2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
37 static struct vfsmount
*shm_mnt
;
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
74 #include <linux/uaccess.h>
75 #include <asm/pgtable.h>
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
94 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
95 pgoff_t start
; /* start of range currently being fallocated */
96 pgoff_t next
; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
102 static unsigned long shmem_default_max_blocks(void)
104 return totalram_pages
/ 2;
107 static unsigned long shmem_default_max_inodes(void)
109 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
113 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
114 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
115 struct shmem_inode_info
*info
, pgoff_t index
);
116 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
117 struct page
**pagep
, enum sgp_type sgp
,
118 gfp_t gfp
, struct mm_struct
*fault_mm
, int *fault_type
);
120 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
121 struct page
**pagep
, enum sgp_type sgp
)
123 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
124 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
);
127 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
129 return sb
->s_fs_info
;
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
138 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
140 return (flags
& VM_NORESERVE
) ?
141 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
144 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
146 if (!(flags
& VM_NORESERVE
))
147 vm_unacct_memory(VM_ACCT(size
));
150 static inline int shmem_reacct_size(unsigned long flags
,
151 loff_t oldsize
, loff_t newsize
)
153 if (!(flags
& VM_NORESERVE
)) {
154 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
155 return security_vm_enough_memory_mm(current
->mm
,
156 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
157 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
158 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169 static inline int shmem_acct_block(unsigned long flags
, long pages
)
171 if (!(flags
& VM_NORESERVE
))
174 return security_vm_enough_memory_mm(current
->mm
,
175 pages
* VM_ACCT(PAGE_SIZE
));
178 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
180 if (flags
& VM_NORESERVE
)
181 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
184 static const struct super_operations shmem_ops
;
185 static const struct address_space_operations shmem_aops
;
186 static const struct file_operations shmem_file_operations
;
187 static const struct inode_operations shmem_inode_operations
;
188 static const struct inode_operations shmem_dir_inode_operations
;
189 static const struct inode_operations shmem_special_inode_operations
;
190 static const struct vm_operations_struct shmem_vm_ops
;
191 static struct file_system_type shmem_fs_type
;
193 static LIST_HEAD(shmem_swaplist
);
194 static DEFINE_MUTEX(shmem_swaplist_mutex
);
196 static int shmem_reserve_inode(struct super_block
*sb
)
198 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
199 if (sbinfo
->max_inodes
) {
200 spin_lock(&sbinfo
->stat_lock
);
201 if (!sbinfo
->free_inodes
) {
202 spin_unlock(&sbinfo
->stat_lock
);
205 sbinfo
->free_inodes
--;
206 spin_unlock(&sbinfo
->stat_lock
);
211 static void shmem_free_inode(struct super_block
*sb
)
213 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
214 if (sbinfo
->max_inodes
) {
215 spin_lock(&sbinfo
->stat_lock
);
216 sbinfo
->free_inodes
++;
217 spin_unlock(&sbinfo
->stat_lock
);
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231 * It has to be called with the spinlock held.
233 static void shmem_recalc_inode(struct inode
*inode
)
235 struct shmem_inode_info
*info
= SHMEM_I(inode
);
238 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
240 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
241 if (sbinfo
->max_blocks
)
242 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
243 info
->alloced
-= freed
;
244 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
245 shmem_unacct_blocks(info
->flags
, freed
);
249 bool shmem_charge(struct inode
*inode
, long pages
)
251 struct shmem_inode_info
*info
= SHMEM_I(inode
);
252 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
255 if (shmem_acct_block(info
->flags
, pages
))
257 spin_lock_irqsave(&info
->lock
, flags
);
258 info
->alloced
+= pages
;
259 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
260 shmem_recalc_inode(inode
);
261 spin_unlock_irqrestore(&info
->lock
, flags
);
262 inode
->i_mapping
->nrpages
+= pages
;
264 if (!sbinfo
->max_blocks
)
266 if (percpu_counter_compare(&sbinfo
->used_blocks
,
267 sbinfo
->max_blocks
- pages
) > 0) {
268 inode
->i_mapping
->nrpages
-= pages
;
269 spin_lock_irqsave(&info
->lock
, flags
);
270 info
->alloced
-= pages
;
271 shmem_recalc_inode(inode
);
272 spin_unlock_irqrestore(&info
->lock
, flags
);
273 shmem_unacct_blocks(info
->flags
, pages
);
276 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
280 void shmem_uncharge(struct inode
*inode
, long pages
)
282 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
286 spin_lock_irqsave(&info
->lock
, flags
);
287 info
->alloced
-= pages
;
288 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
289 shmem_recalc_inode(inode
);
290 spin_unlock_irqrestore(&info
->lock
, flags
);
292 if (sbinfo
->max_blocks
)
293 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
294 shmem_unacct_blocks(info
->flags
, pages
);
298 * Replace item expected in radix tree by a new item, while holding tree lock.
300 static int shmem_radix_tree_replace(struct address_space
*mapping
,
301 pgoff_t index
, void *expected
, void *replacement
)
303 struct radix_tree_node
*node
;
307 VM_BUG_ON(!expected
);
308 VM_BUG_ON(!replacement
);
309 item
= __radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &pslot
);
312 if (item
!= expected
)
314 __radix_tree_replace(&mapping
->page_tree
, node
, pslot
,
315 replacement
, NULL
, NULL
);
320 * Sometimes, before we decide whether to proceed or to fail, we must check
321 * that an entry was not already brought back from swap by a racing thread.
323 * Checking page is not enough: by the time a SwapCache page is locked, it
324 * might be reused, and again be SwapCache, using the same swap as before.
326 static bool shmem_confirm_swap(struct address_space
*mapping
,
327 pgoff_t index
, swp_entry_t swap
)
332 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
334 return item
== swp_to_radix_entry(swap
);
338 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
341 * disables huge pages for the mount;
343 * enables huge pages for the mount;
344 * SHMEM_HUGE_WITHIN_SIZE:
345 * only allocate huge pages if the page will be fully within i_size,
346 * also respect fadvise()/madvise() hints;
348 * only allocate huge pages if requested with fadvise()/madvise();
351 #define SHMEM_HUGE_NEVER 0
352 #define SHMEM_HUGE_ALWAYS 1
353 #define SHMEM_HUGE_WITHIN_SIZE 2
354 #define SHMEM_HUGE_ADVISE 3
358 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
361 * disables huge on shm_mnt and all mounts, for emergency use;
363 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
366 #define SHMEM_HUGE_DENY (-1)
367 #define SHMEM_HUGE_FORCE (-2)
369 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
370 /* ifdef here to avoid bloating shmem.o when not necessary */
372 int shmem_huge __read_mostly
;
374 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
375 static int shmem_parse_huge(const char *str
)
377 if (!strcmp(str
, "never"))
378 return SHMEM_HUGE_NEVER
;
379 if (!strcmp(str
, "always"))
380 return SHMEM_HUGE_ALWAYS
;
381 if (!strcmp(str
, "within_size"))
382 return SHMEM_HUGE_WITHIN_SIZE
;
383 if (!strcmp(str
, "advise"))
384 return SHMEM_HUGE_ADVISE
;
385 if (!strcmp(str
, "deny"))
386 return SHMEM_HUGE_DENY
;
387 if (!strcmp(str
, "force"))
388 return SHMEM_HUGE_FORCE
;
392 static const char *shmem_format_huge(int huge
)
395 case SHMEM_HUGE_NEVER
:
397 case SHMEM_HUGE_ALWAYS
:
399 case SHMEM_HUGE_WITHIN_SIZE
:
400 return "within_size";
401 case SHMEM_HUGE_ADVISE
:
403 case SHMEM_HUGE_DENY
:
405 case SHMEM_HUGE_FORCE
:
414 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
415 struct shrink_control
*sc
, unsigned long nr_to_split
)
417 LIST_HEAD(list
), *pos
, *next
;
418 LIST_HEAD(to_remove
);
420 struct shmem_inode_info
*info
;
422 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
423 int removed
= 0, split
= 0;
425 if (list_empty(&sbinfo
->shrinklist
))
428 spin_lock(&sbinfo
->shrinklist_lock
);
429 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
430 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
433 inode
= igrab(&info
->vfs_inode
);
435 /* inode is about to be evicted */
437 list_del_init(&info
->shrinklist
);
442 /* Check if there's anything to gain */
443 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
444 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
445 list_move(&info
->shrinklist
, &to_remove
);
450 list_move(&info
->shrinklist
, &list
);
455 spin_unlock(&sbinfo
->shrinklist_lock
);
457 list_for_each_safe(pos
, next
, &to_remove
) {
458 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
459 inode
= &info
->vfs_inode
;
460 list_del_init(&info
->shrinklist
);
464 list_for_each_safe(pos
, next
, &list
) {
467 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
468 inode
= &info
->vfs_inode
;
470 if (nr_to_split
&& split
>= nr_to_split
) {
475 page
= find_lock_page(inode
->i_mapping
,
476 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
480 if (!PageTransHuge(page
)) {
486 ret
= split_huge_page(page
);
491 /* split failed: leave it on the list */
498 list_del_init(&info
->shrinklist
);
503 spin_lock(&sbinfo
->shrinklist_lock
);
504 list_splice_tail(&list
, &sbinfo
->shrinklist
);
505 sbinfo
->shrinklist_len
-= removed
;
506 spin_unlock(&sbinfo
->shrinklist_lock
);
511 static long shmem_unused_huge_scan(struct super_block
*sb
,
512 struct shrink_control
*sc
)
514 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
516 if (!READ_ONCE(sbinfo
->shrinklist_len
))
519 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
522 static long shmem_unused_huge_count(struct super_block
*sb
,
523 struct shrink_control
*sc
)
525 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
526 return READ_ONCE(sbinfo
->shrinklist_len
);
528 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
530 #define shmem_huge SHMEM_HUGE_DENY
532 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
533 struct shrink_control
*sc
, unsigned long nr_to_split
)
537 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
540 * Like add_to_page_cache_locked, but error if expected item has gone.
542 static int shmem_add_to_page_cache(struct page
*page
,
543 struct address_space
*mapping
,
544 pgoff_t index
, void *expected
)
546 int error
, nr
= hpage_nr_pages(page
);
548 VM_BUG_ON_PAGE(PageTail(page
), page
);
549 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
550 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
551 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
552 VM_BUG_ON(expected
&& PageTransHuge(page
));
554 page_ref_add(page
, nr
);
555 page
->mapping
= mapping
;
558 spin_lock_irq(&mapping
->tree_lock
);
559 if (PageTransHuge(page
)) {
560 void __rcu
**results
;
565 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
566 &results
, &idx
, index
, 1) &&
567 idx
< index
+ HPAGE_PMD_NR
) {
572 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
573 error
= radix_tree_insert(&mapping
->page_tree
,
574 index
+ i
, page
+ i
);
577 count_vm_event(THP_FILE_ALLOC
);
579 } else if (!expected
) {
580 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
582 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
587 mapping
->nrpages
+= nr
;
588 if (PageTransHuge(page
))
589 __inc_node_page_state(page
, NR_SHMEM_THPS
);
590 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
591 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
592 spin_unlock_irq(&mapping
->tree_lock
);
594 page
->mapping
= NULL
;
595 spin_unlock_irq(&mapping
->tree_lock
);
596 page_ref_sub(page
, nr
);
602 * Like delete_from_page_cache, but substitutes swap for page.
604 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
606 struct address_space
*mapping
= page
->mapping
;
609 VM_BUG_ON_PAGE(PageCompound(page
), page
);
611 spin_lock_irq(&mapping
->tree_lock
);
612 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
613 page
->mapping
= NULL
;
615 __dec_node_page_state(page
, NR_FILE_PAGES
);
616 __dec_node_page_state(page
, NR_SHMEM
);
617 spin_unlock_irq(&mapping
->tree_lock
);
623 * Remove swap entry from radix tree, free the swap and its page cache.
625 static int shmem_free_swap(struct address_space
*mapping
,
626 pgoff_t index
, void *radswap
)
630 spin_lock_irq(&mapping
->tree_lock
);
631 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
632 spin_unlock_irq(&mapping
->tree_lock
);
635 free_swap_and_cache(radix_to_swp_entry(radswap
));
640 * Determine (in bytes) how many of the shmem object's pages mapped by the
641 * given offsets are swapped out.
643 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
644 * as long as the inode doesn't go away and racy results are not a problem.
646 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
647 pgoff_t start
, pgoff_t end
)
649 struct radix_tree_iter iter
;
652 unsigned long swapped
= 0;
656 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
657 if (iter
.index
>= end
)
660 page
= radix_tree_deref_slot(slot
);
662 if (radix_tree_deref_retry(page
)) {
663 slot
= radix_tree_iter_retry(&iter
);
667 if (radix_tree_exceptional_entry(page
))
670 if (need_resched()) {
671 slot
= radix_tree_iter_resume(slot
, &iter
);
678 return swapped
<< PAGE_SHIFT
;
682 * Determine (in bytes) how many of the shmem object's pages mapped by the
683 * given vma is swapped out.
685 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
686 * as long as the inode doesn't go away and racy results are not a problem.
688 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
690 struct inode
*inode
= file_inode(vma
->vm_file
);
691 struct shmem_inode_info
*info
= SHMEM_I(inode
);
692 struct address_space
*mapping
= inode
->i_mapping
;
693 unsigned long swapped
;
695 /* Be careful as we don't hold info->lock */
696 swapped
= READ_ONCE(info
->swapped
);
699 * The easier cases are when the shmem object has nothing in swap, or
700 * the vma maps it whole. Then we can simply use the stats that we
706 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
707 return swapped
<< PAGE_SHIFT
;
709 /* Here comes the more involved part */
710 return shmem_partial_swap_usage(mapping
,
711 linear_page_index(vma
, vma
->vm_start
),
712 linear_page_index(vma
, vma
->vm_end
));
716 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
718 void shmem_unlock_mapping(struct address_space
*mapping
)
721 pgoff_t indices
[PAGEVEC_SIZE
];
724 pagevec_init(&pvec
, 0);
726 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
728 while (!mapping_unevictable(mapping
)) {
730 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
731 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
733 pvec
.nr
= find_get_entries(mapping
, index
,
734 PAGEVEC_SIZE
, pvec
.pages
, indices
);
737 index
= indices
[pvec
.nr
- 1] + 1;
738 pagevec_remove_exceptionals(&pvec
);
739 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
740 pagevec_release(&pvec
);
746 * Remove range of pages and swap entries from radix tree, and free them.
747 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
749 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
752 struct address_space
*mapping
= inode
->i_mapping
;
753 struct shmem_inode_info
*info
= SHMEM_I(inode
);
754 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
755 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
756 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
757 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
759 pgoff_t indices
[PAGEVEC_SIZE
];
760 long nr_swaps_freed
= 0;
765 end
= -1; /* unsigned, so actually very big */
767 pagevec_init(&pvec
, 0);
769 while (index
< end
) {
770 pvec
.nr
= find_get_entries(mapping
, index
,
771 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
772 pvec
.pages
, indices
);
775 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
776 struct page
*page
= pvec
.pages
[i
];
782 if (radix_tree_exceptional_entry(page
)) {
785 nr_swaps_freed
+= !shmem_free_swap(mapping
,
790 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
792 if (!trylock_page(page
))
795 if (PageTransTail(page
)) {
796 /* Middle of THP: zero out the page */
797 clear_highpage(page
);
800 } else if (PageTransHuge(page
)) {
801 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
803 * Range ends in the middle of THP:
806 clear_highpage(page
);
810 index
+= HPAGE_PMD_NR
- 1;
811 i
+= HPAGE_PMD_NR
- 1;
814 if (!unfalloc
|| !PageUptodate(page
)) {
815 VM_BUG_ON_PAGE(PageTail(page
), page
);
816 if (page_mapping(page
) == mapping
) {
817 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
818 truncate_inode_page(mapping
, page
);
823 pagevec_remove_exceptionals(&pvec
);
824 pagevec_release(&pvec
);
830 struct page
*page
= NULL
;
831 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
833 unsigned int top
= PAGE_SIZE
;
838 zero_user_segment(page
, partial_start
, top
);
839 set_page_dirty(page
);
845 struct page
*page
= NULL
;
846 shmem_getpage(inode
, end
, &page
, SGP_READ
);
848 zero_user_segment(page
, 0, partial_end
);
849 set_page_dirty(page
);
858 while (index
< end
) {
861 pvec
.nr
= find_get_entries(mapping
, index
,
862 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
863 pvec
.pages
, indices
);
865 /* If all gone or hole-punch or unfalloc, we're done */
866 if (index
== start
|| end
!= -1)
868 /* But if truncating, restart to make sure all gone */
872 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
873 struct page
*page
= pvec
.pages
[i
];
879 if (radix_tree_exceptional_entry(page
)) {
882 if (shmem_free_swap(mapping
, index
, page
)) {
883 /* Swap was replaced by page: retry */
893 if (PageTransTail(page
)) {
894 /* Middle of THP: zero out the page */
895 clear_highpage(page
);
898 * Partial thp truncate due 'start' in middle
899 * of THP: don't need to look on these pages
900 * again on !pvec.nr restart.
902 if (index
!= round_down(end
, HPAGE_PMD_NR
))
905 } else if (PageTransHuge(page
)) {
906 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
908 * Range ends in the middle of THP:
911 clear_highpage(page
);
915 index
+= HPAGE_PMD_NR
- 1;
916 i
+= HPAGE_PMD_NR
- 1;
919 if (!unfalloc
|| !PageUptodate(page
)) {
920 VM_BUG_ON_PAGE(PageTail(page
), page
);
921 if (page_mapping(page
) == mapping
) {
922 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
923 truncate_inode_page(mapping
, page
);
925 /* Page was replaced by swap: retry */
933 pagevec_remove_exceptionals(&pvec
);
934 pagevec_release(&pvec
);
938 spin_lock_irq(&info
->lock
);
939 info
->swapped
-= nr_swaps_freed
;
940 shmem_recalc_inode(inode
);
941 spin_unlock_irq(&info
->lock
);
944 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
946 shmem_undo_range(inode
, lstart
, lend
, false);
947 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
949 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
951 static int shmem_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
954 struct inode
*inode
= dentry
->d_inode
;
955 struct shmem_inode_info
*info
= SHMEM_I(inode
);
957 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
958 spin_lock_irq(&info
->lock
);
959 shmem_recalc_inode(inode
);
960 spin_unlock_irq(&info
->lock
);
962 generic_fillattr(inode
, stat
);
966 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
968 struct inode
*inode
= d_inode(dentry
);
969 struct shmem_inode_info
*info
= SHMEM_I(inode
);
970 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
973 error
= setattr_prepare(dentry
, attr
);
977 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
978 loff_t oldsize
= inode
->i_size
;
979 loff_t newsize
= attr
->ia_size
;
981 /* protected by i_mutex */
982 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
983 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
986 if (newsize
!= oldsize
) {
987 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
991 i_size_write(inode
, newsize
);
992 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
994 if (newsize
<= oldsize
) {
995 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
996 if (oldsize
> holebegin
)
997 unmap_mapping_range(inode
->i_mapping
,
1000 shmem_truncate_range(inode
,
1001 newsize
, (loff_t
)-1);
1002 /* unmap again to remove racily COWed private pages */
1003 if (oldsize
> holebegin
)
1004 unmap_mapping_range(inode
->i_mapping
,
1008 * Part of the huge page can be beyond i_size: subject
1009 * to shrink under memory pressure.
1011 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1012 spin_lock(&sbinfo
->shrinklist_lock
);
1013 if (list_empty(&info
->shrinklist
)) {
1014 list_add_tail(&info
->shrinklist
,
1015 &sbinfo
->shrinklist
);
1016 sbinfo
->shrinklist_len
++;
1018 spin_unlock(&sbinfo
->shrinklist_lock
);
1023 setattr_copy(inode
, attr
);
1024 if (attr
->ia_valid
& ATTR_MODE
)
1025 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1029 static void shmem_evict_inode(struct inode
*inode
)
1031 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1032 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1034 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1035 shmem_unacct_size(info
->flags
, inode
->i_size
);
1037 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1038 if (!list_empty(&info
->shrinklist
)) {
1039 spin_lock(&sbinfo
->shrinklist_lock
);
1040 if (!list_empty(&info
->shrinklist
)) {
1041 list_del_init(&info
->shrinklist
);
1042 sbinfo
->shrinklist_len
--;
1044 spin_unlock(&sbinfo
->shrinklist_lock
);
1046 if (!list_empty(&info
->swaplist
)) {
1047 mutex_lock(&shmem_swaplist_mutex
);
1048 list_del_init(&info
->swaplist
);
1049 mutex_unlock(&shmem_swaplist_mutex
);
1053 simple_xattrs_free(&info
->xattrs
);
1054 WARN_ON(inode
->i_blocks
);
1055 shmem_free_inode(inode
->i_sb
);
1059 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1061 struct radix_tree_iter iter
;
1063 unsigned long found
= -1;
1064 unsigned int checked
= 0;
1067 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1068 if (*slot
== item
) {
1073 if ((checked
% 4096) != 0)
1075 slot
= radix_tree_iter_resume(slot
, &iter
);
1084 * If swap found in inode, free it and move page from swapcache to filecache.
1086 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1087 swp_entry_t swap
, struct page
**pagep
)
1089 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1095 radswap
= swp_to_radix_entry(swap
);
1096 index
= find_swap_entry(&mapping
->page_tree
, radswap
);
1098 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1101 * Move _head_ to start search for next from here.
1102 * But be careful: shmem_evict_inode checks list_empty without taking
1103 * mutex, and there's an instant in list_move_tail when info->swaplist
1104 * would appear empty, if it were the only one on shmem_swaplist.
1106 if (shmem_swaplist
.next
!= &info
->swaplist
)
1107 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1109 gfp
= mapping_gfp_mask(mapping
);
1110 if (shmem_should_replace_page(*pagep
, gfp
)) {
1111 mutex_unlock(&shmem_swaplist_mutex
);
1112 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1113 mutex_lock(&shmem_swaplist_mutex
);
1115 * We needed to drop mutex to make that restrictive page
1116 * allocation, but the inode might have been freed while we
1117 * dropped it: although a racing shmem_evict_inode() cannot
1118 * complete without emptying the radix_tree, our page lock
1119 * on this swapcache page is not enough to prevent that -
1120 * free_swap_and_cache() of our swap entry will only
1121 * trylock_page(), removing swap from radix_tree whatever.
1123 * We must not proceed to shmem_add_to_page_cache() if the
1124 * inode has been freed, but of course we cannot rely on
1125 * inode or mapping or info to check that. However, we can
1126 * safely check if our swap entry is still in use (and here
1127 * it can't have got reused for another page): if it's still
1128 * in use, then the inode cannot have been freed yet, and we
1129 * can safely proceed (if it's no longer in use, that tells
1130 * nothing about the inode, but we don't need to unuse swap).
1132 if (!page_swapcount(*pagep
))
1137 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1138 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1139 * beneath us (pagelock doesn't help until the page is in pagecache).
1142 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1144 if (error
!= -ENOMEM
) {
1146 * Truncation and eviction use free_swap_and_cache(), which
1147 * only does trylock page: if we raced, best clean up here.
1149 delete_from_swap_cache(*pagep
);
1150 set_page_dirty(*pagep
);
1152 spin_lock_irq(&info
->lock
);
1154 spin_unlock_irq(&info
->lock
);
1162 * Search through swapped inodes to find and replace swap by page.
1164 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1166 struct list_head
*this, *next
;
1167 struct shmem_inode_info
*info
;
1168 struct mem_cgroup
*memcg
;
1172 * There's a faint possibility that swap page was replaced before
1173 * caller locked it: caller will come back later with the right page.
1175 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1179 * Charge page using GFP_KERNEL while we can wait, before taking
1180 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1181 * Charged back to the user (not to caller) when swap account is used.
1183 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1187 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1190 mutex_lock(&shmem_swaplist_mutex
);
1191 list_for_each_safe(this, next
, &shmem_swaplist
) {
1192 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1194 error
= shmem_unuse_inode(info
, swap
, &page
);
1196 list_del_init(&info
->swaplist
);
1198 if (error
!= -EAGAIN
)
1200 /* found nothing in this: move on to search the next */
1202 mutex_unlock(&shmem_swaplist_mutex
);
1205 if (error
!= -ENOMEM
)
1207 mem_cgroup_cancel_charge(page
, memcg
, false);
1209 mem_cgroup_commit_charge(page
, memcg
, true, false);
1217 * Move the page from the page cache to the swap cache.
1219 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1221 struct shmem_inode_info
*info
;
1222 struct address_space
*mapping
;
1223 struct inode
*inode
;
1227 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1228 BUG_ON(!PageLocked(page
));
1229 mapping
= page
->mapping
;
1230 index
= page
->index
;
1231 inode
= mapping
->host
;
1232 info
= SHMEM_I(inode
);
1233 if (info
->flags
& VM_LOCKED
)
1235 if (!total_swap_pages
)
1239 * Our capabilities prevent regular writeback or sync from ever calling
1240 * shmem_writepage; but a stacking filesystem might use ->writepage of
1241 * its underlying filesystem, in which case tmpfs should write out to
1242 * swap only in response to memory pressure, and not for the writeback
1245 if (!wbc
->for_reclaim
) {
1246 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1251 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1252 * value into swapfile.c, the only way we can correctly account for a
1253 * fallocated page arriving here is now to initialize it and write it.
1255 * That's okay for a page already fallocated earlier, but if we have
1256 * not yet completed the fallocation, then (a) we want to keep track
1257 * of this page in case we have to undo it, and (b) it may not be a
1258 * good idea to continue anyway, once we're pushing into swap. So
1259 * reactivate the page, and let shmem_fallocate() quit when too many.
1261 if (!PageUptodate(page
)) {
1262 if (inode
->i_private
) {
1263 struct shmem_falloc
*shmem_falloc
;
1264 spin_lock(&inode
->i_lock
);
1265 shmem_falloc
= inode
->i_private
;
1267 !shmem_falloc
->waitq
&&
1268 index
>= shmem_falloc
->start
&&
1269 index
< shmem_falloc
->next
)
1270 shmem_falloc
->nr_unswapped
++;
1272 shmem_falloc
= NULL
;
1273 spin_unlock(&inode
->i_lock
);
1277 clear_highpage(page
);
1278 flush_dcache_page(page
);
1279 SetPageUptodate(page
);
1282 swap
= get_swap_page();
1286 if (mem_cgroup_try_charge_swap(page
, swap
))
1290 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1291 * if it's not already there. Do it now before the page is
1292 * moved to swap cache, when its pagelock no longer protects
1293 * the inode from eviction. But don't unlock the mutex until
1294 * we've incremented swapped, because shmem_unuse_inode() will
1295 * prune a !swapped inode from the swaplist under this mutex.
1297 mutex_lock(&shmem_swaplist_mutex
);
1298 if (list_empty(&info
->swaplist
))
1299 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1301 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1302 spin_lock_irq(&info
->lock
);
1303 shmem_recalc_inode(inode
);
1305 spin_unlock_irq(&info
->lock
);
1307 swap_shmem_alloc(swap
);
1308 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1310 mutex_unlock(&shmem_swaplist_mutex
);
1311 BUG_ON(page_mapped(page
));
1312 swap_writepage(page
, wbc
);
1316 mutex_unlock(&shmem_swaplist_mutex
);
1318 swapcache_free(swap
);
1320 set_page_dirty(page
);
1321 if (wbc
->for_reclaim
)
1322 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1327 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1328 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1332 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1333 return; /* show nothing */
1335 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1337 seq_printf(seq
, ",mpol=%s", buffer
);
1340 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1342 struct mempolicy
*mpol
= NULL
;
1344 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1345 mpol
= sbinfo
->mpol
;
1347 spin_unlock(&sbinfo
->stat_lock
);
1351 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1352 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1355 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1359 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1361 #define vm_policy vm_private_data
1364 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1365 struct shmem_inode_info
*info
, pgoff_t index
)
1367 /* Create a pseudo vma that just contains the policy */
1369 /* Bias interleave by inode number to distribute better across nodes */
1370 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1372 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1375 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1377 /* Drop reference taken by mpol_shared_policy_lookup() */
1378 mpol_cond_put(vma
->vm_policy
);
1381 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1382 struct shmem_inode_info
*info
, pgoff_t index
)
1384 struct vm_area_struct pvma
;
1387 shmem_pseudo_vma_init(&pvma
, info
, index
);
1388 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1389 shmem_pseudo_vma_destroy(&pvma
);
1394 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1395 struct shmem_inode_info
*info
, pgoff_t index
)
1397 struct vm_area_struct pvma
;
1398 struct inode
*inode
= &info
->vfs_inode
;
1399 struct address_space
*mapping
= inode
->i_mapping
;
1400 pgoff_t idx
, hindex
;
1401 void __rcu
**results
;
1404 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1407 hindex
= round_down(index
, HPAGE_PMD_NR
);
1409 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1410 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1416 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1417 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1418 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1419 shmem_pseudo_vma_destroy(&pvma
);
1421 prep_transhuge_page(page
);
1425 static struct page
*shmem_alloc_page(gfp_t gfp
,
1426 struct shmem_inode_info
*info
, pgoff_t index
)
1428 struct vm_area_struct pvma
;
1431 shmem_pseudo_vma_init(&pvma
, info
, index
);
1432 page
= alloc_page_vma(gfp
, &pvma
, 0);
1433 shmem_pseudo_vma_destroy(&pvma
);
1438 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1439 struct shmem_inode_info
*info
, struct shmem_sb_info
*sbinfo
,
1440 pgoff_t index
, bool huge
)
1446 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1448 nr
= huge
? HPAGE_PMD_NR
: 1;
1450 if (shmem_acct_block(info
->flags
, nr
))
1452 if (sbinfo
->max_blocks
) {
1453 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1454 sbinfo
->max_blocks
- nr
) > 0)
1456 percpu_counter_add(&sbinfo
->used_blocks
, nr
);
1460 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1462 page
= shmem_alloc_page(gfp
, info
, index
);
1464 __SetPageLocked(page
);
1465 __SetPageSwapBacked(page
);
1470 if (sbinfo
->max_blocks
)
1471 percpu_counter_add(&sbinfo
->used_blocks
, -nr
);
1473 shmem_unacct_blocks(info
->flags
, nr
);
1475 return ERR_PTR(err
);
1479 * When a page is moved from swapcache to shmem filecache (either by the
1480 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1481 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1482 * ignorance of the mapping it belongs to. If that mapping has special
1483 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1484 * we may need to copy to a suitable page before moving to filecache.
1486 * In a future release, this may well be extended to respect cpuset and
1487 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1488 * but for now it is a simple matter of zone.
1490 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1492 return page_zonenum(page
) > gfp_zone(gfp
);
1495 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1496 struct shmem_inode_info
*info
, pgoff_t index
)
1498 struct page
*oldpage
, *newpage
;
1499 struct address_space
*swap_mapping
;
1504 swap_index
= page_private(oldpage
);
1505 swap_mapping
= page_mapping(oldpage
);
1508 * We have arrived here because our zones are constrained, so don't
1509 * limit chance of success by further cpuset and node constraints.
1511 gfp
&= ~GFP_CONSTRAINT_MASK
;
1512 newpage
= shmem_alloc_page(gfp
, info
, index
);
1517 copy_highpage(newpage
, oldpage
);
1518 flush_dcache_page(newpage
);
1520 __SetPageLocked(newpage
);
1521 __SetPageSwapBacked(newpage
);
1522 SetPageUptodate(newpage
);
1523 set_page_private(newpage
, swap_index
);
1524 SetPageSwapCache(newpage
);
1527 * Our caller will very soon move newpage out of swapcache, but it's
1528 * a nice clean interface for us to replace oldpage by newpage there.
1530 spin_lock_irq(&swap_mapping
->tree_lock
);
1531 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1534 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1535 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1537 spin_unlock_irq(&swap_mapping
->tree_lock
);
1539 if (unlikely(error
)) {
1541 * Is this possible? I think not, now that our callers check
1542 * both PageSwapCache and page_private after getting page lock;
1543 * but be defensive. Reverse old to newpage for clear and free.
1547 mem_cgroup_migrate(oldpage
, newpage
);
1548 lru_cache_add_anon(newpage
);
1552 ClearPageSwapCache(oldpage
);
1553 set_page_private(oldpage
, 0);
1555 unlock_page(oldpage
);
1562 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1564 * If we allocate a new one we do not mark it dirty. That's up to the
1565 * vm. If we swap it in we mark it dirty since we also free the swap
1566 * entry since a page cannot live in both the swap and page cache.
1568 * fault_mm and fault_type are only supplied by shmem_fault:
1569 * otherwise they are NULL.
1571 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1572 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1573 struct mm_struct
*fault_mm
, int *fault_type
)
1575 struct address_space
*mapping
= inode
->i_mapping
;
1576 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1577 struct shmem_sb_info
*sbinfo
;
1578 struct mm_struct
*charge_mm
;
1579 struct mem_cgroup
*memcg
;
1582 enum sgp_type sgp_huge
= sgp
;
1583 pgoff_t hindex
= index
;
1588 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1590 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1594 page
= find_lock_entry(mapping
, index
);
1595 if (radix_tree_exceptional_entry(page
)) {
1596 swap
= radix_to_swp_entry(page
);
1600 if (sgp
<= SGP_CACHE
&&
1601 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1606 if (page
&& sgp
== SGP_WRITE
)
1607 mark_page_accessed(page
);
1609 /* fallocated page? */
1610 if (page
&& !PageUptodate(page
)) {
1611 if (sgp
!= SGP_READ
)
1617 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1623 * Fast cache lookup did not find it:
1624 * bring it back from swap or allocate.
1626 sbinfo
= SHMEM_SB(inode
->i_sb
);
1627 charge_mm
= fault_mm
? : current
->mm
;
1630 /* Look it up and read it in.. */
1631 page
= lookup_swap_cache(swap
);
1633 /* Or update major stats only when swapin succeeds?? */
1635 *fault_type
|= VM_FAULT_MAJOR
;
1636 count_vm_event(PGMAJFAULT
);
1637 mem_cgroup_count_vm_event(fault_mm
, PGMAJFAULT
);
1639 /* Here we actually start the io */
1640 page
= shmem_swapin(swap
, gfp
, info
, index
);
1647 /* We have to do this with page locked to prevent races */
1649 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1650 !shmem_confirm_swap(mapping
, index
, swap
)) {
1651 error
= -EEXIST
; /* try again */
1654 if (!PageUptodate(page
)) {
1658 wait_on_page_writeback(page
);
1660 if (shmem_should_replace_page(page
, gfp
)) {
1661 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1666 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1669 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1670 swp_to_radix_entry(swap
));
1672 * We already confirmed swap under page lock, and make
1673 * no memory allocation here, so usually no possibility
1674 * of error; but free_swap_and_cache() only trylocks a
1675 * page, so it is just possible that the entry has been
1676 * truncated or holepunched since swap was confirmed.
1677 * shmem_undo_range() will have done some of the
1678 * unaccounting, now delete_from_swap_cache() will do
1680 * Reset swap.val? No, leave it so "failed" goes back to
1681 * "repeat": reading a hole and writing should succeed.
1684 mem_cgroup_cancel_charge(page
, memcg
, false);
1685 delete_from_swap_cache(page
);
1691 mem_cgroup_commit_charge(page
, memcg
, true, false);
1693 spin_lock_irq(&info
->lock
);
1695 shmem_recalc_inode(inode
);
1696 spin_unlock_irq(&info
->lock
);
1698 if (sgp
== SGP_WRITE
)
1699 mark_page_accessed(page
);
1701 delete_from_swap_cache(page
);
1702 set_page_dirty(page
);
1706 /* shmem_symlink() */
1707 if (mapping
->a_ops
!= &shmem_aops
)
1709 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1711 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1713 switch (sbinfo
->huge
) {
1716 case SHMEM_HUGE_NEVER
:
1718 case SHMEM_HUGE_WITHIN_SIZE
:
1719 off
= round_up(index
, HPAGE_PMD_NR
);
1720 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1721 if (i_size
>= HPAGE_PMD_SIZE
&&
1722 i_size
>> PAGE_SHIFT
>= off
)
1725 case SHMEM_HUGE_ADVISE
:
1726 if (sgp_huge
== SGP_HUGE
)
1728 /* TODO: implement fadvise() hints */
1733 page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1736 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, info
, sbinfo
,
1741 error
= PTR_ERR(page
);
1743 if (error
!= -ENOSPC
)
1746 * Try to reclaim some spece by splitting a huge page
1747 * beyond i_size on the filesystem.
1751 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1752 if (ret
== SHRINK_STOP
)
1760 if (PageTransHuge(page
))
1761 hindex
= round_down(index
, HPAGE_PMD_NR
);
1765 if (sgp
== SGP_WRITE
)
1766 __SetPageReferenced(page
);
1768 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1769 PageTransHuge(page
));
1772 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1773 compound_order(page
));
1775 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1777 radix_tree_preload_end();
1780 mem_cgroup_cancel_charge(page
, memcg
,
1781 PageTransHuge(page
));
1784 mem_cgroup_commit_charge(page
, memcg
, false,
1785 PageTransHuge(page
));
1786 lru_cache_add_anon(page
);
1788 spin_lock_irq(&info
->lock
);
1789 info
->alloced
+= 1 << compound_order(page
);
1790 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1791 shmem_recalc_inode(inode
);
1792 spin_unlock_irq(&info
->lock
);
1795 if (PageTransHuge(page
) &&
1796 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1797 hindex
+ HPAGE_PMD_NR
- 1) {
1799 * Part of the huge page is beyond i_size: subject
1800 * to shrink under memory pressure.
1802 spin_lock(&sbinfo
->shrinklist_lock
);
1803 if (list_empty(&info
->shrinklist
)) {
1804 list_add_tail(&info
->shrinklist
,
1805 &sbinfo
->shrinklist
);
1806 sbinfo
->shrinklist_len
++;
1808 spin_unlock(&sbinfo
->shrinklist_lock
);
1812 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1814 if (sgp
== SGP_FALLOC
)
1818 * Let SGP_WRITE caller clear ends if write does not fill page;
1819 * but SGP_FALLOC on a page fallocated earlier must initialize
1820 * it now, lest undo on failure cancel our earlier guarantee.
1822 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1823 struct page
*head
= compound_head(page
);
1826 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1827 clear_highpage(head
+ i
);
1828 flush_dcache_page(head
+ i
);
1830 SetPageUptodate(head
);
1834 /* Perhaps the file has been truncated since we checked */
1835 if (sgp
<= SGP_CACHE
&&
1836 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1838 ClearPageDirty(page
);
1839 delete_from_page_cache(page
);
1840 spin_lock_irq(&info
->lock
);
1841 shmem_recalc_inode(inode
);
1842 spin_unlock_irq(&info
->lock
);
1847 *pagep
= page
+ index
- hindex
;
1854 if (sbinfo
->max_blocks
)
1855 percpu_counter_sub(&sbinfo
->used_blocks
,
1856 1 << compound_order(page
));
1857 shmem_unacct_blocks(info
->flags
, 1 << compound_order(page
));
1859 if (PageTransHuge(page
)) {
1865 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1872 if (error
== -ENOSPC
&& !once
++) {
1873 spin_lock_irq(&info
->lock
);
1874 shmem_recalc_inode(inode
);
1875 spin_unlock_irq(&info
->lock
);
1878 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1884 * This is like autoremove_wake_function, but it removes the wait queue
1885 * entry unconditionally - even if something else had already woken the
1888 static int synchronous_wake_function(wait_queue_t
*wait
, unsigned mode
, int sync
, void *key
)
1890 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1891 list_del_init(&wait
->task_list
);
1895 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1897 struct inode
*inode
= file_inode(vma
->vm_file
);
1898 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1901 int ret
= VM_FAULT_LOCKED
;
1904 * Trinity finds that probing a hole which tmpfs is punching can
1905 * prevent the hole-punch from ever completing: which in turn
1906 * locks writers out with its hold on i_mutex. So refrain from
1907 * faulting pages into the hole while it's being punched. Although
1908 * shmem_undo_range() does remove the additions, it may be unable to
1909 * keep up, as each new page needs its own unmap_mapping_range() call,
1910 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1912 * It does not matter if we sometimes reach this check just before the
1913 * hole-punch begins, so that one fault then races with the punch:
1914 * we just need to make racing faults a rare case.
1916 * The implementation below would be much simpler if we just used a
1917 * standard mutex or completion: but we cannot take i_mutex in fault,
1918 * and bloating every shmem inode for this unlikely case would be sad.
1920 if (unlikely(inode
->i_private
)) {
1921 struct shmem_falloc
*shmem_falloc
;
1923 spin_lock(&inode
->i_lock
);
1924 shmem_falloc
= inode
->i_private
;
1926 shmem_falloc
->waitq
&&
1927 vmf
->pgoff
>= shmem_falloc
->start
&&
1928 vmf
->pgoff
< shmem_falloc
->next
) {
1929 wait_queue_head_t
*shmem_falloc_waitq
;
1930 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1932 ret
= VM_FAULT_NOPAGE
;
1933 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1934 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1935 /* It's polite to up mmap_sem if we can */
1936 up_read(&vma
->vm_mm
->mmap_sem
);
1937 ret
= VM_FAULT_RETRY
;
1940 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1941 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1942 TASK_UNINTERRUPTIBLE
);
1943 spin_unlock(&inode
->i_lock
);
1947 * shmem_falloc_waitq points into the shmem_fallocate()
1948 * stack of the hole-punching task: shmem_falloc_waitq
1949 * is usually invalid by the time we reach here, but
1950 * finish_wait() does not dereference it in that case;
1951 * though i_lock needed lest racing with wake_up_all().
1953 spin_lock(&inode
->i_lock
);
1954 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1955 spin_unlock(&inode
->i_lock
);
1958 spin_unlock(&inode
->i_lock
);
1962 if (vma
->vm_flags
& VM_HUGEPAGE
)
1964 else if (vma
->vm_flags
& VM_NOHUGEPAGE
)
1967 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1968 gfp
, vma
->vm_mm
, &ret
);
1970 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1974 unsigned long shmem_get_unmapped_area(struct file
*file
,
1975 unsigned long uaddr
, unsigned long len
,
1976 unsigned long pgoff
, unsigned long flags
)
1978 unsigned long (*get_area
)(struct file
*,
1979 unsigned long, unsigned long, unsigned long, unsigned long);
1981 unsigned long offset
;
1982 unsigned long inflated_len
;
1983 unsigned long inflated_addr
;
1984 unsigned long inflated_offset
;
1986 if (len
> TASK_SIZE
)
1989 get_area
= current
->mm
->get_unmapped_area
;
1990 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
1992 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1994 if (IS_ERR_VALUE(addr
))
1996 if (addr
& ~PAGE_MASK
)
1998 if (addr
> TASK_SIZE
- len
)
2001 if (shmem_huge
== SHMEM_HUGE_DENY
)
2003 if (len
< HPAGE_PMD_SIZE
)
2005 if (flags
& MAP_FIXED
)
2008 * Our priority is to support MAP_SHARED mapped hugely;
2009 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2010 * But if caller specified an address hint, respect that as before.
2015 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2016 struct super_block
*sb
;
2019 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2020 sb
= file_inode(file
)->i_sb
;
2023 * Called directly from mm/mmap.c, or drivers/char/mem.c
2024 * for "/dev/zero", to create a shared anonymous object.
2026 if (IS_ERR(shm_mnt
))
2028 sb
= shm_mnt
->mnt_sb
;
2030 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2034 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2035 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2037 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2040 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2041 if (inflated_len
> TASK_SIZE
)
2043 if (inflated_len
< len
)
2046 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2047 if (IS_ERR_VALUE(inflated_addr
))
2049 if (inflated_addr
& ~PAGE_MASK
)
2052 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2053 inflated_addr
+= offset
- inflated_offset
;
2054 if (inflated_offset
> offset
)
2055 inflated_addr
+= HPAGE_PMD_SIZE
;
2057 if (inflated_addr
> TASK_SIZE
- len
)
2059 return inflated_addr
;
2063 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2065 struct inode
*inode
= file_inode(vma
->vm_file
);
2066 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2069 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2072 struct inode
*inode
= file_inode(vma
->vm_file
);
2075 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2076 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2080 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2082 struct inode
*inode
= file_inode(file
);
2083 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2084 int retval
= -ENOMEM
;
2086 spin_lock_irq(&info
->lock
);
2087 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2088 if (!user_shm_lock(inode
->i_size
, user
))
2090 info
->flags
|= VM_LOCKED
;
2091 mapping_set_unevictable(file
->f_mapping
);
2093 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2094 user_shm_unlock(inode
->i_size
, user
);
2095 info
->flags
&= ~VM_LOCKED
;
2096 mapping_clear_unevictable(file
->f_mapping
);
2101 spin_unlock_irq(&info
->lock
);
2105 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2107 file_accessed(file
);
2108 vma
->vm_ops
= &shmem_vm_ops
;
2109 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2110 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2111 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2112 khugepaged_enter(vma
, vma
->vm_flags
);
2117 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2118 umode_t mode
, dev_t dev
, unsigned long flags
)
2120 struct inode
*inode
;
2121 struct shmem_inode_info
*info
;
2122 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2124 if (shmem_reserve_inode(sb
))
2127 inode
= new_inode(sb
);
2129 inode
->i_ino
= get_next_ino();
2130 inode_init_owner(inode
, dir
, mode
);
2131 inode
->i_blocks
= 0;
2132 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2133 inode
->i_generation
= get_seconds();
2134 info
= SHMEM_I(inode
);
2135 memset(info
, 0, (char *)inode
- (char *)info
);
2136 spin_lock_init(&info
->lock
);
2137 info
->seals
= F_SEAL_SEAL
;
2138 info
->flags
= flags
& VM_NORESERVE
;
2139 INIT_LIST_HEAD(&info
->shrinklist
);
2140 INIT_LIST_HEAD(&info
->swaplist
);
2141 simple_xattrs_init(&info
->xattrs
);
2142 cache_no_acl(inode
);
2144 switch (mode
& S_IFMT
) {
2146 inode
->i_op
= &shmem_special_inode_operations
;
2147 init_special_inode(inode
, mode
, dev
);
2150 inode
->i_mapping
->a_ops
= &shmem_aops
;
2151 inode
->i_op
= &shmem_inode_operations
;
2152 inode
->i_fop
= &shmem_file_operations
;
2153 mpol_shared_policy_init(&info
->policy
,
2154 shmem_get_sbmpol(sbinfo
));
2158 /* Some things misbehave if size == 0 on a directory */
2159 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2160 inode
->i_op
= &shmem_dir_inode_operations
;
2161 inode
->i_fop
= &simple_dir_operations
;
2165 * Must not load anything in the rbtree,
2166 * mpol_free_shared_policy will not be called.
2168 mpol_shared_policy_init(&info
->policy
, NULL
);
2172 shmem_free_inode(sb
);
2176 bool shmem_mapping(struct address_space
*mapping
)
2181 return mapping
->host
->i_sb
->s_op
== &shmem_ops
;
2185 static const struct inode_operations shmem_symlink_inode_operations
;
2186 static const struct inode_operations shmem_short_symlink_operations
;
2188 #ifdef CONFIG_TMPFS_XATTR
2189 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2191 #define shmem_initxattrs NULL
2195 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2196 loff_t pos
, unsigned len
, unsigned flags
,
2197 struct page
**pagep
, void **fsdata
)
2199 struct inode
*inode
= mapping
->host
;
2200 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2201 pgoff_t index
= pos
>> PAGE_SHIFT
;
2203 /* i_mutex is held by caller */
2204 if (unlikely(info
->seals
)) {
2205 if (info
->seals
& F_SEAL_WRITE
)
2207 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2211 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2215 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2216 loff_t pos
, unsigned len
, unsigned copied
,
2217 struct page
*page
, void *fsdata
)
2219 struct inode
*inode
= mapping
->host
;
2221 if (pos
+ copied
> inode
->i_size
)
2222 i_size_write(inode
, pos
+ copied
);
2224 if (!PageUptodate(page
)) {
2225 struct page
*head
= compound_head(page
);
2226 if (PageTransCompound(page
)) {
2229 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2230 if (head
+ i
== page
)
2232 clear_highpage(head
+ i
);
2233 flush_dcache_page(head
+ i
);
2236 if (copied
< PAGE_SIZE
) {
2237 unsigned from
= pos
& (PAGE_SIZE
- 1);
2238 zero_user_segments(page
, 0, from
,
2239 from
+ copied
, PAGE_SIZE
);
2241 SetPageUptodate(head
);
2243 set_page_dirty(page
);
2250 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2252 struct file
*file
= iocb
->ki_filp
;
2253 struct inode
*inode
= file_inode(file
);
2254 struct address_space
*mapping
= inode
->i_mapping
;
2256 unsigned long offset
;
2257 enum sgp_type sgp
= SGP_READ
;
2260 loff_t
*ppos
= &iocb
->ki_pos
;
2263 * Might this read be for a stacking filesystem? Then when reading
2264 * holes of a sparse file, we actually need to allocate those pages,
2265 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2267 if (!iter_is_iovec(to
))
2270 index
= *ppos
>> PAGE_SHIFT
;
2271 offset
= *ppos
& ~PAGE_MASK
;
2274 struct page
*page
= NULL
;
2276 unsigned long nr
, ret
;
2277 loff_t i_size
= i_size_read(inode
);
2279 end_index
= i_size
>> PAGE_SHIFT
;
2280 if (index
> end_index
)
2282 if (index
== end_index
) {
2283 nr
= i_size
& ~PAGE_MASK
;
2288 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2290 if (error
== -EINVAL
)
2295 if (sgp
== SGP_CACHE
)
2296 set_page_dirty(page
);
2301 * We must evaluate after, since reads (unlike writes)
2302 * are called without i_mutex protection against truncate
2305 i_size
= i_size_read(inode
);
2306 end_index
= i_size
>> PAGE_SHIFT
;
2307 if (index
== end_index
) {
2308 nr
= i_size
& ~PAGE_MASK
;
2319 * If users can be writing to this page using arbitrary
2320 * virtual addresses, take care about potential aliasing
2321 * before reading the page on the kernel side.
2323 if (mapping_writably_mapped(mapping
))
2324 flush_dcache_page(page
);
2326 * Mark the page accessed if we read the beginning.
2329 mark_page_accessed(page
);
2331 page
= ZERO_PAGE(0);
2336 * Ok, we have the page, and it's up-to-date, so
2337 * now we can copy it to user space...
2339 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2342 index
+= offset
>> PAGE_SHIFT
;
2343 offset
&= ~PAGE_MASK
;
2346 if (!iov_iter_count(to
))
2355 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2356 file_accessed(file
);
2357 return retval
? retval
: error
;
2361 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2363 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2364 pgoff_t index
, pgoff_t end
, int whence
)
2367 struct pagevec pvec
;
2368 pgoff_t indices
[PAGEVEC_SIZE
];
2372 pagevec_init(&pvec
, 0);
2373 pvec
.nr
= 1; /* start small: we may be there already */
2375 pvec
.nr
= find_get_entries(mapping
, index
,
2376 pvec
.nr
, pvec
.pages
, indices
);
2378 if (whence
== SEEK_DATA
)
2382 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2383 if (index
< indices
[i
]) {
2384 if (whence
== SEEK_HOLE
) {
2390 page
= pvec
.pages
[i
];
2391 if (page
&& !radix_tree_exceptional_entry(page
)) {
2392 if (!PageUptodate(page
))
2396 (page
&& whence
== SEEK_DATA
) ||
2397 (!page
&& whence
== SEEK_HOLE
)) {
2402 pagevec_remove_exceptionals(&pvec
);
2403 pagevec_release(&pvec
);
2404 pvec
.nr
= PAGEVEC_SIZE
;
2410 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2412 struct address_space
*mapping
= file
->f_mapping
;
2413 struct inode
*inode
= mapping
->host
;
2417 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2418 return generic_file_llseek_size(file
, offset
, whence
,
2419 MAX_LFS_FILESIZE
, i_size_read(inode
));
2421 /* We're holding i_mutex so we can access i_size directly */
2425 else if (offset
>= inode
->i_size
)
2428 start
= offset
>> PAGE_SHIFT
;
2429 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2430 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2431 new_offset
<<= PAGE_SHIFT
;
2432 if (new_offset
> offset
) {
2433 if (new_offset
< inode
->i_size
)
2434 offset
= new_offset
;
2435 else if (whence
== SEEK_DATA
)
2438 offset
= inode
->i_size
;
2443 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2444 inode_unlock(inode
);
2449 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2450 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2452 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2453 #define LAST_SCAN 4 /* about 150ms max */
2455 static void shmem_tag_pins(struct address_space
*mapping
)
2457 struct radix_tree_iter iter
;
2466 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2467 page
= radix_tree_deref_slot(slot
);
2468 if (!page
|| radix_tree_exception(page
)) {
2469 if (radix_tree_deref_retry(page
)) {
2470 slot
= radix_tree_iter_retry(&iter
);
2473 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2474 spin_lock_irq(&mapping
->tree_lock
);
2475 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2477 spin_unlock_irq(&mapping
->tree_lock
);
2480 if (need_resched()) {
2481 slot
= radix_tree_iter_resume(slot
, &iter
);
2489 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2490 * via get_user_pages(), drivers might have some pending I/O without any active
2491 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2492 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2493 * them to be dropped.
2494 * The caller must guarantee that no new user will acquire writable references
2495 * to those pages to avoid races.
2497 static int shmem_wait_for_pins(struct address_space
*mapping
)
2499 struct radix_tree_iter iter
;
2505 shmem_tag_pins(mapping
);
2508 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2509 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2513 lru_add_drain_all();
2514 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2519 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2520 start
, SHMEM_TAG_PINNED
) {
2522 page
= radix_tree_deref_slot(slot
);
2523 if (radix_tree_exception(page
)) {
2524 if (radix_tree_deref_retry(page
)) {
2525 slot
= radix_tree_iter_retry(&iter
);
2533 page_count(page
) - page_mapcount(page
) != 1) {
2534 if (scan
< LAST_SCAN
)
2535 goto continue_resched
;
2538 * On the last scan, we clean up all those tags
2539 * we inserted; but make a note that we still
2540 * found pages pinned.
2545 spin_lock_irq(&mapping
->tree_lock
);
2546 radix_tree_tag_clear(&mapping
->page_tree
,
2547 iter
.index
, SHMEM_TAG_PINNED
);
2548 spin_unlock_irq(&mapping
->tree_lock
);
2550 if (need_resched()) {
2551 slot
= radix_tree_iter_resume(slot
, &iter
);
2561 #define F_ALL_SEALS (F_SEAL_SEAL | \
2566 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2568 struct inode
*inode
= file_inode(file
);
2569 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2574 * Sealing allows multiple parties to share a shmem-file but restrict
2575 * access to a specific subset of file operations. Seals can only be
2576 * added, but never removed. This way, mutually untrusted parties can
2577 * share common memory regions with a well-defined policy. A malicious
2578 * peer can thus never perform unwanted operations on a shared object.
2580 * Seals are only supported on special shmem-files and always affect
2581 * the whole underlying inode. Once a seal is set, it may prevent some
2582 * kinds of access to the file. Currently, the following seals are
2584 * SEAL_SEAL: Prevent further seals from being set on this file
2585 * SEAL_SHRINK: Prevent the file from shrinking
2586 * SEAL_GROW: Prevent the file from growing
2587 * SEAL_WRITE: Prevent write access to the file
2589 * As we don't require any trust relationship between two parties, we
2590 * must prevent seals from being removed. Therefore, sealing a file
2591 * only adds a given set of seals to the file, it never touches
2592 * existing seals. Furthermore, the "setting seals"-operation can be
2593 * sealed itself, which basically prevents any further seal from being
2596 * Semantics of sealing are only defined on volatile files. Only
2597 * anonymous shmem files support sealing. More importantly, seals are
2598 * never written to disk. Therefore, there's no plan to support it on
2602 if (file
->f_op
!= &shmem_file_operations
)
2604 if (!(file
->f_mode
& FMODE_WRITE
))
2606 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2611 if (info
->seals
& F_SEAL_SEAL
) {
2616 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2617 error
= mapping_deny_writable(file
->f_mapping
);
2621 error
= shmem_wait_for_pins(file
->f_mapping
);
2623 mapping_allow_writable(file
->f_mapping
);
2628 info
->seals
|= seals
;
2632 inode_unlock(inode
);
2635 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2637 int shmem_get_seals(struct file
*file
)
2639 if (file
->f_op
!= &shmem_file_operations
)
2642 return SHMEM_I(file_inode(file
))->seals
;
2644 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2646 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2652 /* disallow upper 32bit */
2656 error
= shmem_add_seals(file
, arg
);
2659 error
= shmem_get_seals(file
);
2669 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2672 struct inode
*inode
= file_inode(file
);
2673 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2674 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2675 struct shmem_falloc shmem_falloc
;
2676 pgoff_t start
, index
, end
;
2679 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2684 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2685 struct address_space
*mapping
= file
->f_mapping
;
2686 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2687 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2688 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2690 /* protected by i_mutex */
2691 if (info
->seals
& F_SEAL_WRITE
) {
2696 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2697 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2698 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2699 spin_lock(&inode
->i_lock
);
2700 inode
->i_private
= &shmem_falloc
;
2701 spin_unlock(&inode
->i_lock
);
2703 if ((u64
)unmap_end
> (u64
)unmap_start
)
2704 unmap_mapping_range(mapping
, unmap_start
,
2705 1 + unmap_end
- unmap_start
, 0);
2706 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2707 /* No need to unmap again: hole-punching leaves COWed pages */
2709 spin_lock(&inode
->i_lock
);
2710 inode
->i_private
= NULL
;
2711 wake_up_all(&shmem_falloc_waitq
);
2712 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.task_list
));
2713 spin_unlock(&inode
->i_lock
);
2718 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2719 error
= inode_newsize_ok(inode
, offset
+ len
);
2723 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2728 start
= offset
>> PAGE_SHIFT
;
2729 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2730 /* Try to avoid a swapstorm if len is impossible to satisfy */
2731 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2736 shmem_falloc
.waitq
= NULL
;
2737 shmem_falloc
.start
= start
;
2738 shmem_falloc
.next
= start
;
2739 shmem_falloc
.nr_falloced
= 0;
2740 shmem_falloc
.nr_unswapped
= 0;
2741 spin_lock(&inode
->i_lock
);
2742 inode
->i_private
= &shmem_falloc
;
2743 spin_unlock(&inode
->i_lock
);
2745 for (index
= start
; index
< end
; index
++) {
2749 * Good, the fallocate(2) manpage permits EINTR: we may have
2750 * been interrupted because we are using up too much memory.
2752 if (signal_pending(current
))
2754 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2757 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2759 /* Remove the !PageUptodate pages we added */
2760 if (index
> start
) {
2761 shmem_undo_range(inode
,
2762 (loff_t
)start
<< PAGE_SHIFT
,
2763 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2769 * Inform shmem_writepage() how far we have reached.
2770 * No need for lock or barrier: we have the page lock.
2772 shmem_falloc
.next
++;
2773 if (!PageUptodate(page
))
2774 shmem_falloc
.nr_falloced
++;
2777 * If !PageUptodate, leave it that way so that freeable pages
2778 * can be recognized if we need to rollback on error later.
2779 * But set_page_dirty so that memory pressure will swap rather
2780 * than free the pages we are allocating (and SGP_CACHE pages
2781 * might still be clean: we now need to mark those dirty too).
2783 set_page_dirty(page
);
2789 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2790 i_size_write(inode
, offset
+ len
);
2791 inode
->i_ctime
= current_time(inode
);
2793 spin_lock(&inode
->i_lock
);
2794 inode
->i_private
= NULL
;
2795 spin_unlock(&inode
->i_lock
);
2797 inode_unlock(inode
);
2801 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2803 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2805 buf
->f_type
= TMPFS_MAGIC
;
2806 buf
->f_bsize
= PAGE_SIZE
;
2807 buf
->f_namelen
= NAME_MAX
;
2808 if (sbinfo
->max_blocks
) {
2809 buf
->f_blocks
= sbinfo
->max_blocks
;
2811 buf
->f_bfree
= sbinfo
->max_blocks
-
2812 percpu_counter_sum(&sbinfo
->used_blocks
);
2814 if (sbinfo
->max_inodes
) {
2815 buf
->f_files
= sbinfo
->max_inodes
;
2816 buf
->f_ffree
= sbinfo
->free_inodes
;
2818 /* else leave those fields 0 like simple_statfs */
2823 * File creation. Allocate an inode, and we're done..
2826 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2828 struct inode
*inode
;
2829 int error
= -ENOSPC
;
2831 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2833 error
= simple_acl_create(dir
, inode
);
2836 error
= security_inode_init_security(inode
, dir
,
2838 shmem_initxattrs
, NULL
);
2839 if (error
&& error
!= -EOPNOTSUPP
)
2843 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2844 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
2845 d_instantiate(dentry
, inode
);
2846 dget(dentry
); /* Extra count - pin the dentry in core */
2855 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2857 struct inode
*inode
;
2858 int error
= -ENOSPC
;
2860 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
2862 error
= security_inode_init_security(inode
, dir
,
2864 shmem_initxattrs
, NULL
);
2865 if (error
&& error
!= -EOPNOTSUPP
)
2867 error
= simple_acl_create(dir
, inode
);
2870 d_tmpfile(dentry
, inode
);
2878 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
2882 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
2888 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2891 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
2897 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
2899 struct inode
*inode
= d_inode(old_dentry
);
2903 * No ordinary (disk based) filesystem counts links as inodes;
2904 * but each new link needs a new dentry, pinning lowmem, and
2905 * tmpfs dentries cannot be pruned until they are unlinked.
2907 ret
= shmem_reserve_inode(inode
->i_sb
);
2911 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2912 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2914 ihold(inode
); /* New dentry reference */
2915 dget(dentry
); /* Extra pinning count for the created dentry */
2916 d_instantiate(dentry
, inode
);
2921 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
2923 struct inode
*inode
= d_inode(dentry
);
2925 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
2926 shmem_free_inode(inode
->i_sb
);
2928 dir
->i_size
-= BOGO_DIRENT_SIZE
;
2929 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
2931 dput(dentry
); /* Undo the count from "create" - this does all the work */
2935 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2937 if (!simple_empty(dentry
))
2940 drop_nlink(d_inode(dentry
));
2942 return shmem_unlink(dir
, dentry
);
2945 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
2947 bool old_is_dir
= d_is_dir(old_dentry
);
2948 bool new_is_dir
= d_is_dir(new_dentry
);
2950 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
2952 drop_nlink(old_dir
);
2955 drop_nlink(new_dir
);
2959 old_dir
->i_ctime
= old_dir
->i_mtime
=
2960 new_dir
->i_ctime
= new_dir
->i_mtime
=
2961 d_inode(old_dentry
)->i_ctime
=
2962 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
2967 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
2969 struct dentry
*whiteout
;
2972 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
2976 error
= shmem_mknod(old_dir
, whiteout
,
2977 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
2983 * Cheat and hash the whiteout while the old dentry is still in
2984 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2986 * d_lookup() will consistently find one of them at this point,
2987 * not sure which one, but that isn't even important.
2994 * The VFS layer already does all the dentry stuff for rename,
2995 * we just have to decrement the usage count for the target if
2996 * it exists so that the VFS layer correctly free's it when it
2999 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3001 struct inode
*inode
= d_inode(old_dentry
);
3002 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3004 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3007 if (flags
& RENAME_EXCHANGE
)
3008 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3010 if (!simple_empty(new_dentry
))
3013 if (flags
& RENAME_WHITEOUT
) {
3016 error
= shmem_whiteout(old_dir
, old_dentry
);
3021 if (d_really_is_positive(new_dentry
)) {
3022 (void) shmem_unlink(new_dir
, new_dentry
);
3023 if (they_are_dirs
) {
3024 drop_nlink(d_inode(new_dentry
));
3025 drop_nlink(old_dir
);
3027 } else if (they_are_dirs
) {
3028 drop_nlink(old_dir
);
3032 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3033 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3034 old_dir
->i_ctime
= old_dir
->i_mtime
=
3035 new_dir
->i_ctime
= new_dir
->i_mtime
=
3036 inode
->i_ctime
= current_time(old_dir
);
3040 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3044 struct inode
*inode
;
3046 struct shmem_inode_info
*info
;
3048 len
= strlen(symname
) + 1;
3049 if (len
> PAGE_SIZE
)
3050 return -ENAMETOOLONG
;
3052 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3056 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3057 shmem_initxattrs
, NULL
);
3059 if (error
!= -EOPNOTSUPP
) {
3066 info
= SHMEM_I(inode
);
3067 inode
->i_size
= len
-1;
3068 if (len
<= SHORT_SYMLINK_LEN
) {
3069 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3070 if (!inode
->i_link
) {
3074 inode
->i_op
= &shmem_short_symlink_operations
;
3076 inode_nohighmem(inode
);
3077 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3082 inode
->i_mapping
->a_ops
= &shmem_aops
;
3083 inode
->i_op
= &shmem_symlink_inode_operations
;
3084 memcpy(page_address(page
), symname
, len
);
3085 SetPageUptodate(page
);
3086 set_page_dirty(page
);
3090 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3091 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3092 d_instantiate(dentry
, inode
);
3097 static void shmem_put_link(void *arg
)
3099 mark_page_accessed(arg
);
3103 static const char *shmem_get_link(struct dentry
*dentry
,
3104 struct inode
*inode
,
3105 struct delayed_call
*done
)
3107 struct page
*page
= NULL
;
3110 page
= find_get_page(inode
->i_mapping
, 0);
3112 return ERR_PTR(-ECHILD
);
3113 if (!PageUptodate(page
)) {
3115 return ERR_PTR(-ECHILD
);
3118 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3120 return ERR_PTR(error
);
3123 set_delayed_call(done
, shmem_put_link
, page
);
3124 return page_address(page
);
3127 #ifdef CONFIG_TMPFS_XATTR
3129 * Superblocks without xattr inode operations may get some security.* xattr
3130 * support from the LSM "for free". As soon as we have any other xattrs
3131 * like ACLs, we also need to implement the security.* handlers at
3132 * filesystem level, though.
3136 * Callback for security_inode_init_security() for acquiring xattrs.
3138 static int shmem_initxattrs(struct inode
*inode
,
3139 const struct xattr
*xattr_array
,
3142 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3143 const struct xattr
*xattr
;
3144 struct simple_xattr
*new_xattr
;
3147 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3148 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3152 len
= strlen(xattr
->name
) + 1;
3153 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3155 if (!new_xattr
->name
) {
3160 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3161 XATTR_SECURITY_PREFIX_LEN
);
3162 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3165 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3171 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3172 struct dentry
*unused
, struct inode
*inode
,
3173 const char *name
, void *buffer
, size_t size
)
3175 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3177 name
= xattr_full_name(handler
, name
);
3178 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3181 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3182 struct dentry
*unused
, struct inode
*inode
,
3183 const char *name
, const void *value
,
3184 size_t size
, int flags
)
3186 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3188 name
= xattr_full_name(handler
, name
);
3189 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3192 static const struct xattr_handler shmem_security_xattr_handler
= {
3193 .prefix
= XATTR_SECURITY_PREFIX
,
3194 .get
= shmem_xattr_handler_get
,
3195 .set
= shmem_xattr_handler_set
,
3198 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3199 .prefix
= XATTR_TRUSTED_PREFIX
,
3200 .get
= shmem_xattr_handler_get
,
3201 .set
= shmem_xattr_handler_set
,
3204 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3205 #ifdef CONFIG_TMPFS_POSIX_ACL
3206 &posix_acl_access_xattr_handler
,
3207 &posix_acl_default_xattr_handler
,
3209 &shmem_security_xattr_handler
,
3210 &shmem_trusted_xattr_handler
,
3214 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3216 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3217 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3219 #endif /* CONFIG_TMPFS_XATTR */
3221 static const struct inode_operations shmem_short_symlink_operations
= {
3222 .get_link
= simple_get_link
,
3223 #ifdef CONFIG_TMPFS_XATTR
3224 .listxattr
= shmem_listxattr
,
3228 static const struct inode_operations shmem_symlink_inode_operations
= {
3229 .get_link
= shmem_get_link
,
3230 #ifdef CONFIG_TMPFS_XATTR
3231 .listxattr
= shmem_listxattr
,
3235 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3237 return ERR_PTR(-ESTALE
);
3240 static int shmem_match(struct inode
*ino
, void *vfh
)
3244 inum
= (inum
<< 32) | fh
[1];
3245 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3248 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3249 struct fid
*fid
, int fh_len
, int fh_type
)
3251 struct inode
*inode
;
3252 struct dentry
*dentry
= NULL
;
3259 inum
= (inum
<< 32) | fid
->raw
[1];
3261 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3262 shmem_match
, fid
->raw
);
3264 dentry
= d_find_alias(inode
);
3271 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3272 struct inode
*parent
)
3276 return FILEID_INVALID
;
3279 if (inode_unhashed(inode
)) {
3280 /* Unfortunately insert_inode_hash is not idempotent,
3281 * so as we hash inodes here rather than at creation
3282 * time, we need a lock to ensure we only try
3285 static DEFINE_SPINLOCK(lock
);
3287 if (inode_unhashed(inode
))
3288 __insert_inode_hash(inode
,
3289 inode
->i_ino
+ inode
->i_generation
);
3293 fh
[0] = inode
->i_generation
;
3294 fh
[1] = inode
->i_ino
;
3295 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3301 static const struct export_operations shmem_export_ops
= {
3302 .get_parent
= shmem_get_parent
,
3303 .encode_fh
= shmem_encode_fh
,
3304 .fh_to_dentry
= shmem_fh_to_dentry
,
3307 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3310 char *this_char
, *value
, *rest
;
3311 struct mempolicy
*mpol
= NULL
;
3315 while (options
!= NULL
) {
3316 this_char
= options
;
3319 * NUL-terminate this option: unfortunately,
3320 * mount options form a comma-separated list,
3321 * but mpol's nodelist may also contain commas.
3323 options
= strchr(options
, ',');
3324 if (options
== NULL
)
3327 if (!isdigit(*options
)) {
3334 if ((value
= strchr(this_char
,'=')) != NULL
) {
3337 pr_err("tmpfs: No value for mount option '%s'\n",
3342 if (!strcmp(this_char
,"size")) {
3343 unsigned long long size
;
3344 size
= memparse(value
,&rest
);
3346 size
<<= PAGE_SHIFT
;
3347 size
*= totalram_pages
;
3353 sbinfo
->max_blocks
=
3354 DIV_ROUND_UP(size
, PAGE_SIZE
);
3355 } else if (!strcmp(this_char
,"nr_blocks")) {
3356 sbinfo
->max_blocks
= memparse(value
, &rest
);
3359 } else if (!strcmp(this_char
,"nr_inodes")) {
3360 sbinfo
->max_inodes
= memparse(value
, &rest
);
3363 } else if (!strcmp(this_char
,"mode")) {
3366 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3369 } else if (!strcmp(this_char
,"uid")) {
3372 uid
= simple_strtoul(value
, &rest
, 0);
3375 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3376 if (!uid_valid(sbinfo
->uid
))
3378 } else if (!strcmp(this_char
,"gid")) {
3381 gid
= simple_strtoul(value
, &rest
, 0);
3384 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3385 if (!gid_valid(sbinfo
->gid
))
3387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3388 } else if (!strcmp(this_char
, "huge")) {
3390 huge
= shmem_parse_huge(value
);
3393 if (!has_transparent_hugepage() &&
3394 huge
!= SHMEM_HUGE_NEVER
)
3396 sbinfo
->huge
= huge
;
3399 } else if (!strcmp(this_char
,"mpol")) {
3402 if (mpol_parse_str(value
, &mpol
))
3406 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3410 sbinfo
->mpol
= mpol
;
3414 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3422 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3424 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3425 struct shmem_sb_info config
= *sbinfo
;
3426 unsigned long inodes
;
3427 int error
= -EINVAL
;
3430 if (shmem_parse_options(data
, &config
, true))
3433 spin_lock(&sbinfo
->stat_lock
);
3434 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3435 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3437 if (config
.max_inodes
< inodes
)
3440 * Those tests disallow limited->unlimited while any are in use;
3441 * but we must separately disallow unlimited->limited, because
3442 * in that case we have no record of how much is already in use.
3444 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3446 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3450 sbinfo
->huge
= config
.huge
;
3451 sbinfo
->max_blocks
= config
.max_blocks
;
3452 sbinfo
->max_inodes
= config
.max_inodes
;
3453 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3456 * Preserve previous mempolicy unless mpol remount option was specified.
3459 mpol_put(sbinfo
->mpol
);
3460 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3463 spin_unlock(&sbinfo
->stat_lock
);
3467 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3469 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3471 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3472 seq_printf(seq
, ",size=%luk",
3473 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3474 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3475 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3476 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3477 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3478 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3479 seq_printf(seq
, ",uid=%u",
3480 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3481 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3482 seq_printf(seq
, ",gid=%u",
3483 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3484 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3485 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3487 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3489 shmem_show_mpol(seq
, sbinfo
->mpol
);
3493 #define MFD_NAME_PREFIX "memfd:"
3494 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3495 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3497 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3499 SYSCALL_DEFINE2(memfd_create
,
3500 const char __user
*, uname
,
3501 unsigned int, flags
)
3503 struct shmem_inode_info
*info
;
3509 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3512 /* length includes terminating zero */
3513 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3516 if (len
> MFD_NAME_MAX_LEN
+ 1)
3519 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_TEMPORARY
);
3523 strcpy(name
, MFD_NAME_PREFIX
);
3524 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3529 /* terminating-zero may have changed after strnlen_user() returned */
3530 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3535 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3541 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3543 error
= PTR_ERR(file
);
3546 info
= SHMEM_I(file_inode(file
));
3547 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3548 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3549 if (flags
& MFD_ALLOW_SEALING
)
3550 info
->seals
&= ~F_SEAL_SEAL
;
3552 fd_install(fd
, file
);
3563 #endif /* CONFIG_TMPFS */
3565 static void shmem_put_super(struct super_block
*sb
)
3567 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3569 percpu_counter_destroy(&sbinfo
->used_blocks
);
3570 mpol_put(sbinfo
->mpol
);
3572 sb
->s_fs_info
= NULL
;
3575 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3577 struct inode
*inode
;
3578 struct shmem_sb_info
*sbinfo
;
3581 /* Round up to L1_CACHE_BYTES to resist false sharing */
3582 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3583 L1_CACHE_BYTES
), GFP_KERNEL
);
3587 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3588 sbinfo
->uid
= current_fsuid();
3589 sbinfo
->gid
= current_fsgid();
3590 sb
->s_fs_info
= sbinfo
;
3594 * Per default we only allow half of the physical ram per
3595 * tmpfs instance, limiting inodes to one per page of lowmem;
3596 * but the internal instance is left unlimited.
3598 if (!(sb
->s_flags
& MS_KERNMOUNT
)) {
3599 sbinfo
->max_blocks
= shmem_default_max_blocks();
3600 sbinfo
->max_inodes
= shmem_default_max_inodes();
3601 if (shmem_parse_options(data
, sbinfo
, false)) {
3606 sb
->s_flags
|= MS_NOUSER
;
3608 sb
->s_export_op
= &shmem_export_ops
;
3609 sb
->s_flags
|= MS_NOSEC
;
3611 sb
->s_flags
|= MS_NOUSER
;
3614 spin_lock_init(&sbinfo
->stat_lock
);
3615 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3617 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3618 spin_lock_init(&sbinfo
->shrinklist_lock
);
3619 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3621 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3622 sb
->s_blocksize
= PAGE_SIZE
;
3623 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3624 sb
->s_magic
= TMPFS_MAGIC
;
3625 sb
->s_op
= &shmem_ops
;
3626 sb
->s_time_gran
= 1;
3627 #ifdef CONFIG_TMPFS_XATTR
3628 sb
->s_xattr
= shmem_xattr_handlers
;
3630 #ifdef CONFIG_TMPFS_POSIX_ACL
3631 sb
->s_flags
|= MS_POSIXACL
;
3634 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3637 inode
->i_uid
= sbinfo
->uid
;
3638 inode
->i_gid
= sbinfo
->gid
;
3639 sb
->s_root
= d_make_root(inode
);
3645 shmem_put_super(sb
);
3649 static struct kmem_cache
*shmem_inode_cachep
;
3651 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3653 struct shmem_inode_info
*info
;
3654 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3657 return &info
->vfs_inode
;
3660 static void shmem_destroy_callback(struct rcu_head
*head
)
3662 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3663 if (S_ISLNK(inode
->i_mode
))
3664 kfree(inode
->i_link
);
3665 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3668 static void shmem_destroy_inode(struct inode
*inode
)
3670 if (S_ISREG(inode
->i_mode
))
3671 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3672 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3675 static void shmem_init_inode(void *foo
)
3677 struct shmem_inode_info
*info
= foo
;
3678 inode_init_once(&info
->vfs_inode
);
3681 static int shmem_init_inodecache(void)
3683 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3684 sizeof(struct shmem_inode_info
),
3685 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3689 static void shmem_destroy_inodecache(void)
3691 kmem_cache_destroy(shmem_inode_cachep
);
3694 static const struct address_space_operations shmem_aops
= {
3695 .writepage
= shmem_writepage
,
3696 .set_page_dirty
= __set_page_dirty_no_writeback
,
3698 .write_begin
= shmem_write_begin
,
3699 .write_end
= shmem_write_end
,
3701 #ifdef CONFIG_MIGRATION
3702 .migratepage
= migrate_page
,
3704 .error_remove_page
= generic_error_remove_page
,
3707 static const struct file_operations shmem_file_operations
= {
3709 .get_unmapped_area
= shmem_get_unmapped_area
,
3711 .llseek
= shmem_file_llseek
,
3712 .read_iter
= shmem_file_read_iter
,
3713 .write_iter
= generic_file_write_iter
,
3714 .fsync
= noop_fsync
,
3715 .splice_read
= generic_file_splice_read
,
3716 .splice_write
= iter_file_splice_write
,
3717 .fallocate
= shmem_fallocate
,
3721 static const struct inode_operations shmem_inode_operations
= {
3722 .getattr
= shmem_getattr
,
3723 .setattr
= shmem_setattr
,
3724 #ifdef CONFIG_TMPFS_XATTR
3725 .listxattr
= shmem_listxattr
,
3726 .set_acl
= simple_set_acl
,
3730 static const struct inode_operations shmem_dir_inode_operations
= {
3732 .create
= shmem_create
,
3733 .lookup
= simple_lookup
,
3735 .unlink
= shmem_unlink
,
3736 .symlink
= shmem_symlink
,
3737 .mkdir
= shmem_mkdir
,
3738 .rmdir
= shmem_rmdir
,
3739 .mknod
= shmem_mknod
,
3740 .rename
= shmem_rename2
,
3741 .tmpfile
= shmem_tmpfile
,
3743 #ifdef CONFIG_TMPFS_XATTR
3744 .listxattr
= shmem_listxattr
,
3746 #ifdef CONFIG_TMPFS_POSIX_ACL
3747 .setattr
= shmem_setattr
,
3748 .set_acl
= simple_set_acl
,
3752 static const struct inode_operations shmem_special_inode_operations
= {
3753 #ifdef CONFIG_TMPFS_XATTR
3754 .listxattr
= shmem_listxattr
,
3756 #ifdef CONFIG_TMPFS_POSIX_ACL
3757 .setattr
= shmem_setattr
,
3758 .set_acl
= simple_set_acl
,
3762 static const struct super_operations shmem_ops
= {
3763 .alloc_inode
= shmem_alloc_inode
,
3764 .destroy_inode
= shmem_destroy_inode
,
3766 .statfs
= shmem_statfs
,
3767 .remount_fs
= shmem_remount_fs
,
3768 .show_options
= shmem_show_options
,
3770 .evict_inode
= shmem_evict_inode
,
3771 .drop_inode
= generic_delete_inode
,
3772 .put_super
= shmem_put_super
,
3773 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3774 .nr_cached_objects
= shmem_unused_huge_count
,
3775 .free_cached_objects
= shmem_unused_huge_scan
,
3779 static const struct vm_operations_struct shmem_vm_ops
= {
3780 .fault
= shmem_fault
,
3781 .map_pages
= filemap_map_pages
,
3783 .set_policy
= shmem_set_policy
,
3784 .get_policy
= shmem_get_policy
,
3788 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3789 int flags
, const char *dev_name
, void *data
)
3791 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3794 static struct file_system_type shmem_fs_type
= {
3795 .owner
= THIS_MODULE
,
3797 .mount
= shmem_mount
,
3798 .kill_sb
= kill_litter_super
,
3799 .fs_flags
= FS_USERNS_MOUNT
,
3802 int __init
shmem_init(void)
3806 /* If rootfs called this, don't re-init */
3807 if (shmem_inode_cachep
)
3810 error
= shmem_init_inodecache();
3814 error
= register_filesystem(&shmem_fs_type
);
3816 pr_err("Could not register tmpfs\n");
3820 shm_mnt
= kern_mount(&shmem_fs_type
);
3821 if (IS_ERR(shm_mnt
)) {
3822 error
= PTR_ERR(shm_mnt
);
3823 pr_err("Could not kern_mount tmpfs\n");
3827 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3828 if (has_transparent_hugepage() && shmem_huge
< SHMEM_HUGE_DENY
)
3829 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3831 shmem_huge
= 0; /* just in case it was patched */
3836 unregister_filesystem(&shmem_fs_type
);
3838 shmem_destroy_inodecache();
3840 shm_mnt
= ERR_PTR(error
);
3844 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3845 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
3846 struct kobj_attribute
*attr
, char *buf
)
3850 SHMEM_HUGE_WITHIN_SIZE
,
3858 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
3859 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
3861 count
+= sprintf(buf
+ count
, fmt
,
3862 shmem_format_huge(values
[i
]));
3864 buf
[count
- 1] = '\n';
3868 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
3869 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
3874 if (count
+ 1 > sizeof(tmp
))
3876 memcpy(tmp
, buf
, count
);
3878 if (count
&& tmp
[count
- 1] == '\n')
3879 tmp
[count
- 1] = '\0';
3881 huge
= shmem_parse_huge(tmp
);
3882 if (huge
== -EINVAL
)
3884 if (!has_transparent_hugepage() &&
3885 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
3889 if (shmem_huge
< SHMEM_HUGE_DENY
)
3890 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
3894 struct kobj_attribute shmem_enabled_attr
=
3895 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
3896 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3898 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3899 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
3901 struct inode
*inode
= file_inode(vma
->vm_file
);
3902 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
3906 if (shmem_huge
== SHMEM_HUGE_FORCE
)
3908 if (shmem_huge
== SHMEM_HUGE_DENY
)
3910 switch (sbinfo
->huge
) {
3911 case SHMEM_HUGE_NEVER
:
3913 case SHMEM_HUGE_ALWAYS
:
3915 case SHMEM_HUGE_WITHIN_SIZE
:
3916 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
3917 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
3918 if (i_size
>= HPAGE_PMD_SIZE
&&
3919 i_size
>> PAGE_SHIFT
>= off
)
3921 case SHMEM_HUGE_ADVISE
:
3922 /* TODO: implement fadvise() hints */
3923 return (vma
->vm_flags
& VM_HUGEPAGE
);
3929 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3931 #else /* !CONFIG_SHMEM */
3934 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3936 * This is intended for small system where the benefits of the full
3937 * shmem code (swap-backed and resource-limited) are outweighed by
3938 * their complexity. On systems without swap this code should be
3939 * effectively equivalent, but much lighter weight.
3942 static struct file_system_type shmem_fs_type
= {
3944 .mount
= ramfs_mount
,
3945 .kill_sb
= kill_litter_super
,
3946 .fs_flags
= FS_USERNS_MOUNT
,
3949 int __init
shmem_init(void)
3951 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
3953 shm_mnt
= kern_mount(&shmem_fs_type
);
3954 BUG_ON(IS_ERR(shm_mnt
));
3959 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
3964 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
3969 void shmem_unlock_mapping(struct address_space
*mapping
)
3974 unsigned long shmem_get_unmapped_area(struct file
*file
,
3975 unsigned long addr
, unsigned long len
,
3976 unsigned long pgoff
, unsigned long flags
)
3978 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
3982 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
3984 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
3986 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
3988 #define shmem_vm_ops generic_file_vm_ops
3989 #define shmem_file_operations ramfs_file_operations
3990 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3991 #define shmem_acct_size(flags, size) 0
3992 #define shmem_unacct_size(flags, size) do {} while (0)
3994 #endif /* CONFIG_SHMEM */
3998 static const struct dentry_operations anon_ops
= {
3999 .d_dname
= simple_dname
4002 static struct file
*__shmem_file_setup(const char *name
, loff_t size
,
4003 unsigned long flags
, unsigned int i_flags
)
4006 struct inode
*inode
;
4008 struct super_block
*sb
;
4011 if (IS_ERR(shm_mnt
))
4012 return ERR_CAST(shm_mnt
);
4014 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4015 return ERR_PTR(-EINVAL
);
4017 if (shmem_acct_size(flags
, size
))
4018 return ERR_PTR(-ENOMEM
);
4020 res
= ERR_PTR(-ENOMEM
);
4022 this.len
= strlen(name
);
4023 this.hash
= 0; /* will go */
4024 sb
= shm_mnt
->mnt_sb
;
4025 path
.mnt
= mntget(shm_mnt
);
4026 path
.dentry
= d_alloc_pseudo(sb
, &this);
4029 d_set_d_op(path
.dentry
, &anon_ops
);
4031 res
= ERR_PTR(-ENOSPC
);
4032 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4036 inode
->i_flags
|= i_flags
;
4037 d_instantiate(path
.dentry
, inode
);
4038 inode
->i_size
= size
;
4039 clear_nlink(inode
); /* It is unlinked */
4040 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4044 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4045 &shmem_file_operations
);
4052 shmem_unacct_size(flags
, size
);
4059 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4060 * kernel internal. There will be NO LSM permission checks against the
4061 * underlying inode. So users of this interface must do LSM checks at a
4062 * higher layer. The users are the big_key and shm implementations. LSM
4063 * checks are provided at the key or shm level rather than the inode.
4064 * @name: name for dentry (to be seen in /proc/<pid>/maps
4065 * @size: size to be set for the file
4066 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4068 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4070 return __shmem_file_setup(name
, size
, flags
, S_PRIVATE
);
4074 * shmem_file_setup - get an unlinked file living in tmpfs
4075 * @name: name for dentry (to be seen in /proc/<pid>/maps
4076 * @size: size to be set for the file
4077 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4079 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4081 return __shmem_file_setup(name
, size
, flags
, 0);
4083 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4086 * shmem_zero_setup - setup a shared anonymous mapping
4087 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4089 int shmem_zero_setup(struct vm_area_struct
*vma
)
4092 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4095 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4096 * between XFS directory reading and selinux: since this file is only
4097 * accessible to the user through its mapping, use S_PRIVATE flag to
4098 * bypass file security, in the same way as shmem_kernel_file_setup().
4100 file
= __shmem_file_setup("dev/zero", size
, vma
->vm_flags
, S_PRIVATE
);
4102 return PTR_ERR(file
);
4106 vma
->vm_file
= file
;
4107 vma
->vm_ops
= &shmem_vm_ops
;
4109 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4110 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4111 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4112 khugepaged_enter(vma
, vma
->vm_flags
);
4119 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4120 * @mapping: the page's address_space
4121 * @index: the page index
4122 * @gfp: the page allocator flags to use if allocating
4124 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4125 * with any new page allocations done using the specified allocation flags.
4126 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4127 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4128 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4130 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4131 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4133 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4134 pgoff_t index
, gfp_t gfp
)
4137 struct inode
*inode
= mapping
->host
;
4141 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4142 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4145 page
= ERR_PTR(error
);
4151 * The tiny !SHMEM case uses ramfs without swap
4153 return read_cache_page_gfp(mapping
, index
, gfp
);
4156 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);