]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/shmem.c
wrappers for ->i_mutex access
[mirror_ubuntu-hirsute-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
79 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89 * inode->i_private (with i_mutex making sure that it has only one user at
90 * a time): we would prefer not to enlarge the shmem inode just for that.
91 */
92 struct shmem_falloc {
93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94 pgoff_t start; /* start of range currently being fallocated */
95 pgoff_t next; /* the next page offset to be fallocated */
96 pgoff_t nr_falloced; /* how many new pages have been fallocated */
97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102 SGP_READ, /* don't exceed i_size, don't allocate page */
103 SGP_CACHE, /* don't exceed i_size, may allocate page */
104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
107 };
108
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 return totalram_pages / 2;
113 }
114
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp, int *fault_type)
129 {
130 return shmem_getpage_gfp(inode, index, pagep, sgp,
131 mapping_gfp_mask(inode->i_mapping), fault_type);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136 return sb->s_fs_info;
137 }
138
139 /*
140 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141 * for shared memory and for shared anonymous (/dev/zero) mappings
142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143 * consistent with the pre-accounting of private mappings ...
144 */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147 return (flags & VM_NORESERVE) ?
148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153 if (!(flags & VM_NORESERVE))
154 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158 loff_t oldsize, loff_t newsize)
159 {
160 if (!(flags & VM_NORESERVE)) {
161 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162 return security_vm_enough_memory_mm(current->mm,
163 VM_ACCT(newsize) - VM_ACCT(oldsize));
164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166 }
167 return 0;
168 }
169
170 /*
171 * ... whereas tmpfs objects are accounted incrementally as
172 * pages are allocated, in order to allow huge sparse files.
173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175 */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178 return (flags & VM_NORESERVE) ?
179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184 if (flags & VM_NORESERVE)
185 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202 if (sbinfo->max_inodes) {
203 spin_lock(&sbinfo->stat_lock);
204 if (!sbinfo->free_inodes) {
205 spin_unlock(&sbinfo->stat_lock);
206 return -ENOSPC;
207 }
208 sbinfo->free_inodes--;
209 spin_unlock(&sbinfo->stat_lock);
210 }
211 return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217 if (sbinfo->max_inodes) {
218 spin_lock(&sbinfo->stat_lock);
219 sbinfo->free_inodes++;
220 spin_unlock(&sbinfo->stat_lock);
221 }
222 }
223
224 /**
225 * shmem_recalc_inode - recalculate the block usage of an inode
226 * @inode: inode to recalc
227 *
228 * We have to calculate the free blocks since the mm can drop
229 * undirtied hole pages behind our back.
230 *
231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233 *
234 * It has to be called with the spinlock held.
235 */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238 struct shmem_inode_info *info = SHMEM_I(inode);
239 long freed;
240
241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242 if (freed > 0) {
243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244 if (sbinfo->max_blocks)
245 percpu_counter_add(&sbinfo->used_blocks, -freed);
246 info->alloced -= freed;
247 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248 shmem_unacct_blocks(info->flags, freed);
249 }
250 }
251
252 /*
253 * Replace item expected in radix tree by a new item, while holding tree lock.
254 */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256 pgoff_t index, void *expected, void *replacement)
257 {
258 void **pslot;
259 void *item;
260
261 VM_BUG_ON(!expected);
262 VM_BUG_ON(!replacement);
263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264 if (!pslot)
265 return -ENOENT;
266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267 if (item != expected)
268 return -ENOENT;
269 radix_tree_replace_slot(pslot, replacement);
270 return 0;
271 }
272
273 /*
274 * Sometimes, before we decide whether to proceed or to fail, we must check
275 * that an entry was not already brought back from swap by a racing thread.
276 *
277 * Checking page is not enough: by the time a SwapCache page is locked, it
278 * might be reused, and again be SwapCache, using the same swap as before.
279 */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281 pgoff_t index, swp_entry_t swap)
282 {
283 void *item;
284
285 rcu_read_lock();
286 item = radix_tree_lookup(&mapping->page_tree, index);
287 rcu_read_unlock();
288 return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292 * Like add_to_page_cache_locked, but error if expected item has gone.
293 */
294 static int shmem_add_to_page_cache(struct page *page,
295 struct address_space *mapping,
296 pgoff_t index, void *expected)
297 {
298 int error;
299
300 VM_BUG_ON_PAGE(!PageLocked(page), page);
301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
302
303 page_cache_get(page);
304 page->mapping = mapping;
305 page->index = index;
306
307 spin_lock_irq(&mapping->tree_lock);
308 if (!expected)
309 error = radix_tree_insert(&mapping->page_tree, index, page);
310 else
311 error = shmem_radix_tree_replace(mapping, index, expected,
312 page);
313 if (!error) {
314 mapping->nrpages++;
315 __inc_zone_page_state(page, NR_FILE_PAGES);
316 __inc_zone_page_state(page, NR_SHMEM);
317 spin_unlock_irq(&mapping->tree_lock);
318 } else {
319 page->mapping = NULL;
320 spin_unlock_irq(&mapping->tree_lock);
321 page_cache_release(page);
322 }
323 return error;
324 }
325
326 /*
327 * Like delete_from_page_cache, but substitutes swap for page.
328 */
329 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
330 {
331 struct address_space *mapping = page->mapping;
332 int error;
333
334 spin_lock_irq(&mapping->tree_lock);
335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
336 page->mapping = NULL;
337 mapping->nrpages--;
338 __dec_zone_page_state(page, NR_FILE_PAGES);
339 __dec_zone_page_state(page, NR_SHMEM);
340 spin_unlock_irq(&mapping->tree_lock);
341 page_cache_release(page);
342 BUG_ON(error);
343 }
344
345 /*
346 * Remove swap entry from radix tree, free the swap and its page cache.
347 */
348 static int shmem_free_swap(struct address_space *mapping,
349 pgoff_t index, void *radswap)
350 {
351 void *old;
352
353 spin_lock_irq(&mapping->tree_lock);
354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
355 spin_unlock_irq(&mapping->tree_lock);
356 if (old != radswap)
357 return -ENOENT;
358 free_swap_and_cache(radix_to_swp_entry(radswap));
359 return 0;
360 }
361
362 /*
363 * Determine (in bytes) how many of the shmem object's pages mapped by the
364 * given offsets are swapped out.
365 *
366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
367 * as long as the inode doesn't go away and racy results are not a problem.
368 */
369 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
370 pgoff_t start, pgoff_t end)
371 {
372 struct radix_tree_iter iter;
373 void **slot;
374 struct page *page;
375 unsigned long swapped = 0;
376
377 rcu_read_lock();
378
379 restart:
380 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
381 if (iter.index >= end)
382 break;
383
384 page = radix_tree_deref_slot(slot);
385
386 /*
387 * This should only be possible to happen at index 0, so we
388 * don't need to reset the counter, nor do we risk infinite
389 * restarts.
390 */
391 if (radix_tree_deref_retry(page))
392 goto restart;
393
394 if (radix_tree_exceptional_entry(page))
395 swapped++;
396
397 if (need_resched()) {
398 cond_resched_rcu();
399 start = iter.index + 1;
400 goto restart;
401 }
402 }
403
404 rcu_read_unlock();
405
406 return swapped << PAGE_SHIFT;
407 }
408
409 /*
410 * Determine (in bytes) how many of the shmem object's pages mapped by the
411 * given vma is swapped out.
412 *
413 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
414 * as long as the inode doesn't go away and racy results are not a problem.
415 */
416 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
417 {
418 struct inode *inode = file_inode(vma->vm_file);
419 struct shmem_inode_info *info = SHMEM_I(inode);
420 struct address_space *mapping = inode->i_mapping;
421 unsigned long swapped;
422
423 /* Be careful as we don't hold info->lock */
424 swapped = READ_ONCE(info->swapped);
425
426 /*
427 * The easier cases are when the shmem object has nothing in swap, or
428 * the vma maps it whole. Then we can simply use the stats that we
429 * already track.
430 */
431 if (!swapped)
432 return 0;
433
434 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
435 return swapped << PAGE_SHIFT;
436
437 /* Here comes the more involved part */
438 return shmem_partial_swap_usage(mapping,
439 linear_page_index(vma, vma->vm_start),
440 linear_page_index(vma, vma->vm_end));
441 }
442
443 /*
444 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
445 */
446 void shmem_unlock_mapping(struct address_space *mapping)
447 {
448 struct pagevec pvec;
449 pgoff_t indices[PAGEVEC_SIZE];
450 pgoff_t index = 0;
451
452 pagevec_init(&pvec, 0);
453 /*
454 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
455 */
456 while (!mapping_unevictable(mapping)) {
457 /*
458 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
459 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
460 */
461 pvec.nr = find_get_entries(mapping, index,
462 PAGEVEC_SIZE, pvec.pages, indices);
463 if (!pvec.nr)
464 break;
465 index = indices[pvec.nr - 1] + 1;
466 pagevec_remove_exceptionals(&pvec);
467 check_move_unevictable_pages(pvec.pages, pvec.nr);
468 pagevec_release(&pvec);
469 cond_resched();
470 }
471 }
472
473 /*
474 * Remove range of pages and swap entries from radix tree, and free them.
475 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
476 */
477 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
478 bool unfalloc)
479 {
480 struct address_space *mapping = inode->i_mapping;
481 struct shmem_inode_info *info = SHMEM_I(inode);
482 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
484 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
485 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
486 struct pagevec pvec;
487 pgoff_t indices[PAGEVEC_SIZE];
488 long nr_swaps_freed = 0;
489 pgoff_t index;
490 int i;
491
492 if (lend == -1)
493 end = -1; /* unsigned, so actually very big */
494
495 pagevec_init(&pvec, 0);
496 index = start;
497 while (index < end) {
498 pvec.nr = find_get_entries(mapping, index,
499 min(end - index, (pgoff_t)PAGEVEC_SIZE),
500 pvec.pages, indices);
501 if (!pvec.nr)
502 break;
503 for (i = 0; i < pagevec_count(&pvec); i++) {
504 struct page *page = pvec.pages[i];
505
506 index = indices[i];
507 if (index >= end)
508 break;
509
510 if (radix_tree_exceptional_entry(page)) {
511 if (unfalloc)
512 continue;
513 nr_swaps_freed += !shmem_free_swap(mapping,
514 index, page);
515 continue;
516 }
517
518 if (!trylock_page(page))
519 continue;
520 if (!unfalloc || !PageUptodate(page)) {
521 if (page->mapping == mapping) {
522 VM_BUG_ON_PAGE(PageWriteback(page), page);
523 truncate_inode_page(mapping, page);
524 }
525 }
526 unlock_page(page);
527 }
528 pagevec_remove_exceptionals(&pvec);
529 pagevec_release(&pvec);
530 cond_resched();
531 index++;
532 }
533
534 if (partial_start) {
535 struct page *page = NULL;
536 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
537 if (page) {
538 unsigned int top = PAGE_CACHE_SIZE;
539 if (start > end) {
540 top = partial_end;
541 partial_end = 0;
542 }
543 zero_user_segment(page, partial_start, top);
544 set_page_dirty(page);
545 unlock_page(page);
546 page_cache_release(page);
547 }
548 }
549 if (partial_end) {
550 struct page *page = NULL;
551 shmem_getpage(inode, end, &page, SGP_READ, NULL);
552 if (page) {
553 zero_user_segment(page, 0, partial_end);
554 set_page_dirty(page);
555 unlock_page(page);
556 page_cache_release(page);
557 }
558 }
559 if (start >= end)
560 return;
561
562 index = start;
563 while (index < end) {
564 cond_resched();
565
566 pvec.nr = find_get_entries(mapping, index,
567 min(end - index, (pgoff_t)PAGEVEC_SIZE),
568 pvec.pages, indices);
569 if (!pvec.nr) {
570 /* If all gone or hole-punch or unfalloc, we're done */
571 if (index == start || end != -1)
572 break;
573 /* But if truncating, restart to make sure all gone */
574 index = start;
575 continue;
576 }
577 for (i = 0; i < pagevec_count(&pvec); i++) {
578 struct page *page = pvec.pages[i];
579
580 index = indices[i];
581 if (index >= end)
582 break;
583
584 if (radix_tree_exceptional_entry(page)) {
585 if (unfalloc)
586 continue;
587 if (shmem_free_swap(mapping, index, page)) {
588 /* Swap was replaced by page: retry */
589 index--;
590 break;
591 }
592 nr_swaps_freed++;
593 continue;
594 }
595
596 lock_page(page);
597 if (!unfalloc || !PageUptodate(page)) {
598 if (page->mapping == mapping) {
599 VM_BUG_ON_PAGE(PageWriteback(page), page);
600 truncate_inode_page(mapping, page);
601 } else {
602 /* Page was replaced by swap: retry */
603 unlock_page(page);
604 index--;
605 break;
606 }
607 }
608 unlock_page(page);
609 }
610 pagevec_remove_exceptionals(&pvec);
611 pagevec_release(&pvec);
612 index++;
613 }
614
615 spin_lock(&info->lock);
616 info->swapped -= nr_swaps_freed;
617 shmem_recalc_inode(inode);
618 spin_unlock(&info->lock);
619 }
620
621 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
622 {
623 shmem_undo_range(inode, lstart, lend, false);
624 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
625 }
626 EXPORT_SYMBOL_GPL(shmem_truncate_range);
627
628 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
629 struct kstat *stat)
630 {
631 struct inode *inode = dentry->d_inode;
632 struct shmem_inode_info *info = SHMEM_I(inode);
633
634 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
635 spin_lock(&info->lock);
636 shmem_recalc_inode(inode);
637 spin_unlock(&info->lock);
638 }
639 generic_fillattr(inode, stat);
640 return 0;
641 }
642
643 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
644 {
645 struct inode *inode = d_inode(dentry);
646 struct shmem_inode_info *info = SHMEM_I(inode);
647 int error;
648
649 error = inode_change_ok(inode, attr);
650 if (error)
651 return error;
652
653 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
654 loff_t oldsize = inode->i_size;
655 loff_t newsize = attr->ia_size;
656
657 /* protected by i_mutex */
658 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
659 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
660 return -EPERM;
661
662 if (newsize != oldsize) {
663 error = shmem_reacct_size(SHMEM_I(inode)->flags,
664 oldsize, newsize);
665 if (error)
666 return error;
667 i_size_write(inode, newsize);
668 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
669 }
670 if (newsize <= oldsize) {
671 loff_t holebegin = round_up(newsize, PAGE_SIZE);
672 if (oldsize > holebegin)
673 unmap_mapping_range(inode->i_mapping,
674 holebegin, 0, 1);
675 if (info->alloced)
676 shmem_truncate_range(inode,
677 newsize, (loff_t)-1);
678 /* unmap again to remove racily COWed private pages */
679 if (oldsize > holebegin)
680 unmap_mapping_range(inode->i_mapping,
681 holebegin, 0, 1);
682 }
683 }
684
685 setattr_copy(inode, attr);
686 if (attr->ia_valid & ATTR_MODE)
687 error = posix_acl_chmod(inode, inode->i_mode);
688 return error;
689 }
690
691 static void shmem_evict_inode(struct inode *inode)
692 {
693 struct shmem_inode_info *info = SHMEM_I(inode);
694
695 if (inode->i_mapping->a_ops == &shmem_aops) {
696 shmem_unacct_size(info->flags, inode->i_size);
697 inode->i_size = 0;
698 shmem_truncate_range(inode, 0, (loff_t)-1);
699 if (!list_empty(&info->swaplist)) {
700 mutex_lock(&shmem_swaplist_mutex);
701 list_del_init(&info->swaplist);
702 mutex_unlock(&shmem_swaplist_mutex);
703 }
704 } else
705 kfree(info->symlink);
706
707 simple_xattrs_free(&info->xattrs);
708 WARN_ON(inode->i_blocks);
709 shmem_free_inode(inode->i_sb);
710 clear_inode(inode);
711 }
712
713 /*
714 * If swap found in inode, free it and move page from swapcache to filecache.
715 */
716 static int shmem_unuse_inode(struct shmem_inode_info *info,
717 swp_entry_t swap, struct page **pagep)
718 {
719 struct address_space *mapping = info->vfs_inode.i_mapping;
720 void *radswap;
721 pgoff_t index;
722 gfp_t gfp;
723 int error = 0;
724
725 radswap = swp_to_radix_entry(swap);
726 index = radix_tree_locate_item(&mapping->page_tree, radswap);
727 if (index == -1)
728 return -EAGAIN; /* tell shmem_unuse we found nothing */
729
730 /*
731 * Move _head_ to start search for next from here.
732 * But be careful: shmem_evict_inode checks list_empty without taking
733 * mutex, and there's an instant in list_move_tail when info->swaplist
734 * would appear empty, if it were the only one on shmem_swaplist.
735 */
736 if (shmem_swaplist.next != &info->swaplist)
737 list_move_tail(&shmem_swaplist, &info->swaplist);
738
739 gfp = mapping_gfp_mask(mapping);
740 if (shmem_should_replace_page(*pagep, gfp)) {
741 mutex_unlock(&shmem_swaplist_mutex);
742 error = shmem_replace_page(pagep, gfp, info, index);
743 mutex_lock(&shmem_swaplist_mutex);
744 /*
745 * We needed to drop mutex to make that restrictive page
746 * allocation, but the inode might have been freed while we
747 * dropped it: although a racing shmem_evict_inode() cannot
748 * complete without emptying the radix_tree, our page lock
749 * on this swapcache page is not enough to prevent that -
750 * free_swap_and_cache() of our swap entry will only
751 * trylock_page(), removing swap from radix_tree whatever.
752 *
753 * We must not proceed to shmem_add_to_page_cache() if the
754 * inode has been freed, but of course we cannot rely on
755 * inode or mapping or info to check that. However, we can
756 * safely check if our swap entry is still in use (and here
757 * it can't have got reused for another page): if it's still
758 * in use, then the inode cannot have been freed yet, and we
759 * can safely proceed (if it's no longer in use, that tells
760 * nothing about the inode, but we don't need to unuse swap).
761 */
762 if (!page_swapcount(*pagep))
763 error = -ENOENT;
764 }
765
766 /*
767 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
768 * but also to hold up shmem_evict_inode(): so inode cannot be freed
769 * beneath us (pagelock doesn't help until the page is in pagecache).
770 */
771 if (!error)
772 error = shmem_add_to_page_cache(*pagep, mapping, index,
773 radswap);
774 if (error != -ENOMEM) {
775 /*
776 * Truncation and eviction use free_swap_and_cache(), which
777 * only does trylock page: if we raced, best clean up here.
778 */
779 delete_from_swap_cache(*pagep);
780 set_page_dirty(*pagep);
781 if (!error) {
782 spin_lock(&info->lock);
783 info->swapped--;
784 spin_unlock(&info->lock);
785 swap_free(swap);
786 }
787 }
788 return error;
789 }
790
791 /*
792 * Search through swapped inodes to find and replace swap by page.
793 */
794 int shmem_unuse(swp_entry_t swap, struct page *page)
795 {
796 struct list_head *this, *next;
797 struct shmem_inode_info *info;
798 struct mem_cgroup *memcg;
799 int error = 0;
800
801 /*
802 * There's a faint possibility that swap page was replaced before
803 * caller locked it: caller will come back later with the right page.
804 */
805 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
806 goto out;
807
808 /*
809 * Charge page using GFP_KERNEL while we can wait, before taking
810 * the shmem_swaplist_mutex which might hold up shmem_writepage().
811 * Charged back to the user (not to caller) when swap account is used.
812 */
813 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
814 false);
815 if (error)
816 goto out;
817 /* No radix_tree_preload: swap entry keeps a place for page in tree */
818 error = -EAGAIN;
819
820 mutex_lock(&shmem_swaplist_mutex);
821 list_for_each_safe(this, next, &shmem_swaplist) {
822 info = list_entry(this, struct shmem_inode_info, swaplist);
823 if (info->swapped)
824 error = shmem_unuse_inode(info, swap, &page);
825 else
826 list_del_init(&info->swaplist);
827 cond_resched();
828 if (error != -EAGAIN)
829 break;
830 /* found nothing in this: move on to search the next */
831 }
832 mutex_unlock(&shmem_swaplist_mutex);
833
834 if (error) {
835 if (error != -ENOMEM)
836 error = 0;
837 mem_cgroup_cancel_charge(page, memcg, false);
838 } else
839 mem_cgroup_commit_charge(page, memcg, true, false);
840 out:
841 unlock_page(page);
842 page_cache_release(page);
843 return error;
844 }
845
846 /*
847 * Move the page from the page cache to the swap cache.
848 */
849 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
850 {
851 struct shmem_inode_info *info;
852 struct address_space *mapping;
853 struct inode *inode;
854 swp_entry_t swap;
855 pgoff_t index;
856
857 BUG_ON(!PageLocked(page));
858 mapping = page->mapping;
859 index = page->index;
860 inode = mapping->host;
861 info = SHMEM_I(inode);
862 if (info->flags & VM_LOCKED)
863 goto redirty;
864 if (!total_swap_pages)
865 goto redirty;
866
867 /*
868 * Our capabilities prevent regular writeback or sync from ever calling
869 * shmem_writepage; but a stacking filesystem might use ->writepage of
870 * its underlying filesystem, in which case tmpfs should write out to
871 * swap only in response to memory pressure, and not for the writeback
872 * threads or sync.
873 */
874 if (!wbc->for_reclaim) {
875 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
876 goto redirty;
877 }
878
879 /*
880 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
881 * value into swapfile.c, the only way we can correctly account for a
882 * fallocated page arriving here is now to initialize it and write it.
883 *
884 * That's okay for a page already fallocated earlier, but if we have
885 * not yet completed the fallocation, then (a) we want to keep track
886 * of this page in case we have to undo it, and (b) it may not be a
887 * good idea to continue anyway, once we're pushing into swap. So
888 * reactivate the page, and let shmem_fallocate() quit when too many.
889 */
890 if (!PageUptodate(page)) {
891 if (inode->i_private) {
892 struct shmem_falloc *shmem_falloc;
893 spin_lock(&inode->i_lock);
894 shmem_falloc = inode->i_private;
895 if (shmem_falloc &&
896 !shmem_falloc->waitq &&
897 index >= shmem_falloc->start &&
898 index < shmem_falloc->next)
899 shmem_falloc->nr_unswapped++;
900 else
901 shmem_falloc = NULL;
902 spin_unlock(&inode->i_lock);
903 if (shmem_falloc)
904 goto redirty;
905 }
906 clear_highpage(page);
907 flush_dcache_page(page);
908 SetPageUptodate(page);
909 }
910
911 swap = get_swap_page();
912 if (!swap.val)
913 goto redirty;
914
915 if (mem_cgroup_try_charge_swap(page, swap))
916 goto free_swap;
917
918 /*
919 * Add inode to shmem_unuse()'s list of swapped-out inodes,
920 * if it's not already there. Do it now before the page is
921 * moved to swap cache, when its pagelock no longer protects
922 * the inode from eviction. But don't unlock the mutex until
923 * we've incremented swapped, because shmem_unuse_inode() will
924 * prune a !swapped inode from the swaplist under this mutex.
925 */
926 mutex_lock(&shmem_swaplist_mutex);
927 if (list_empty(&info->swaplist))
928 list_add_tail(&info->swaplist, &shmem_swaplist);
929
930 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
931 spin_lock(&info->lock);
932 shmem_recalc_inode(inode);
933 info->swapped++;
934 spin_unlock(&info->lock);
935
936 swap_shmem_alloc(swap);
937 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
938
939 mutex_unlock(&shmem_swaplist_mutex);
940 BUG_ON(page_mapped(page));
941 swap_writepage(page, wbc);
942 return 0;
943 }
944
945 mutex_unlock(&shmem_swaplist_mutex);
946 free_swap:
947 swapcache_free(swap);
948 redirty:
949 set_page_dirty(page);
950 if (wbc->for_reclaim)
951 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
952 unlock_page(page);
953 return 0;
954 }
955
956 #ifdef CONFIG_NUMA
957 #ifdef CONFIG_TMPFS
958 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
959 {
960 char buffer[64];
961
962 if (!mpol || mpol->mode == MPOL_DEFAULT)
963 return; /* show nothing */
964
965 mpol_to_str(buffer, sizeof(buffer), mpol);
966
967 seq_printf(seq, ",mpol=%s", buffer);
968 }
969
970 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
971 {
972 struct mempolicy *mpol = NULL;
973 if (sbinfo->mpol) {
974 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
975 mpol = sbinfo->mpol;
976 mpol_get(mpol);
977 spin_unlock(&sbinfo->stat_lock);
978 }
979 return mpol;
980 }
981 #endif /* CONFIG_TMPFS */
982
983 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
984 struct shmem_inode_info *info, pgoff_t index)
985 {
986 struct vm_area_struct pvma;
987 struct page *page;
988
989 /* Create a pseudo vma that just contains the policy */
990 pvma.vm_start = 0;
991 /* Bias interleave by inode number to distribute better across nodes */
992 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
993 pvma.vm_ops = NULL;
994 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
995
996 page = swapin_readahead(swap, gfp, &pvma, 0);
997
998 /* Drop reference taken by mpol_shared_policy_lookup() */
999 mpol_cond_put(pvma.vm_policy);
1000
1001 return page;
1002 }
1003
1004 static struct page *shmem_alloc_page(gfp_t gfp,
1005 struct shmem_inode_info *info, pgoff_t index)
1006 {
1007 struct vm_area_struct pvma;
1008 struct page *page;
1009
1010 /* Create a pseudo vma that just contains the policy */
1011 pvma.vm_start = 0;
1012 /* Bias interleave by inode number to distribute better across nodes */
1013 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1014 pvma.vm_ops = NULL;
1015 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1016
1017 page = alloc_page_vma(gfp, &pvma, 0);
1018
1019 /* Drop reference taken by mpol_shared_policy_lookup() */
1020 mpol_cond_put(pvma.vm_policy);
1021
1022 return page;
1023 }
1024 #else /* !CONFIG_NUMA */
1025 #ifdef CONFIG_TMPFS
1026 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1027 {
1028 }
1029 #endif /* CONFIG_TMPFS */
1030
1031 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1032 struct shmem_inode_info *info, pgoff_t index)
1033 {
1034 return swapin_readahead(swap, gfp, NULL, 0);
1035 }
1036
1037 static inline struct page *shmem_alloc_page(gfp_t gfp,
1038 struct shmem_inode_info *info, pgoff_t index)
1039 {
1040 return alloc_page(gfp);
1041 }
1042 #endif /* CONFIG_NUMA */
1043
1044 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1045 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1046 {
1047 return NULL;
1048 }
1049 #endif
1050
1051 /*
1052 * When a page is moved from swapcache to shmem filecache (either by the
1053 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1054 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1055 * ignorance of the mapping it belongs to. If that mapping has special
1056 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1057 * we may need to copy to a suitable page before moving to filecache.
1058 *
1059 * In a future release, this may well be extended to respect cpuset and
1060 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1061 * but for now it is a simple matter of zone.
1062 */
1063 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1064 {
1065 return page_zonenum(page) > gfp_zone(gfp);
1066 }
1067
1068 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1069 struct shmem_inode_info *info, pgoff_t index)
1070 {
1071 struct page *oldpage, *newpage;
1072 struct address_space *swap_mapping;
1073 pgoff_t swap_index;
1074 int error;
1075
1076 oldpage = *pagep;
1077 swap_index = page_private(oldpage);
1078 swap_mapping = page_mapping(oldpage);
1079
1080 /*
1081 * We have arrived here because our zones are constrained, so don't
1082 * limit chance of success by further cpuset and node constraints.
1083 */
1084 gfp &= ~GFP_CONSTRAINT_MASK;
1085 newpage = shmem_alloc_page(gfp, info, index);
1086 if (!newpage)
1087 return -ENOMEM;
1088
1089 page_cache_get(newpage);
1090 copy_highpage(newpage, oldpage);
1091 flush_dcache_page(newpage);
1092
1093 __SetPageLocked(newpage);
1094 SetPageUptodate(newpage);
1095 SetPageSwapBacked(newpage);
1096 set_page_private(newpage, swap_index);
1097 SetPageSwapCache(newpage);
1098
1099 /*
1100 * Our caller will very soon move newpage out of swapcache, but it's
1101 * a nice clean interface for us to replace oldpage by newpage there.
1102 */
1103 spin_lock_irq(&swap_mapping->tree_lock);
1104 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1105 newpage);
1106 if (!error) {
1107 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1108 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1109 }
1110 spin_unlock_irq(&swap_mapping->tree_lock);
1111
1112 if (unlikely(error)) {
1113 /*
1114 * Is this possible? I think not, now that our callers check
1115 * both PageSwapCache and page_private after getting page lock;
1116 * but be defensive. Reverse old to newpage for clear and free.
1117 */
1118 oldpage = newpage;
1119 } else {
1120 mem_cgroup_replace_page(oldpage, newpage);
1121 lru_cache_add_anon(newpage);
1122 *pagep = newpage;
1123 }
1124
1125 ClearPageSwapCache(oldpage);
1126 set_page_private(oldpage, 0);
1127
1128 unlock_page(oldpage);
1129 page_cache_release(oldpage);
1130 page_cache_release(oldpage);
1131 return error;
1132 }
1133
1134 /*
1135 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1136 *
1137 * If we allocate a new one we do not mark it dirty. That's up to the
1138 * vm. If we swap it in we mark it dirty since we also free the swap
1139 * entry since a page cannot live in both the swap and page cache
1140 */
1141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1142 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1143 {
1144 struct address_space *mapping = inode->i_mapping;
1145 struct shmem_inode_info *info;
1146 struct shmem_sb_info *sbinfo;
1147 struct mem_cgroup *memcg;
1148 struct page *page;
1149 swp_entry_t swap;
1150 int error;
1151 int once = 0;
1152 int alloced = 0;
1153
1154 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1155 return -EFBIG;
1156 repeat:
1157 swap.val = 0;
1158 page = find_lock_entry(mapping, index);
1159 if (radix_tree_exceptional_entry(page)) {
1160 swap = radix_to_swp_entry(page);
1161 page = NULL;
1162 }
1163
1164 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1165 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1166 error = -EINVAL;
1167 goto unlock;
1168 }
1169
1170 if (page && sgp == SGP_WRITE)
1171 mark_page_accessed(page);
1172
1173 /* fallocated page? */
1174 if (page && !PageUptodate(page)) {
1175 if (sgp != SGP_READ)
1176 goto clear;
1177 unlock_page(page);
1178 page_cache_release(page);
1179 page = NULL;
1180 }
1181 if (page || (sgp == SGP_READ && !swap.val)) {
1182 *pagep = page;
1183 return 0;
1184 }
1185
1186 /*
1187 * Fast cache lookup did not find it:
1188 * bring it back from swap or allocate.
1189 */
1190 info = SHMEM_I(inode);
1191 sbinfo = SHMEM_SB(inode->i_sb);
1192
1193 if (swap.val) {
1194 /* Look it up and read it in.. */
1195 page = lookup_swap_cache(swap);
1196 if (!page) {
1197 /* here we actually do the io */
1198 if (fault_type)
1199 *fault_type |= VM_FAULT_MAJOR;
1200 page = shmem_swapin(swap, gfp, info, index);
1201 if (!page) {
1202 error = -ENOMEM;
1203 goto failed;
1204 }
1205 }
1206
1207 /* We have to do this with page locked to prevent races */
1208 lock_page(page);
1209 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1210 !shmem_confirm_swap(mapping, index, swap)) {
1211 error = -EEXIST; /* try again */
1212 goto unlock;
1213 }
1214 if (!PageUptodate(page)) {
1215 error = -EIO;
1216 goto failed;
1217 }
1218 wait_on_page_writeback(page);
1219
1220 if (shmem_should_replace_page(page, gfp)) {
1221 error = shmem_replace_page(&page, gfp, info, index);
1222 if (error)
1223 goto failed;
1224 }
1225
1226 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1227 false);
1228 if (!error) {
1229 error = shmem_add_to_page_cache(page, mapping, index,
1230 swp_to_radix_entry(swap));
1231 /*
1232 * We already confirmed swap under page lock, and make
1233 * no memory allocation here, so usually no possibility
1234 * of error; but free_swap_and_cache() only trylocks a
1235 * page, so it is just possible that the entry has been
1236 * truncated or holepunched since swap was confirmed.
1237 * shmem_undo_range() will have done some of the
1238 * unaccounting, now delete_from_swap_cache() will do
1239 * the rest.
1240 * Reset swap.val? No, leave it so "failed" goes back to
1241 * "repeat": reading a hole and writing should succeed.
1242 */
1243 if (error) {
1244 mem_cgroup_cancel_charge(page, memcg, false);
1245 delete_from_swap_cache(page);
1246 }
1247 }
1248 if (error)
1249 goto failed;
1250
1251 mem_cgroup_commit_charge(page, memcg, true, false);
1252
1253 spin_lock(&info->lock);
1254 info->swapped--;
1255 shmem_recalc_inode(inode);
1256 spin_unlock(&info->lock);
1257
1258 if (sgp == SGP_WRITE)
1259 mark_page_accessed(page);
1260
1261 delete_from_swap_cache(page);
1262 set_page_dirty(page);
1263 swap_free(swap);
1264
1265 } else {
1266 if (shmem_acct_block(info->flags)) {
1267 error = -ENOSPC;
1268 goto failed;
1269 }
1270 if (sbinfo->max_blocks) {
1271 if (percpu_counter_compare(&sbinfo->used_blocks,
1272 sbinfo->max_blocks) >= 0) {
1273 error = -ENOSPC;
1274 goto unacct;
1275 }
1276 percpu_counter_inc(&sbinfo->used_blocks);
1277 }
1278
1279 page = shmem_alloc_page(gfp, info, index);
1280 if (!page) {
1281 error = -ENOMEM;
1282 goto decused;
1283 }
1284
1285 __SetPageSwapBacked(page);
1286 __SetPageLocked(page);
1287 if (sgp == SGP_WRITE)
1288 __SetPageReferenced(page);
1289
1290 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg,
1291 false);
1292 if (error)
1293 goto decused;
1294 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1295 if (!error) {
1296 error = shmem_add_to_page_cache(page, mapping, index,
1297 NULL);
1298 radix_tree_preload_end();
1299 }
1300 if (error) {
1301 mem_cgroup_cancel_charge(page, memcg, false);
1302 goto decused;
1303 }
1304 mem_cgroup_commit_charge(page, memcg, false, false);
1305 lru_cache_add_anon(page);
1306
1307 spin_lock(&info->lock);
1308 info->alloced++;
1309 inode->i_blocks += BLOCKS_PER_PAGE;
1310 shmem_recalc_inode(inode);
1311 spin_unlock(&info->lock);
1312 alloced = true;
1313
1314 /*
1315 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1316 */
1317 if (sgp == SGP_FALLOC)
1318 sgp = SGP_WRITE;
1319 clear:
1320 /*
1321 * Let SGP_WRITE caller clear ends if write does not fill page;
1322 * but SGP_FALLOC on a page fallocated earlier must initialize
1323 * it now, lest undo on failure cancel our earlier guarantee.
1324 */
1325 if (sgp != SGP_WRITE) {
1326 clear_highpage(page);
1327 flush_dcache_page(page);
1328 SetPageUptodate(page);
1329 }
1330 if (sgp == SGP_DIRTY)
1331 set_page_dirty(page);
1332 }
1333
1334 /* Perhaps the file has been truncated since we checked */
1335 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1336 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1337 if (alloced) {
1338 ClearPageDirty(page);
1339 delete_from_page_cache(page);
1340 spin_lock(&info->lock);
1341 shmem_recalc_inode(inode);
1342 spin_unlock(&info->lock);
1343 }
1344 error = -EINVAL;
1345 goto unlock;
1346 }
1347 *pagep = page;
1348 return 0;
1349
1350 /*
1351 * Error recovery.
1352 */
1353 decused:
1354 if (sbinfo->max_blocks)
1355 percpu_counter_add(&sbinfo->used_blocks, -1);
1356 unacct:
1357 shmem_unacct_blocks(info->flags, 1);
1358 failed:
1359 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1360 error = -EEXIST;
1361 unlock:
1362 if (page) {
1363 unlock_page(page);
1364 page_cache_release(page);
1365 }
1366 if (error == -ENOSPC && !once++) {
1367 info = SHMEM_I(inode);
1368 spin_lock(&info->lock);
1369 shmem_recalc_inode(inode);
1370 spin_unlock(&info->lock);
1371 goto repeat;
1372 }
1373 if (error == -EEXIST) /* from above or from radix_tree_insert */
1374 goto repeat;
1375 return error;
1376 }
1377
1378 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1379 {
1380 struct inode *inode = file_inode(vma->vm_file);
1381 int error;
1382 int ret = VM_FAULT_LOCKED;
1383
1384 /*
1385 * Trinity finds that probing a hole which tmpfs is punching can
1386 * prevent the hole-punch from ever completing: which in turn
1387 * locks writers out with its hold on i_mutex. So refrain from
1388 * faulting pages into the hole while it's being punched. Although
1389 * shmem_undo_range() does remove the additions, it may be unable to
1390 * keep up, as each new page needs its own unmap_mapping_range() call,
1391 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1392 *
1393 * It does not matter if we sometimes reach this check just before the
1394 * hole-punch begins, so that one fault then races with the punch:
1395 * we just need to make racing faults a rare case.
1396 *
1397 * The implementation below would be much simpler if we just used a
1398 * standard mutex or completion: but we cannot take i_mutex in fault,
1399 * and bloating every shmem inode for this unlikely case would be sad.
1400 */
1401 if (unlikely(inode->i_private)) {
1402 struct shmem_falloc *shmem_falloc;
1403
1404 spin_lock(&inode->i_lock);
1405 shmem_falloc = inode->i_private;
1406 if (shmem_falloc &&
1407 shmem_falloc->waitq &&
1408 vmf->pgoff >= shmem_falloc->start &&
1409 vmf->pgoff < shmem_falloc->next) {
1410 wait_queue_head_t *shmem_falloc_waitq;
1411 DEFINE_WAIT(shmem_fault_wait);
1412
1413 ret = VM_FAULT_NOPAGE;
1414 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1415 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1416 /* It's polite to up mmap_sem if we can */
1417 up_read(&vma->vm_mm->mmap_sem);
1418 ret = VM_FAULT_RETRY;
1419 }
1420
1421 shmem_falloc_waitq = shmem_falloc->waitq;
1422 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1423 TASK_UNINTERRUPTIBLE);
1424 spin_unlock(&inode->i_lock);
1425 schedule();
1426
1427 /*
1428 * shmem_falloc_waitq points into the shmem_fallocate()
1429 * stack of the hole-punching task: shmem_falloc_waitq
1430 * is usually invalid by the time we reach here, but
1431 * finish_wait() does not dereference it in that case;
1432 * though i_lock needed lest racing with wake_up_all().
1433 */
1434 spin_lock(&inode->i_lock);
1435 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1436 spin_unlock(&inode->i_lock);
1437 return ret;
1438 }
1439 spin_unlock(&inode->i_lock);
1440 }
1441
1442 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1443 if (error)
1444 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1445
1446 if (ret & VM_FAULT_MAJOR) {
1447 count_vm_event(PGMAJFAULT);
1448 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1449 }
1450 return ret;
1451 }
1452
1453 #ifdef CONFIG_NUMA
1454 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1455 {
1456 struct inode *inode = file_inode(vma->vm_file);
1457 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1458 }
1459
1460 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1461 unsigned long addr)
1462 {
1463 struct inode *inode = file_inode(vma->vm_file);
1464 pgoff_t index;
1465
1466 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1467 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1468 }
1469 #endif
1470
1471 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1472 {
1473 struct inode *inode = file_inode(file);
1474 struct shmem_inode_info *info = SHMEM_I(inode);
1475 int retval = -ENOMEM;
1476
1477 spin_lock(&info->lock);
1478 if (lock && !(info->flags & VM_LOCKED)) {
1479 if (!user_shm_lock(inode->i_size, user))
1480 goto out_nomem;
1481 info->flags |= VM_LOCKED;
1482 mapping_set_unevictable(file->f_mapping);
1483 }
1484 if (!lock && (info->flags & VM_LOCKED) && user) {
1485 user_shm_unlock(inode->i_size, user);
1486 info->flags &= ~VM_LOCKED;
1487 mapping_clear_unevictable(file->f_mapping);
1488 }
1489 retval = 0;
1490
1491 out_nomem:
1492 spin_unlock(&info->lock);
1493 return retval;
1494 }
1495
1496 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1497 {
1498 file_accessed(file);
1499 vma->vm_ops = &shmem_vm_ops;
1500 return 0;
1501 }
1502
1503 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1504 umode_t mode, dev_t dev, unsigned long flags)
1505 {
1506 struct inode *inode;
1507 struct shmem_inode_info *info;
1508 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1509
1510 if (shmem_reserve_inode(sb))
1511 return NULL;
1512
1513 inode = new_inode(sb);
1514 if (inode) {
1515 inode->i_ino = get_next_ino();
1516 inode_init_owner(inode, dir, mode);
1517 inode->i_blocks = 0;
1518 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1519 inode->i_generation = get_seconds();
1520 info = SHMEM_I(inode);
1521 memset(info, 0, (char *)inode - (char *)info);
1522 spin_lock_init(&info->lock);
1523 info->seals = F_SEAL_SEAL;
1524 info->flags = flags & VM_NORESERVE;
1525 INIT_LIST_HEAD(&info->swaplist);
1526 simple_xattrs_init(&info->xattrs);
1527 cache_no_acl(inode);
1528
1529 switch (mode & S_IFMT) {
1530 default:
1531 inode->i_op = &shmem_special_inode_operations;
1532 init_special_inode(inode, mode, dev);
1533 break;
1534 case S_IFREG:
1535 inode->i_mapping->a_ops = &shmem_aops;
1536 inode->i_op = &shmem_inode_operations;
1537 inode->i_fop = &shmem_file_operations;
1538 mpol_shared_policy_init(&info->policy,
1539 shmem_get_sbmpol(sbinfo));
1540 break;
1541 case S_IFDIR:
1542 inc_nlink(inode);
1543 /* Some things misbehave if size == 0 on a directory */
1544 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1545 inode->i_op = &shmem_dir_inode_operations;
1546 inode->i_fop = &simple_dir_operations;
1547 break;
1548 case S_IFLNK:
1549 /*
1550 * Must not load anything in the rbtree,
1551 * mpol_free_shared_policy will not be called.
1552 */
1553 mpol_shared_policy_init(&info->policy, NULL);
1554 break;
1555 }
1556 } else
1557 shmem_free_inode(sb);
1558 return inode;
1559 }
1560
1561 bool shmem_mapping(struct address_space *mapping)
1562 {
1563 if (!mapping->host)
1564 return false;
1565
1566 return mapping->host->i_sb->s_op == &shmem_ops;
1567 }
1568
1569 #ifdef CONFIG_TMPFS
1570 static const struct inode_operations shmem_symlink_inode_operations;
1571 static const struct inode_operations shmem_short_symlink_operations;
1572
1573 #ifdef CONFIG_TMPFS_XATTR
1574 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1575 #else
1576 #define shmem_initxattrs NULL
1577 #endif
1578
1579 static int
1580 shmem_write_begin(struct file *file, struct address_space *mapping,
1581 loff_t pos, unsigned len, unsigned flags,
1582 struct page **pagep, void **fsdata)
1583 {
1584 struct inode *inode = mapping->host;
1585 struct shmem_inode_info *info = SHMEM_I(inode);
1586 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1587
1588 /* i_mutex is held by caller */
1589 if (unlikely(info->seals)) {
1590 if (info->seals & F_SEAL_WRITE)
1591 return -EPERM;
1592 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1593 return -EPERM;
1594 }
1595
1596 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1597 }
1598
1599 static int
1600 shmem_write_end(struct file *file, struct address_space *mapping,
1601 loff_t pos, unsigned len, unsigned copied,
1602 struct page *page, void *fsdata)
1603 {
1604 struct inode *inode = mapping->host;
1605
1606 if (pos + copied > inode->i_size)
1607 i_size_write(inode, pos + copied);
1608
1609 if (!PageUptodate(page)) {
1610 if (copied < PAGE_CACHE_SIZE) {
1611 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1612 zero_user_segments(page, 0, from,
1613 from + copied, PAGE_CACHE_SIZE);
1614 }
1615 SetPageUptodate(page);
1616 }
1617 set_page_dirty(page);
1618 unlock_page(page);
1619 page_cache_release(page);
1620
1621 return copied;
1622 }
1623
1624 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1625 {
1626 struct file *file = iocb->ki_filp;
1627 struct inode *inode = file_inode(file);
1628 struct address_space *mapping = inode->i_mapping;
1629 pgoff_t index;
1630 unsigned long offset;
1631 enum sgp_type sgp = SGP_READ;
1632 int error = 0;
1633 ssize_t retval = 0;
1634 loff_t *ppos = &iocb->ki_pos;
1635
1636 /*
1637 * Might this read be for a stacking filesystem? Then when reading
1638 * holes of a sparse file, we actually need to allocate those pages,
1639 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1640 */
1641 if (!iter_is_iovec(to))
1642 sgp = SGP_DIRTY;
1643
1644 index = *ppos >> PAGE_CACHE_SHIFT;
1645 offset = *ppos & ~PAGE_CACHE_MASK;
1646
1647 for (;;) {
1648 struct page *page = NULL;
1649 pgoff_t end_index;
1650 unsigned long nr, ret;
1651 loff_t i_size = i_size_read(inode);
1652
1653 end_index = i_size >> PAGE_CACHE_SHIFT;
1654 if (index > end_index)
1655 break;
1656 if (index == end_index) {
1657 nr = i_size & ~PAGE_CACHE_MASK;
1658 if (nr <= offset)
1659 break;
1660 }
1661
1662 error = shmem_getpage(inode, index, &page, sgp, NULL);
1663 if (error) {
1664 if (error == -EINVAL)
1665 error = 0;
1666 break;
1667 }
1668 if (page)
1669 unlock_page(page);
1670
1671 /*
1672 * We must evaluate after, since reads (unlike writes)
1673 * are called without i_mutex protection against truncate
1674 */
1675 nr = PAGE_CACHE_SIZE;
1676 i_size = i_size_read(inode);
1677 end_index = i_size >> PAGE_CACHE_SHIFT;
1678 if (index == end_index) {
1679 nr = i_size & ~PAGE_CACHE_MASK;
1680 if (nr <= offset) {
1681 if (page)
1682 page_cache_release(page);
1683 break;
1684 }
1685 }
1686 nr -= offset;
1687
1688 if (page) {
1689 /*
1690 * If users can be writing to this page using arbitrary
1691 * virtual addresses, take care about potential aliasing
1692 * before reading the page on the kernel side.
1693 */
1694 if (mapping_writably_mapped(mapping))
1695 flush_dcache_page(page);
1696 /*
1697 * Mark the page accessed if we read the beginning.
1698 */
1699 if (!offset)
1700 mark_page_accessed(page);
1701 } else {
1702 page = ZERO_PAGE(0);
1703 page_cache_get(page);
1704 }
1705
1706 /*
1707 * Ok, we have the page, and it's up-to-date, so
1708 * now we can copy it to user space...
1709 */
1710 ret = copy_page_to_iter(page, offset, nr, to);
1711 retval += ret;
1712 offset += ret;
1713 index += offset >> PAGE_CACHE_SHIFT;
1714 offset &= ~PAGE_CACHE_MASK;
1715
1716 page_cache_release(page);
1717 if (!iov_iter_count(to))
1718 break;
1719 if (ret < nr) {
1720 error = -EFAULT;
1721 break;
1722 }
1723 cond_resched();
1724 }
1725
1726 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1727 file_accessed(file);
1728 return retval ? retval : error;
1729 }
1730
1731 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1732 struct pipe_inode_info *pipe, size_t len,
1733 unsigned int flags)
1734 {
1735 struct address_space *mapping = in->f_mapping;
1736 struct inode *inode = mapping->host;
1737 unsigned int loff, nr_pages, req_pages;
1738 struct page *pages[PIPE_DEF_BUFFERS];
1739 struct partial_page partial[PIPE_DEF_BUFFERS];
1740 struct page *page;
1741 pgoff_t index, end_index;
1742 loff_t isize, left;
1743 int error, page_nr;
1744 struct splice_pipe_desc spd = {
1745 .pages = pages,
1746 .partial = partial,
1747 .nr_pages_max = PIPE_DEF_BUFFERS,
1748 .flags = flags,
1749 .ops = &page_cache_pipe_buf_ops,
1750 .spd_release = spd_release_page,
1751 };
1752
1753 isize = i_size_read(inode);
1754 if (unlikely(*ppos >= isize))
1755 return 0;
1756
1757 left = isize - *ppos;
1758 if (unlikely(left < len))
1759 len = left;
1760
1761 if (splice_grow_spd(pipe, &spd))
1762 return -ENOMEM;
1763
1764 index = *ppos >> PAGE_CACHE_SHIFT;
1765 loff = *ppos & ~PAGE_CACHE_MASK;
1766 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1767 nr_pages = min(req_pages, spd.nr_pages_max);
1768
1769 spd.nr_pages = find_get_pages_contig(mapping, index,
1770 nr_pages, spd.pages);
1771 index += spd.nr_pages;
1772 error = 0;
1773
1774 while (spd.nr_pages < nr_pages) {
1775 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1776 if (error)
1777 break;
1778 unlock_page(page);
1779 spd.pages[spd.nr_pages++] = page;
1780 index++;
1781 }
1782
1783 index = *ppos >> PAGE_CACHE_SHIFT;
1784 nr_pages = spd.nr_pages;
1785 spd.nr_pages = 0;
1786
1787 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1788 unsigned int this_len;
1789
1790 if (!len)
1791 break;
1792
1793 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1794 page = spd.pages[page_nr];
1795
1796 if (!PageUptodate(page) || page->mapping != mapping) {
1797 error = shmem_getpage(inode, index, &page,
1798 SGP_CACHE, NULL);
1799 if (error)
1800 break;
1801 unlock_page(page);
1802 page_cache_release(spd.pages[page_nr]);
1803 spd.pages[page_nr] = page;
1804 }
1805
1806 isize = i_size_read(inode);
1807 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1808 if (unlikely(!isize || index > end_index))
1809 break;
1810
1811 if (end_index == index) {
1812 unsigned int plen;
1813
1814 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1815 if (plen <= loff)
1816 break;
1817
1818 this_len = min(this_len, plen - loff);
1819 len = this_len;
1820 }
1821
1822 spd.partial[page_nr].offset = loff;
1823 spd.partial[page_nr].len = this_len;
1824 len -= this_len;
1825 loff = 0;
1826 spd.nr_pages++;
1827 index++;
1828 }
1829
1830 while (page_nr < nr_pages)
1831 page_cache_release(spd.pages[page_nr++]);
1832
1833 if (spd.nr_pages)
1834 error = splice_to_pipe(pipe, &spd);
1835
1836 splice_shrink_spd(&spd);
1837
1838 if (error > 0) {
1839 *ppos += error;
1840 file_accessed(in);
1841 }
1842 return error;
1843 }
1844
1845 /*
1846 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1847 */
1848 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1849 pgoff_t index, pgoff_t end, int whence)
1850 {
1851 struct page *page;
1852 struct pagevec pvec;
1853 pgoff_t indices[PAGEVEC_SIZE];
1854 bool done = false;
1855 int i;
1856
1857 pagevec_init(&pvec, 0);
1858 pvec.nr = 1; /* start small: we may be there already */
1859 while (!done) {
1860 pvec.nr = find_get_entries(mapping, index,
1861 pvec.nr, pvec.pages, indices);
1862 if (!pvec.nr) {
1863 if (whence == SEEK_DATA)
1864 index = end;
1865 break;
1866 }
1867 for (i = 0; i < pvec.nr; i++, index++) {
1868 if (index < indices[i]) {
1869 if (whence == SEEK_HOLE) {
1870 done = true;
1871 break;
1872 }
1873 index = indices[i];
1874 }
1875 page = pvec.pages[i];
1876 if (page && !radix_tree_exceptional_entry(page)) {
1877 if (!PageUptodate(page))
1878 page = NULL;
1879 }
1880 if (index >= end ||
1881 (page && whence == SEEK_DATA) ||
1882 (!page && whence == SEEK_HOLE)) {
1883 done = true;
1884 break;
1885 }
1886 }
1887 pagevec_remove_exceptionals(&pvec);
1888 pagevec_release(&pvec);
1889 pvec.nr = PAGEVEC_SIZE;
1890 cond_resched();
1891 }
1892 return index;
1893 }
1894
1895 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1896 {
1897 struct address_space *mapping = file->f_mapping;
1898 struct inode *inode = mapping->host;
1899 pgoff_t start, end;
1900 loff_t new_offset;
1901
1902 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1903 return generic_file_llseek_size(file, offset, whence,
1904 MAX_LFS_FILESIZE, i_size_read(inode));
1905 inode_lock(inode);
1906 /* We're holding i_mutex so we can access i_size directly */
1907
1908 if (offset < 0)
1909 offset = -EINVAL;
1910 else if (offset >= inode->i_size)
1911 offset = -ENXIO;
1912 else {
1913 start = offset >> PAGE_CACHE_SHIFT;
1914 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1915 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1916 new_offset <<= PAGE_CACHE_SHIFT;
1917 if (new_offset > offset) {
1918 if (new_offset < inode->i_size)
1919 offset = new_offset;
1920 else if (whence == SEEK_DATA)
1921 offset = -ENXIO;
1922 else
1923 offset = inode->i_size;
1924 }
1925 }
1926
1927 if (offset >= 0)
1928 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1929 inode_unlock(inode);
1930 return offset;
1931 }
1932
1933 /*
1934 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1935 * so reuse a tag which we firmly believe is never set or cleared on shmem.
1936 */
1937 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
1938 #define LAST_SCAN 4 /* about 150ms max */
1939
1940 static void shmem_tag_pins(struct address_space *mapping)
1941 {
1942 struct radix_tree_iter iter;
1943 void **slot;
1944 pgoff_t start;
1945 struct page *page;
1946
1947 lru_add_drain();
1948 start = 0;
1949 rcu_read_lock();
1950
1951 restart:
1952 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1953 page = radix_tree_deref_slot(slot);
1954 if (!page || radix_tree_exception(page)) {
1955 if (radix_tree_deref_retry(page))
1956 goto restart;
1957 } else if (page_count(page) - page_mapcount(page) > 1) {
1958 spin_lock_irq(&mapping->tree_lock);
1959 radix_tree_tag_set(&mapping->page_tree, iter.index,
1960 SHMEM_TAG_PINNED);
1961 spin_unlock_irq(&mapping->tree_lock);
1962 }
1963
1964 if (need_resched()) {
1965 cond_resched_rcu();
1966 start = iter.index + 1;
1967 goto restart;
1968 }
1969 }
1970 rcu_read_unlock();
1971 }
1972
1973 /*
1974 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1975 * via get_user_pages(), drivers might have some pending I/O without any active
1976 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1977 * and see whether it has an elevated ref-count. If so, we tag them and wait for
1978 * them to be dropped.
1979 * The caller must guarantee that no new user will acquire writable references
1980 * to those pages to avoid races.
1981 */
1982 static int shmem_wait_for_pins(struct address_space *mapping)
1983 {
1984 struct radix_tree_iter iter;
1985 void **slot;
1986 pgoff_t start;
1987 struct page *page;
1988 int error, scan;
1989
1990 shmem_tag_pins(mapping);
1991
1992 error = 0;
1993 for (scan = 0; scan <= LAST_SCAN; scan++) {
1994 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1995 break;
1996
1997 if (!scan)
1998 lru_add_drain_all();
1999 else if (schedule_timeout_killable((HZ << scan) / 200))
2000 scan = LAST_SCAN;
2001
2002 start = 0;
2003 rcu_read_lock();
2004 restart:
2005 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2006 start, SHMEM_TAG_PINNED) {
2007
2008 page = radix_tree_deref_slot(slot);
2009 if (radix_tree_exception(page)) {
2010 if (radix_tree_deref_retry(page))
2011 goto restart;
2012
2013 page = NULL;
2014 }
2015
2016 if (page &&
2017 page_count(page) - page_mapcount(page) != 1) {
2018 if (scan < LAST_SCAN)
2019 goto continue_resched;
2020
2021 /*
2022 * On the last scan, we clean up all those tags
2023 * we inserted; but make a note that we still
2024 * found pages pinned.
2025 */
2026 error = -EBUSY;
2027 }
2028
2029 spin_lock_irq(&mapping->tree_lock);
2030 radix_tree_tag_clear(&mapping->page_tree,
2031 iter.index, SHMEM_TAG_PINNED);
2032 spin_unlock_irq(&mapping->tree_lock);
2033 continue_resched:
2034 if (need_resched()) {
2035 cond_resched_rcu();
2036 start = iter.index + 1;
2037 goto restart;
2038 }
2039 }
2040 rcu_read_unlock();
2041 }
2042
2043 return error;
2044 }
2045
2046 #define F_ALL_SEALS (F_SEAL_SEAL | \
2047 F_SEAL_SHRINK | \
2048 F_SEAL_GROW | \
2049 F_SEAL_WRITE)
2050
2051 int shmem_add_seals(struct file *file, unsigned int seals)
2052 {
2053 struct inode *inode = file_inode(file);
2054 struct shmem_inode_info *info = SHMEM_I(inode);
2055 int error;
2056
2057 /*
2058 * SEALING
2059 * Sealing allows multiple parties to share a shmem-file but restrict
2060 * access to a specific subset of file operations. Seals can only be
2061 * added, but never removed. This way, mutually untrusted parties can
2062 * share common memory regions with a well-defined policy. A malicious
2063 * peer can thus never perform unwanted operations on a shared object.
2064 *
2065 * Seals are only supported on special shmem-files and always affect
2066 * the whole underlying inode. Once a seal is set, it may prevent some
2067 * kinds of access to the file. Currently, the following seals are
2068 * defined:
2069 * SEAL_SEAL: Prevent further seals from being set on this file
2070 * SEAL_SHRINK: Prevent the file from shrinking
2071 * SEAL_GROW: Prevent the file from growing
2072 * SEAL_WRITE: Prevent write access to the file
2073 *
2074 * As we don't require any trust relationship between two parties, we
2075 * must prevent seals from being removed. Therefore, sealing a file
2076 * only adds a given set of seals to the file, it never touches
2077 * existing seals. Furthermore, the "setting seals"-operation can be
2078 * sealed itself, which basically prevents any further seal from being
2079 * added.
2080 *
2081 * Semantics of sealing are only defined on volatile files. Only
2082 * anonymous shmem files support sealing. More importantly, seals are
2083 * never written to disk. Therefore, there's no plan to support it on
2084 * other file types.
2085 */
2086
2087 if (file->f_op != &shmem_file_operations)
2088 return -EINVAL;
2089 if (!(file->f_mode & FMODE_WRITE))
2090 return -EPERM;
2091 if (seals & ~(unsigned int)F_ALL_SEALS)
2092 return -EINVAL;
2093
2094 inode_lock(inode);
2095
2096 if (info->seals & F_SEAL_SEAL) {
2097 error = -EPERM;
2098 goto unlock;
2099 }
2100
2101 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2102 error = mapping_deny_writable(file->f_mapping);
2103 if (error)
2104 goto unlock;
2105
2106 error = shmem_wait_for_pins(file->f_mapping);
2107 if (error) {
2108 mapping_allow_writable(file->f_mapping);
2109 goto unlock;
2110 }
2111 }
2112
2113 info->seals |= seals;
2114 error = 0;
2115
2116 unlock:
2117 inode_unlock(inode);
2118 return error;
2119 }
2120 EXPORT_SYMBOL_GPL(shmem_add_seals);
2121
2122 int shmem_get_seals(struct file *file)
2123 {
2124 if (file->f_op != &shmem_file_operations)
2125 return -EINVAL;
2126
2127 return SHMEM_I(file_inode(file))->seals;
2128 }
2129 EXPORT_SYMBOL_GPL(shmem_get_seals);
2130
2131 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2132 {
2133 long error;
2134
2135 switch (cmd) {
2136 case F_ADD_SEALS:
2137 /* disallow upper 32bit */
2138 if (arg > UINT_MAX)
2139 return -EINVAL;
2140
2141 error = shmem_add_seals(file, arg);
2142 break;
2143 case F_GET_SEALS:
2144 error = shmem_get_seals(file);
2145 break;
2146 default:
2147 error = -EINVAL;
2148 break;
2149 }
2150
2151 return error;
2152 }
2153
2154 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2155 loff_t len)
2156 {
2157 struct inode *inode = file_inode(file);
2158 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2159 struct shmem_inode_info *info = SHMEM_I(inode);
2160 struct shmem_falloc shmem_falloc;
2161 pgoff_t start, index, end;
2162 int error;
2163
2164 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2165 return -EOPNOTSUPP;
2166
2167 inode_lock(inode);
2168
2169 if (mode & FALLOC_FL_PUNCH_HOLE) {
2170 struct address_space *mapping = file->f_mapping;
2171 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2172 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2173 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2174
2175 /* protected by i_mutex */
2176 if (info->seals & F_SEAL_WRITE) {
2177 error = -EPERM;
2178 goto out;
2179 }
2180
2181 shmem_falloc.waitq = &shmem_falloc_waitq;
2182 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2183 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2184 spin_lock(&inode->i_lock);
2185 inode->i_private = &shmem_falloc;
2186 spin_unlock(&inode->i_lock);
2187
2188 if ((u64)unmap_end > (u64)unmap_start)
2189 unmap_mapping_range(mapping, unmap_start,
2190 1 + unmap_end - unmap_start, 0);
2191 shmem_truncate_range(inode, offset, offset + len - 1);
2192 /* No need to unmap again: hole-punching leaves COWed pages */
2193
2194 spin_lock(&inode->i_lock);
2195 inode->i_private = NULL;
2196 wake_up_all(&shmem_falloc_waitq);
2197 spin_unlock(&inode->i_lock);
2198 error = 0;
2199 goto out;
2200 }
2201
2202 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2203 error = inode_newsize_ok(inode, offset + len);
2204 if (error)
2205 goto out;
2206
2207 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2208 error = -EPERM;
2209 goto out;
2210 }
2211
2212 start = offset >> PAGE_CACHE_SHIFT;
2213 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2214 /* Try to avoid a swapstorm if len is impossible to satisfy */
2215 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2216 error = -ENOSPC;
2217 goto out;
2218 }
2219
2220 shmem_falloc.waitq = NULL;
2221 shmem_falloc.start = start;
2222 shmem_falloc.next = start;
2223 shmem_falloc.nr_falloced = 0;
2224 shmem_falloc.nr_unswapped = 0;
2225 spin_lock(&inode->i_lock);
2226 inode->i_private = &shmem_falloc;
2227 spin_unlock(&inode->i_lock);
2228
2229 for (index = start; index < end; index++) {
2230 struct page *page;
2231
2232 /*
2233 * Good, the fallocate(2) manpage permits EINTR: we may have
2234 * been interrupted because we are using up too much memory.
2235 */
2236 if (signal_pending(current))
2237 error = -EINTR;
2238 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2239 error = -ENOMEM;
2240 else
2241 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2242 NULL);
2243 if (error) {
2244 /* Remove the !PageUptodate pages we added */
2245 shmem_undo_range(inode,
2246 (loff_t)start << PAGE_CACHE_SHIFT,
2247 (loff_t)index << PAGE_CACHE_SHIFT, true);
2248 goto undone;
2249 }
2250
2251 /*
2252 * Inform shmem_writepage() how far we have reached.
2253 * No need for lock or barrier: we have the page lock.
2254 */
2255 shmem_falloc.next++;
2256 if (!PageUptodate(page))
2257 shmem_falloc.nr_falloced++;
2258
2259 /*
2260 * If !PageUptodate, leave it that way so that freeable pages
2261 * can be recognized if we need to rollback on error later.
2262 * But set_page_dirty so that memory pressure will swap rather
2263 * than free the pages we are allocating (and SGP_CACHE pages
2264 * might still be clean: we now need to mark those dirty too).
2265 */
2266 set_page_dirty(page);
2267 unlock_page(page);
2268 page_cache_release(page);
2269 cond_resched();
2270 }
2271
2272 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2273 i_size_write(inode, offset + len);
2274 inode->i_ctime = CURRENT_TIME;
2275 undone:
2276 spin_lock(&inode->i_lock);
2277 inode->i_private = NULL;
2278 spin_unlock(&inode->i_lock);
2279 out:
2280 inode_unlock(inode);
2281 return error;
2282 }
2283
2284 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2285 {
2286 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2287
2288 buf->f_type = TMPFS_MAGIC;
2289 buf->f_bsize = PAGE_CACHE_SIZE;
2290 buf->f_namelen = NAME_MAX;
2291 if (sbinfo->max_blocks) {
2292 buf->f_blocks = sbinfo->max_blocks;
2293 buf->f_bavail =
2294 buf->f_bfree = sbinfo->max_blocks -
2295 percpu_counter_sum(&sbinfo->used_blocks);
2296 }
2297 if (sbinfo->max_inodes) {
2298 buf->f_files = sbinfo->max_inodes;
2299 buf->f_ffree = sbinfo->free_inodes;
2300 }
2301 /* else leave those fields 0 like simple_statfs */
2302 return 0;
2303 }
2304
2305 /*
2306 * File creation. Allocate an inode, and we're done..
2307 */
2308 static int
2309 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2310 {
2311 struct inode *inode;
2312 int error = -ENOSPC;
2313
2314 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2315 if (inode) {
2316 error = simple_acl_create(dir, inode);
2317 if (error)
2318 goto out_iput;
2319 error = security_inode_init_security(inode, dir,
2320 &dentry->d_name,
2321 shmem_initxattrs, NULL);
2322 if (error && error != -EOPNOTSUPP)
2323 goto out_iput;
2324
2325 error = 0;
2326 dir->i_size += BOGO_DIRENT_SIZE;
2327 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2328 d_instantiate(dentry, inode);
2329 dget(dentry); /* Extra count - pin the dentry in core */
2330 }
2331 return error;
2332 out_iput:
2333 iput(inode);
2334 return error;
2335 }
2336
2337 static int
2338 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2339 {
2340 struct inode *inode;
2341 int error = -ENOSPC;
2342
2343 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2344 if (inode) {
2345 error = security_inode_init_security(inode, dir,
2346 NULL,
2347 shmem_initxattrs, NULL);
2348 if (error && error != -EOPNOTSUPP)
2349 goto out_iput;
2350 error = simple_acl_create(dir, inode);
2351 if (error)
2352 goto out_iput;
2353 d_tmpfile(dentry, inode);
2354 }
2355 return error;
2356 out_iput:
2357 iput(inode);
2358 return error;
2359 }
2360
2361 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2362 {
2363 int error;
2364
2365 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2366 return error;
2367 inc_nlink(dir);
2368 return 0;
2369 }
2370
2371 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2372 bool excl)
2373 {
2374 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2375 }
2376
2377 /*
2378 * Link a file..
2379 */
2380 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2381 {
2382 struct inode *inode = d_inode(old_dentry);
2383 int ret;
2384
2385 /*
2386 * No ordinary (disk based) filesystem counts links as inodes;
2387 * but each new link needs a new dentry, pinning lowmem, and
2388 * tmpfs dentries cannot be pruned until they are unlinked.
2389 */
2390 ret = shmem_reserve_inode(inode->i_sb);
2391 if (ret)
2392 goto out;
2393
2394 dir->i_size += BOGO_DIRENT_SIZE;
2395 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2396 inc_nlink(inode);
2397 ihold(inode); /* New dentry reference */
2398 dget(dentry); /* Extra pinning count for the created dentry */
2399 d_instantiate(dentry, inode);
2400 out:
2401 return ret;
2402 }
2403
2404 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2405 {
2406 struct inode *inode = d_inode(dentry);
2407
2408 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2409 shmem_free_inode(inode->i_sb);
2410
2411 dir->i_size -= BOGO_DIRENT_SIZE;
2412 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2413 drop_nlink(inode);
2414 dput(dentry); /* Undo the count from "create" - this does all the work */
2415 return 0;
2416 }
2417
2418 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2419 {
2420 if (!simple_empty(dentry))
2421 return -ENOTEMPTY;
2422
2423 drop_nlink(d_inode(dentry));
2424 drop_nlink(dir);
2425 return shmem_unlink(dir, dentry);
2426 }
2427
2428 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2429 {
2430 bool old_is_dir = d_is_dir(old_dentry);
2431 bool new_is_dir = d_is_dir(new_dentry);
2432
2433 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2434 if (old_is_dir) {
2435 drop_nlink(old_dir);
2436 inc_nlink(new_dir);
2437 } else {
2438 drop_nlink(new_dir);
2439 inc_nlink(old_dir);
2440 }
2441 }
2442 old_dir->i_ctime = old_dir->i_mtime =
2443 new_dir->i_ctime = new_dir->i_mtime =
2444 d_inode(old_dentry)->i_ctime =
2445 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2446
2447 return 0;
2448 }
2449
2450 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2451 {
2452 struct dentry *whiteout;
2453 int error;
2454
2455 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2456 if (!whiteout)
2457 return -ENOMEM;
2458
2459 error = shmem_mknod(old_dir, whiteout,
2460 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2461 dput(whiteout);
2462 if (error)
2463 return error;
2464
2465 /*
2466 * Cheat and hash the whiteout while the old dentry is still in
2467 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2468 *
2469 * d_lookup() will consistently find one of them at this point,
2470 * not sure which one, but that isn't even important.
2471 */
2472 d_rehash(whiteout);
2473 return 0;
2474 }
2475
2476 /*
2477 * The VFS layer already does all the dentry stuff for rename,
2478 * we just have to decrement the usage count for the target if
2479 * it exists so that the VFS layer correctly free's it when it
2480 * gets overwritten.
2481 */
2482 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2483 {
2484 struct inode *inode = d_inode(old_dentry);
2485 int they_are_dirs = S_ISDIR(inode->i_mode);
2486
2487 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2488 return -EINVAL;
2489
2490 if (flags & RENAME_EXCHANGE)
2491 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2492
2493 if (!simple_empty(new_dentry))
2494 return -ENOTEMPTY;
2495
2496 if (flags & RENAME_WHITEOUT) {
2497 int error;
2498
2499 error = shmem_whiteout(old_dir, old_dentry);
2500 if (error)
2501 return error;
2502 }
2503
2504 if (d_really_is_positive(new_dentry)) {
2505 (void) shmem_unlink(new_dir, new_dentry);
2506 if (they_are_dirs) {
2507 drop_nlink(d_inode(new_dentry));
2508 drop_nlink(old_dir);
2509 }
2510 } else if (they_are_dirs) {
2511 drop_nlink(old_dir);
2512 inc_nlink(new_dir);
2513 }
2514
2515 old_dir->i_size -= BOGO_DIRENT_SIZE;
2516 new_dir->i_size += BOGO_DIRENT_SIZE;
2517 old_dir->i_ctime = old_dir->i_mtime =
2518 new_dir->i_ctime = new_dir->i_mtime =
2519 inode->i_ctime = CURRENT_TIME;
2520 return 0;
2521 }
2522
2523 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2524 {
2525 int error;
2526 int len;
2527 struct inode *inode;
2528 struct page *page;
2529 struct shmem_inode_info *info;
2530
2531 len = strlen(symname) + 1;
2532 if (len > PAGE_CACHE_SIZE)
2533 return -ENAMETOOLONG;
2534
2535 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2536 if (!inode)
2537 return -ENOSPC;
2538
2539 error = security_inode_init_security(inode, dir, &dentry->d_name,
2540 shmem_initxattrs, NULL);
2541 if (error) {
2542 if (error != -EOPNOTSUPP) {
2543 iput(inode);
2544 return error;
2545 }
2546 error = 0;
2547 }
2548
2549 info = SHMEM_I(inode);
2550 inode->i_size = len-1;
2551 if (len <= SHORT_SYMLINK_LEN) {
2552 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2553 if (!info->symlink) {
2554 iput(inode);
2555 return -ENOMEM;
2556 }
2557 inode->i_op = &shmem_short_symlink_operations;
2558 inode->i_link = info->symlink;
2559 } else {
2560 inode_nohighmem(inode);
2561 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2562 if (error) {
2563 iput(inode);
2564 return error;
2565 }
2566 inode->i_mapping->a_ops = &shmem_aops;
2567 inode->i_op = &shmem_symlink_inode_operations;
2568 memcpy(page_address(page), symname, len);
2569 SetPageUptodate(page);
2570 set_page_dirty(page);
2571 unlock_page(page);
2572 page_cache_release(page);
2573 }
2574 dir->i_size += BOGO_DIRENT_SIZE;
2575 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2576 d_instantiate(dentry, inode);
2577 dget(dentry);
2578 return 0;
2579 }
2580
2581 static void shmem_put_link(void *arg)
2582 {
2583 mark_page_accessed(arg);
2584 put_page(arg);
2585 }
2586
2587 static const char *shmem_get_link(struct dentry *dentry,
2588 struct inode *inode,
2589 struct delayed_call *done)
2590 {
2591 struct page *page = NULL;
2592 int error;
2593 if (!dentry) {
2594 page = find_get_page(inode->i_mapping, 0);
2595 if (!page)
2596 return ERR_PTR(-ECHILD);
2597 if (!PageUptodate(page)) {
2598 put_page(page);
2599 return ERR_PTR(-ECHILD);
2600 }
2601 } else {
2602 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL);
2603 if (error)
2604 return ERR_PTR(error);
2605 unlock_page(page);
2606 }
2607 set_delayed_call(done, shmem_put_link, page);
2608 return page_address(page);
2609 }
2610
2611 #ifdef CONFIG_TMPFS_XATTR
2612 /*
2613 * Superblocks without xattr inode operations may get some security.* xattr
2614 * support from the LSM "for free". As soon as we have any other xattrs
2615 * like ACLs, we also need to implement the security.* handlers at
2616 * filesystem level, though.
2617 */
2618
2619 /*
2620 * Callback for security_inode_init_security() for acquiring xattrs.
2621 */
2622 static int shmem_initxattrs(struct inode *inode,
2623 const struct xattr *xattr_array,
2624 void *fs_info)
2625 {
2626 struct shmem_inode_info *info = SHMEM_I(inode);
2627 const struct xattr *xattr;
2628 struct simple_xattr *new_xattr;
2629 size_t len;
2630
2631 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2632 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2633 if (!new_xattr)
2634 return -ENOMEM;
2635
2636 len = strlen(xattr->name) + 1;
2637 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2638 GFP_KERNEL);
2639 if (!new_xattr->name) {
2640 kfree(new_xattr);
2641 return -ENOMEM;
2642 }
2643
2644 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2645 XATTR_SECURITY_PREFIX_LEN);
2646 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2647 xattr->name, len);
2648
2649 simple_xattr_list_add(&info->xattrs, new_xattr);
2650 }
2651
2652 return 0;
2653 }
2654
2655 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2656 struct dentry *dentry, const char *name,
2657 void *buffer, size_t size)
2658 {
2659 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2660
2661 name = xattr_full_name(handler, name);
2662 return simple_xattr_get(&info->xattrs, name, buffer, size);
2663 }
2664
2665 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2666 struct dentry *dentry, const char *name,
2667 const void *value, size_t size, int flags)
2668 {
2669 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2670
2671 name = xattr_full_name(handler, name);
2672 return simple_xattr_set(&info->xattrs, name, value, size, flags);
2673 }
2674
2675 static const struct xattr_handler shmem_security_xattr_handler = {
2676 .prefix = XATTR_SECURITY_PREFIX,
2677 .get = shmem_xattr_handler_get,
2678 .set = shmem_xattr_handler_set,
2679 };
2680
2681 static const struct xattr_handler shmem_trusted_xattr_handler = {
2682 .prefix = XATTR_TRUSTED_PREFIX,
2683 .get = shmem_xattr_handler_get,
2684 .set = shmem_xattr_handler_set,
2685 };
2686
2687 static const struct xattr_handler *shmem_xattr_handlers[] = {
2688 #ifdef CONFIG_TMPFS_POSIX_ACL
2689 &posix_acl_access_xattr_handler,
2690 &posix_acl_default_xattr_handler,
2691 #endif
2692 &shmem_security_xattr_handler,
2693 &shmem_trusted_xattr_handler,
2694 NULL
2695 };
2696
2697 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2698 {
2699 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2700 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2701 }
2702 #endif /* CONFIG_TMPFS_XATTR */
2703
2704 static const struct inode_operations shmem_short_symlink_operations = {
2705 .readlink = generic_readlink,
2706 .get_link = simple_get_link,
2707 #ifdef CONFIG_TMPFS_XATTR
2708 .setxattr = generic_setxattr,
2709 .getxattr = generic_getxattr,
2710 .listxattr = shmem_listxattr,
2711 .removexattr = generic_removexattr,
2712 #endif
2713 };
2714
2715 static const struct inode_operations shmem_symlink_inode_operations = {
2716 .readlink = generic_readlink,
2717 .get_link = shmem_get_link,
2718 #ifdef CONFIG_TMPFS_XATTR
2719 .setxattr = generic_setxattr,
2720 .getxattr = generic_getxattr,
2721 .listxattr = shmem_listxattr,
2722 .removexattr = generic_removexattr,
2723 #endif
2724 };
2725
2726 static struct dentry *shmem_get_parent(struct dentry *child)
2727 {
2728 return ERR_PTR(-ESTALE);
2729 }
2730
2731 static int shmem_match(struct inode *ino, void *vfh)
2732 {
2733 __u32 *fh = vfh;
2734 __u64 inum = fh[2];
2735 inum = (inum << 32) | fh[1];
2736 return ino->i_ino == inum && fh[0] == ino->i_generation;
2737 }
2738
2739 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2740 struct fid *fid, int fh_len, int fh_type)
2741 {
2742 struct inode *inode;
2743 struct dentry *dentry = NULL;
2744 u64 inum;
2745
2746 if (fh_len < 3)
2747 return NULL;
2748
2749 inum = fid->raw[2];
2750 inum = (inum << 32) | fid->raw[1];
2751
2752 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2753 shmem_match, fid->raw);
2754 if (inode) {
2755 dentry = d_find_alias(inode);
2756 iput(inode);
2757 }
2758
2759 return dentry;
2760 }
2761
2762 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2763 struct inode *parent)
2764 {
2765 if (*len < 3) {
2766 *len = 3;
2767 return FILEID_INVALID;
2768 }
2769
2770 if (inode_unhashed(inode)) {
2771 /* Unfortunately insert_inode_hash is not idempotent,
2772 * so as we hash inodes here rather than at creation
2773 * time, we need a lock to ensure we only try
2774 * to do it once
2775 */
2776 static DEFINE_SPINLOCK(lock);
2777 spin_lock(&lock);
2778 if (inode_unhashed(inode))
2779 __insert_inode_hash(inode,
2780 inode->i_ino + inode->i_generation);
2781 spin_unlock(&lock);
2782 }
2783
2784 fh[0] = inode->i_generation;
2785 fh[1] = inode->i_ino;
2786 fh[2] = ((__u64)inode->i_ino) >> 32;
2787
2788 *len = 3;
2789 return 1;
2790 }
2791
2792 static const struct export_operations shmem_export_ops = {
2793 .get_parent = shmem_get_parent,
2794 .encode_fh = shmem_encode_fh,
2795 .fh_to_dentry = shmem_fh_to_dentry,
2796 };
2797
2798 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2799 bool remount)
2800 {
2801 char *this_char, *value, *rest;
2802 struct mempolicy *mpol = NULL;
2803 uid_t uid;
2804 gid_t gid;
2805
2806 while (options != NULL) {
2807 this_char = options;
2808 for (;;) {
2809 /*
2810 * NUL-terminate this option: unfortunately,
2811 * mount options form a comma-separated list,
2812 * but mpol's nodelist may also contain commas.
2813 */
2814 options = strchr(options, ',');
2815 if (options == NULL)
2816 break;
2817 options++;
2818 if (!isdigit(*options)) {
2819 options[-1] = '\0';
2820 break;
2821 }
2822 }
2823 if (!*this_char)
2824 continue;
2825 if ((value = strchr(this_char,'=')) != NULL) {
2826 *value++ = 0;
2827 } else {
2828 printk(KERN_ERR
2829 "tmpfs: No value for mount option '%s'\n",
2830 this_char);
2831 goto error;
2832 }
2833
2834 if (!strcmp(this_char,"size")) {
2835 unsigned long long size;
2836 size = memparse(value,&rest);
2837 if (*rest == '%') {
2838 size <<= PAGE_SHIFT;
2839 size *= totalram_pages;
2840 do_div(size, 100);
2841 rest++;
2842 }
2843 if (*rest)
2844 goto bad_val;
2845 sbinfo->max_blocks =
2846 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2847 } else if (!strcmp(this_char,"nr_blocks")) {
2848 sbinfo->max_blocks = memparse(value, &rest);
2849 if (*rest)
2850 goto bad_val;
2851 } else if (!strcmp(this_char,"nr_inodes")) {
2852 sbinfo->max_inodes = memparse(value, &rest);
2853 if (*rest)
2854 goto bad_val;
2855 } else if (!strcmp(this_char,"mode")) {
2856 if (remount)
2857 continue;
2858 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2859 if (*rest)
2860 goto bad_val;
2861 } else if (!strcmp(this_char,"uid")) {
2862 if (remount)
2863 continue;
2864 uid = simple_strtoul(value, &rest, 0);
2865 if (*rest)
2866 goto bad_val;
2867 sbinfo->uid = make_kuid(current_user_ns(), uid);
2868 if (!uid_valid(sbinfo->uid))
2869 goto bad_val;
2870 } else if (!strcmp(this_char,"gid")) {
2871 if (remount)
2872 continue;
2873 gid = simple_strtoul(value, &rest, 0);
2874 if (*rest)
2875 goto bad_val;
2876 sbinfo->gid = make_kgid(current_user_ns(), gid);
2877 if (!gid_valid(sbinfo->gid))
2878 goto bad_val;
2879 } else if (!strcmp(this_char,"mpol")) {
2880 mpol_put(mpol);
2881 mpol = NULL;
2882 if (mpol_parse_str(value, &mpol))
2883 goto bad_val;
2884 } else {
2885 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2886 this_char);
2887 goto error;
2888 }
2889 }
2890 sbinfo->mpol = mpol;
2891 return 0;
2892
2893 bad_val:
2894 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2895 value, this_char);
2896 error:
2897 mpol_put(mpol);
2898 return 1;
2899
2900 }
2901
2902 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2903 {
2904 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2905 struct shmem_sb_info config = *sbinfo;
2906 unsigned long inodes;
2907 int error = -EINVAL;
2908
2909 config.mpol = NULL;
2910 if (shmem_parse_options(data, &config, true))
2911 return error;
2912
2913 spin_lock(&sbinfo->stat_lock);
2914 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2915 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2916 goto out;
2917 if (config.max_inodes < inodes)
2918 goto out;
2919 /*
2920 * Those tests disallow limited->unlimited while any are in use;
2921 * but we must separately disallow unlimited->limited, because
2922 * in that case we have no record of how much is already in use.
2923 */
2924 if (config.max_blocks && !sbinfo->max_blocks)
2925 goto out;
2926 if (config.max_inodes && !sbinfo->max_inodes)
2927 goto out;
2928
2929 error = 0;
2930 sbinfo->max_blocks = config.max_blocks;
2931 sbinfo->max_inodes = config.max_inodes;
2932 sbinfo->free_inodes = config.max_inodes - inodes;
2933
2934 /*
2935 * Preserve previous mempolicy unless mpol remount option was specified.
2936 */
2937 if (config.mpol) {
2938 mpol_put(sbinfo->mpol);
2939 sbinfo->mpol = config.mpol; /* transfers initial ref */
2940 }
2941 out:
2942 spin_unlock(&sbinfo->stat_lock);
2943 return error;
2944 }
2945
2946 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2947 {
2948 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2949
2950 if (sbinfo->max_blocks != shmem_default_max_blocks())
2951 seq_printf(seq, ",size=%luk",
2952 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2953 if (sbinfo->max_inodes != shmem_default_max_inodes())
2954 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2955 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2956 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2957 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2958 seq_printf(seq, ",uid=%u",
2959 from_kuid_munged(&init_user_ns, sbinfo->uid));
2960 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2961 seq_printf(seq, ",gid=%u",
2962 from_kgid_munged(&init_user_ns, sbinfo->gid));
2963 shmem_show_mpol(seq, sbinfo->mpol);
2964 return 0;
2965 }
2966
2967 #define MFD_NAME_PREFIX "memfd:"
2968 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2969 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2970
2971 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2972
2973 SYSCALL_DEFINE2(memfd_create,
2974 const char __user *, uname,
2975 unsigned int, flags)
2976 {
2977 struct shmem_inode_info *info;
2978 struct file *file;
2979 int fd, error;
2980 char *name;
2981 long len;
2982
2983 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2984 return -EINVAL;
2985
2986 /* length includes terminating zero */
2987 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2988 if (len <= 0)
2989 return -EFAULT;
2990 if (len > MFD_NAME_MAX_LEN + 1)
2991 return -EINVAL;
2992
2993 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2994 if (!name)
2995 return -ENOMEM;
2996
2997 strcpy(name, MFD_NAME_PREFIX);
2998 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2999 error = -EFAULT;
3000 goto err_name;
3001 }
3002
3003 /* terminating-zero may have changed after strnlen_user() returned */
3004 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3005 error = -EFAULT;
3006 goto err_name;
3007 }
3008
3009 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3010 if (fd < 0) {
3011 error = fd;
3012 goto err_name;
3013 }
3014
3015 file = shmem_file_setup(name, 0, VM_NORESERVE);
3016 if (IS_ERR(file)) {
3017 error = PTR_ERR(file);
3018 goto err_fd;
3019 }
3020 info = SHMEM_I(file_inode(file));
3021 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3022 file->f_flags |= O_RDWR | O_LARGEFILE;
3023 if (flags & MFD_ALLOW_SEALING)
3024 info->seals &= ~F_SEAL_SEAL;
3025
3026 fd_install(fd, file);
3027 kfree(name);
3028 return fd;
3029
3030 err_fd:
3031 put_unused_fd(fd);
3032 err_name:
3033 kfree(name);
3034 return error;
3035 }
3036
3037 #endif /* CONFIG_TMPFS */
3038
3039 static void shmem_put_super(struct super_block *sb)
3040 {
3041 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3042
3043 percpu_counter_destroy(&sbinfo->used_blocks);
3044 mpol_put(sbinfo->mpol);
3045 kfree(sbinfo);
3046 sb->s_fs_info = NULL;
3047 }
3048
3049 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3050 {
3051 struct inode *inode;
3052 struct shmem_sb_info *sbinfo;
3053 int err = -ENOMEM;
3054
3055 /* Round up to L1_CACHE_BYTES to resist false sharing */
3056 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3057 L1_CACHE_BYTES), GFP_KERNEL);
3058 if (!sbinfo)
3059 return -ENOMEM;
3060
3061 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3062 sbinfo->uid = current_fsuid();
3063 sbinfo->gid = current_fsgid();
3064 sb->s_fs_info = sbinfo;
3065
3066 #ifdef CONFIG_TMPFS
3067 /*
3068 * Per default we only allow half of the physical ram per
3069 * tmpfs instance, limiting inodes to one per page of lowmem;
3070 * but the internal instance is left unlimited.
3071 */
3072 if (!(sb->s_flags & MS_KERNMOUNT)) {
3073 sbinfo->max_blocks = shmem_default_max_blocks();
3074 sbinfo->max_inodes = shmem_default_max_inodes();
3075 if (shmem_parse_options(data, sbinfo, false)) {
3076 err = -EINVAL;
3077 goto failed;
3078 }
3079 } else {
3080 sb->s_flags |= MS_NOUSER;
3081 }
3082 sb->s_export_op = &shmem_export_ops;
3083 sb->s_flags |= MS_NOSEC;
3084 #else
3085 sb->s_flags |= MS_NOUSER;
3086 #endif
3087
3088 spin_lock_init(&sbinfo->stat_lock);
3089 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3090 goto failed;
3091 sbinfo->free_inodes = sbinfo->max_inodes;
3092
3093 sb->s_maxbytes = MAX_LFS_FILESIZE;
3094 sb->s_blocksize = PAGE_CACHE_SIZE;
3095 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3096 sb->s_magic = TMPFS_MAGIC;
3097 sb->s_op = &shmem_ops;
3098 sb->s_time_gran = 1;
3099 #ifdef CONFIG_TMPFS_XATTR
3100 sb->s_xattr = shmem_xattr_handlers;
3101 #endif
3102 #ifdef CONFIG_TMPFS_POSIX_ACL
3103 sb->s_flags |= MS_POSIXACL;
3104 #endif
3105
3106 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3107 if (!inode)
3108 goto failed;
3109 inode->i_uid = sbinfo->uid;
3110 inode->i_gid = sbinfo->gid;
3111 sb->s_root = d_make_root(inode);
3112 if (!sb->s_root)
3113 goto failed;
3114 return 0;
3115
3116 failed:
3117 shmem_put_super(sb);
3118 return err;
3119 }
3120
3121 static struct kmem_cache *shmem_inode_cachep;
3122
3123 static struct inode *shmem_alloc_inode(struct super_block *sb)
3124 {
3125 struct shmem_inode_info *info;
3126 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3127 if (!info)
3128 return NULL;
3129 return &info->vfs_inode;
3130 }
3131
3132 static void shmem_destroy_callback(struct rcu_head *head)
3133 {
3134 struct inode *inode = container_of(head, struct inode, i_rcu);
3135 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3136 }
3137
3138 static void shmem_destroy_inode(struct inode *inode)
3139 {
3140 if (S_ISREG(inode->i_mode))
3141 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3142 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3143 }
3144
3145 static void shmem_init_inode(void *foo)
3146 {
3147 struct shmem_inode_info *info = foo;
3148 inode_init_once(&info->vfs_inode);
3149 }
3150
3151 static int shmem_init_inodecache(void)
3152 {
3153 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3154 sizeof(struct shmem_inode_info),
3155 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3156 return 0;
3157 }
3158
3159 static void shmem_destroy_inodecache(void)
3160 {
3161 kmem_cache_destroy(shmem_inode_cachep);
3162 }
3163
3164 static const struct address_space_operations shmem_aops = {
3165 .writepage = shmem_writepage,
3166 .set_page_dirty = __set_page_dirty_no_writeback,
3167 #ifdef CONFIG_TMPFS
3168 .write_begin = shmem_write_begin,
3169 .write_end = shmem_write_end,
3170 #endif
3171 #ifdef CONFIG_MIGRATION
3172 .migratepage = migrate_page,
3173 #endif
3174 .error_remove_page = generic_error_remove_page,
3175 };
3176
3177 static const struct file_operations shmem_file_operations = {
3178 .mmap = shmem_mmap,
3179 #ifdef CONFIG_TMPFS
3180 .llseek = shmem_file_llseek,
3181 .read_iter = shmem_file_read_iter,
3182 .write_iter = generic_file_write_iter,
3183 .fsync = noop_fsync,
3184 .splice_read = shmem_file_splice_read,
3185 .splice_write = iter_file_splice_write,
3186 .fallocate = shmem_fallocate,
3187 #endif
3188 };
3189
3190 static const struct inode_operations shmem_inode_operations = {
3191 .getattr = shmem_getattr,
3192 .setattr = shmem_setattr,
3193 #ifdef CONFIG_TMPFS_XATTR
3194 .setxattr = generic_setxattr,
3195 .getxattr = generic_getxattr,
3196 .listxattr = shmem_listxattr,
3197 .removexattr = generic_removexattr,
3198 .set_acl = simple_set_acl,
3199 #endif
3200 };
3201
3202 static const struct inode_operations shmem_dir_inode_operations = {
3203 #ifdef CONFIG_TMPFS
3204 .create = shmem_create,
3205 .lookup = simple_lookup,
3206 .link = shmem_link,
3207 .unlink = shmem_unlink,
3208 .symlink = shmem_symlink,
3209 .mkdir = shmem_mkdir,
3210 .rmdir = shmem_rmdir,
3211 .mknod = shmem_mknod,
3212 .rename2 = shmem_rename2,
3213 .tmpfile = shmem_tmpfile,
3214 #endif
3215 #ifdef CONFIG_TMPFS_XATTR
3216 .setxattr = generic_setxattr,
3217 .getxattr = generic_getxattr,
3218 .listxattr = shmem_listxattr,
3219 .removexattr = generic_removexattr,
3220 #endif
3221 #ifdef CONFIG_TMPFS_POSIX_ACL
3222 .setattr = shmem_setattr,
3223 .set_acl = simple_set_acl,
3224 #endif
3225 };
3226
3227 static const struct inode_operations shmem_special_inode_operations = {
3228 #ifdef CONFIG_TMPFS_XATTR
3229 .setxattr = generic_setxattr,
3230 .getxattr = generic_getxattr,
3231 .listxattr = shmem_listxattr,
3232 .removexattr = generic_removexattr,
3233 #endif
3234 #ifdef CONFIG_TMPFS_POSIX_ACL
3235 .setattr = shmem_setattr,
3236 .set_acl = simple_set_acl,
3237 #endif
3238 };
3239
3240 static const struct super_operations shmem_ops = {
3241 .alloc_inode = shmem_alloc_inode,
3242 .destroy_inode = shmem_destroy_inode,
3243 #ifdef CONFIG_TMPFS
3244 .statfs = shmem_statfs,
3245 .remount_fs = shmem_remount_fs,
3246 .show_options = shmem_show_options,
3247 #endif
3248 .evict_inode = shmem_evict_inode,
3249 .drop_inode = generic_delete_inode,
3250 .put_super = shmem_put_super,
3251 };
3252
3253 static const struct vm_operations_struct shmem_vm_ops = {
3254 .fault = shmem_fault,
3255 .map_pages = filemap_map_pages,
3256 #ifdef CONFIG_NUMA
3257 .set_policy = shmem_set_policy,
3258 .get_policy = shmem_get_policy,
3259 #endif
3260 };
3261
3262 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3263 int flags, const char *dev_name, void *data)
3264 {
3265 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3266 }
3267
3268 static struct file_system_type shmem_fs_type = {
3269 .owner = THIS_MODULE,
3270 .name = "tmpfs",
3271 .mount = shmem_mount,
3272 .kill_sb = kill_litter_super,
3273 .fs_flags = FS_USERNS_MOUNT,
3274 };
3275
3276 int __init shmem_init(void)
3277 {
3278 int error;
3279
3280 /* If rootfs called this, don't re-init */
3281 if (shmem_inode_cachep)
3282 return 0;
3283
3284 error = shmem_init_inodecache();
3285 if (error)
3286 goto out3;
3287
3288 error = register_filesystem(&shmem_fs_type);
3289 if (error) {
3290 printk(KERN_ERR "Could not register tmpfs\n");
3291 goto out2;
3292 }
3293
3294 shm_mnt = kern_mount(&shmem_fs_type);
3295 if (IS_ERR(shm_mnt)) {
3296 error = PTR_ERR(shm_mnt);
3297 printk(KERN_ERR "Could not kern_mount tmpfs\n");
3298 goto out1;
3299 }
3300 return 0;
3301
3302 out1:
3303 unregister_filesystem(&shmem_fs_type);
3304 out2:
3305 shmem_destroy_inodecache();
3306 out3:
3307 shm_mnt = ERR_PTR(error);
3308 return error;
3309 }
3310
3311 #else /* !CONFIG_SHMEM */
3312
3313 /*
3314 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3315 *
3316 * This is intended for small system where the benefits of the full
3317 * shmem code (swap-backed and resource-limited) are outweighed by
3318 * their complexity. On systems without swap this code should be
3319 * effectively equivalent, but much lighter weight.
3320 */
3321
3322 static struct file_system_type shmem_fs_type = {
3323 .name = "tmpfs",
3324 .mount = ramfs_mount,
3325 .kill_sb = kill_litter_super,
3326 .fs_flags = FS_USERNS_MOUNT,
3327 };
3328
3329 int __init shmem_init(void)
3330 {
3331 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3332
3333 shm_mnt = kern_mount(&shmem_fs_type);
3334 BUG_ON(IS_ERR(shm_mnt));
3335
3336 return 0;
3337 }
3338
3339 int shmem_unuse(swp_entry_t swap, struct page *page)
3340 {
3341 return 0;
3342 }
3343
3344 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3345 {
3346 return 0;
3347 }
3348
3349 void shmem_unlock_mapping(struct address_space *mapping)
3350 {
3351 }
3352
3353 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3354 {
3355 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3356 }
3357 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3358
3359 #define shmem_vm_ops generic_file_vm_ops
3360 #define shmem_file_operations ramfs_file_operations
3361 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3362 #define shmem_acct_size(flags, size) 0
3363 #define shmem_unacct_size(flags, size) do {} while (0)
3364
3365 #endif /* CONFIG_SHMEM */
3366
3367 /* common code */
3368
3369 static struct dentry_operations anon_ops = {
3370 .d_dname = simple_dname
3371 };
3372
3373 static struct file *__shmem_file_setup(const char *name, loff_t size,
3374 unsigned long flags, unsigned int i_flags)
3375 {
3376 struct file *res;
3377 struct inode *inode;
3378 struct path path;
3379 struct super_block *sb;
3380 struct qstr this;
3381
3382 if (IS_ERR(shm_mnt))
3383 return ERR_CAST(shm_mnt);
3384
3385 if (size < 0 || size > MAX_LFS_FILESIZE)
3386 return ERR_PTR(-EINVAL);
3387
3388 if (shmem_acct_size(flags, size))
3389 return ERR_PTR(-ENOMEM);
3390
3391 res = ERR_PTR(-ENOMEM);
3392 this.name = name;
3393 this.len = strlen(name);
3394 this.hash = 0; /* will go */
3395 sb = shm_mnt->mnt_sb;
3396 path.mnt = mntget(shm_mnt);
3397 path.dentry = d_alloc_pseudo(sb, &this);
3398 if (!path.dentry)
3399 goto put_memory;
3400 d_set_d_op(path.dentry, &anon_ops);
3401
3402 res = ERR_PTR(-ENOSPC);
3403 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3404 if (!inode)
3405 goto put_memory;
3406
3407 inode->i_flags |= i_flags;
3408 d_instantiate(path.dentry, inode);
3409 inode->i_size = size;
3410 clear_nlink(inode); /* It is unlinked */
3411 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3412 if (IS_ERR(res))
3413 goto put_path;
3414
3415 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3416 &shmem_file_operations);
3417 if (IS_ERR(res))
3418 goto put_path;
3419
3420 return res;
3421
3422 put_memory:
3423 shmem_unacct_size(flags, size);
3424 put_path:
3425 path_put(&path);
3426 return res;
3427 }
3428
3429 /**
3430 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3431 * kernel internal. There will be NO LSM permission checks against the
3432 * underlying inode. So users of this interface must do LSM checks at a
3433 * higher layer. The users are the big_key and shm implementations. LSM
3434 * checks are provided at the key or shm level rather than the inode.
3435 * @name: name for dentry (to be seen in /proc/<pid>/maps
3436 * @size: size to be set for the file
3437 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3438 */
3439 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3440 {
3441 return __shmem_file_setup(name, size, flags, S_PRIVATE);
3442 }
3443
3444 /**
3445 * shmem_file_setup - get an unlinked file living in tmpfs
3446 * @name: name for dentry (to be seen in /proc/<pid>/maps
3447 * @size: size to be set for the file
3448 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3449 */
3450 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3451 {
3452 return __shmem_file_setup(name, size, flags, 0);
3453 }
3454 EXPORT_SYMBOL_GPL(shmem_file_setup);
3455
3456 /**
3457 * shmem_zero_setup - setup a shared anonymous mapping
3458 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3459 */
3460 int shmem_zero_setup(struct vm_area_struct *vma)
3461 {
3462 struct file *file;
3463 loff_t size = vma->vm_end - vma->vm_start;
3464
3465 /*
3466 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3467 * between XFS directory reading and selinux: since this file is only
3468 * accessible to the user through its mapping, use S_PRIVATE flag to
3469 * bypass file security, in the same way as shmem_kernel_file_setup().
3470 */
3471 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3472 if (IS_ERR(file))
3473 return PTR_ERR(file);
3474
3475 if (vma->vm_file)
3476 fput(vma->vm_file);
3477 vma->vm_file = file;
3478 vma->vm_ops = &shmem_vm_ops;
3479 return 0;
3480 }
3481
3482 /**
3483 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3484 * @mapping: the page's address_space
3485 * @index: the page index
3486 * @gfp: the page allocator flags to use if allocating
3487 *
3488 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3489 * with any new page allocations done using the specified allocation flags.
3490 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3491 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3492 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3493 *
3494 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3495 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3496 */
3497 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3498 pgoff_t index, gfp_t gfp)
3499 {
3500 #ifdef CONFIG_SHMEM
3501 struct inode *inode = mapping->host;
3502 struct page *page;
3503 int error;
3504
3505 BUG_ON(mapping->a_ops != &shmem_aops);
3506 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3507 if (error)
3508 page = ERR_PTR(error);
3509 else
3510 unlock_page(page);
3511 return page;
3512 #else
3513 /*
3514 * The tiny !SHMEM case uses ramfs without swap
3515 */
3516 return read_cache_page_gfp(mapping, index, gfp);
3517 #endif
3518 }
3519 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);