]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/shmem.c
Merge tag 'arm-soc-fixes-v5.10-4b' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 static const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
288 }
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
304 }
305 *inop = ino;
306 }
307 spin_unlock(&sbinfo->stat_lock);
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
335 }
336
337 return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348 }
349
350 /**
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
372 }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 struct shmem_inode_info *info = SHMEM_I(inode);
378 unsigned long flags;
379
380 if (!shmem_inode_acct_block(inode, pages))
381 return false;
382
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
391
392 return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 struct shmem_inode_info *info = SHMEM_I(inode);
398 unsigned long flags;
399
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
407
408 shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412 * Replace item expected in xarray by a new item, while holding xa_lock.
413 */
414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
416 {
417 XA_STATE(xas, &mapping->i_pages, index);
418 void *item;
419
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
424 return -ENOENT;
425 xas_store(&xas, replacement);
426 return 0;
427 }
428
429 /*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438 {
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
460
461 /*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 list_move(&info->shrinklist, &to_remove);
553 removed++;
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558 next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
579
580 page = find_get_page(inode->i_mapping,
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
585 /* No huge page at the end of the file: nothing to split */
586 if (!PageTransHuge(page)) {
587 put_page(page);
588 goto drop;
589 }
590
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
610
611 split++;
612 drop:
613 list_del_init(&info->shrinklist);
614 removed++;
615 leave:
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629 {
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640 {
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662 }
663
664 /*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667 static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
671 {
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
674 unsigned long nr = compound_nr(page);
675 int error;
676
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 VM_BUG_ON(expected && PageTransHuge(page));
682
683 page_ref_add(page, nr);
684 page->mapping = mapping;
685 page->index = index;
686
687 if (!PageSwapCache(page)) {
688 error = mem_cgroup_charge(page, charge_mm, gfp);
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
695 }
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708 next:
709 xas_store(&xas, page);
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
713 }
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_ALLOC);
716 __inc_node_page_state(page, NR_SHMEM_THPS);
717 }
718 mapping->nrpages += nr;
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
726 error = xas_error(&xas);
727 goto error;
728 }
729
730 return 0;
731 error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
735 }
736
737 /*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 struct address_space *mapping = page->mapping;
743 int error;
744
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
747 xa_lock_irq(&mapping->i_pages);
748 error = shmem_replace_entry(mapping, page->index, page, radswap);
749 page->mapping = NULL;
750 mapping->nrpages--;
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
753 xa_unlock_irq(&mapping->i_pages);
754 put_page(page);
755 BUG_ON(error);
756 }
757
758 /*
759 * Remove swap entry from page cache, free the swap and its page cache.
760 */
761 static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763 {
764 void *old;
765
766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
771 }
772
773 /*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
775 * given offsets are swapped out.
776 *
777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
782 {
783 XA_STATE(xas, &mapping->i_pages, start);
784 struct page *page;
785 unsigned long swapped = 0;
786
787 rcu_read_lock();
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
790 continue;
791 if (xa_is_value(page))
792 swapped++;
793
794 if (need_resched()) {
795 xas_pause(&xas);
796 cond_resched_rcu();
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803 }
804
805 /*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 struct pagevec pvec;
845 pgoff_t indices[PAGEVEC_SIZE];
846 pgoff_t index = 0;
847
848 pagevec_init(&pvec);
849 /*
850 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851 */
852 while (!mapping_unevictable(mapping)) {
853 /*
854 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
855 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
856 */
857 pvec.nr = find_get_entries(mapping, index,
858 PAGEVEC_SIZE, pvec.pages, indices);
859 if (!pvec.nr)
860 break;
861 index = indices[pvec.nr - 1] + 1;
862 pagevec_remove_exceptionals(&pvec);
863 check_move_unevictable_pages(&pvec);
864 pagevec_release(&pvec);
865 cond_resched();
866 }
867 }
868
869 /*
870 * Check whether a hole-punch or truncation needs to split a huge page,
871 * returning true if no split was required, or the split has been successful.
872 *
873 * Eviction (or truncation to 0 size) should never need to split a huge page;
874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
875 * head, and then succeeded to trylock on tail.
876 *
877 * A split can only succeed when there are no additional references on the
878 * huge page: so the split below relies upon find_get_entries() having stopped
879 * when it found a subpage of the huge page, without getting further references.
880 */
881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
882 {
883 if (!PageTransCompound(page))
884 return true;
885
886 /* Just proceed to delete a huge page wholly within the range punched */
887 if (PageHead(page) &&
888 page->index >= start && page->index + HPAGE_PMD_NR <= end)
889 return true;
890
891 /* Try to split huge page, so we can truly punch the hole or truncate */
892 return split_huge_page(page) >= 0;
893 }
894
895 /*
896 * Remove range of pages and swap entries from page cache, and free them.
897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
898 */
899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
900 bool unfalloc)
901 {
902 struct address_space *mapping = inode->i_mapping;
903 struct shmem_inode_info *info = SHMEM_I(inode);
904 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
907 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
908 struct pagevec pvec;
909 pgoff_t indices[PAGEVEC_SIZE];
910 long nr_swaps_freed = 0;
911 pgoff_t index;
912 int i;
913
914 if (lend == -1)
915 end = -1; /* unsigned, so actually very big */
916
917 pagevec_init(&pvec);
918 index = start;
919 while (index < end) {
920 pvec.nr = find_get_entries(mapping, index,
921 min(end - index, (pgoff_t)PAGEVEC_SIZE),
922 pvec.pages, indices);
923 if (!pvec.nr)
924 break;
925 for (i = 0; i < pagevec_count(&pvec); i++) {
926 struct page *page = pvec.pages[i];
927
928 index = indices[i];
929 if (index >= end)
930 break;
931
932 if (xa_is_value(page)) {
933 if (unfalloc)
934 continue;
935 nr_swaps_freed += !shmem_free_swap(mapping,
936 index, page);
937 continue;
938 }
939
940 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
941
942 if (!trylock_page(page))
943 continue;
944
945 if ((!unfalloc || !PageUptodate(page)) &&
946 page_mapping(page) == mapping) {
947 VM_BUG_ON_PAGE(PageWriteback(page), page);
948 if (shmem_punch_compound(page, start, end))
949 truncate_inode_page(mapping, page);
950 }
951 unlock_page(page);
952 }
953 pagevec_remove_exceptionals(&pvec);
954 pagevec_release(&pvec);
955 cond_resched();
956 index++;
957 }
958
959 if (partial_start) {
960 struct page *page = NULL;
961 shmem_getpage(inode, start - 1, &page, SGP_READ);
962 if (page) {
963 unsigned int top = PAGE_SIZE;
964 if (start > end) {
965 top = partial_end;
966 partial_end = 0;
967 }
968 zero_user_segment(page, partial_start, top);
969 set_page_dirty(page);
970 unlock_page(page);
971 put_page(page);
972 }
973 }
974 if (partial_end) {
975 struct page *page = NULL;
976 shmem_getpage(inode, end, &page, SGP_READ);
977 if (page) {
978 zero_user_segment(page, 0, partial_end);
979 set_page_dirty(page);
980 unlock_page(page);
981 put_page(page);
982 }
983 }
984 if (start >= end)
985 return;
986
987 index = start;
988 while (index < end) {
989 cond_resched();
990
991 pvec.nr = find_get_entries(mapping, index,
992 min(end - index, (pgoff_t)PAGEVEC_SIZE),
993 pvec.pages, indices);
994 if (!pvec.nr) {
995 /* If all gone or hole-punch or unfalloc, we're done */
996 if (index == start || end != -1)
997 break;
998 /* But if truncating, restart to make sure all gone */
999 index = start;
1000 continue;
1001 }
1002 for (i = 0; i < pagevec_count(&pvec); i++) {
1003 struct page *page = pvec.pages[i];
1004
1005 index = indices[i];
1006 if (index >= end)
1007 break;
1008
1009 if (xa_is_value(page)) {
1010 if (unfalloc)
1011 continue;
1012 if (shmem_free_swap(mapping, index, page)) {
1013 /* Swap was replaced by page: retry */
1014 index--;
1015 break;
1016 }
1017 nr_swaps_freed++;
1018 continue;
1019 }
1020
1021 lock_page(page);
1022
1023 if (!unfalloc || !PageUptodate(page)) {
1024 if (page_mapping(page) != mapping) {
1025 /* Page was replaced by swap: retry */
1026 unlock_page(page);
1027 index--;
1028 break;
1029 }
1030 VM_BUG_ON_PAGE(PageWriteback(page), page);
1031 if (shmem_punch_compound(page, start, end))
1032 truncate_inode_page(mapping, page);
1033 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034 /* Wipe the page and don't get stuck */
1035 clear_highpage(page);
1036 flush_dcache_page(page);
1037 set_page_dirty(page);
1038 if (index <
1039 round_up(start, HPAGE_PMD_NR))
1040 start = index + 1;
1041 }
1042 }
1043 unlock_page(page);
1044 }
1045 pagevec_remove_exceptionals(&pvec);
1046 pagevec_release(&pvec);
1047 index++;
1048 }
1049
1050 spin_lock_irq(&info->lock);
1051 info->swapped -= nr_swaps_freed;
1052 shmem_recalc_inode(inode);
1053 spin_unlock_irq(&info->lock);
1054 }
1055
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058 shmem_undo_range(inode, lstart, lend, false);
1059 inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062
1063 static int shmem_getattr(const struct path *path, struct kstat *stat,
1064 u32 request_mask, unsigned int query_flags)
1065 {
1066 struct inode *inode = path->dentry->d_inode;
1067 struct shmem_inode_info *info = SHMEM_I(inode);
1068 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1069
1070 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071 spin_lock_irq(&info->lock);
1072 shmem_recalc_inode(inode);
1073 spin_unlock_irq(&info->lock);
1074 }
1075 generic_fillattr(inode, stat);
1076
1077 if (is_huge_enabled(sb_info))
1078 stat->blksize = HPAGE_PMD_SIZE;
1079
1080 return 0;
1081 }
1082
1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1084 {
1085 struct inode *inode = d_inode(dentry);
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088 int error;
1089
1090 error = setattr_prepare(dentry, attr);
1091 if (error)
1092 return error;
1093
1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 loff_t oldsize = inode->i_size;
1096 loff_t newsize = attr->ia_size;
1097
1098 /* protected by i_mutex */
1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 return -EPERM;
1102
1103 if (newsize != oldsize) {
1104 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105 oldsize, newsize);
1106 if (error)
1107 return error;
1108 i_size_write(inode, newsize);
1109 inode->i_ctime = inode->i_mtime = current_time(inode);
1110 }
1111 if (newsize <= oldsize) {
1112 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113 if (oldsize > holebegin)
1114 unmap_mapping_range(inode->i_mapping,
1115 holebegin, 0, 1);
1116 if (info->alloced)
1117 shmem_truncate_range(inode,
1118 newsize, (loff_t)-1);
1119 /* unmap again to remove racily COWed private pages */
1120 if (oldsize > holebegin)
1121 unmap_mapping_range(inode->i_mapping,
1122 holebegin, 0, 1);
1123
1124 /*
1125 * Part of the huge page can be beyond i_size: subject
1126 * to shrink under memory pressure.
1127 */
1128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129 spin_lock(&sbinfo->shrinklist_lock);
1130 /*
1131 * _careful to defend against unlocked access to
1132 * ->shrink_list in shmem_unused_huge_shrink()
1133 */
1134 if (list_empty_careful(&info->shrinklist)) {
1135 list_add_tail(&info->shrinklist,
1136 &sbinfo->shrinklist);
1137 sbinfo->shrinklist_len++;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
1141 }
1142 }
1143
1144 setattr_copy(inode, attr);
1145 if (attr->ia_valid & ATTR_MODE)
1146 error = posix_acl_chmod(inode, inode->i_mode);
1147 return error;
1148 }
1149
1150 static void shmem_evict_inode(struct inode *inode)
1151 {
1152 struct shmem_inode_info *info = SHMEM_I(inode);
1153 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1154
1155 if (inode->i_mapping->a_ops == &shmem_aops) {
1156 shmem_unacct_size(info->flags, inode->i_size);
1157 inode->i_size = 0;
1158 shmem_truncate_range(inode, 0, (loff_t)-1);
1159 if (!list_empty(&info->shrinklist)) {
1160 spin_lock(&sbinfo->shrinklist_lock);
1161 if (!list_empty(&info->shrinklist)) {
1162 list_del_init(&info->shrinklist);
1163 sbinfo->shrinklist_len--;
1164 }
1165 spin_unlock(&sbinfo->shrinklist_lock);
1166 }
1167 while (!list_empty(&info->swaplist)) {
1168 /* Wait while shmem_unuse() is scanning this inode... */
1169 wait_var_event(&info->stop_eviction,
1170 !atomic_read(&info->stop_eviction));
1171 mutex_lock(&shmem_swaplist_mutex);
1172 /* ...but beware of the race if we peeked too early */
1173 if (!atomic_read(&info->stop_eviction))
1174 list_del_init(&info->swaplist);
1175 mutex_unlock(&shmem_swaplist_mutex);
1176 }
1177 }
1178
1179 simple_xattrs_free(&info->xattrs);
1180 WARN_ON(inode->i_blocks);
1181 shmem_free_inode(inode->i_sb);
1182 clear_inode(inode);
1183 }
1184
1185 extern struct swap_info_struct *swap_info[];
1186
1187 static int shmem_find_swap_entries(struct address_space *mapping,
1188 pgoff_t start, unsigned int nr_entries,
1189 struct page **entries, pgoff_t *indices,
1190 unsigned int type, bool frontswap)
1191 {
1192 XA_STATE(xas, &mapping->i_pages, start);
1193 struct page *page;
1194 swp_entry_t entry;
1195 unsigned int ret = 0;
1196
1197 if (!nr_entries)
1198 return 0;
1199
1200 rcu_read_lock();
1201 xas_for_each(&xas, page, ULONG_MAX) {
1202 if (xas_retry(&xas, page))
1203 continue;
1204
1205 if (!xa_is_value(page))
1206 continue;
1207
1208 entry = radix_to_swp_entry(page);
1209 if (swp_type(entry) != type)
1210 continue;
1211 if (frontswap &&
1212 !frontswap_test(swap_info[type], swp_offset(entry)))
1213 continue;
1214
1215 indices[ret] = xas.xa_index;
1216 entries[ret] = page;
1217
1218 if (need_resched()) {
1219 xas_pause(&xas);
1220 cond_resched_rcu();
1221 }
1222 if (++ret == nr_entries)
1223 break;
1224 }
1225 rcu_read_unlock();
1226
1227 return ret;
1228 }
1229
1230 /*
1231 * Move the swapped pages for an inode to page cache. Returns the count
1232 * of pages swapped in, or the error in case of failure.
1233 */
1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235 pgoff_t *indices)
1236 {
1237 int i = 0;
1238 int ret = 0;
1239 int error = 0;
1240 struct address_space *mapping = inode->i_mapping;
1241
1242 for (i = 0; i < pvec.nr; i++) {
1243 struct page *page = pvec.pages[i];
1244
1245 if (!xa_is_value(page))
1246 continue;
1247 error = shmem_swapin_page(inode, indices[i],
1248 &page, SGP_CACHE,
1249 mapping_gfp_mask(mapping),
1250 NULL, NULL);
1251 if (error == 0) {
1252 unlock_page(page);
1253 put_page(page);
1254 ret++;
1255 }
1256 if (error == -ENOMEM)
1257 break;
1258 error = 0;
1259 }
1260 return error ? error : ret;
1261 }
1262
1263 /*
1264 * If swap found in inode, free it and move page from swapcache to filecache.
1265 */
1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267 bool frontswap, unsigned long *fs_pages_to_unuse)
1268 {
1269 struct address_space *mapping = inode->i_mapping;
1270 pgoff_t start = 0;
1271 struct pagevec pvec;
1272 pgoff_t indices[PAGEVEC_SIZE];
1273 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274 int ret = 0;
1275
1276 pagevec_init(&pvec);
1277 do {
1278 unsigned int nr_entries = PAGEVEC_SIZE;
1279
1280 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281 nr_entries = *fs_pages_to_unuse;
1282
1283 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284 pvec.pages, indices,
1285 type, frontswap);
1286 if (pvec.nr == 0) {
1287 ret = 0;
1288 break;
1289 }
1290
1291 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292 if (ret < 0)
1293 break;
1294
1295 if (frontswap_partial) {
1296 *fs_pages_to_unuse -= ret;
1297 if (*fs_pages_to_unuse == 0) {
1298 ret = FRONTSWAP_PAGES_UNUSED;
1299 break;
1300 }
1301 }
1302
1303 start = indices[pvec.nr - 1];
1304 } while (true);
1305
1306 return ret;
1307 }
1308
1309 /*
1310 * Read all the shared memory data that resides in the swap
1311 * device 'type' back into memory, so the swap device can be
1312 * unused.
1313 */
1314 int shmem_unuse(unsigned int type, bool frontswap,
1315 unsigned long *fs_pages_to_unuse)
1316 {
1317 struct shmem_inode_info *info, *next;
1318 int error = 0;
1319
1320 if (list_empty(&shmem_swaplist))
1321 return 0;
1322
1323 mutex_lock(&shmem_swaplist_mutex);
1324 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325 if (!info->swapped) {
1326 list_del_init(&info->swaplist);
1327 continue;
1328 }
1329 /*
1330 * Drop the swaplist mutex while searching the inode for swap;
1331 * but before doing so, make sure shmem_evict_inode() will not
1332 * remove placeholder inode from swaplist, nor let it be freed
1333 * (igrab() would protect from unlink, but not from unmount).
1334 */
1335 atomic_inc(&info->stop_eviction);
1336 mutex_unlock(&shmem_swaplist_mutex);
1337
1338 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1339 fs_pages_to_unuse);
1340 cond_resched();
1341
1342 mutex_lock(&shmem_swaplist_mutex);
1343 next = list_next_entry(info, swaplist);
1344 if (!info->swapped)
1345 list_del_init(&info->swaplist);
1346 if (atomic_dec_and_test(&info->stop_eviction))
1347 wake_up_var(&info->stop_eviction);
1348 if (error)
1349 break;
1350 }
1351 mutex_unlock(&shmem_swaplist_mutex);
1352
1353 return error;
1354 }
1355
1356 /*
1357 * Move the page from the page cache to the swap cache.
1358 */
1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360 {
1361 struct shmem_inode_info *info;
1362 struct address_space *mapping;
1363 struct inode *inode;
1364 swp_entry_t swap;
1365 pgoff_t index;
1366
1367 VM_BUG_ON_PAGE(PageCompound(page), page);
1368 BUG_ON(!PageLocked(page));
1369 mapping = page->mapping;
1370 index = page->index;
1371 inode = mapping->host;
1372 info = SHMEM_I(inode);
1373 if (info->flags & VM_LOCKED)
1374 goto redirty;
1375 if (!total_swap_pages)
1376 goto redirty;
1377
1378 /*
1379 * Our capabilities prevent regular writeback or sync from ever calling
1380 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381 * its underlying filesystem, in which case tmpfs should write out to
1382 * swap only in response to memory pressure, and not for the writeback
1383 * threads or sync.
1384 */
1385 if (!wbc->for_reclaim) {
1386 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1387 goto redirty;
1388 }
1389
1390 /*
1391 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392 * value into swapfile.c, the only way we can correctly account for a
1393 * fallocated page arriving here is now to initialize it and write it.
1394 *
1395 * That's okay for a page already fallocated earlier, but if we have
1396 * not yet completed the fallocation, then (a) we want to keep track
1397 * of this page in case we have to undo it, and (b) it may not be a
1398 * good idea to continue anyway, once we're pushing into swap. So
1399 * reactivate the page, and let shmem_fallocate() quit when too many.
1400 */
1401 if (!PageUptodate(page)) {
1402 if (inode->i_private) {
1403 struct shmem_falloc *shmem_falloc;
1404 spin_lock(&inode->i_lock);
1405 shmem_falloc = inode->i_private;
1406 if (shmem_falloc &&
1407 !shmem_falloc->waitq &&
1408 index >= shmem_falloc->start &&
1409 index < shmem_falloc->next)
1410 shmem_falloc->nr_unswapped++;
1411 else
1412 shmem_falloc = NULL;
1413 spin_unlock(&inode->i_lock);
1414 if (shmem_falloc)
1415 goto redirty;
1416 }
1417 clear_highpage(page);
1418 flush_dcache_page(page);
1419 SetPageUptodate(page);
1420 }
1421
1422 swap = get_swap_page(page);
1423 if (!swap.val)
1424 goto redirty;
1425
1426 /*
1427 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428 * if it's not already there. Do it now before the page is
1429 * moved to swap cache, when its pagelock no longer protects
1430 * the inode from eviction. But don't unlock the mutex until
1431 * we've incremented swapped, because shmem_unuse_inode() will
1432 * prune a !swapped inode from the swaplist under this mutex.
1433 */
1434 mutex_lock(&shmem_swaplist_mutex);
1435 if (list_empty(&info->swaplist))
1436 list_add(&info->swaplist, &shmem_swaplist);
1437
1438 if (add_to_swap_cache(page, swap,
1439 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440 NULL) == 0) {
1441 spin_lock_irq(&info->lock);
1442 shmem_recalc_inode(inode);
1443 info->swapped++;
1444 spin_unlock_irq(&info->lock);
1445
1446 swap_shmem_alloc(swap);
1447 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448
1449 mutex_unlock(&shmem_swaplist_mutex);
1450 BUG_ON(page_mapped(page));
1451 swap_writepage(page, wbc);
1452 return 0;
1453 }
1454
1455 mutex_unlock(&shmem_swaplist_mutex);
1456 put_swap_page(page, swap);
1457 redirty:
1458 set_page_dirty(page);
1459 if (wbc->for_reclaim)
1460 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1461 unlock_page(page);
1462 return 0;
1463 }
1464
1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1467 {
1468 char buffer[64];
1469
1470 if (!mpol || mpol->mode == MPOL_DEFAULT)
1471 return; /* show nothing */
1472
1473 mpol_to_str(buffer, sizeof(buffer), mpol);
1474
1475 seq_printf(seq, ",mpol=%s", buffer);
1476 }
1477
1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479 {
1480 struct mempolicy *mpol = NULL;
1481 if (sbinfo->mpol) {
1482 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1483 mpol = sbinfo->mpol;
1484 mpol_get(mpol);
1485 spin_unlock(&sbinfo->stat_lock);
1486 }
1487 return mpol;
1488 }
1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491 {
1492 }
1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494 {
1495 return NULL;
1496 }
1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498 #ifndef CONFIG_NUMA
1499 #define vm_policy vm_private_data
1500 #endif
1501
1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503 struct shmem_inode_info *info, pgoff_t index)
1504 {
1505 /* Create a pseudo vma that just contains the policy */
1506 vma_init(vma, NULL);
1507 /* Bias interleave by inode number to distribute better across nodes */
1508 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510 }
1511
1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513 {
1514 /* Drop reference taken by mpol_shared_policy_lookup() */
1515 mpol_cond_put(vma->vm_policy);
1516 }
1517
1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519 struct shmem_inode_info *info, pgoff_t index)
1520 {
1521 struct vm_area_struct pvma;
1522 struct page *page;
1523 struct vm_fault vmf;
1524
1525 shmem_pseudo_vma_init(&pvma, info, index);
1526 vmf.vma = &pvma;
1527 vmf.address = 0;
1528 page = swap_cluster_readahead(swap, gfp, &vmf);
1529 shmem_pseudo_vma_destroy(&pvma);
1530
1531 return page;
1532 }
1533
1534 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535 struct shmem_inode_info *info, pgoff_t index)
1536 {
1537 struct vm_area_struct pvma;
1538 struct address_space *mapping = info->vfs_inode.i_mapping;
1539 pgoff_t hindex;
1540 struct page *page;
1541
1542 hindex = round_down(index, HPAGE_PMD_NR);
1543 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544 XA_PRESENT))
1545 return NULL;
1546
1547 shmem_pseudo_vma_init(&pvma, info, hindex);
1548 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550 shmem_pseudo_vma_destroy(&pvma);
1551 if (page)
1552 prep_transhuge_page(page);
1553 else
1554 count_vm_event(THP_FILE_FALLBACK);
1555 return page;
1556 }
1557
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 struct vm_area_struct pvma;
1562 struct page *page;
1563
1564 shmem_pseudo_vma_init(&pvma, info, index);
1565 page = alloc_page_vma(gfp, &pvma, 0);
1566 shmem_pseudo_vma_destroy(&pvma);
1567
1568 return page;
1569 }
1570
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572 struct inode *inode,
1573 pgoff_t index, bool huge)
1574 {
1575 struct shmem_inode_info *info = SHMEM_I(inode);
1576 struct page *page;
1577 int nr;
1578 int err = -ENOSPC;
1579
1580 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581 huge = false;
1582 nr = huge ? HPAGE_PMD_NR : 1;
1583
1584 if (!shmem_inode_acct_block(inode, nr))
1585 goto failed;
1586
1587 if (huge)
1588 page = shmem_alloc_hugepage(gfp, info, index);
1589 else
1590 page = shmem_alloc_page(gfp, info, index);
1591 if (page) {
1592 __SetPageLocked(page);
1593 __SetPageSwapBacked(page);
1594 return page;
1595 }
1596
1597 err = -ENOMEM;
1598 shmem_inode_unacct_blocks(inode, nr);
1599 failed:
1600 return ERR_PTR(err);
1601 }
1602
1603 /*
1604 * When a page is moved from swapcache to shmem filecache (either by the
1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607 * ignorance of the mapping it belongs to. If that mapping has special
1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609 * we may need to copy to a suitable page before moving to filecache.
1610 *
1611 * In a future release, this may well be extended to respect cpuset and
1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613 * but for now it is a simple matter of zone.
1614 */
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616 {
1617 return page_zonenum(page) > gfp_zone(gfp);
1618 }
1619
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621 struct shmem_inode_info *info, pgoff_t index)
1622 {
1623 struct page *oldpage, *newpage;
1624 struct address_space *swap_mapping;
1625 swp_entry_t entry;
1626 pgoff_t swap_index;
1627 int error;
1628
1629 oldpage = *pagep;
1630 entry.val = page_private(oldpage);
1631 swap_index = swp_offset(entry);
1632 swap_mapping = page_mapping(oldpage);
1633
1634 /*
1635 * We have arrived here because our zones are constrained, so don't
1636 * limit chance of success by further cpuset and node constraints.
1637 */
1638 gfp &= ~GFP_CONSTRAINT_MASK;
1639 newpage = shmem_alloc_page(gfp, info, index);
1640 if (!newpage)
1641 return -ENOMEM;
1642
1643 get_page(newpage);
1644 copy_highpage(newpage, oldpage);
1645 flush_dcache_page(newpage);
1646
1647 __SetPageLocked(newpage);
1648 __SetPageSwapBacked(newpage);
1649 SetPageUptodate(newpage);
1650 set_page_private(newpage, entry.val);
1651 SetPageSwapCache(newpage);
1652
1653 /*
1654 * Our caller will very soon move newpage out of swapcache, but it's
1655 * a nice clean interface for us to replace oldpage by newpage there.
1656 */
1657 xa_lock_irq(&swap_mapping->i_pages);
1658 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1659 if (!error) {
1660 mem_cgroup_migrate(oldpage, newpage);
1661 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663 }
1664 xa_unlock_irq(&swap_mapping->i_pages);
1665
1666 if (unlikely(error)) {
1667 /*
1668 * Is this possible? I think not, now that our callers check
1669 * both PageSwapCache and page_private after getting page lock;
1670 * but be defensive. Reverse old to newpage for clear and free.
1671 */
1672 oldpage = newpage;
1673 } else {
1674 lru_cache_add(newpage);
1675 *pagep = newpage;
1676 }
1677
1678 ClearPageSwapCache(oldpage);
1679 set_page_private(oldpage, 0);
1680
1681 unlock_page(oldpage);
1682 put_page(oldpage);
1683 put_page(oldpage);
1684 return error;
1685 }
1686
1687 /*
1688 * Swap in the page pointed to by *pagep.
1689 * Caller has to make sure that *pagep contains a valid swapped page.
1690 * Returns 0 and the page in pagep if success. On failure, returns the
1691 * error code and NULL in *pagep.
1692 */
1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694 struct page **pagep, enum sgp_type sgp,
1695 gfp_t gfp, struct vm_area_struct *vma,
1696 vm_fault_t *fault_type)
1697 {
1698 struct address_space *mapping = inode->i_mapping;
1699 struct shmem_inode_info *info = SHMEM_I(inode);
1700 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1701 struct page *page;
1702 swp_entry_t swap;
1703 int error;
1704
1705 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706 swap = radix_to_swp_entry(*pagep);
1707 *pagep = NULL;
1708
1709 /* Look it up and read it in.. */
1710 page = lookup_swap_cache(swap, NULL, 0);
1711 if (!page) {
1712 /* Or update major stats only when swapin succeeds?? */
1713 if (fault_type) {
1714 *fault_type |= VM_FAULT_MAJOR;
1715 count_vm_event(PGMAJFAULT);
1716 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717 }
1718 /* Here we actually start the io */
1719 page = shmem_swapin(swap, gfp, info, index);
1720 if (!page) {
1721 error = -ENOMEM;
1722 goto failed;
1723 }
1724 }
1725
1726 /* We have to do this with page locked to prevent races */
1727 lock_page(page);
1728 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729 !shmem_confirm_swap(mapping, index, swap)) {
1730 error = -EEXIST;
1731 goto unlock;
1732 }
1733 if (!PageUptodate(page)) {
1734 error = -EIO;
1735 goto failed;
1736 }
1737 wait_on_page_writeback(page);
1738
1739 /*
1740 * Some architectures may have to restore extra metadata to the
1741 * physical page after reading from swap.
1742 */
1743 arch_swap_restore(swap, page);
1744
1745 if (shmem_should_replace_page(page, gfp)) {
1746 error = shmem_replace_page(&page, gfp, info, index);
1747 if (error)
1748 goto failed;
1749 }
1750
1751 error = shmem_add_to_page_cache(page, mapping, index,
1752 swp_to_radix_entry(swap), gfp,
1753 charge_mm);
1754 if (error)
1755 goto failed;
1756
1757 spin_lock_irq(&info->lock);
1758 info->swapped--;
1759 shmem_recalc_inode(inode);
1760 spin_unlock_irq(&info->lock);
1761
1762 if (sgp == SGP_WRITE)
1763 mark_page_accessed(page);
1764
1765 delete_from_swap_cache(page);
1766 set_page_dirty(page);
1767 swap_free(swap);
1768
1769 *pagep = page;
1770 return 0;
1771 failed:
1772 if (!shmem_confirm_swap(mapping, index, swap))
1773 error = -EEXIST;
1774 unlock:
1775 if (page) {
1776 unlock_page(page);
1777 put_page(page);
1778 }
1779
1780 return error;
1781 }
1782
1783 /*
1784 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1785 *
1786 * If we allocate a new one we do not mark it dirty. That's up to the
1787 * vm. If we swap it in we mark it dirty since we also free the swap
1788 * entry since a page cannot live in both the swap and page cache.
1789 *
1790 * vmf and fault_type are only supplied by shmem_fault:
1791 * otherwise they are NULL.
1792 */
1793 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1794 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1795 struct vm_area_struct *vma, struct vm_fault *vmf,
1796 vm_fault_t *fault_type)
1797 {
1798 struct address_space *mapping = inode->i_mapping;
1799 struct shmem_inode_info *info = SHMEM_I(inode);
1800 struct shmem_sb_info *sbinfo;
1801 struct mm_struct *charge_mm;
1802 struct page *page;
1803 enum sgp_type sgp_huge = sgp;
1804 pgoff_t hindex = index;
1805 int error;
1806 int once = 0;
1807 int alloced = 0;
1808
1809 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1810 return -EFBIG;
1811 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1812 sgp = SGP_CACHE;
1813 repeat:
1814 if (sgp <= SGP_CACHE &&
1815 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1816 return -EINVAL;
1817 }
1818
1819 sbinfo = SHMEM_SB(inode->i_sb);
1820 charge_mm = vma ? vma->vm_mm : current->mm;
1821
1822 page = find_lock_entry(mapping, index);
1823 if (xa_is_value(page)) {
1824 error = shmem_swapin_page(inode, index, &page,
1825 sgp, gfp, vma, fault_type);
1826 if (error == -EEXIST)
1827 goto repeat;
1828
1829 *pagep = page;
1830 return error;
1831 }
1832
1833 if (page)
1834 hindex = page->index;
1835 if (page && sgp == SGP_WRITE)
1836 mark_page_accessed(page);
1837
1838 /* fallocated page? */
1839 if (page && !PageUptodate(page)) {
1840 if (sgp != SGP_READ)
1841 goto clear;
1842 unlock_page(page);
1843 put_page(page);
1844 page = NULL;
1845 hindex = index;
1846 }
1847 if (page || sgp == SGP_READ)
1848 goto out;
1849
1850 /*
1851 * Fast cache lookup did not find it:
1852 * bring it back from swap or allocate.
1853 */
1854
1855 if (vma && userfaultfd_missing(vma)) {
1856 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1857 return 0;
1858 }
1859
1860 /* shmem_symlink() */
1861 if (mapping->a_ops != &shmem_aops)
1862 goto alloc_nohuge;
1863 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1864 goto alloc_nohuge;
1865 if (shmem_huge == SHMEM_HUGE_FORCE)
1866 goto alloc_huge;
1867 switch (sbinfo->huge) {
1868 case SHMEM_HUGE_NEVER:
1869 goto alloc_nohuge;
1870 case SHMEM_HUGE_WITHIN_SIZE: {
1871 loff_t i_size;
1872 pgoff_t off;
1873
1874 off = round_up(index, HPAGE_PMD_NR);
1875 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1876 if (i_size >= HPAGE_PMD_SIZE &&
1877 i_size >> PAGE_SHIFT >= off)
1878 goto alloc_huge;
1879
1880 fallthrough;
1881 }
1882 case SHMEM_HUGE_ADVISE:
1883 if (sgp_huge == SGP_HUGE)
1884 goto alloc_huge;
1885 /* TODO: implement fadvise() hints */
1886 goto alloc_nohuge;
1887 }
1888
1889 alloc_huge:
1890 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1891 if (IS_ERR(page)) {
1892 alloc_nohuge:
1893 page = shmem_alloc_and_acct_page(gfp, inode,
1894 index, false);
1895 }
1896 if (IS_ERR(page)) {
1897 int retry = 5;
1898
1899 error = PTR_ERR(page);
1900 page = NULL;
1901 if (error != -ENOSPC)
1902 goto unlock;
1903 /*
1904 * Try to reclaim some space by splitting a huge page
1905 * beyond i_size on the filesystem.
1906 */
1907 while (retry--) {
1908 int ret;
1909
1910 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1911 if (ret == SHRINK_STOP)
1912 break;
1913 if (ret)
1914 goto alloc_nohuge;
1915 }
1916 goto unlock;
1917 }
1918
1919 if (PageTransHuge(page))
1920 hindex = round_down(index, HPAGE_PMD_NR);
1921 else
1922 hindex = index;
1923
1924 if (sgp == SGP_WRITE)
1925 __SetPageReferenced(page);
1926
1927 error = shmem_add_to_page_cache(page, mapping, hindex,
1928 NULL, gfp & GFP_RECLAIM_MASK,
1929 charge_mm);
1930 if (error)
1931 goto unacct;
1932 lru_cache_add(page);
1933
1934 spin_lock_irq(&info->lock);
1935 info->alloced += compound_nr(page);
1936 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1937 shmem_recalc_inode(inode);
1938 spin_unlock_irq(&info->lock);
1939 alloced = true;
1940
1941 if (PageTransHuge(page) &&
1942 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1943 hindex + HPAGE_PMD_NR - 1) {
1944 /*
1945 * Part of the huge page is beyond i_size: subject
1946 * to shrink under memory pressure.
1947 */
1948 spin_lock(&sbinfo->shrinklist_lock);
1949 /*
1950 * _careful to defend against unlocked access to
1951 * ->shrink_list in shmem_unused_huge_shrink()
1952 */
1953 if (list_empty_careful(&info->shrinklist)) {
1954 list_add_tail(&info->shrinklist,
1955 &sbinfo->shrinklist);
1956 sbinfo->shrinklist_len++;
1957 }
1958 spin_unlock(&sbinfo->shrinklist_lock);
1959 }
1960
1961 /*
1962 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1963 */
1964 if (sgp == SGP_FALLOC)
1965 sgp = SGP_WRITE;
1966 clear:
1967 /*
1968 * Let SGP_WRITE caller clear ends if write does not fill page;
1969 * but SGP_FALLOC on a page fallocated earlier must initialize
1970 * it now, lest undo on failure cancel our earlier guarantee.
1971 */
1972 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1973 int i;
1974
1975 for (i = 0; i < compound_nr(page); i++) {
1976 clear_highpage(page + i);
1977 flush_dcache_page(page + i);
1978 }
1979 SetPageUptodate(page);
1980 }
1981
1982 /* Perhaps the file has been truncated since we checked */
1983 if (sgp <= SGP_CACHE &&
1984 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1985 if (alloced) {
1986 ClearPageDirty(page);
1987 delete_from_page_cache(page);
1988 spin_lock_irq(&info->lock);
1989 shmem_recalc_inode(inode);
1990 spin_unlock_irq(&info->lock);
1991 }
1992 error = -EINVAL;
1993 goto unlock;
1994 }
1995 out:
1996 *pagep = page + index - hindex;
1997 return 0;
1998
1999 /*
2000 * Error recovery.
2001 */
2002 unacct:
2003 shmem_inode_unacct_blocks(inode, compound_nr(page));
2004
2005 if (PageTransHuge(page)) {
2006 unlock_page(page);
2007 put_page(page);
2008 goto alloc_nohuge;
2009 }
2010 unlock:
2011 if (page) {
2012 unlock_page(page);
2013 put_page(page);
2014 }
2015 if (error == -ENOSPC && !once++) {
2016 spin_lock_irq(&info->lock);
2017 shmem_recalc_inode(inode);
2018 spin_unlock_irq(&info->lock);
2019 goto repeat;
2020 }
2021 if (error == -EEXIST)
2022 goto repeat;
2023 return error;
2024 }
2025
2026 /*
2027 * This is like autoremove_wake_function, but it removes the wait queue
2028 * entry unconditionally - even if something else had already woken the
2029 * target.
2030 */
2031 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2032 {
2033 int ret = default_wake_function(wait, mode, sync, key);
2034 list_del_init(&wait->entry);
2035 return ret;
2036 }
2037
2038 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2039 {
2040 struct vm_area_struct *vma = vmf->vma;
2041 struct inode *inode = file_inode(vma->vm_file);
2042 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2043 enum sgp_type sgp;
2044 int err;
2045 vm_fault_t ret = VM_FAULT_LOCKED;
2046
2047 /*
2048 * Trinity finds that probing a hole which tmpfs is punching can
2049 * prevent the hole-punch from ever completing: which in turn
2050 * locks writers out with its hold on i_mutex. So refrain from
2051 * faulting pages into the hole while it's being punched. Although
2052 * shmem_undo_range() does remove the additions, it may be unable to
2053 * keep up, as each new page needs its own unmap_mapping_range() call,
2054 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2055 *
2056 * It does not matter if we sometimes reach this check just before the
2057 * hole-punch begins, so that one fault then races with the punch:
2058 * we just need to make racing faults a rare case.
2059 *
2060 * The implementation below would be much simpler if we just used a
2061 * standard mutex or completion: but we cannot take i_mutex in fault,
2062 * and bloating every shmem inode for this unlikely case would be sad.
2063 */
2064 if (unlikely(inode->i_private)) {
2065 struct shmem_falloc *shmem_falloc;
2066
2067 spin_lock(&inode->i_lock);
2068 shmem_falloc = inode->i_private;
2069 if (shmem_falloc &&
2070 shmem_falloc->waitq &&
2071 vmf->pgoff >= shmem_falloc->start &&
2072 vmf->pgoff < shmem_falloc->next) {
2073 struct file *fpin;
2074 wait_queue_head_t *shmem_falloc_waitq;
2075 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2076
2077 ret = VM_FAULT_NOPAGE;
2078 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2079 if (fpin)
2080 ret = VM_FAULT_RETRY;
2081
2082 shmem_falloc_waitq = shmem_falloc->waitq;
2083 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2084 TASK_UNINTERRUPTIBLE);
2085 spin_unlock(&inode->i_lock);
2086 schedule();
2087
2088 /*
2089 * shmem_falloc_waitq points into the shmem_fallocate()
2090 * stack of the hole-punching task: shmem_falloc_waitq
2091 * is usually invalid by the time we reach here, but
2092 * finish_wait() does not dereference it in that case;
2093 * though i_lock needed lest racing with wake_up_all().
2094 */
2095 spin_lock(&inode->i_lock);
2096 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2097 spin_unlock(&inode->i_lock);
2098
2099 if (fpin)
2100 fput(fpin);
2101 return ret;
2102 }
2103 spin_unlock(&inode->i_lock);
2104 }
2105
2106 sgp = SGP_CACHE;
2107
2108 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2109 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2110 sgp = SGP_NOHUGE;
2111 else if (vma->vm_flags & VM_HUGEPAGE)
2112 sgp = SGP_HUGE;
2113
2114 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2115 gfp, vma, vmf, &ret);
2116 if (err)
2117 return vmf_error(err);
2118 return ret;
2119 }
2120
2121 unsigned long shmem_get_unmapped_area(struct file *file,
2122 unsigned long uaddr, unsigned long len,
2123 unsigned long pgoff, unsigned long flags)
2124 {
2125 unsigned long (*get_area)(struct file *,
2126 unsigned long, unsigned long, unsigned long, unsigned long);
2127 unsigned long addr;
2128 unsigned long offset;
2129 unsigned long inflated_len;
2130 unsigned long inflated_addr;
2131 unsigned long inflated_offset;
2132
2133 if (len > TASK_SIZE)
2134 return -ENOMEM;
2135
2136 get_area = current->mm->get_unmapped_area;
2137 addr = get_area(file, uaddr, len, pgoff, flags);
2138
2139 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2140 return addr;
2141 if (IS_ERR_VALUE(addr))
2142 return addr;
2143 if (addr & ~PAGE_MASK)
2144 return addr;
2145 if (addr > TASK_SIZE - len)
2146 return addr;
2147
2148 if (shmem_huge == SHMEM_HUGE_DENY)
2149 return addr;
2150 if (len < HPAGE_PMD_SIZE)
2151 return addr;
2152 if (flags & MAP_FIXED)
2153 return addr;
2154 /*
2155 * Our priority is to support MAP_SHARED mapped hugely;
2156 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2157 * But if caller specified an address hint and we allocated area there
2158 * successfully, respect that as before.
2159 */
2160 if (uaddr == addr)
2161 return addr;
2162
2163 if (shmem_huge != SHMEM_HUGE_FORCE) {
2164 struct super_block *sb;
2165
2166 if (file) {
2167 VM_BUG_ON(file->f_op != &shmem_file_operations);
2168 sb = file_inode(file)->i_sb;
2169 } else {
2170 /*
2171 * Called directly from mm/mmap.c, or drivers/char/mem.c
2172 * for "/dev/zero", to create a shared anonymous object.
2173 */
2174 if (IS_ERR(shm_mnt))
2175 return addr;
2176 sb = shm_mnt->mnt_sb;
2177 }
2178 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2179 return addr;
2180 }
2181
2182 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184 return addr;
2185 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2186 return addr;
2187
2188 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189 if (inflated_len > TASK_SIZE)
2190 return addr;
2191 if (inflated_len < len)
2192 return addr;
2193
2194 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2195 if (IS_ERR_VALUE(inflated_addr))
2196 return addr;
2197 if (inflated_addr & ~PAGE_MASK)
2198 return addr;
2199
2200 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201 inflated_addr += offset - inflated_offset;
2202 if (inflated_offset > offset)
2203 inflated_addr += HPAGE_PMD_SIZE;
2204
2205 if (inflated_addr > TASK_SIZE - len)
2206 return addr;
2207 return inflated_addr;
2208 }
2209
2210 #ifdef CONFIG_NUMA
2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2212 {
2213 struct inode *inode = file_inode(vma->vm_file);
2214 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2215 }
2216
2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2218 unsigned long addr)
2219 {
2220 struct inode *inode = file_inode(vma->vm_file);
2221 pgoff_t index;
2222
2223 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2225 }
2226 #endif
2227
2228 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2229 {
2230 struct inode *inode = file_inode(file);
2231 struct shmem_inode_info *info = SHMEM_I(inode);
2232 int retval = -ENOMEM;
2233
2234 /*
2235 * What serializes the accesses to info->flags?
2236 * ipc_lock_object() when called from shmctl_do_lock(),
2237 * no serialization needed when called from shm_destroy().
2238 */
2239 if (lock && !(info->flags & VM_LOCKED)) {
2240 if (!user_shm_lock(inode->i_size, user))
2241 goto out_nomem;
2242 info->flags |= VM_LOCKED;
2243 mapping_set_unevictable(file->f_mapping);
2244 }
2245 if (!lock && (info->flags & VM_LOCKED) && user) {
2246 user_shm_unlock(inode->i_size, user);
2247 info->flags &= ~VM_LOCKED;
2248 mapping_clear_unevictable(file->f_mapping);
2249 }
2250 retval = 0;
2251
2252 out_nomem:
2253 return retval;
2254 }
2255
2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2257 {
2258 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2259
2260 if (info->seals & F_SEAL_FUTURE_WRITE) {
2261 /*
2262 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2263 * "future write" seal active.
2264 */
2265 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2266 return -EPERM;
2267
2268 /*
2269 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2270 * MAP_SHARED and read-only, take care to not allow mprotect to
2271 * revert protections on such mappings. Do this only for shared
2272 * mappings. For private mappings, don't need to mask
2273 * VM_MAYWRITE as we still want them to be COW-writable.
2274 */
2275 if (vma->vm_flags & VM_SHARED)
2276 vma->vm_flags &= ~(VM_MAYWRITE);
2277 }
2278
2279 /* arm64 - allow memory tagging on RAM-based files */
2280 vma->vm_flags |= VM_MTE_ALLOWED;
2281
2282 file_accessed(file);
2283 vma->vm_ops = &shmem_vm_ops;
2284 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2285 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2286 (vma->vm_end & HPAGE_PMD_MASK)) {
2287 khugepaged_enter(vma, vma->vm_flags);
2288 }
2289 return 0;
2290 }
2291
2292 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2293 umode_t mode, dev_t dev, unsigned long flags)
2294 {
2295 struct inode *inode;
2296 struct shmem_inode_info *info;
2297 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2298 ino_t ino;
2299
2300 if (shmem_reserve_inode(sb, &ino))
2301 return NULL;
2302
2303 inode = new_inode(sb);
2304 if (inode) {
2305 inode->i_ino = ino;
2306 inode_init_owner(inode, dir, mode);
2307 inode->i_blocks = 0;
2308 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2309 inode->i_generation = prandom_u32();
2310 info = SHMEM_I(inode);
2311 memset(info, 0, (char *)inode - (char *)info);
2312 spin_lock_init(&info->lock);
2313 atomic_set(&info->stop_eviction, 0);
2314 info->seals = F_SEAL_SEAL;
2315 info->flags = flags & VM_NORESERVE;
2316 INIT_LIST_HEAD(&info->shrinklist);
2317 INIT_LIST_HEAD(&info->swaplist);
2318 simple_xattrs_init(&info->xattrs);
2319 cache_no_acl(inode);
2320
2321 switch (mode & S_IFMT) {
2322 default:
2323 inode->i_op = &shmem_special_inode_operations;
2324 init_special_inode(inode, mode, dev);
2325 break;
2326 case S_IFREG:
2327 inode->i_mapping->a_ops = &shmem_aops;
2328 inode->i_op = &shmem_inode_operations;
2329 inode->i_fop = &shmem_file_operations;
2330 mpol_shared_policy_init(&info->policy,
2331 shmem_get_sbmpol(sbinfo));
2332 break;
2333 case S_IFDIR:
2334 inc_nlink(inode);
2335 /* Some things misbehave if size == 0 on a directory */
2336 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2337 inode->i_op = &shmem_dir_inode_operations;
2338 inode->i_fop = &simple_dir_operations;
2339 break;
2340 case S_IFLNK:
2341 /*
2342 * Must not load anything in the rbtree,
2343 * mpol_free_shared_policy will not be called.
2344 */
2345 mpol_shared_policy_init(&info->policy, NULL);
2346 break;
2347 }
2348
2349 lockdep_annotate_inode_mutex_key(inode);
2350 } else
2351 shmem_free_inode(sb);
2352 return inode;
2353 }
2354
2355 bool shmem_mapping(struct address_space *mapping)
2356 {
2357 return mapping->a_ops == &shmem_aops;
2358 }
2359
2360 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2361 pmd_t *dst_pmd,
2362 struct vm_area_struct *dst_vma,
2363 unsigned long dst_addr,
2364 unsigned long src_addr,
2365 bool zeropage,
2366 struct page **pagep)
2367 {
2368 struct inode *inode = file_inode(dst_vma->vm_file);
2369 struct shmem_inode_info *info = SHMEM_I(inode);
2370 struct address_space *mapping = inode->i_mapping;
2371 gfp_t gfp = mapping_gfp_mask(mapping);
2372 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2373 spinlock_t *ptl;
2374 void *page_kaddr;
2375 struct page *page;
2376 pte_t _dst_pte, *dst_pte;
2377 int ret;
2378 pgoff_t offset, max_off;
2379
2380 ret = -ENOMEM;
2381 if (!shmem_inode_acct_block(inode, 1))
2382 goto out;
2383
2384 if (!*pagep) {
2385 page = shmem_alloc_page(gfp, info, pgoff);
2386 if (!page)
2387 goto out_unacct_blocks;
2388
2389 if (!zeropage) { /* mcopy_atomic */
2390 page_kaddr = kmap_atomic(page);
2391 ret = copy_from_user(page_kaddr,
2392 (const void __user *)src_addr,
2393 PAGE_SIZE);
2394 kunmap_atomic(page_kaddr);
2395
2396 /* fallback to copy_from_user outside mmap_lock */
2397 if (unlikely(ret)) {
2398 *pagep = page;
2399 shmem_inode_unacct_blocks(inode, 1);
2400 /* don't free the page */
2401 return -ENOENT;
2402 }
2403 } else { /* mfill_zeropage_atomic */
2404 clear_highpage(page);
2405 }
2406 } else {
2407 page = *pagep;
2408 *pagep = NULL;
2409 }
2410
2411 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2412 __SetPageLocked(page);
2413 __SetPageSwapBacked(page);
2414 __SetPageUptodate(page);
2415
2416 ret = -EFAULT;
2417 offset = linear_page_index(dst_vma, dst_addr);
2418 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2419 if (unlikely(offset >= max_off))
2420 goto out_release;
2421
2422 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2423 gfp & GFP_RECLAIM_MASK, dst_mm);
2424 if (ret)
2425 goto out_release;
2426
2427 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2428 if (dst_vma->vm_flags & VM_WRITE)
2429 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2430 else {
2431 /*
2432 * We don't set the pte dirty if the vma has no
2433 * VM_WRITE permission, so mark the page dirty or it
2434 * could be freed from under us. We could do it
2435 * unconditionally before unlock_page(), but doing it
2436 * only if VM_WRITE is not set is faster.
2437 */
2438 set_page_dirty(page);
2439 }
2440
2441 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2442
2443 ret = -EFAULT;
2444 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2445 if (unlikely(offset >= max_off))
2446 goto out_release_unlock;
2447
2448 ret = -EEXIST;
2449 if (!pte_none(*dst_pte))
2450 goto out_release_unlock;
2451
2452 lru_cache_add(page);
2453
2454 spin_lock_irq(&info->lock);
2455 info->alloced++;
2456 inode->i_blocks += BLOCKS_PER_PAGE;
2457 shmem_recalc_inode(inode);
2458 spin_unlock_irq(&info->lock);
2459
2460 inc_mm_counter(dst_mm, mm_counter_file(page));
2461 page_add_file_rmap(page, false);
2462 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2463
2464 /* No need to invalidate - it was non-present before */
2465 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2466 pte_unmap_unlock(dst_pte, ptl);
2467 unlock_page(page);
2468 ret = 0;
2469 out:
2470 return ret;
2471 out_release_unlock:
2472 pte_unmap_unlock(dst_pte, ptl);
2473 ClearPageDirty(page);
2474 delete_from_page_cache(page);
2475 out_release:
2476 unlock_page(page);
2477 put_page(page);
2478 out_unacct_blocks:
2479 shmem_inode_unacct_blocks(inode, 1);
2480 goto out;
2481 }
2482
2483 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2484 pmd_t *dst_pmd,
2485 struct vm_area_struct *dst_vma,
2486 unsigned long dst_addr,
2487 unsigned long src_addr,
2488 struct page **pagep)
2489 {
2490 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2491 dst_addr, src_addr, false, pagep);
2492 }
2493
2494 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2495 pmd_t *dst_pmd,
2496 struct vm_area_struct *dst_vma,
2497 unsigned long dst_addr)
2498 {
2499 struct page *page = NULL;
2500
2501 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2502 dst_addr, 0, true, &page);
2503 }
2504
2505 #ifdef CONFIG_TMPFS
2506 static const struct inode_operations shmem_symlink_inode_operations;
2507 static const struct inode_operations shmem_short_symlink_operations;
2508
2509 #ifdef CONFIG_TMPFS_XATTR
2510 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2511 #else
2512 #define shmem_initxattrs NULL
2513 #endif
2514
2515 static int
2516 shmem_write_begin(struct file *file, struct address_space *mapping,
2517 loff_t pos, unsigned len, unsigned flags,
2518 struct page **pagep, void **fsdata)
2519 {
2520 struct inode *inode = mapping->host;
2521 struct shmem_inode_info *info = SHMEM_I(inode);
2522 pgoff_t index = pos >> PAGE_SHIFT;
2523
2524 /* i_mutex is held by caller */
2525 if (unlikely(info->seals & (F_SEAL_GROW |
2526 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2527 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2528 return -EPERM;
2529 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2530 return -EPERM;
2531 }
2532
2533 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2534 }
2535
2536 static int
2537 shmem_write_end(struct file *file, struct address_space *mapping,
2538 loff_t pos, unsigned len, unsigned copied,
2539 struct page *page, void *fsdata)
2540 {
2541 struct inode *inode = mapping->host;
2542
2543 if (pos + copied > inode->i_size)
2544 i_size_write(inode, pos + copied);
2545
2546 if (!PageUptodate(page)) {
2547 struct page *head = compound_head(page);
2548 if (PageTransCompound(page)) {
2549 int i;
2550
2551 for (i = 0; i < HPAGE_PMD_NR; i++) {
2552 if (head + i == page)
2553 continue;
2554 clear_highpage(head + i);
2555 flush_dcache_page(head + i);
2556 }
2557 }
2558 if (copied < PAGE_SIZE) {
2559 unsigned from = pos & (PAGE_SIZE - 1);
2560 zero_user_segments(page, 0, from,
2561 from + copied, PAGE_SIZE);
2562 }
2563 SetPageUptodate(head);
2564 }
2565 set_page_dirty(page);
2566 unlock_page(page);
2567 put_page(page);
2568
2569 return copied;
2570 }
2571
2572 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2573 {
2574 struct file *file = iocb->ki_filp;
2575 struct inode *inode = file_inode(file);
2576 struct address_space *mapping = inode->i_mapping;
2577 pgoff_t index;
2578 unsigned long offset;
2579 enum sgp_type sgp = SGP_READ;
2580 int error = 0;
2581 ssize_t retval = 0;
2582 loff_t *ppos = &iocb->ki_pos;
2583
2584 /*
2585 * Might this read be for a stacking filesystem? Then when reading
2586 * holes of a sparse file, we actually need to allocate those pages,
2587 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2588 */
2589 if (!iter_is_iovec(to))
2590 sgp = SGP_CACHE;
2591
2592 index = *ppos >> PAGE_SHIFT;
2593 offset = *ppos & ~PAGE_MASK;
2594
2595 for (;;) {
2596 struct page *page = NULL;
2597 pgoff_t end_index;
2598 unsigned long nr, ret;
2599 loff_t i_size = i_size_read(inode);
2600
2601 end_index = i_size >> PAGE_SHIFT;
2602 if (index > end_index)
2603 break;
2604 if (index == end_index) {
2605 nr = i_size & ~PAGE_MASK;
2606 if (nr <= offset)
2607 break;
2608 }
2609
2610 error = shmem_getpage(inode, index, &page, sgp);
2611 if (error) {
2612 if (error == -EINVAL)
2613 error = 0;
2614 break;
2615 }
2616 if (page) {
2617 if (sgp == SGP_CACHE)
2618 set_page_dirty(page);
2619 unlock_page(page);
2620 }
2621
2622 /*
2623 * We must evaluate after, since reads (unlike writes)
2624 * are called without i_mutex protection against truncate
2625 */
2626 nr = PAGE_SIZE;
2627 i_size = i_size_read(inode);
2628 end_index = i_size >> PAGE_SHIFT;
2629 if (index == end_index) {
2630 nr = i_size & ~PAGE_MASK;
2631 if (nr <= offset) {
2632 if (page)
2633 put_page(page);
2634 break;
2635 }
2636 }
2637 nr -= offset;
2638
2639 if (page) {
2640 /*
2641 * If users can be writing to this page using arbitrary
2642 * virtual addresses, take care about potential aliasing
2643 * before reading the page on the kernel side.
2644 */
2645 if (mapping_writably_mapped(mapping))
2646 flush_dcache_page(page);
2647 /*
2648 * Mark the page accessed if we read the beginning.
2649 */
2650 if (!offset)
2651 mark_page_accessed(page);
2652 } else {
2653 page = ZERO_PAGE(0);
2654 get_page(page);
2655 }
2656
2657 /*
2658 * Ok, we have the page, and it's up-to-date, so
2659 * now we can copy it to user space...
2660 */
2661 ret = copy_page_to_iter(page, offset, nr, to);
2662 retval += ret;
2663 offset += ret;
2664 index += offset >> PAGE_SHIFT;
2665 offset &= ~PAGE_MASK;
2666
2667 put_page(page);
2668 if (!iov_iter_count(to))
2669 break;
2670 if (ret < nr) {
2671 error = -EFAULT;
2672 break;
2673 }
2674 cond_resched();
2675 }
2676
2677 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2678 file_accessed(file);
2679 return retval ? retval : error;
2680 }
2681
2682 /*
2683 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2684 */
2685 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2686 pgoff_t index, pgoff_t end, int whence)
2687 {
2688 struct page *page;
2689 struct pagevec pvec;
2690 pgoff_t indices[PAGEVEC_SIZE];
2691 bool done = false;
2692 int i;
2693
2694 pagevec_init(&pvec);
2695 pvec.nr = 1; /* start small: we may be there already */
2696 while (!done) {
2697 pvec.nr = find_get_entries(mapping, index,
2698 pvec.nr, pvec.pages, indices);
2699 if (!pvec.nr) {
2700 if (whence == SEEK_DATA)
2701 index = end;
2702 break;
2703 }
2704 for (i = 0; i < pvec.nr; i++, index++) {
2705 if (index < indices[i]) {
2706 if (whence == SEEK_HOLE) {
2707 done = true;
2708 break;
2709 }
2710 index = indices[i];
2711 }
2712 page = pvec.pages[i];
2713 if (page && !xa_is_value(page)) {
2714 if (!PageUptodate(page))
2715 page = NULL;
2716 }
2717 if (index >= end ||
2718 (page && whence == SEEK_DATA) ||
2719 (!page && whence == SEEK_HOLE)) {
2720 done = true;
2721 break;
2722 }
2723 }
2724 pagevec_remove_exceptionals(&pvec);
2725 pagevec_release(&pvec);
2726 pvec.nr = PAGEVEC_SIZE;
2727 cond_resched();
2728 }
2729 return index;
2730 }
2731
2732 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2733 {
2734 struct address_space *mapping = file->f_mapping;
2735 struct inode *inode = mapping->host;
2736 pgoff_t start, end;
2737 loff_t new_offset;
2738
2739 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2740 return generic_file_llseek_size(file, offset, whence,
2741 MAX_LFS_FILESIZE, i_size_read(inode));
2742 inode_lock(inode);
2743 /* We're holding i_mutex so we can access i_size directly */
2744
2745 if (offset < 0 || offset >= inode->i_size)
2746 offset = -ENXIO;
2747 else {
2748 start = offset >> PAGE_SHIFT;
2749 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2750 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2751 new_offset <<= PAGE_SHIFT;
2752 if (new_offset > offset) {
2753 if (new_offset < inode->i_size)
2754 offset = new_offset;
2755 else if (whence == SEEK_DATA)
2756 offset = -ENXIO;
2757 else
2758 offset = inode->i_size;
2759 }
2760 }
2761
2762 if (offset >= 0)
2763 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2764 inode_unlock(inode);
2765 return offset;
2766 }
2767
2768 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2769 loff_t len)
2770 {
2771 struct inode *inode = file_inode(file);
2772 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2773 struct shmem_inode_info *info = SHMEM_I(inode);
2774 struct shmem_falloc shmem_falloc;
2775 pgoff_t start, index, end;
2776 int error;
2777
2778 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2779 return -EOPNOTSUPP;
2780
2781 inode_lock(inode);
2782
2783 if (mode & FALLOC_FL_PUNCH_HOLE) {
2784 struct address_space *mapping = file->f_mapping;
2785 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2786 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2787 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2788
2789 /* protected by i_mutex */
2790 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2791 error = -EPERM;
2792 goto out;
2793 }
2794
2795 shmem_falloc.waitq = &shmem_falloc_waitq;
2796 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2797 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2798 spin_lock(&inode->i_lock);
2799 inode->i_private = &shmem_falloc;
2800 spin_unlock(&inode->i_lock);
2801
2802 if ((u64)unmap_end > (u64)unmap_start)
2803 unmap_mapping_range(mapping, unmap_start,
2804 1 + unmap_end - unmap_start, 0);
2805 shmem_truncate_range(inode, offset, offset + len - 1);
2806 /* No need to unmap again: hole-punching leaves COWed pages */
2807
2808 spin_lock(&inode->i_lock);
2809 inode->i_private = NULL;
2810 wake_up_all(&shmem_falloc_waitq);
2811 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2812 spin_unlock(&inode->i_lock);
2813 error = 0;
2814 goto out;
2815 }
2816
2817 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2818 error = inode_newsize_ok(inode, offset + len);
2819 if (error)
2820 goto out;
2821
2822 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2823 error = -EPERM;
2824 goto out;
2825 }
2826
2827 start = offset >> PAGE_SHIFT;
2828 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2829 /* Try to avoid a swapstorm if len is impossible to satisfy */
2830 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2831 error = -ENOSPC;
2832 goto out;
2833 }
2834
2835 shmem_falloc.waitq = NULL;
2836 shmem_falloc.start = start;
2837 shmem_falloc.next = start;
2838 shmem_falloc.nr_falloced = 0;
2839 shmem_falloc.nr_unswapped = 0;
2840 spin_lock(&inode->i_lock);
2841 inode->i_private = &shmem_falloc;
2842 spin_unlock(&inode->i_lock);
2843
2844 for (index = start; index < end; index++) {
2845 struct page *page;
2846
2847 /*
2848 * Good, the fallocate(2) manpage permits EINTR: we may have
2849 * been interrupted because we are using up too much memory.
2850 */
2851 if (signal_pending(current))
2852 error = -EINTR;
2853 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2854 error = -ENOMEM;
2855 else
2856 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2857 if (error) {
2858 /* Remove the !PageUptodate pages we added */
2859 if (index > start) {
2860 shmem_undo_range(inode,
2861 (loff_t)start << PAGE_SHIFT,
2862 ((loff_t)index << PAGE_SHIFT) - 1, true);
2863 }
2864 goto undone;
2865 }
2866
2867 /*
2868 * Inform shmem_writepage() how far we have reached.
2869 * No need for lock or barrier: we have the page lock.
2870 */
2871 shmem_falloc.next++;
2872 if (!PageUptodate(page))
2873 shmem_falloc.nr_falloced++;
2874
2875 /*
2876 * If !PageUptodate, leave it that way so that freeable pages
2877 * can be recognized if we need to rollback on error later.
2878 * But set_page_dirty so that memory pressure will swap rather
2879 * than free the pages we are allocating (and SGP_CACHE pages
2880 * might still be clean: we now need to mark those dirty too).
2881 */
2882 set_page_dirty(page);
2883 unlock_page(page);
2884 put_page(page);
2885 cond_resched();
2886 }
2887
2888 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2889 i_size_write(inode, offset + len);
2890 inode->i_ctime = current_time(inode);
2891 undone:
2892 spin_lock(&inode->i_lock);
2893 inode->i_private = NULL;
2894 spin_unlock(&inode->i_lock);
2895 out:
2896 inode_unlock(inode);
2897 return error;
2898 }
2899
2900 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2901 {
2902 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2903
2904 buf->f_type = TMPFS_MAGIC;
2905 buf->f_bsize = PAGE_SIZE;
2906 buf->f_namelen = NAME_MAX;
2907 if (sbinfo->max_blocks) {
2908 buf->f_blocks = sbinfo->max_blocks;
2909 buf->f_bavail =
2910 buf->f_bfree = sbinfo->max_blocks -
2911 percpu_counter_sum(&sbinfo->used_blocks);
2912 }
2913 if (sbinfo->max_inodes) {
2914 buf->f_files = sbinfo->max_inodes;
2915 buf->f_ffree = sbinfo->free_inodes;
2916 }
2917 /* else leave those fields 0 like simple_statfs */
2918 return 0;
2919 }
2920
2921 /*
2922 * File creation. Allocate an inode, and we're done..
2923 */
2924 static int
2925 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2926 {
2927 struct inode *inode;
2928 int error = -ENOSPC;
2929
2930 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2931 if (inode) {
2932 error = simple_acl_create(dir, inode);
2933 if (error)
2934 goto out_iput;
2935 error = security_inode_init_security(inode, dir,
2936 &dentry->d_name,
2937 shmem_initxattrs, NULL);
2938 if (error && error != -EOPNOTSUPP)
2939 goto out_iput;
2940
2941 error = 0;
2942 dir->i_size += BOGO_DIRENT_SIZE;
2943 dir->i_ctime = dir->i_mtime = current_time(dir);
2944 d_instantiate(dentry, inode);
2945 dget(dentry); /* Extra count - pin the dentry in core */
2946 }
2947 return error;
2948 out_iput:
2949 iput(inode);
2950 return error;
2951 }
2952
2953 static int
2954 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2955 {
2956 struct inode *inode;
2957 int error = -ENOSPC;
2958
2959 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2960 if (inode) {
2961 error = security_inode_init_security(inode, dir,
2962 NULL,
2963 shmem_initxattrs, NULL);
2964 if (error && error != -EOPNOTSUPP)
2965 goto out_iput;
2966 error = simple_acl_create(dir, inode);
2967 if (error)
2968 goto out_iput;
2969 d_tmpfile(dentry, inode);
2970 }
2971 return error;
2972 out_iput:
2973 iput(inode);
2974 return error;
2975 }
2976
2977 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2978 {
2979 int error;
2980
2981 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2982 return error;
2983 inc_nlink(dir);
2984 return 0;
2985 }
2986
2987 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2988 bool excl)
2989 {
2990 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2991 }
2992
2993 /*
2994 * Link a file..
2995 */
2996 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2997 {
2998 struct inode *inode = d_inode(old_dentry);
2999 int ret = 0;
3000
3001 /*
3002 * No ordinary (disk based) filesystem counts links as inodes;
3003 * but each new link needs a new dentry, pinning lowmem, and
3004 * tmpfs dentries cannot be pruned until they are unlinked.
3005 * But if an O_TMPFILE file is linked into the tmpfs, the
3006 * first link must skip that, to get the accounting right.
3007 */
3008 if (inode->i_nlink) {
3009 ret = shmem_reserve_inode(inode->i_sb, NULL);
3010 if (ret)
3011 goto out;
3012 }
3013
3014 dir->i_size += BOGO_DIRENT_SIZE;
3015 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3016 inc_nlink(inode);
3017 ihold(inode); /* New dentry reference */
3018 dget(dentry); /* Extra pinning count for the created dentry */
3019 d_instantiate(dentry, inode);
3020 out:
3021 return ret;
3022 }
3023
3024 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3025 {
3026 struct inode *inode = d_inode(dentry);
3027
3028 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3029 shmem_free_inode(inode->i_sb);
3030
3031 dir->i_size -= BOGO_DIRENT_SIZE;
3032 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3033 drop_nlink(inode);
3034 dput(dentry); /* Undo the count from "create" - this does all the work */
3035 return 0;
3036 }
3037
3038 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3039 {
3040 if (!simple_empty(dentry))
3041 return -ENOTEMPTY;
3042
3043 drop_nlink(d_inode(dentry));
3044 drop_nlink(dir);
3045 return shmem_unlink(dir, dentry);
3046 }
3047
3048 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3049 {
3050 bool old_is_dir = d_is_dir(old_dentry);
3051 bool new_is_dir = d_is_dir(new_dentry);
3052
3053 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3054 if (old_is_dir) {
3055 drop_nlink(old_dir);
3056 inc_nlink(new_dir);
3057 } else {
3058 drop_nlink(new_dir);
3059 inc_nlink(old_dir);
3060 }
3061 }
3062 old_dir->i_ctime = old_dir->i_mtime =
3063 new_dir->i_ctime = new_dir->i_mtime =
3064 d_inode(old_dentry)->i_ctime =
3065 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3066
3067 return 0;
3068 }
3069
3070 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3071 {
3072 struct dentry *whiteout;
3073 int error;
3074
3075 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3076 if (!whiteout)
3077 return -ENOMEM;
3078
3079 error = shmem_mknod(old_dir, whiteout,
3080 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3081 dput(whiteout);
3082 if (error)
3083 return error;
3084
3085 /*
3086 * Cheat and hash the whiteout while the old dentry is still in
3087 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3088 *
3089 * d_lookup() will consistently find one of them at this point,
3090 * not sure which one, but that isn't even important.
3091 */
3092 d_rehash(whiteout);
3093 return 0;
3094 }
3095
3096 /*
3097 * The VFS layer already does all the dentry stuff for rename,
3098 * we just have to decrement the usage count for the target if
3099 * it exists so that the VFS layer correctly free's it when it
3100 * gets overwritten.
3101 */
3102 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3103 {
3104 struct inode *inode = d_inode(old_dentry);
3105 int they_are_dirs = S_ISDIR(inode->i_mode);
3106
3107 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3108 return -EINVAL;
3109
3110 if (flags & RENAME_EXCHANGE)
3111 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3112
3113 if (!simple_empty(new_dentry))
3114 return -ENOTEMPTY;
3115
3116 if (flags & RENAME_WHITEOUT) {
3117 int error;
3118
3119 error = shmem_whiteout(old_dir, old_dentry);
3120 if (error)
3121 return error;
3122 }
3123
3124 if (d_really_is_positive(new_dentry)) {
3125 (void) shmem_unlink(new_dir, new_dentry);
3126 if (they_are_dirs) {
3127 drop_nlink(d_inode(new_dentry));
3128 drop_nlink(old_dir);
3129 }
3130 } else if (they_are_dirs) {
3131 drop_nlink(old_dir);
3132 inc_nlink(new_dir);
3133 }
3134
3135 old_dir->i_size -= BOGO_DIRENT_SIZE;
3136 new_dir->i_size += BOGO_DIRENT_SIZE;
3137 old_dir->i_ctime = old_dir->i_mtime =
3138 new_dir->i_ctime = new_dir->i_mtime =
3139 inode->i_ctime = current_time(old_dir);
3140 return 0;
3141 }
3142
3143 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3144 {
3145 int error;
3146 int len;
3147 struct inode *inode;
3148 struct page *page;
3149
3150 len = strlen(symname) + 1;
3151 if (len > PAGE_SIZE)
3152 return -ENAMETOOLONG;
3153
3154 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3155 VM_NORESERVE);
3156 if (!inode)
3157 return -ENOSPC;
3158
3159 error = security_inode_init_security(inode, dir, &dentry->d_name,
3160 shmem_initxattrs, NULL);
3161 if (error && error != -EOPNOTSUPP) {
3162 iput(inode);
3163 return error;
3164 }
3165
3166 inode->i_size = len-1;
3167 if (len <= SHORT_SYMLINK_LEN) {
3168 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3169 if (!inode->i_link) {
3170 iput(inode);
3171 return -ENOMEM;
3172 }
3173 inode->i_op = &shmem_short_symlink_operations;
3174 } else {
3175 inode_nohighmem(inode);
3176 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3177 if (error) {
3178 iput(inode);
3179 return error;
3180 }
3181 inode->i_mapping->a_ops = &shmem_aops;
3182 inode->i_op = &shmem_symlink_inode_operations;
3183 memcpy(page_address(page), symname, len);
3184 SetPageUptodate(page);
3185 set_page_dirty(page);
3186 unlock_page(page);
3187 put_page(page);
3188 }
3189 dir->i_size += BOGO_DIRENT_SIZE;
3190 dir->i_ctime = dir->i_mtime = current_time(dir);
3191 d_instantiate(dentry, inode);
3192 dget(dentry);
3193 return 0;
3194 }
3195
3196 static void shmem_put_link(void *arg)
3197 {
3198 mark_page_accessed(arg);
3199 put_page(arg);
3200 }
3201
3202 static const char *shmem_get_link(struct dentry *dentry,
3203 struct inode *inode,
3204 struct delayed_call *done)
3205 {
3206 struct page *page = NULL;
3207 int error;
3208 if (!dentry) {
3209 page = find_get_page(inode->i_mapping, 0);
3210 if (!page)
3211 return ERR_PTR(-ECHILD);
3212 if (!PageUptodate(page)) {
3213 put_page(page);
3214 return ERR_PTR(-ECHILD);
3215 }
3216 } else {
3217 error = shmem_getpage(inode, 0, &page, SGP_READ);
3218 if (error)
3219 return ERR_PTR(error);
3220 unlock_page(page);
3221 }
3222 set_delayed_call(done, shmem_put_link, page);
3223 return page_address(page);
3224 }
3225
3226 #ifdef CONFIG_TMPFS_XATTR
3227 /*
3228 * Superblocks without xattr inode operations may get some security.* xattr
3229 * support from the LSM "for free". As soon as we have any other xattrs
3230 * like ACLs, we also need to implement the security.* handlers at
3231 * filesystem level, though.
3232 */
3233
3234 /*
3235 * Callback for security_inode_init_security() for acquiring xattrs.
3236 */
3237 static int shmem_initxattrs(struct inode *inode,
3238 const struct xattr *xattr_array,
3239 void *fs_info)
3240 {
3241 struct shmem_inode_info *info = SHMEM_I(inode);
3242 const struct xattr *xattr;
3243 struct simple_xattr *new_xattr;
3244 size_t len;
3245
3246 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3247 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3248 if (!new_xattr)
3249 return -ENOMEM;
3250
3251 len = strlen(xattr->name) + 1;
3252 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3253 GFP_KERNEL);
3254 if (!new_xattr->name) {
3255 kvfree(new_xattr);
3256 return -ENOMEM;
3257 }
3258
3259 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3260 XATTR_SECURITY_PREFIX_LEN);
3261 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3262 xattr->name, len);
3263
3264 simple_xattr_list_add(&info->xattrs, new_xattr);
3265 }
3266
3267 return 0;
3268 }
3269
3270 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3271 struct dentry *unused, struct inode *inode,
3272 const char *name, void *buffer, size_t size)
3273 {
3274 struct shmem_inode_info *info = SHMEM_I(inode);
3275
3276 name = xattr_full_name(handler, name);
3277 return simple_xattr_get(&info->xattrs, name, buffer, size);
3278 }
3279
3280 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3281 struct dentry *unused, struct inode *inode,
3282 const char *name, const void *value,
3283 size_t size, int flags)
3284 {
3285 struct shmem_inode_info *info = SHMEM_I(inode);
3286
3287 name = xattr_full_name(handler, name);
3288 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3289 }
3290
3291 static const struct xattr_handler shmem_security_xattr_handler = {
3292 .prefix = XATTR_SECURITY_PREFIX,
3293 .get = shmem_xattr_handler_get,
3294 .set = shmem_xattr_handler_set,
3295 };
3296
3297 static const struct xattr_handler shmem_trusted_xattr_handler = {
3298 .prefix = XATTR_TRUSTED_PREFIX,
3299 .get = shmem_xattr_handler_get,
3300 .set = shmem_xattr_handler_set,
3301 };
3302
3303 static const struct xattr_handler *shmem_xattr_handlers[] = {
3304 #ifdef CONFIG_TMPFS_POSIX_ACL
3305 &posix_acl_access_xattr_handler,
3306 &posix_acl_default_xattr_handler,
3307 #endif
3308 &shmem_security_xattr_handler,
3309 &shmem_trusted_xattr_handler,
3310 NULL
3311 };
3312
3313 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3314 {
3315 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3316 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3317 }
3318 #endif /* CONFIG_TMPFS_XATTR */
3319
3320 static const struct inode_operations shmem_short_symlink_operations = {
3321 .get_link = simple_get_link,
3322 #ifdef CONFIG_TMPFS_XATTR
3323 .listxattr = shmem_listxattr,
3324 #endif
3325 };
3326
3327 static const struct inode_operations shmem_symlink_inode_operations = {
3328 .get_link = shmem_get_link,
3329 #ifdef CONFIG_TMPFS_XATTR
3330 .listxattr = shmem_listxattr,
3331 #endif
3332 };
3333
3334 static struct dentry *shmem_get_parent(struct dentry *child)
3335 {
3336 return ERR_PTR(-ESTALE);
3337 }
3338
3339 static int shmem_match(struct inode *ino, void *vfh)
3340 {
3341 __u32 *fh = vfh;
3342 __u64 inum = fh[2];
3343 inum = (inum << 32) | fh[1];
3344 return ino->i_ino == inum && fh[0] == ino->i_generation;
3345 }
3346
3347 /* Find any alias of inode, but prefer a hashed alias */
3348 static struct dentry *shmem_find_alias(struct inode *inode)
3349 {
3350 struct dentry *alias = d_find_alias(inode);
3351
3352 return alias ?: d_find_any_alias(inode);
3353 }
3354
3355
3356 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3357 struct fid *fid, int fh_len, int fh_type)
3358 {
3359 struct inode *inode;
3360 struct dentry *dentry = NULL;
3361 u64 inum;
3362
3363 if (fh_len < 3)
3364 return NULL;
3365
3366 inum = fid->raw[2];
3367 inum = (inum << 32) | fid->raw[1];
3368
3369 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3370 shmem_match, fid->raw);
3371 if (inode) {
3372 dentry = shmem_find_alias(inode);
3373 iput(inode);
3374 }
3375
3376 return dentry;
3377 }
3378
3379 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3380 struct inode *parent)
3381 {
3382 if (*len < 3) {
3383 *len = 3;
3384 return FILEID_INVALID;
3385 }
3386
3387 if (inode_unhashed(inode)) {
3388 /* Unfortunately insert_inode_hash is not idempotent,
3389 * so as we hash inodes here rather than at creation
3390 * time, we need a lock to ensure we only try
3391 * to do it once
3392 */
3393 static DEFINE_SPINLOCK(lock);
3394 spin_lock(&lock);
3395 if (inode_unhashed(inode))
3396 __insert_inode_hash(inode,
3397 inode->i_ino + inode->i_generation);
3398 spin_unlock(&lock);
3399 }
3400
3401 fh[0] = inode->i_generation;
3402 fh[1] = inode->i_ino;
3403 fh[2] = ((__u64)inode->i_ino) >> 32;
3404
3405 *len = 3;
3406 return 1;
3407 }
3408
3409 static const struct export_operations shmem_export_ops = {
3410 .get_parent = shmem_get_parent,
3411 .encode_fh = shmem_encode_fh,
3412 .fh_to_dentry = shmem_fh_to_dentry,
3413 };
3414
3415 enum shmem_param {
3416 Opt_gid,
3417 Opt_huge,
3418 Opt_mode,
3419 Opt_mpol,
3420 Opt_nr_blocks,
3421 Opt_nr_inodes,
3422 Opt_size,
3423 Opt_uid,
3424 Opt_inode32,
3425 Opt_inode64,
3426 };
3427
3428 static const struct constant_table shmem_param_enums_huge[] = {
3429 {"never", SHMEM_HUGE_NEVER },
3430 {"always", SHMEM_HUGE_ALWAYS },
3431 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3432 {"advise", SHMEM_HUGE_ADVISE },
3433 {}
3434 };
3435
3436 const struct fs_parameter_spec shmem_fs_parameters[] = {
3437 fsparam_u32 ("gid", Opt_gid),
3438 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3439 fsparam_u32oct("mode", Opt_mode),
3440 fsparam_string("mpol", Opt_mpol),
3441 fsparam_string("nr_blocks", Opt_nr_blocks),
3442 fsparam_string("nr_inodes", Opt_nr_inodes),
3443 fsparam_string("size", Opt_size),
3444 fsparam_u32 ("uid", Opt_uid),
3445 fsparam_flag ("inode32", Opt_inode32),
3446 fsparam_flag ("inode64", Opt_inode64),
3447 {}
3448 };
3449
3450 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3451 {
3452 struct shmem_options *ctx = fc->fs_private;
3453 struct fs_parse_result result;
3454 unsigned long long size;
3455 char *rest;
3456 int opt;
3457
3458 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3459 if (opt < 0)
3460 return opt;
3461
3462 switch (opt) {
3463 case Opt_size:
3464 size = memparse(param->string, &rest);
3465 if (*rest == '%') {
3466 size <<= PAGE_SHIFT;
3467 size *= totalram_pages();
3468 do_div(size, 100);
3469 rest++;
3470 }
3471 if (*rest)
3472 goto bad_value;
3473 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3474 ctx->seen |= SHMEM_SEEN_BLOCKS;
3475 break;
3476 case Opt_nr_blocks:
3477 ctx->blocks = memparse(param->string, &rest);
3478 if (*rest)
3479 goto bad_value;
3480 ctx->seen |= SHMEM_SEEN_BLOCKS;
3481 break;
3482 case Opt_nr_inodes:
3483 ctx->inodes = memparse(param->string, &rest);
3484 if (*rest)
3485 goto bad_value;
3486 ctx->seen |= SHMEM_SEEN_INODES;
3487 break;
3488 case Opt_mode:
3489 ctx->mode = result.uint_32 & 07777;
3490 break;
3491 case Opt_uid:
3492 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3493 if (!uid_valid(ctx->uid))
3494 goto bad_value;
3495 break;
3496 case Opt_gid:
3497 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3498 if (!gid_valid(ctx->gid))
3499 goto bad_value;
3500 break;
3501 case Opt_huge:
3502 ctx->huge = result.uint_32;
3503 if (ctx->huge != SHMEM_HUGE_NEVER &&
3504 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3505 has_transparent_hugepage()))
3506 goto unsupported_parameter;
3507 ctx->seen |= SHMEM_SEEN_HUGE;
3508 break;
3509 case Opt_mpol:
3510 if (IS_ENABLED(CONFIG_NUMA)) {
3511 mpol_put(ctx->mpol);
3512 ctx->mpol = NULL;
3513 if (mpol_parse_str(param->string, &ctx->mpol))
3514 goto bad_value;
3515 break;
3516 }
3517 goto unsupported_parameter;
3518 case Opt_inode32:
3519 ctx->full_inums = false;
3520 ctx->seen |= SHMEM_SEEN_INUMS;
3521 break;
3522 case Opt_inode64:
3523 if (sizeof(ino_t) < 8) {
3524 return invalfc(fc,
3525 "Cannot use inode64 with <64bit inums in kernel\n");
3526 }
3527 ctx->full_inums = true;
3528 ctx->seen |= SHMEM_SEEN_INUMS;
3529 break;
3530 }
3531 return 0;
3532
3533 unsupported_parameter:
3534 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3535 bad_value:
3536 return invalfc(fc, "Bad value for '%s'", param->key);
3537 }
3538
3539 static int shmem_parse_options(struct fs_context *fc, void *data)
3540 {
3541 char *options = data;
3542
3543 if (options) {
3544 int err = security_sb_eat_lsm_opts(options, &fc->security);
3545 if (err)
3546 return err;
3547 }
3548
3549 while (options != NULL) {
3550 char *this_char = options;
3551 for (;;) {
3552 /*
3553 * NUL-terminate this option: unfortunately,
3554 * mount options form a comma-separated list,
3555 * but mpol's nodelist may also contain commas.
3556 */
3557 options = strchr(options, ',');
3558 if (options == NULL)
3559 break;
3560 options++;
3561 if (!isdigit(*options)) {
3562 options[-1] = '\0';
3563 break;
3564 }
3565 }
3566 if (*this_char) {
3567 char *value = strchr(this_char,'=');
3568 size_t len = 0;
3569 int err;
3570
3571 if (value) {
3572 *value++ = '\0';
3573 len = strlen(value);
3574 }
3575 err = vfs_parse_fs_string(fc, this_char, value, len);
3576 if (err < 0)
3577 return err;
3578 }
3579 }
3580 return 0;
3581 }
3582
3583 /*
3584 * Reconfigure a shmem filesystem.
3585 *
3586 * Note that we disallow change from limited->unlimited blocks/inodes while any
3587 * are in use; but we must separately disallow unlimited->limited, because in
3588 * that case we have no record of how much is already in use.
3589 */
3590 static int shmem_reconfigure(struct fs_context *fc)
3591 {
3592 struct shmem_options *ctx = fc->fs_private;
3593 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3594 unsigned long inodes;
3595 const char *err;
3596
3597 spin_lock(&sbinfo->stat_lock);
3598 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3599 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3600 if (!sbinfo->max_blocks) {
3601 err = "Cannot retroactively limit size";
3602 goto out;
3603 }
3604 if (percpu_counter_compare(&sbinfo->used_blocks,
3605 ctx->blocks) > 0) {
3606 err = "Too small a size for current use";
3607 goto out;
3608 }
3609 }
3610 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3611 if (!sbinfo->max_inodes) {
3612 err = "Cannot retroactively limit inodes";
3613 goto out;
3614 }
3615 if (ctx->inodes < inodes) {
3616 err = "Too few inodes for current use";
3617 goto out;
3618 }
3619 }
3620
3621 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3622 sbinfo->next_ino > UINT_MAX) {
3623 err = "Current inum too high to switch to 32-bit inums";
3624 goto out;
3625 }
3626
3627 if (ctx->seen & SHMEM_SEEN_HUGE)
3628 sbinfo->huge = ctx->huge;
3629 if (ctx->seen & SHMEM_SEEN_INUMS)
3630 sbinfo->full_inums = ctx->full_inums;
3631 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3632 sbinfo->max_blocks = ctx->blocks;
3633 if (ctx->seen & SHMEM_SEEN_INODES) {
3634 sbinfo->max_inodes = ctx->inodes;
3635 sbinfo->free_inodes = ctx->inodes - inodes;
3636 }
3637
3638 /*
3639 * Preserve previous mempolicy unless mpol remount option was specified.
3640 */
3641 if (ctx->mpol) {
3642 mpol_put(sbinfo->mpol);
3643 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3644 ctx->mpol = NULL;
3645 }
3646 spin_unlock(&sbinfo->stat_lock);
3647 return 0;
3648 out:
3649 spin_unlock(&sbinfo->stat_lock);
3650 return invalfc(fc, "%s", err);
3651 }
3652
3653 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3654 {
3655 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3656
3657 if (sbinfo->max_blocks != shmem_default_max_blocks())
3658 seq_printf(seq, ",size=%luk",
3659 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3660 if (sbinfo->max_inodes != shmem_default_max_inodes())
3661 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3662 if (sbinfo->mode != (0777 | S_ISVTX))
3663 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3664 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3665 seq_printf(seq, ",uid=%u",
3666 from_kuid_munged(&init_user_ns, sbinfo->uid));
3667 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3668 seq_printf(seq, ",gid=%u",
3669 from_kgid_munged(&init_user_ns, sbinfo->gid));
3670
3671 /*
3672 * Showing inode{64,32} might be useful even if it's the system default,
3673 * since then people don't have to resort to checking both here and
3674 * /proc/config.gz to confirm 64-bit inums were successfully applied
3675 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3676 *
3677 * We hide it when inode64 isn't the default and we are using 32-bit
3678 * inodes, since that probably just means the feature isn't even under
3679 * consideration.
3680 *
3681 * As such:
3682 *
3683 * +-----------------+-----------------+
3684 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3685 * +------------------+-----------------+-----------------+
3686 * | full_inums=true | show | show |
3687 * | full_inums=false | show | hide |
3688 * +------------------+-----------------+-----------------+
3689 *
3690 */
3691 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3692 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3694 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3695 if (sbinfo->huge)
3696 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3697 #endif
3698 shmem_show_mpol(seq, sbinfo->mpol);
3699 return 0;
3700 }
3701
3702 #endif /* CONFIG_TMPFS */
3703
3704 static void shmem_put_super(struct super_block *sb)
3705 {
3706 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3707
3708 free_percpu(sbinfo->ino_batch);
3709 percpu_counter_destroy(&sbinfo->used_blocks);
3710 mpol_put(sbinfo->mpol);
3711 kfree(sbinfo);
3712 sb->s_fs_info = NULL;
3713 }
3714
3715 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3716 {
3717 struct shmem_options *ctx = fc->fs_private;
3718 struct inode *inode;
3719 struct shmem_sb_info *sbinfo;
3720 int err = -ENOMEM;
3721
3722 /* Round up to L1_CACHE_BYTES to resist false sharing */
3723 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3724 L1_CACHE_BYTES), GFP_KERNEL);
3725 if (!sbinfo)
3726 return -ENOMEM;
3727
3728 sb->s_fs_info = sbinfo;
3729
3730 #ifdef CONFIG_TMPFS
3731 /*
3732 * Per default we only allow half of the physical ram per
3733 * tmpfs instance, limiting inodes to one per page of lowmem;
3734 * but the internal instance is left unlimited.
3735 */
3736 if (!(sb->s_flags & SB_KERNMOUNT)) {
3737 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3738 ctx->blocks = shmem_default_max_blocks();
3739 if (!(ctx->seen & SHMEM_SEEN_INODES))
3740 ctx->inodes = shmem_default_max_inodes();
3741 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3742 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3743 } else {
3744 sb->s_flags |= SB_NOUSER;
3745 }
3746 sb->s_export_op = &shmem_export_ops;
3747 sb->s_flags |= SB_NOSEC;
3748 #else
3749 sb->s_flags |= SB_NOUSER;
3750 #endif
3751 sbinfo->max_blocks = ctx->blocks;
3752 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3753 if (sb->s_flags & SB_KERNMOUNT) {
3754 sbinfo->ino_batch = alloc_percpu(ino_t);
3755 if (!sbinfo->ino_batch)
3756 goto failed;
3757 }
3758 sbinfo->uid = ctx->uid;
3759 sbinfo->gid = ctx->gid;
3760 sbinfo->full_inums = ctx->full_inums;
3761 sbinfo->mode = ctx->mode;
3762 sbinfo->huge = ctx->huge;
3763 sbinfo->mpol = ctx->mpol;
3764 ctx->mpol = NULL;
3765
3766 spin_lock_init(&sbinfo->stat_lock);
3767 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3768 goto failed;
3769 spin_lock_init(&sbinfo->shrinklist_lock);
3770 INIT_LIST_HEAD(&sbinfo->shrinklist);
3771
3772 sb->s_maxbytes = MAX_LFS_FILESIZE;
3773 sb->s_blocksize = PAGE_SIZE;
3774 sb->s_blocksize_bits = PAGE_SHIFT;
3775 sb->s_magic = TMPFS_MAGIC;
3776 sb->s_op = &shmem_ops;
3777 sb->s_time_gran = 1;
3778 #ifdef CONFIG_TMPFS_XATTR
3779 sb->s_xattr = shmem_xattr_handlers;
3780 #endif
3781 #ifdef CONFIG_TMPFS_POSIX_ACL
3782 sb->s_flags |= SB_POSIXACL;
3783 #endif
3784 uuid_gen(&sb->s_uuid);
3785
3786 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3787 if (!inode)
3788 goto failed;
3789 inode->i_uid = sbinfo->uid;
3790 inode->i_gid = sbinfo->gid;
3791 sb->s_root = d_make_root(inode);
3792 if (!sb->s_root)
3793 goto failed;
3794 return 0;
3795
3796 failed:
3797 shmem_put_super(sb);
3798 return err;
3799 }
3800
3801 static int shmem_get_tree(struct fs_context *fc)
3802 {
3803 return get_tree_nodev(fc, shmem_fill_super);
3804 }
3805
3806 static void shmem_free_fc(struct fs_context *fc)
3807 {
3808 struct shmem_options *ctx = fc->fs_private;
3809
3810 if (ctx) {
3811 mpol_put(ctx->mpol);
3812 kfree(ctx);
3813 }
3814 }
3815
3816 static const struct fs_context_operations shmem_fs_context_ops = {
3817 .free = shmem_free_fc,
3818 .get_tree = shmem_get_tree,
3819 #ifdef CONFIG_TMPFS
3820 .parse_monolithic = shmem_parse_options,
3821 .parse_param = shmem_parse_one,
3822 .reconfigure = shmem_reconfigure,
3823 #endif
3824 };
3825
3826 static struct kmem_cache *shmem_inode_cachep;
3827
3828 static struct inode *shmem_alloc_inode(struct super_block *sb)
3829 {
3830 struct shmem_inode_info *info;
3831 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3832 if (!info)
3833 return NULL;
3834 return &info->vfs_inode;
3835 }
3836
3837 static void shmem_free_in_core_inode(struct inode *inode)
3838 {
3839 if (S_ISLNK(inode->i_mode))
3840 kfree(inode->i_link);
3841 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3842 }
3843
3844 static void shmem_destroy_inode(struct inode *inode)
3845 {
3846 if (S_ISREG(inode->i_mode))
3847 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3848 }
3849
3850 static void shmem_init_inode(void *foo)
3851 {
3852 struct shmem_inode_info *info = foo;
3853 inode_init_once(&info->vfs_inode);
3854 }
3855
3856 static void shmem_init_inodecache(void)
3857 {
3858 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3859 sizeof(struct shmem_inode_info),
3860 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3861 }
3862
3863 static void shmem_destroy_inodecache(void)
3864 {
3865 kmem_cache_destroy(shmem_inode_cachep);
3866 }
3867
3868 static const struct address_space_operations shmem_aops = {
3869 .writepage = shmem_writepage,
3870 .set_page_dirty = __set_page_dirty_no_writeback,
3871 #ifdef CONFIG_TMPFS
3872 .write_begin = shmem_write_begin,
3873 .write_end = shmem_write_end,
3874 #endif
3875 #ifdef CONFIG_MIGRATION
3876 .migratepage = migrate_page,
3877 #endif
3878 .error_remove_page = generic_error_remove_page,
3879 };
3880
3881 static const struct file_operations shmem_file_operations = {
3882 .mmap = shmem_mmap,
3883 .get_unmapped_area = shmem_get_unmapped_area,
3884 #ifdef CONFIG_TMPFS
3885 .llseek = shmem_file_llseek,
3886 .read_iter = shmem_file_read_iter,
3887 .write_iter = generic_file_write_iter,
3888 .fsync = noop_fsync,
3889 .splice_read = generic_file_splice_read,
3890 .splice_write = iter_file_splice_write,
3891 .fallocate = shmem_fallocate,
3892 #endif
3893 };
3894
3895 static const struct inode_operations shmem_inode_operations = {
3896 .getattr = shmem_getattr,
3897 .setattr = shmem_setattr,
3898 #ifdef CONFIG_TMPFS_XATTR
3899 .listxattr = shmem_listxattr,
3900 .set_acl = simple_set_acl,
3901 #endif
3902 };
3903
3904 static const struct inode_operations shmem_dir_inode_operations = {
3905 #ifdef CONFIG_TMPFS
3906 .create = shmem_create,
3907 .lookup = simple_lookup,
3908 .link = shmem_link,
3909 .unlink = shmem_unlink,
3910 .symlink = shmem_symlink,
3911 .mkdir = shmem_mkdir,
3912 .rmdir = shmem_rmdir,
3913 .mknod = shmem_mknod,
3914 .rename = shmem_rename2,
3915 .tmpfile = shmem_tmpfile,
3916 #endif
3917 #ifdef CONFIG_TMPFS_XATTR
3918 .listxattr = shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921 .setattr = shmem_setattr,
3922 .set_acl = simple_set_acl,
3923 #endif
3924 };
3925
3926 static const struct inode_operations shmem_special_inode_operations = {
3927 #ifdef CONFIG_TMPFS_XATTR
3928 .listxattr = shmem_listxattr,
3929 #endif
3930 #ifdef CONFIG_TMPFS_POSIX_ACL
3931 .setattr = shmem_setattr,
3932 .set_acl = simple_set_acl,
3933 #endif
3934 };
3935
3936 static const struct super_operations shmem_ops = {
3937 .alloc_inode = shmem_alloc_inode,
3938 .free_inode = shmem_free_in_core_inode,
3939 .destroy_inode = shmem_destroy_inode,
3940 #ifdef CONFIG_TMPFS
3941 .statfs = shmem_statfs,
3942 .show_options = shmem_show_options,
3943 #endif
3944 .evict_inode = shmem_evict_inode,
3945 .drop_inode = generic_delete_inode,
3946 .put_super = shmem_put_super,
3947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3948 .nr_cached_objects = shmem_unused_huge_count,
3949 .free_cached_objects = shmem_unused_huge_scan,
3950 #endif
3951 };
3952
3953 static const struct vm_operations_struct shmem_vm_ops = {
3954 .fault = shmem_fault,
3955 .map_pages = filemap_map_pages,
3956 #ifdef CONFIG_NUMA
3957 .set_policy = shmem_set_policy,
3958 .get_policy = shmem_get_policy,
3959 #endif
3960 };
3961
3962 int shmem_init_fs_context(struct fs_context *fc)
3963 {
3964 struct shmem_options *ctx;
3965
3966 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3967 if (!ctx)
3968 return -ENOMEM;
3969
3970 ctx->mode = 0777 | S_ISVTX;
3971 ctx->uid = current_fsuid();
3972 ctx->gid = current_fsgid();
3973
3974 fc->fs_private = ctx;
3975 fc->ops = &shmem_fs_context_ops;
3976 return 0;
3977 }
3978
3979 static struct file_system_type shmem_fs_type = {
3980 .owner = THIS_MODULE,
3981 .name = "tmpfs",
3982 .init_fs_context = shmem_init_fs_context,
3983 #ifdef CONFIG_TMPFS
3984 .parameters = shmem_fs_parameters,
3985 #endif
3986 .kill_sb = kill_litter_super,
3987 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3988 };
3989
3990 int __init shmem_init(void)
3991 {
3992 int error;
3993
3994 shmem_init_inodecache();
3995
3996 error = register_filesystem(&shmem_fs_type);
3997 if (error) {
3998 pr_err("Could not register tmpfs\n");
3999 goto out2;
4000 }
4001
4002 shm_mnt = kern_mount(&shmem_fs_type);
4003 if (IS_ERR(shm_mnt)) {
4004 error = PTR_ERR(shm_mnt);
4005 pr_err("Could not kern_mount tmpfs\n");
4006 goto out1;
4007 }
4008
4009 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4010 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4011 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4012 else
4013 shmem_huge = 0; /* just in case it was patched */
4014 #endif
4015 return 0;
4016
4017 out1:
4018 unregister_filesystem(&shmem_fs_type);
4019 out2:
4020 shmem_destroy_inodecache();
4021 shm_mnt = ERR_PTR(error);
4022 return error;
4023 }
4024
4025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4026 static ssize_t shmem_enabled_show(struct kobject *kobj,
4027 struct kobj_attribute *attr, char *buf)
4028 {
4029 static const int values[] = {
4030 SHMEM_HUGE_ALWAYS,
4031 SHMEM_HUGE_WITHIN_SIZE,
4032 SHMEM_HUGE_ADVISE,
4033 SHMEM_HUGE_NEVER,
4034 SHMEM_HUGE_DENY,
4035 SHMEM_HUGE_FORCE,
4036 };
4037 int i, count;
4038
4039 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
4040 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
4041
4042 count += sprintf(buf + count, fmt,
4043 shmem_format_huge(values[i]));
4044 }
4045 buf[count - 1] = '\n';
4046 return count;
4047 }
4048
4049 static ssize_t shmem_enabled_store(struct kobject *kobj,
4050 struct kobj_attribute *attr, const char *buf, size_t count)
4051 {
4052 char tmp[16];
4053 int huge;
4054
4055 if (count + 1 > sizeof(tmp))
4056 return -EINVAL;
4057 memcpy(tmp, buf, count);
4058 tmp[count] = '\0';
4059 if (count && tmp[count - 1] == '\n')
4060 tmp[count - 1] = '\0';
4061
4062 huge = shmem_parse_huge(tmp);
4063 if (huge == -EINVAL)
4064 return -EINVAL;
4065 if (!has_transparent_hugepage() &&
4066 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4067 return -EINVAL;
4068
4069 shmem_huge = huge;
4070 if (shmem_huge > SHMEM_HUGE_DENY)
4071 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4072 return count;
4073 }
4074
4075 struct kobj_attribute shmem_enabled_attr =
4076 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4077 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4078
4079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4080 bool shmem_huge_enabled(struct vm_area_struct *vma)
4081 {
4082 struct inode *inode = file_inode(vma->vm_file);
4083 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4084 loff_t i_size;
4085 pgoff_t off;
4086
4087 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4088 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4089 return false;
4090 if (shmem_huge == SHMEM_HUGE_FORCE)
4091 return true;
4092 if (shmem_huge == SHMEM_HUGE_DENY)
4093 return false;
4094 switch (sbinfo->huge) {
4095 case SHMEM_HUGE_NEVER:
4096 return false;
4097 case SHMEM_HUGE_ALWAYS:
4098 return true;
4099 case SHMEM_HUGE_WITHIN_SIZE:
4100 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4101 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4102 if (i_size >= HPAGE_PMD_SIZE &&
4103 i_size >> PAGE_SHIFT >= off)
4104 return true;
4105 fallthrough;
4106 case SHMEM_HUGE_ADVISE:
4107 /* TODO: implement fadvise() hints */
4108 return (vma->vm_flags & VM_HUGEPAGE);
4109 default:
4110 VM_BUG_ON(1);
4111 return false;
4112 }
4113 }
4114 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4115
4116 #else /* !CONFIG_SHMEM */
4117
4118 /*
4119 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4120 *
4121 * This is intended for small system where the benefits of the full
4122 * shmem code (swap-backed and resource-limited) are outweighed by
4123 * their complexity. On systems without swap this code should be
4124 * effectively equivalent, but much lighter weight.
4125 */
4126
4127 static struct file_system_type shmem_fs_type = {
4128 .name = "tmpfs",
4129 .init_fs_context = ramfs_init_fs_context,
4130 .parameters = ramfs_fs_parameters,
4131 .kill_sb = kill_litter_super,
4132 .fs_flags = FS_USERNS_MOUNT,
4133 };
4134
4135 int __init shmem_init(void)
4136 {
4137 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4138
4139 shm_mnt = kern_mount(&shmem_fs_type);
4140 BUG_ON(IS_ERR(shm_mnt));
4141
4142 return 0;
4143 }
4144
4145 int shmem_unuse(unsigned int type, bool frontswap,
4146 unsigned long *fs_pages_to_unuse)
4147 {
4148 return 0;
4149 }
4150
4151 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4152 {
4153 return 0;
4154 }
4155
4156 void shmem_unlock_mapping(struct address_space *mapping)
4157 {
4158 }
4159
4160 #ifdef CONFIG_MMU
4161 unsigned long shmem_get_unmapped_area(struct file *file,
4162 unsigned long addr, unsigned long len,
4163 unsigned long pgoff, unsigned long flags)
4164 {
4165 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4166 }
4167 #endif
4168
4169 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4170 {
4171 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4172 }
4173 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4174
4175 #define shmem_vm_ops generic_file_vm_ops
4176 #define shmem_file_operations ramfs_file_operations
4177 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4178 #define shmem_acct_size(flags, size) 0
4179 #define shmem_unacct_size(flags, size) do {} while (0)
4180
4181 #endif /* CONFIG_SHMEM */
4182
4183 /* common code */
4184
4185 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4186 unsigned long flags, unsigned int i_flags)
4187 {
4188 struct inode *inode;
4189 struct file *res;
4190
4191 if (IS_ERR(mnt))
4192 return ERR_CAST(mnt);
4193
4194 if (size < 0 || size > MAX_LFS_FILESIZE)
4195 return ERR_PTR(-EINVAL);
4196
4197 if (shmem_acct_size(flags, size))
4198 return ERR_PTR(-ENOMEM);
4199
4200 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4201 flags);
4202 if (unlikely(!inode)) {
4203 shmem_unacct_size(flags, size);
4204 return ERR_PTR(-ENOSPC);
4205 }
4206 inode->i_flags |= i_flags;
4207 inode->i_size = size;
4208 clear_nlink(inode); /* It is unlinked */
4209 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4210 if (!IS_ERR(res))
4211 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4212 &shmem_file_operations);
4213 if (IS_ERR(res))
4214 iput(inode);
4215 return res;
4216 }
4217
4218 /**
4219 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4220 * kernel internal. There will be NO LSM permission checks against the
4221 * underlying inode. So users of this interface must do LSM checks at a
4222 * higher layer. The users are the big_key and shm implementations. LSM
4223 * checks are provided at the key or shm level rather than the inode.
4224 * @name: name for dentry (to be seen in /proc/<pid>/maps
4225 * @size: size to be set for the file
4226 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4227 */
4228 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4229 {
4230 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4231 }
4232
4233 /**
4234 * shmem_file_setup - get an unlinked file living in tmpfs
4235 * @name: name for dentry (to be seen in /proc/<pid>/maps
4236 * @size: size to be set for the file
4237 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4238 */
4239 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4240 {
4241 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4242 }
4243 EXPORT_SYMBOL_GPL(shmem_file_setup);
4244
4245 /**
4246 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4247 * @mnt: the tmpfs mount where the file will be created
4248 * @name: name for dentry (to be seen in /proc/<pid>/maps
4249 * @size: size to be set for the file
4250 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4251 */
4252 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4253 loff_t size, unsigned long flags)
4254 {
4255 return __shmem_file_setup(mnt, name, size, flags, 0);
4256 }
4257 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4258
4259 /**
4260 * shmem_zero_setup - setup a shared anonymous mapping
4261 * @vma: the vma to be mmapped is prepared by do_mmap
4262 */
4263 int shmem_zero_setup(struct vm_area_struct *vma)
4264 {
4265 struct file *file;
4266 loff_t size = vma->vm_end - vma->vm_start;
4267
4268 /*
4269 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4270 * between XFS directory reading and selinux: since this file is only
4271 * accessible to the user through its mapping, use S_PRIVATE flag to
4272 * bypass file security, in the same way as shmem_kernel_file_setup().
4273 */
4274 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4275 if (IS_ERR(file))
4276 return PTR_ERR(file);
4277
4278 if (vma->vm_file)
4279 fput(vma->vm_file);
4280 vma->vm_file = file;
4281 vma->vm_ops = &shmem_vm_ops;
4282
4283 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4284 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4285 (vma->vm_end & HPAGE_PMD_MASK)) {
4286 khugepaged_enter(vma, vma->vm_flags);
4287 }
4288
4289 return 0;
4290 }
4291
4292 /**
4293 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4294 * @mapping: the page's address_space
4295 * @index: the page index
4296 * @gfp: the page allocator flags to use if allocating
4297 *
4298 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4299 * with any new page allocations done using the specified allocation flags.
4300 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4301 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4302 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4303 *
4304 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4305 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4306 */
4307 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4308 pgoff_t index, gfp_t gfp)
4309 {
4310 #ifdef CONFIG_SHMEM
4311 struct inode *inode = mapping->host;
4312 struct page *page;
4313 int error;
4314
4315 BUG_ON(mapping->a_ops != &shmem_aops);
4316 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4317 gfp, NULL, NULL, NULL);
4318 if (error)
4319 page = ERR_PTR(error);
4320 else
4321 unlock_page(page);
4322 return page;
4323 #else
4324 /*
4325 * The tiny !SHMEM case uses ramfs without swap
4326 */
4327 return read_cache_page_gfp(mapping, index, gfp);
4328 #endif
4329 }
4330 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);