
4117 .init_fs_context = ramfs_init_fs_context,
4118 .parameters = ramfs_fs_parameters,
4119 .kill_sb = kill_litter_super,
4120 .fs_flags = FS_USERNS_MOUNT,
4121 };
4122
4123 int __init shmem_init(void)
4124 {
4125 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4126
4127 shm_mnt = kern_mount(&shmem_fs_type);
4128 BUG_ON(IS_ERR(shm_mnt));
4129
4130 return 0;
4131 }
4132
4133 int shmem_unuse(unsigned int type, bool frontswap,
4134 unsigned long *fs_pages_to_unuse)
4135 {
4136 return 0;
4137 }
4138
4139 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4140 {
4141 return 0;
4142 }
4143
4144 void shmem_unlock_mapping(struct address_space *mapping)
4145 {
4146 }
4147
4148 #ifdef CONFIG_MMU
4149 unsigned long shmem_get_unmapped_area(struct file *file,
4150 unsigned long addr, unsigned long len,
4151 unsigned long pgoff, unsigned long flags)
4152 {
4153 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4154 }
4155 #endif
4156
4157 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4158 {
4159 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4160 }
4161 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4162
4163 #define shmem_vm_ops generic_file_vm_ops
4164 #define shmem_file_operations ramfs_file_operations
4165 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4166 #define shmem_acct_size(flags, size) 0
4167 #define shmem_unacct_size(flags, size) do {} while (0)
4168
4169 #endif /* CONFIG_SHMEM */
4170
4171 /* common code */
4172
4173 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4174 unsigned long flags, unsigned int i_flags)
4175 {
4176 struct inode *inode;
4177 struct file *res;
4178
4179 if (IS_ERR(mnt))
4180 return ERR_CAST(mnt);
4181
4182 if (size < 0 || size > MAX_LFS_FILESIZE)
4183 return ERR_PTR(-EINVAL);
4184
4185 if (shmem_acct_size(flags, size))
4186 return ERR_PTR(-ENOMEM);
4187
4188 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4189 flags);
4190 if (unlikely(!inode)) {
4191 shmem_unacct_size(flags, size);
4192 return ERR_PTR(-ENOSPC);
4193 }
4194 inode->i_flags |= i_flags;
4195 inode->i_size = size;
4196 clear_nlink(inode); /* It is unlinked */
4197 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4198 if (!IS_ERR(res))
4199 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4200 &shmem_file_operations);
4201 if (IS_ERR(res))
4202 iput(inode);
4203 return res;
4204 }
4205
4206 /**
4207 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4208 * kernel internal. There will be NO LSM permission checks against the
4209 * underlying inode. So users of this interface must do LSM checks at a
4210 * higher layer. The users are the big_key and shm implementations. LSM
4211 * checks are provided at the key or shm level rather than the inode.
4212 * @name: name for dentry (to be seen in /proc/<pid>/maps
4213 * @size: size to be set for the file
4214 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4215 */
4216 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4217 {
4218 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4219 }
4220
4221 /**
4222 * shmem_file_setup - get an unlinked file living in tmpfs
4223 * @name: name for dentry (to be seen in /proc/<pid>/maps
4224 * @size: size to be set for the file
4225 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4226 */
4227 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4228 {
4229 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4230 }
4231 EXPORT_SYMBOL_GPL(shmem_file_setup);
4232
4233 /**
4234 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4235 * @mnt: the tmpfs mount where the file will be created
4236 * @name: name for dentry (to be seen in /proc/<pid>/maps
4237 * @size: size to be set for the file
4238 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4239 */
4240 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4241 loff_t size, unsigned long flags)
4242 {
4243 return __shmem_file_setup(mnt, name, size, flags, 0);
4244 }
4245 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4246
4247 /**
4248 * shmem_zero_setup - setup a shared anonymous mapping
4249 * @vma: the vma to be mmapped is prepared by do_mmap
4250 */
4251 int shmem_zero_setup(struct vm_area_struct *vma)
4252 {
4253 struct file *file;
4254 loff_t size = vma->vm_end - vma->vm_start;
4255
4256 /*
4257 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4258 * between XFS directory reading and selinux: since this file is only
4259 * accessible to the user through its mapping, use S_PRIVATE flag to
4260 * bypass file security, in the same way as shmem_kernel_file_setup().
4261 */
4262 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4263 if (IS_ERR(file))
4264 return PTR_ERR(file);
4265
4266 if (vma->vm_file)
4267 fput(vma->vm_file);
4268 vma->vm_file = file;
4269 vma->vm_ops = &shmem_vm_ops;
4270
4271 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4272 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4273 (vma->vm_end & HPAGE_PMD_MASK)) {
4274 khugepaged_enter(vma, vma->vm_flags);
4275 }
4276
4277 return 0;
4278 }
4279
4280 /**
4281 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4282 * @mapping: the page's address_space
4283 * @index: the page index
4284 * @gfp: the page allocator flags to use if allocating
4285 *
4286 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4287 * with any new page allocations done using the specified allocation flags.
4288 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4289 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4290 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4291 *
4292 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4293 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4294 */
4295 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4296 pgoff_t index, gfp_t gfp)
4297 {
4298 #ifdef CONFIG_SHMEM
4299 struct inode *inode = mapping->host;
4300 struct page *page;
4301 int error;
4302
4303 BUG_ON(mapping->a_ops != &shmem_aops);
4304 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4305 gfp, NULL, NULL, NULL);
4306 if (error)
4307 page = ERR_PTR(error);
4308 else
4309 unlock_page(page);
4310 return page;
4311 #else
4312 /*
4313 * The tiny !SHMEM case uses ramfs without swap
4314 */
4315 return read_cache_page_gfp(mapping, index, gfp);
4316 #endif
4317 }
4318 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);