]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/shmem.c
mm: Map most files to use export.h instead of module.h
[mirror_ubuntu-bionic-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33
34 static struct vfsmount *shm_mnt;
35
36 #ifdef CONFIG_SHMEM
37 /*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69
70 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78
79 struct shmem_xattr {
80 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
81 char *name; /* xattr name */
82 size_t size;
83 char value[0];
84 };
85
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88 SGP_READ, /* don't exceed i_size, don't allocate page */
89 SGP_CACHE, /* don't exceed i_size, may allocate page */
90 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
91 SGP_WRITE, /* may exceed i_size, may allocate page */
92 };
93
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97 return totalram_pages / 2;
98 }
99
100 static unsigned long shmem_default_max_inodes(void)
101 {
102 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105
106 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108
109 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110 struct page **pagep, enum sgp_type sgp, int *fault_type)
111 {
112 return shmem_getpage_gfp(inode, index, pagep, sgp,
113 mapping_gfp_mask(inode->i_mapping), fault_type);
114 }
115
116 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117 {
118 return sb->s_fs_info;
119 }
120
121 /*
122 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123 * for shared memory and for shared anonymous (/dev/zero) mappings
124 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125 * consistent with the pre-accounting of private mappings ...
126 */
127 static inline int shmem_acct_size(unsigned long flags, loff_t size)
128 {
129 return (flags & VM_NORESERVE) ?
130 0 : security_vm_enough_memory_kern(VM_ACCT(size));
131 }
132
133 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134 {
135 if (!(flags & VM_NORESERVE))
136 vm_unacct_memory(VM_ACCT(size));
137 }
138
139 /*
140 * ... whereas tmpfs objects are accounted incrementally as
141 * pages are allocated, in order to allow huge sparse files.
142 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144 */
145 static inline int shmem_acct_block(unsigned long flags)
146 {
147 return (flags & VM_NORESERVE) ?
148 security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149 }
150
151 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152 {
153 if (flags & VM_NORESERVE)
154 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155 }
156
157 static const struct super_operations shmem_ops;
158 static const struct address_space_operations shmem_aops;
159 static const struct file_operations shmem_file_operations;
160 static const struct inode_operations shmem_inode_operations;
161 static const struct inode_operations shmem_dir_inode_operations;
162 static const struct inode_operations shmem_special_inode_operations;
163 static const struct vm_operations_struct shmem_vm_ops;
164
165 static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
166 .ra_pages = 0, /* No readahead */
167 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168 };
169
170 static LIST_HEAD(shmem_swaplist);
171 static DEFINE_MUTEX(shmem_swaplist_mutex);
172
173 static int shmem_reserve_inode(struct super_block *sb)
174 {
175 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176 if (sbinfo->max_inodes) {
177 spin_lock(&sbinfo->stat_lock);
178 if (!sbinfo->free_inodes) {
179 spin_unlock(&sbinfo->stat_lock);
180 return -ENOSPC;
181 }
182 sbinfo->free_inodes--;
183 spin_unlock(&sbinfo->stat_lock);
184 }
185 return 0;
186 }
187
188 static void shmem_free_inode(struct super_block *sb)
189 {
190 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 if (sbinfo->max_inodes) {
192 spin_lock(&sbinfo->stat_lock);
193 sbinfo->free_inodes++;
194 spin_unlock(&sbinfo->stat_lock);
195 }
196 }
197
198 /**
199 * shmem_recalc_inode - recalculate the block usage of an inode
200 * @inode: inode to recalc
201 *
202 * We have to calculate the free blocks since the mm can drop
203 * undirtied hole pages behind our back.
204 *
205 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
206 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207 *
208 * It has to be called with the spinlock held.
209 */
210 static void shmem_recalc_inode(struct inode *inode)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 long freed;
214
215 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216 if (freed > 0) {
217 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 if (sbinfo->max_blocks)
219 percpu_counter_add(&sbinfo->used_blocks, -freed);
220 info->alloced -= freed;
221 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222 shmem_unacct_blocks(info->flags, freed);
223 }
224 }
225
226 /*
227 * Replace item expected in radix tree by a new item, while holding tree lock.
228 */
229 static int shmem_radix_tree_replace(struct address_space *mapping,
230 pgoff_t index, void *expected, void *replacement)
231 {
232 void **pslot;
233 void *item = NULL;
234
235 VM_BUG_ON(!expected);
236 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237 if (pslot)
238 item = radix_tree_deref_slot_protected(pslot,
239 &mapping->tree_lock);
240 if (item != expected)
241 return -ENOENT;
242 if (replacement)
243 radix_tree_replace_slot(pslot, replacement);
244 else
245 radix_tree_delete(&mapping->page_tree, index);
246 return 0;
247 }
248
249 /*
250 * Like add_to_page_cache_locked, but error if expected item has gone.
251 */
252 static int shmem_add_to_page_cache(struct page *page,
253 struct address_space *mapping,
254 pgoff_t index, gfp_t gfp, void *expected)
255 {
256 int error = 0;
257
258 VM_BUG_ON(!PageLocked(page));
259 VM_BUG_ON(!PageSwapBacked(page));
260
261 if (!expected)
262 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263 if (!error) {
264 page_cache_get(page);
265 page->mapping = mapping;
266 page->index = index;
267
268 spin_lock_irq(&mapping->tree_lock);
269 if (!expected)
270 error = radix_tree_insert(&mapping->page_tree,
271 index, page);
272 else
273 error = shmem_radix_tree_replace(mapping, index,
274 expected, page);
275 if (!error) {
276 mapping->nrpages++;
277 __inc_zone_page_state(page, NR_FILE_PAGES);
278 __inc_zone_page_state(page, NR_SHMEM);
279 spin_unlock_irq(&mapping->tree_lock);
280 } else {
281 page->mapping = NULL;
282 spin_unlock_irq(&mapping->tree_lock);
283 page_cache_release(page);
284 }
285 if (!expected)
286 radix_tree_preload_end();
287 }
288 if (error)
289 mem_cgroup_uncharge_cache_page(page);
290 return error;
291 }
292
293 /*
294 * Like delete_from_page_cache, but substitutes swap for page.
295 */
296 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297 {
298 struct address_space *mapping = page->mapping;
299 int error;
300
301 spin_lock_irq(&mapping->tree_lock);
302 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303 page->mapping = NULL;
304 mapping->nrpages--;
305 __dec_zone_page_state(page, NR_FILE_PAGES);
306 __dec_zone_page_state(page, NR_SHMEM);
307 spin_unlock_irq(&mapping->tree_lock);
308 page_cache_release(page);
309 BUG_ON(error);
310 }
311
312 /*
313 * Like find_get_pages, but collecting swap entries as well as pages.
314 */
315 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316 pgoff_t start, unsigned int nr_pages,
317 struct page **pages, pgoff_t *indices)
318 {
319 unsigned int i;
320 unsigned int ret;
321 unsigned int nr_found;
322
323 rcu_read_lock();
324 restart:
325 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326 (void ***)pages, indices, start, nr_pages);
327 ret = 0;
328 for (i = 0; i < nr_found; i++) {
329 struct page *page;
330 repeat:
331 page = radix_tree_deref_slot((void **)pages[i]);
332 if (unlikely(!page))
333 continue;
334 if (radix_tree_exception(page)) {
335 if (radix_tree_deref_retry(page))
336 goto restart;
337 /*
338 * Otherwise, we must be storing a swap entry
339 * here as an exceptional entry: so return it
340 * without attempting to raise page count.
341 */
342 goto export;
343 }
344 if (!page_cache_get_speculative(page))
345 goto repeat;
346
347 /* Has the page moved? */
348 if (unlikely(page != *((void **)pages[i]))) {
349 page_cache_release(page);
350 goto repeat;
351 }
352 export:
353 indices[ret] = indices[i];
354 pages[ret] = page;
355 ret++;
356 }
357 if (unlikely(!ret && nr_found))
358 goto restart;
359 rcu_read_unlock();
360 return ret;
361 }
362
363 /*
364 * Remove swap entry from radix tree, free the swap and its page cache.
365 */
366 static int shmem_free_swap(struct address_space *mapping,
367 pgoff_t index, void *radswap)
368 {
369 int error;
370
371 spin_lock_irq(&mapping->tree_lock);
372 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373 spin_unlock_irq(&mapping->tree_lock);
374 if (!error)
375 free_swap_and_cache(radix_to_swp_entry(radswap));
376 return error;
377 }
378
379 /*
380 * Pagevec may contain swap entries, so shuffle up pages before releasing.
381 */
382 static void shmem_pagevec_release(struct pagevec *pvec)
383 {
384 int i, j;
385
386 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387 struct page *page = pvec->pages[i];
388 if (!radix_tree_exceptional_entry(page))
389 pvec->pages[j++] = page;
390 }
391 pvec->nr = j;
392 pagevec_release(pvec);
393 }
394
395 /*
396 * Remove range of pages and swap entries from radix tree, and free them.
397 */
398 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
399 {
400 struct address_space *mapping = inode->i_mapping;
401 struct shmem_inode_info *info = SHMEM_I(inode);
402 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
403 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
404 pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
405 struct pagevec pvec;
406 pgoff_t indices[PAGEVEC_SIZE];
407 long nr_swaps_freed = 0;
408 pgoff_t index;
409 int i;
410
411 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
412
413 pagevec_init(&pvec, 0);
414 index = start;
415 while (index <= end) {
416 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
418 pvec.pages, indices);
419 if (!pvec.nr)
420 break;
421 mem_cgroup_uncharge_start();
422 for (i = 0; i < pagevec_count(&pvec); i++) {
423 struct page *page = pvec.pages[i];
424
425 index = indices[i];
426 if (index > end)
427 break;
428
429 if (radix_tree_exceptional_entry(page)) {
430 nr_swaps_freed += !shmem_free_swap(mapping,
431 index, page);
432 continue;
433 }
434
435 if (!trylock_page(page))
436 continue;
437 if (page->mapping == mapping) {
438 VM_BUG_ON(PageWriteback(page));
439 truncate_inode_page(mapping, page);
440 }
441 unlock_page(page);
442 }
443 shmem_pagevec_release(&pvec);
444 mem_cgroup_uncharge_end();
445 cond_resched();
446 index++;
447 }
448
449 if (partial) {
450 struct page *page = NULL;
451 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
452 if (page) {
453 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
454 set_page_dirty(page);
455 unlock_page(page);
456 page_cache_release(page);
457 }
458 }
459
460 index = start;
461 for ( ; ; ) {
462 cond_resched();
463 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
464 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
465 pvec.pages, indices);
466 if (!pvec.nr) {
467 if (index == start)
468 break;
469 index = start;
470 continue;
471 }
472 if (index == start && indices[0] > end) {
473 shmem_pagevec_release(&pvec);
474 break;
475 }
476 mem_cgroup_uncharge_start();
477 for (i = 0; i < pagevec_count(&pvec); i++) {
478 struct page *page = pvec.pages[i];
479
480 index = indices[i];
481 if (index > end)
482 break;
483
484 if (radix_tree_exceptional_entry(page)) {
485 nr_swaps_freed += !shmem_free_swap(mapping,
486 index, page);
487 continue;
488 }
489
490 lock_page(page);
491 if (page->mapping == mapping) {
492 VM_BUG_ON(PageWriteback(page));
493 truncate_inode_page(mapping, page);
494 }
495 unlock_page(page);
496 }
497 shmem_pagevec_release(&pvec);
498 mem_cgroup_uncharge_end();
499 index++;
500 }
501
502 spin_lock(&info->lock);
503 info->swapped -= nr_swaps_freed;
504 shmem_recalc_inode(inode);
505 spin_unlock(&info->lock);
506
507 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508 }
509 EXPORT_SYMBOL_GPL(shmem_truncate_range);
510
511 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
512 {
513 struct inode *inode = dentry->d_inode;
514 int error;
515
516 error = inode_change_ok(inode, attr);
517 if (error)
518 return error;
519
520 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
521 loff_t oldsize = inode->i_size;
522 loff_t newsize = attr->ia_size;
523
524 if (newsize != oldsize) {
525 i_size_write(inode, newsize);
526 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
527 }
528 if (newsize < oldsize) {
529 loff_t holebegin = round_up(newsize, PAGE_SIZE);
530 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
531 shmem_truncate_range(inode, newsize, (loff_t)-1);
532 /* unmap again to remove racily COWed private pages */
533 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
534 }
535 }
536
537 setattr_copy(inode, attr);
538 #ifdef CONFIG_TMPFS_POSIX_ACL
539 if (attr->ia_valid & ATTR_MODE)
540 error = generic_acl_chmod(inode);
541 #endif
542 return error;
543 }
544
545 static void shmem_evict_inode(struct inode *inode)
546 {
547 struct shmem_inode_info *info = SHMEM_I(inode);
548 struct shmem_xattr *xattr, *nxattr;
549
550 if (inode->i_mapping->a_ops == &shmem_aops) {
551 shmem_unacct_size(info->flags, inode->i_size);
552 inode->i_size = 0;
553 shmem_truncate_range(inode, 0, (loff_t)-1);
554 if (!list_empty(&info->swaplist)) {
555 mutex_lock(&shmem_swaplist_mutex);
556 list_del_init(&info->swaplist);
557 mutex_unlock(&shmem_swaplist_mutex);
558 }
559 } else
560 kfree(info->symlink);
561
562 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
563 kfree(xattr->name);
564 kfree(xattr);
565 }
566 BUG_ON(inode->i_blocks);
567 shmem_free_inode(inode->i_sb);
568 end_writeback(inode);
569 }
570
571 /*
572 * If swap found in inode, free it and move page from swapcache to filecache.
573 */
574 static int shmem_unuse_inode(struct shmem_inode_info *info,
575 swp_entry_t swap, struct page *page)
576 {
577 struct address_space *mapping = info->vfs_inode.i_mapping;
578 void *radswap;
579 pgoff_t index;
580 int error;
581
582 radswap = swp_to_radix_entry(swap);
583 index = radix_tree_locate_item(&mapping->page_tree, radswap);
584 if (index == -1)
585 return 0;
586
587 /*
588 * Move _head_ to start search for next from here.
589 * But be careful: shmem_evict_inode checks list_empty without taking
590 * mutex, and there's an instant in list_move_tail when info->swaplist
591 * would appear empty, if it were the only one on shmem_swaplist.
592 */
593 if (shmem_swaplist.next != &info->swaplist)
594 list_move_tail(&shmem_swaplist, &info->swaplist);
595
596 /*
597 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
598 * but also to hold up shmem_evict_inode(): so inode cannot be freed
599 * beneath us (pagelock doesn't help until the page is in pagecache).
600 */
601 error = shmem_add_to_page_cache(page, mapping, index,
602 GFP_NOWAIT, radswap);
603 /* which does mem_cgroup_uncharge_cache_page on error */
604
605 if (error != -ENOMEM) {
606 /*
607 * Truncation and eviction use free_swap_and_cache(), which
608 * only does trylock page: if we raced, best clean up here.
609 */
610 delete_from_swap_cache(page);
611 set_page_dirty(page);
612 if (!error) {
613 spin_lock(&info->lock);
614 info->swapped--;
615 spin_unlock(&info->lock);
616 swap_free(swap);
617 }
618 error = 1; /* not an error, but entry was found */
619 }
620 return error;
621 }
622
623 /*
624 * Search through swapped inodes to find and replace swap by page.
625 */
626 int shmem_unuse(swp_entry_t swap, struct page *page)
627 {
628 struct list_head *this, *next;
629 struct shmem_inode_info *info;
630 int found = 0;
631 int error;
632
633 /*
634 * Charge page using GFP_KERNEL while we can wait, before taking
635 * the shmem_swaplist_mutex which might hold up shmem_writepage().
636 * Charged back to the user (not to caller) when swap account is used.
637 */
638 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
639 if (error)
640 goto out;
641 /* No radix_tree_preload: swap entry keeps a place for page in tree */
642
643 mutex_lock(&shmem_swaplist_mutex);
644 list_for_each_safe(this, next, &shmem_swaplist) {
645 info = list_entry(this, struct shmem_inode_info, swaplist);
646 if (info->swapped)
647 found = shmem_unuse_inode(info, swap, page);
648 else
649 list_del_init(&info->swaplist);
650 cond_resched();
651 if (found)
652 break;
653 }
654 mutex_unlock(&shmem_swaplist_mutex);
655
656 if (!found)
657 mem_cgroup_uncharge_cache_page(page);
658 if (found < 0)
659 error = found;
660 out:
661 unlock_page(page);
662 page_cache_release(page);
663 return error;
664 }
665
666 /*
667 * Move the page from the page cache to the swap cache.
668 */
669 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
670 {
671 struct shmem_inode_info *info;
672 struct address_space *mapping;
673 struct inode *inode;
674 swp_entry_t swap;
675 pgoff_t index;
676
677 BUG_ON(!PageLocked(page));
678 mapping = page->mapping;
679 index = page->index;
680 inode = mapping->host;
681 info = SHMEM_I(inode);
682 if (info->flags & VM_LOCKED)
683 goto redirty;
684 if (!total_swap_pages)
685 goto redirty;
686
687 /*
688 * shmem_backing_dev_info's capabilities prevent regular writeback or
689 * sync from ever calling shmem_writepage; but a stacking filesystem
690 * might use ->writepage of its underlying filesystem, in which case
691 * tmpfs should write out to swap only in response to memory pressure,
692 * and not for the writeback threads or sync.
693 */
694 if (!wbc->for_reclaim) {
695 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
696 goto redirty;
697 }
698 swap = get_swap_page();
699 if (!swap.val)
700 goto redirty;
701
702 /*
703 * Add inode to shmem_unuse()'s list of swapped-out inodes,
704 * if it's not already there. Do it now before the page is
705 * moved to swap cache, when its pagelock no longer protects
706 * the inode from eviction. But don't unlock the mutex until
707 * we've incremented swapped, because shmem_unuse_inode() will
708 * prune a !swapped inode from the swaplist under this mutex.
709 */
710 mutex_lock(&shmem_swaplist_mutex);
711 if (list_empty(&info->swaplist))
712 list_add_tail(&info->swaplist, &shmem_swaplist);
713
714 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
715 swap_shmem_alloc(swap);
716 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
717
718 spin_lock(&info->lock);
719 info->swapped++;
720 shmem_recalc_inode(inode);
721 spin_unlock(&info->lock);
722
723 mutex_unlock(&shmem_swaplist_mutex);
724 BUG_ON(page_mapped(page));
725 swap_writepage(page, wbc);
726 return 0;
727 }
728
729 mutex_unlock(&shmem_swaplist_mutex);
730 swapcache_free(swap, NULL);
731 redirty:
732 set_page_dirty(page);
733 if (wbc->for_reclaim)
734 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
735 unlock_page(page);
736 return 0;
737 }
738
739 #ifdef CONFIG_NUMA
740 #ifdef CONFIG_TMPFS
741 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
742 {
743 char buffer[64];
744
745 if (!mpol || mpol->mode == MPOL_DEFAULT)
746 return; /* show nothing */
747
748 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
749
750 seq_printf(seq, ",mpol=%s", buffer);
751 }
752
753 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
754 {
755 struct mempolicy *mpol = NULL;
756 if (sbinfo->mpol) {
757 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
758 mpol = sbinfo->mpol;
759 mpol_get(mpol);
760 spin_unlock(&sbinfo->stat_lock);
761 }
762 return mpol;
763 }
764 #endif /* CONFIG_TMPFS */
765
766 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
767 struct shmem_inode_info *info, pgoff_t index)
768 {
769 struct mempolicy mpol, *spol;
770 struct vm_area_struct pvma;
771
772 spol = mpol_cond_copy(&mpol,
773 mpol_shared_policy_lookup(&info->policy, index));
774
775 /* Create a pseudo vma that just contains the policy */
776 pvma.vm_start = 0;
777 pvma.vm_pgoff = index;
778 pvma.vm_ops = NULL;
779 pvma.vm_policy = spol;
780 return swapin_readahead(swap, gfp, &pvma, 0);
781 }
782
783 static struct page *shmem_alloc_page(gfp_t gfp,
784 struct shmem_inode_info *info, pgoff_t index)
785 {
786 struct vm_area_struct pvma;
787
788 /* Create a pseudo vma that just contains the policy */
789 pvma.vm_start = 0;
790 pvma.vm_pgoff = index;
791 pvma.vm_ops = NULL;
792 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
793
794 /*
795 * alloc_page_vma() will drop the shared policy reference
796 */
797 return alloc_page_vma(gfp, &pvma, 0);
798 }
799 #else /* !CONFIG_NUMA */
800 #ifdef CONFIG_TMPFS
801 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
802 {
803 }
804 #endif /* CONFIG_TMPFS */
805
806 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
807 struct shmem_inode_info *info, pgoff_t index)
808 {
809 return swapin_readahead(swap, gfp, NULL, 0);
810 }
811
812 static inline struct page *shmem_alloc_page(gfp_t gfp,
813 struct shmem_inode_info *info, pgoff_t index)
814 {
815 return alloc_page(gfp);
816 }
817 #endif /* CONFIG_NUMA */
818
819 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
820 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
821 {
822 return NULL;
823 }
824 #endif
825
826 /*
827 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
828 *
829 * If we allocate a new one we do not mark it dirty. That's up to the
830 * vm. If we swap it in we mark it dirty since we also free the swap
831 * entry since a page cannot live in both the swap and page cache
832 */
833 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
834 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
835 {
836 struct address_space *mapping = inode->i_mapping;
837 struct shmem_inode_info *info;
838 struct shmem_sb_info *sbinfo;
839 struct page *page;
840 swp_entry_t swap;
841 int error;
842 int once = 0;
843
844 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
845 return -EFBIG;
846 repeat:
847 swap.val = 0;
848 page = find_lock_page(mapping, index);
849 if (radix_tree_exceptional_entry(page)) {
850 swap = radix_to_swp_entry(page);
851 page = NULL;
852 }
853
854 if (sgp != SGP_WRITE &&
855 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
856 error = -EINVAL;
857 goto failed;
858 }
859
860 if (page || (sgp == SGP_READ && !swap.val)) {
861 /*
862 * Once we can get the page lock, it must be uptodate:
863 * if there were an error in reading back from swap,
864 * the page would not be inserted into the filecache.
865 */
866 BUG_ON(page && !PageUptodate(page));
867 *pagep = page;
868 return 0;
869 }
870
871 /*
872 * Fast cache lookup did not find it:
873 * bring it back from swap or allocate.
874 */
875 info = SHMEM_I(inode);
876 sbinfo = SHMEM_SB(inode->i_sb);
877
878 if (swap.val) {
879 /* Look it up and read it in.. */
880 page = lookup_swap_cache(swap);
881 if (!page) {
882 /* here we actually do the io */
883 if (fault_type)
884 *fault_type |= VM_FAULT_MAJOR;
885 page = shmem_swapin(swap, gfp, info, index);
886 if (!page) {
887 error = -ENOMEM;
888 goto failed;
889 }
890 }
891
892 /* We have to do this with page locked to prevent races */
893 lock_page(page);
894 if (!PageUptodate(page)) {
895 error = -EIO;
896 goto failed;
897 }
898 wait_on_page_writeback(page);
899
900 /* Someone may have already done it for us */
901 if (page->mapping) {
902 if (page->mapping == mapping &&
903 page->index == index)
904 goto done;
905 error = -EEXIST;
906 goto failed;
907 }
908
909 error = mem_cgroup_cache_charge(page, current->mm,
910 gfp & GFP_RECLAIM_MASK);
911 if (!error)
912 error = shmem_add_to_page_cache(page, mapping, index,
913 gfp, swp_to_radix_entry(swap));
914 if (error)
915 goto failed;
916
917 spin_lock(&info->lock);
918 info->swapped--;
919 shmem_recalc_inode(inode);
920 spin_unlock(&info->lock);
921
922 delete_from_swap_cache(page);
923 set_page_dirty(page);
924 swap_free(swap);
925
926 } else {
927 if (shmem_acct_block(info->flags)) {
928 error = -ENOSPC;
929 goto failed;
930 }
931 if (sbinfo->max_blocks) {
932 if (percpu_counter_compare(&sbinfo->used_blocks,
933 sbinfo->max_blocks) >= 0) {
934 error = -ENOSPC;
935 goto unacct;
936 }
937 percpu_counter_inc(&sbinfo->used_blocks);
938 }
939
940 page = shmem_alloc_page(gfp, info, index);
941 if (!page) {
942 error = -ENOMEM;
943 goto decused;
944 }
945
946 SetPageSwapBacked(page);
947 __set_page_locked(page);
948 error = mem_cgroup_cache_charge(page, current->mm,
949 gfp & GFP_RECLAIM_MASK);
950 if (!error)
951 error = shmem_add_to_page_cache(page, mapping, index,
952 gfp, NULL);
953 if (error)
954 goto decused;
955 lru_cache_add_anon(page);
956
957 spin_lock(&info->lock);
958 info->alloced++;
959 inode->i_blocks += BLOCKS_PER_PAGE;
960 shmem_recalc_inode(inode);
961 spin_unlock(&info->lock);
962
963 clear_highpage(page);
964 flush_dcache_page(page);
965 SetPageUptodate(page);
966 if (sgp == SGP_DIRTY)
967 set_page_dirty(page);
968 }
969 done:
970 /* Perhaps the file has been truncated since we checked */
971 if (sgp != SGP_WRITE &&
972 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
973 error = -EINVAL;
974 goto trunc;
975 }
976 *pagep = page;
977 return 0;
978
979 /*
980 * Error recovery.
981 */
982 trunc:
983 ClearPageDirty(page);
984 delete_from_page_cache(page);
985 spin_lock(&info->lock);
986 info->alloced--;
987 inode->i_blocks -= BLOCKS_PER_PAGE;
988 spin_unlock(&info->lock);
989 decused:
990 if (sbinfo->max_blocks)
991 percpu_counter_add(&sbinfo->used_blocks, -1);
992 unacct:
993 shmem_unacct_blocks(info->flags, 1);
994 failed:
995 if (swap.val && error != -EINVAL) {
996 struct page *test = find_get_page(mapping, index);
997 if (test && !radix_tree_exceptional_entry(test))
998 page_cache_release(test);
999 /* Have another try if the entry has changed */
1000 if (test != swp_to_radix_entry(swap))
1001 error = -EEXIST;
1002 }
1003 if (page) {
1004 unlock_page(page);
1005 page_cache_release(page);
1006 }
1007 if (error == -ENOSPC && !once++) {
1008 info = SHMEM_I(inode);
1009 spin_lock(&info->lock);
1010 shmem_recalc_inode(inode);
1011 spin_unlock(&info->lock);
1012 goto repeat;
1013 }
1014 if (error == -EEXIST)
1015 goto repeat;
1016 return error;
1017 }
1018
1019 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020 {
1021 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022 int error;
1023 int ret = VM_FAULT_LOCKED;
1024
1025 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026 if (error)
1027 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028
1029 if (ret & VM_FAULT_MAJOR) {
1030 count_vm_event(PGMAJFAULT);
1031 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032 }
1033 return ret;
1034 }
1035
1036 #ifdef CONFIG_NUMA
1037 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038 {
1039 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041 }
1042
1043 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044 unsigned long addr)
1045 {
1046 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047 pgoff_t index;
1048
1049 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051 }
1052 #endif
1053
1054 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055 {
1056 struct inode *inode = file->f_path.dentry->d_inode;
1057 struct shmem_inode_info *info = SHMEM_I(inode);
1058 int retval = -ENOMEM;
1059
1060 spin_lock(&info->lock);
1061 if (lock && !(info->flags & VM_LOCKED)) {
1062 if (!user_shm_lock(inode->i_size, user))
1063 goto out_nomem;
1064 info->flags |= VM_LOCKED;
1065 mapping_set_unevictable(file->f_mapping);
1066 }
1067 if (!lock && (info->flags & VM_LOCKED) && user) {
1068 user_shm_unlock(inode->i_size, user);
1069 info->flags &= ~VM_LOCKED;
1070 mapping_clear_unevictable(file->f_mapping);
1071 scan_mapping_unevictable_pages(file->f_mapping);
1072 }
1073 retval = 0;
1074
1075 out_nomem:
1076 spin_unlock(&info->lock);
1077 return retval;
1078 }
1079
1080 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1081 {
1082 file_accessed(file);
1083 vma->vm_ops = &shmem_vm_ops;
1084 vma->vm_flags |= VM_CAN_NONLINEAR;
1085 return 0;
1086 }
1087
1088 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1089 int mode, dev_t dev, unsigned long flags)
1090 {
1091 struct inode *inode;
1092 struct shmem_inode_info *info;
1093 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1094
1095 if (shmem_reserve_inode(sb))
1096 return NULL;
1097
1098 inode = new_inode(sb);
1099 if (inode) {
1100 inode->i_ino = get_next_ino();
1101 inode_init_owner(inode, dir, mode);
1102 inode->i_blocks = 0;
1103 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1104 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1105 inode->i_generation = get_seconds();
1106 info = SHMEM_I(inode);
1107 memset(info, 0, (char *)inode - (char *)info);
1108 spin_lock_init(&info->lock);
1109 info->flags = flags & VM_NORESERVE;
1110 INIT_LIST_HEAD(&info->swaplist);
1111 INIT_LIST_HEAD(&info->xattr_list);
1112 cache_no_acl(inode);
1113
1114 switch (mode & S_IFMT) {
1115 default:
1116 inode->i_op = &shmem_special_inode_operations;
1117 init_special_inode(inode, mode, dev);
1118 break;
1119 case S_IFREG:
1120 inode->i_mapping->a_ops = &shmem_aops;
1121 inode->i_op = &shmem_inode_operations;
1122 inode->i_fop = &shmem_file_operations;
1123 mpol_shared_policy_init(&info->policy,
1124 shmem_get_sbmpol(sbinfo));
1125 break;
1126 case S_IFDIR:
1127 inc_nlink(inode);
1128 /* Some things misbehave if size == 0 on a directory */
1129 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1130 inode->i_op = &shmem_dir_inode_operations;
1131 inode->i_fop = &simple_dir_operations;
1132 break;
1133 case S_IFLNK:
1134 /*
1135 * Must not load anything in the rbtree,
1136 * mpol_free_shared_policy will not be called.
1137 */
1138 mpol_shared_policy_init(&info->policy, NULL);
1139 break;
1140 }
1141 } else
1142 shmem_free_inode(sb);
1143 return inode;
1144 }
1145
1146 #ifdef CONFIG_TMPFS
1147 static const struct inode_operations shmem_symlink_inode_operations;
1148 static const struct inode_operations shmem_short_symlink_operations;
1149
1150 static int
1151 shmem_write_begin(struct file *file, struct address_space *mapping,
1152 loff_t pos, unsigned len, unsigned flags,
1153 struct page **pagep, void **fsdata)
1154 {
1155 struct inode *inode = mapping->host;
1156 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1157 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1158 }
1159
1160 static int
1161 shmem_write_end(struct file *file, struct address_space *mapping,
1162 loff_t pos, unsigned len, unsigned copied,
1163 struct page *page, void *fsdata)
1164 {
1165 struct inode *inode = mapping->host;
1166
1167 if (pos + copied > inode->i_size)
1168 i_size_write(inode, pos + copied);
1169
1170 set_page_dirty(page);
1171 unlock_page(page);
1172 page_cache_release(page);
1173
1174 return copied;
1175 }
1176
1177 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1178 {
1179 struct inode *inode = filp->f_path.dentry->d_inode;
1180 struct address_space *mapping = inode->i_mapping;
1181 pgoff_t index;
1182 unsigned long offset;
1183 enum sgp_type sgp = SGP_READ;
1184
1185 /*
1186 * Might this read be for a stacking filesystem? Then when reading
1187 * holes of a sparse file, we actually need to allocate those pages,
1188 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1189 */
1190 if (segment_eq(get_fs(), KERNEL_DS))
1191 sgp = SGP_DIRTY;
1192
1193 index = *ppos >> PAGE_CACHE_SHIFT;
1194 offset = *ppos & ~PAGE_CACHE_MASK;
1195
1196 for (;;) {
1197 struct page *page = NULL;
1198 pgoff_t end_index;
1199 unsigned long nr, ret;
1200 loff_t i_size = i_size_read(inode);
1201
1202 end_index = i_size >> PAGE_CACHE_SHIFT;
1203 if (index > end_index)
1204 break;
1205 if (index == end_index) {
1206 nr = i_size & ~PAGE_CACHE_MASK;
1207 if (nr <= offset)
1208 break;
1209 }
1210
1211 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1212 if (desc->error) {
1213 if (desc->error == -EINVAL)
1214 desc->error = 0;
1215 break;
1216 }
1217 if (page)
1218 unlock_page(page);
1219
1220 /*
1221 * We must evaluate after, since reads (unlike writes)
1222 * are called without i_mutex protection against truncate
1223 */
1224 nr = PAGE_CACHE_SIZE;
1225 i_size = i_size_read(inode);
1226 end_index = i_size >> PAGE_CACHE_SHIFT;
1227 if (index == end_index) {
1228 nr = i_size & ~PAGE_CACHE_MASK;
1229 if (nr <= offset) {
1230 if (page)
1231 page_cache_release(page);
1232 break;
1233 }
1234 }
1235 nr -= offset;
1236
1237 if (page) {
1238 /*
1239 * If users can be writing to this page using arbitrary
1240 * virtual addresses, take care about potential aliasing
1241 * before reading the page on the kernel side.
1242 */
1243 if (mapping_writably_mapped(mapping))
1244 flush_dcache_page(page);
1245 /*
1246 * Mark the page accessed if we read the beginning.
1247 */
1248 if (!offset)
1249 mark_page_accessed(page);
1250 } else {
1251 page = ZERO_PAGE(0);
1252 page_cache_get(page);
1253 }
1254
1255 /*
1256 * Ok, we have the page, and it's up-to-date, so
1257 * now we can copy it to user space...
1258 *
1259 * The actor routine returns how many bytes were actually used..
1260 * NOTE! This may not be the same as how much of a user buffer
1261 * we filled up (we may be padding etc), so we can only update
1262 * "pos" here (the actor routine has to update the user buffer
1263 * pointers and the remaining count).
1264 */
1265 ret = actor(desc, page, offset, nr);
1266 offset += ret;
1267 index += offset >> PAGE_CACHE_SHIFT;
1268 offset &= ~PAGE_CACHE_MASK;
1269
1270 page_cache_release(page);
1271 if (ret != nr || !desc->count)
1272 break;
1273
1274 cond_resched();
1275 }
1276
1277 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1278 file_accessed(filp);
1279 }
1280
1281 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1282 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1283 {
1284 struct file *filp = iocb->ki_filp;
1285 ssize_t retval;
1286 unsigned long seg;
1287 size_t count;
1288 loff_t *ppos = &iocb->ki_pos;
1289
1290 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291 if (retval)
1292 return retval;
1293
1294 for (seg = 0; seg < nr_segs; seg++) {
1295 read_descriptor_t desc;
1296
1297 desc.written = 0;
1298 desc.arg.buf = iov[seg].iov_base;
1299 desc.count = iov[seg].iov_len;
1300 if (desc.count == 0)
1301 continue;
1302 desc.error = 0;
1303 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1304 retval += desc.written;
1305 if (desc.error) {
1306 retval = retval ?: desc.error;
1307 break;
1308 }
1309 if (desc.count > 0)
1310 break;
1311 }
1312 return retval;
1313 }
1314
1315 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1316 struct pipe_inode_info *pipe, size_t len,
1317 unsigned int flags)
1318 {
1319 struct address_space *mapping = in->f_mapping;
1320 struct inode *inode = mapping->host;
1321 unsigned int loff, nr_pages, req_pages;
1322 struct page *pages[PIPE_DEF_BUFFERS];
1323 struct partial_page partial[PIPE_DEF_BUFFERS];
1324 struct page *page;
1325 pgoff_t index, end_index;
1326 loff_t isize, left;
1327 int error, page_nr;
1328 struct splice_pipe_desc spd = {
1329 .pages = pages,
1330 .partial = partial,
1331 .flags = flags,
1332 .ops = &page_cache_pipe_buf_ops,
1333 .spd_release = spd_release_page,
1334 };
1335
1336 isize = i_size_read(inode);
1337 if (unlikely(*ppos >= isize))
1338 return 0;
1339
1340 left = isize - *ppos;
1341 if (unlikely(left < len))
1342 len = left;
1343
1344 if (splice_grow_spd(pipe, &spd))
1345 return -ENOMEM;
1346
1347 index = *ppos >> PAGE_CACHE_SHIFT;
1348 loff = *ppos & ~PAGE_CACHE_MASK;
1349 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350 nr_pages = min(req_pages, pipe->buffers);
1351
1352 spd.nr_pages = find_get_pages_contig(mapping, index,
1353 nr_pages, spd.pages);
1354 index += spd.nr_pages;
1355 error = 0;
1356
1357 while (spd.nr_pages < nr_pages) {
1358 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1359 if (error)
1360 break;
1361 unlock_page(page);
1362 spd.pages[spd.nr_pages++] = page;
1363 index++;
1364 }
1365
1366 index = *ppos >> PAGE_CACHE_SHIFT;
1367 nr_pages = spd.nr_pages;
1368 spd.nr_pages = 0;
1369
1370 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1371 unsigned int this_len;
1372
1373 if (!len)
1374 break;
1375
1376 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1377 page = spd.pages[page_nr];
1378
1379 if (!PageUptodate(page) || page->mapping != mapping) {
1380 error = shmem_getpage(inode, index, &page,
1381 SGP_CACHE, NULL);
1382 if (error)
1383 break;
1384 unlock_page(page);
1385 page_cache_release(spd.pages[page_nr]);
1386 spd.pages[page_nr] = page;
1387 }
1388
1389 isize = i_size_read(inode);
1390 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1391 if (unlikely(!isize || index > end_index))
1392 break;
1393
1394 if (end_index == index) {
1395 unsigned int plen;
1396
1397 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1398 if (plen <= loff)
1399 break;
1400
1401 this_len = min(this_len, plen - loff);
1402 len = this_len;
1403 }
1404
1405 spd.partial[page_nr].offset = loff;
1406 spd.partial[page_nr].len = this_len;
1407 len -= this_len;
1408 loff = 0;
1409 spd.nr_pages++;
1410 index++;
1411 }
1412
1413 while (page_nr < nr_pages)
1414 page_cache_release(spd.pages[page_nr++]);
1415
1416 if (spd.nr_pages)
1417 error = splice_to_pipe(pipe, &spd);
1418
1419 splice_shrink_spd(pipe, &spd);
1420
1421 if (error > 0) {
1422 *ppos += error;
1423 file_accessed(in);
1424 }
1425 return error;
1426 }
1427
1428 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1429 {
1430 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1431
1432 buf->f_type = TMPFS_MAGIC;
1433 buf->f_bsize = PAGE_CACHE_SIZE;
1434 buf->f_namelen = NAME_MAX;
1435 if (sbinfo->max_blocks) {
1436 buf->f_blocks = sbinfo->max_blocks;
1437 buf->f_bavail =
1438 buf->f_bfree = sbinfo->max_blocks -
1439 percpu_counter_sum(&sbinfo->used_blocks);
1440 }
1441 if (sbinfo->max_inodes) {
1442 buf->f_files = sbinfo->max_inodes;
1443 buf->f_ffree = sbinfo->free_inodes;
1444 }
1445 /* else leave those fields 0 like simple_statfs */
1446 return 0;
1447 }
1448
1449 /*
1450 * File creation. Allocate an inode, and we're done..
1451 */
1452 static int
1453 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1454 {
1455 struct inode *inode;
1456 int error = -ENOSPC;
1457
1458 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1459 if (inode) {
1460 error = security_inode_init_security(inode, dir,
1461 &dentry->d_name,
1462 NULL, NULL);
1463 if (error) {
1464 if (error != -EOPNOTSUPP) {
1465 iput(inode);
1466 return error;
1467 }
1468 }
1469 #ifdef CONFIG_TMPFS_POSIX_ACL
1470 error = generic_acl_init(inode, dir);
1471 if (error) {
1472 iput(inode);
1473 return error;
1474 }
1475 #else
1476 error = 0;
1477 #endif
1478 dir->i_size += BOGO_DIRENT_SIZE;
1479 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1480 d_instantiate(dentry, inode);
1481 dget(dentry); /* Extra count - pin the dentry in core */
1482 }
1483 return error;
1484 }
1485
1486 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1487 {
1488 int error;
1489
1490 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1491 return error;
1492 inc_nlink(dir);
1493 return 0;
1494 }
1495
1496 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1497 struct nameidata *nd)
1498 {
1499 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1500 }
1501
1502 /*
1503 * Link a file..
1504 */
1505 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1506 {
1507 struct inode *inode = old_dentry->d_inode;
1508 int ret;
1509
1510 /*
1511 * No ordinary (disk based) filesystem counts links as inodes;
1512 * but each new link needs a new dentry, pinning lowmem, and
1513 * tmpfs dentries cannot be pruned until they are unlinked.
1514 */
1515 ret = shmem_reserve_inode(inode->i_sb);
1516 if (ret)
1517 goto out;
1518
1519 dir->i_size += BOGO_DIRENT_SIZE;
1520 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1521 inc_nlink(inode);
1522 ihold(inode); /* New dentry reference */
1523 dget(dentry); /* Extra pinning count for the created dentry */
1524 d_instantiate(dentry, inode);
1525 out:
1526 return ret;
1527 }
1528
1529 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1530 {
1531 struct inode *inode = dentry->d_inode;
1532
1533 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1534 shmem_free_inode(inode->i_sb);
1535
1536 dir->i_size -= BOGO_DIRENT_SIZE;
1537 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1538 drop_nlink(inode);
1539 dput(dentry); /* Undo the count from "create" - this does all the work */
1540 return 0;
1541 }
1542
1543 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1544 {
1545 if (!simple_empty(dentry))
1546 return -ENOTEMPTY;
1547
1548 drop_nlink(dentry->d_inode);
1549 drop_nlink(dir);
1550 return shmem_unlink(dir, dentry);
1551 }
1552
1553 /*
1554 * The VFS layer already does all the dentry stuff for rename,
1555 * we just have to decrement the usage count for the target if
1556 * it exists so that the VFS layer correctly free's it when it
1557 * gets overwritten.
1558 */
1559 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1560 {
1561 struct inode *inode = old_dentry->d_inode;
1562 int they_are_dirs = S_ISDIR(inode->i_mode);
1563
1564 if (!simple_empty(new_dentry))
1565 return -ENOTEMPTY;
1566
1567 if (new_dentry->d_inode) {
1568 (void) shmem_unlink(new_dir, new_dentry);
1569 if (they_are_dirs)
1570 drop_nlink(old_dir);
1571 } else if (they_are_dirs) {
1572 drop_nlink(old_dir);
1573 inc_nlink(new_dir);
1574 }
1575
1576 old_dir->i_size -= BOGO_DIRENT_SIZE;
1577 new_dir->i_size += BOGO_DIRENT_SIZE;
1578 old_dir->i_ctime = old_dir->i_mtime =
1579 new_dir->i_ctime = new_dir->i_mtime =
1580 inode->i_ctime = CURRENT_TIME;
1581 return 0;
1582 }
1583
1584 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1585 {
1586 int error;
1587 int len;
1588 struct inode *inode;
1589 struct page *page;
1590 char *kaddr;
1591 struct shmem_inode_info *info;
1592
1593 len = strlen(symname) + 1;
1594 if (len > PAGE_CACHE_SIZE)
1595 return -ENAMETOOLONG;
1596
1597 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1598 if (!inode)
1599 return -ENOSPC;
1600
1601 error = security_inode_init_security(inode, dir, &dentry->d_name,
1602 NULL, NULL);
1603 if (error) {
1604 if (error != -EOPNOTSUPP) {
1605 iput(inode);
1606 return error;
1607 }
1608 error = 0;
1609 }
1610
1611 info = SHMEM_I(inode);
1612 inode->i_size = len-1;
1613 if (len <= SHORT_SYMLINK_LEN) {
1614 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1615 if (!info->symlink) {
1616 iput(inode);
1617 return -ENOMEM;
1618 }
1619 inode->i_op = &shmem_short_symlink_operations;
1620 } else {
1621 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1622 if (error) {
1623 iput(inode);
1624 return error;
1625 }
1626 inode->i_mapping->a_ops = &shmem_aops;
1627 inode->i_op = &shmem_symlink_inode_operations;
1628 kaddr = kmap_atomic(page, KM_USER0);
1629 memcpy(kaddr, symname, len);
1630 kunmap_atomic(kaddr, KM_USER0);
1631 set_page_dirty(page);
1632 unlock_page(page);
1633 page_cache_release(page);
1634 }
1635 dir->i_size += BOGO_DIRENT_SIZE;
1636 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1637 d_instantiate(dentry, inode);
1638 dget(dentry);
1639 return 0;
1640 }
1641
1642 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1643 {
1644 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1645 return NULL;
1646 }
1647
1648 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1649 {
1650 struct page *page = NULL;
1651 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1652 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1653 if (page)
1654 unlock_page(page);
1655 return page;
1656 }
1657
1658 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1659 {
1660 if (!IS_ERR(nd_get_link(nd))) {
1661 struct page *page = cookie;
1662 kunmap(page);
1663 mark_page_accessed(page);
1664 page_cache_release(page);
1665 }
1666 }
1667
1668 #ifdef CONFIG_TMPFS_XATTR
1669 /*
1670 * Superblocks without xattr inode operations may get some security.* xattr
1671 * support from the LSM "for free". As soon as we have any other xattrs
1672 * like ACLs, we also need to implement the security.* handlers at
1673 * filesystem level, though.
1674 */
1675
1676 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1677 void *buffer, size_t size)
1678 {
1679 struct shmem_inode_info *info;
1680 struct shmem_xattr *xattr;
1681 int ret = -ENODATA;
1682
1683 info = SHMEM_I(dentry->d_inode);
1684
1685 spin_lock(&info->lock);
1686 list_for_each_entry(xattr, &info->xattr_list, list) {
1687 if (strcmp(name, xattr->name))
1688 continue;
1689
1690 ret = xattr->size;
1691 if (buffer) {
1692 if (size < xattr->size)
1693 ret = -ERANGE;
1694 else
1695 memcpy(buffer, xattr->value, xattr->size);
1696 }
1697 break;
1698 }
1699 spin_unlock(&info->lock);
1700 return ret;
1701 }
1702
1703 static int shmem_xattr_set(struct dentry *dentry, const char *name,
1704 const void *value, size_t size, int flags)
1705 {
1706 struct inode *inode = dentry->d_inode;
1707 struct shmem_inode_info *info = SHMEM_I(inode);
1708 struct shmem_xattr *xattr;
1709 struct shmem_xattr *new_xattr = NULL;
1710 size_t len;
1711 int err = 0;
1712
1713 /* value == NULL means remove */
1714 if (value) {
1715 /* wrap around? */
1716 len = sizeof(*new_xattr) + size;
1717 if (len <= sizeof(*new_xattr))
1718 return -ENOMEM;
1719
1720 new_xattr = kmalloc(len, GFP_KERNEL);
1721 if (!new_xattr)
1722 return -ENOMEM;
1723
1724 new_xattr->name = kstrdup(name, GFP_KERNEL);
1725 if (!new_xattr->name) {
1726 kfree(new_xattr);
1727 return -ENOMEM;
1728 }
1729
1730 new_xattr->size = size;
1731 memcpy(new_xattr->value, value, size);
1732 }
1733
1734 spin_lock(&info->lock);
1735 list_for_each_entry(xattr, &info->xattr_list, list) {
1736 if (!strcmp(name, xattr->name)) {
1737 if (flags & XATTR_CREATE) {
1738 xattr = new_xattr;
1739 err = -EEXIST;
1740 } else if (new_xattr) {
1741 list_replace(&xattr->list, &new_xattr->list);
1742 } else {
1743 list_del(&xattr->list);
1744 }
1745 goto out;
1746 }
1747 }
1748 if (flags & XATTR_REPLACE) {
1749 xattr = new_xattr;
1750 err = -ENODATA;
1751 } else {
1752 list_add(&new_xattr->list, &info->xattr_list);
1753 xattr = NULL;
1754 }
1755 out:
1756 spin_unlock(&info->lock);
1757 if (xattr)
1758 kfree(xattr->name);
1759 kfree(xattr);
1760 return err;
1761 }
1762
1763 static const struct xattr_handler *shmem_xattr_handlers[] = {
1764 #ifdef CONFIG_TMPFS_POSIX_ACL
1765 &generic_acl_access_handler,
1766 &generic_acl_default_handler,
1767 #endif
1768 NULL
1769 };
1770
1771 static int shmem_xattr_validate(const char *name)
1772 {
1773 struct { const char *prefix; size_t len; } arr[] = {
1774 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1775 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1776 };
1777 int i;
1778
1779 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1780 size_t preflen = arr[i].len;
1781 if (strncmp(name, arr[i].prefix, preflen) == 0) {
1782 if (!name[preflen])
1783 return -EINVAL;
1784 return 0;
1785 }
1786 }
1787 return -EOPNOTSUPP;
1788 }
1789
1790 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1791 void *buffer, size_t size)
1792 {
1793 int err;
1794
1795 /*
1796 * If this is a request for a synthetic attribute in the system.*
1797 * namespace use the generic infrastructure to resolve a handler
1798 * for it via sb->s_xattr.
1799 */
1800 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1801 return generic_getxattr(dentry, name, buffer, size);
1802
1803 err = shmem_xattr_validate(name);
1804 if (err)
1805 return err;
1806
1807 return shmem_xattr_get(dentry, name, buffer, size);
1808 }
1809
1810 static int shmem_setxattr(struct dentry *dentry, const char *name,
1811 const void *value, size_t size, int flags)
1812 {
1813 int err;
1814
1815 /*
1816 * If this is a request for a synthetic attribute in the system.*
1817 * namespace use the generic infrastructure to resolve a handler
1818 * for it via sb->s_xattr.
1819 */
1820 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1821 return generic_setxattr(dentry, name, value, size, flags);
1822
1823 err = shmem_xattr_validate(name);
1824 if (err)
1825 return err;
1826
1827 if (size == 0)
1828 value = ""; /* empty EA, do not remove */
1829
1830 return shmem_xattr_set(dentry, name, value, size, flags);
1831
1832 }
1833
1834 static int shmem_removexattr(struct dentry *dentry, const char *name)
1835 {
1836 int err;
1837
1838 /*
1839 * If this is a request for a synthetic attribute in the system.*
1840 * namespace use the generic infrastructure to resolve a handler
1841 * for it via sb->s_xattr.
1842 */
1843 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1844 return generic_removexattr(dentry, name);
1845
1846 err = shmem_xattr_validate(name);
1847 if (err)
1848 return err;
1849
1850 return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1851 }
1852
1853 static bool xattr_is_trusted(const char *name)
1854 {
1855 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1856 }
1857
1858 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1859 {
1860 bool trusted = capable(CAP_SYS_ADMIN);
1861 struct shmem_xattr *xattr;
1862 struct shmem_inode_info *info;
1863 size_t used = 0;
1864
1865 info = SHMEM_I(dentry->d_inode);
1866
1867 spin_lock(&info->lock);
1868 list_for_each_entry(xattr, &info->xattr_list, list) {
1869 size_t len;
1870
1871 /* skip "trusted." attributes for unprivileged callers */
1872 if (!trusted && xattr_is_trusted(xattr->name))
1873 continue;
1874
1875 len = strlen(xattr->name) + 1;
1876 used += len;
1877 if (buffer) {
1878 if (size < used) {
1879 used = -ERANGE;
1880 break;
1881 }
1882 memcpy(buffer, xattr->name, len);
1883 buffer += len;
1884 }
1885 }
1886 spin_unlock(&info->lock);
1887
1888 return used;
1889 }
1890 #endif /* CONFIG_TMPFS_XATTR */
1891
1892 static const struct inode_operations shmem_short_symlink_operations = {
1893 .readlink = generic_readlink,
1894 .follow_link = shmem_follow_short_symlink,
1895 #ifdef CONFIG_TMPFS_XATTR
1896 .setxattr = shmem_setxattr,
1897 .getxattr = shmem_getxattr,
1898 .listxattr = shmem_listxattr,
1899 .removexattr = shmem_removexattr,
1900 #endif
1901 };
1902
1903 static const struct inode_operations shmem_symlink_inode_operations = {
1904 .readlink = generic_readlink,
1905 .follow_link = shmem_follow_link,
1906 .put_link = shmem_put_link,
1907 #ifdef CONFIG_TMPFS_XATTR
1908 .setxattr = shmem_setxattr,
1909 .getxattr = shmem_getxattr,
1910 .listxattr = shmem_listxattr,
1911 .removexattr = shmem_removexattr,
1912 #endif
1913 };
1914
1915 static struct dentry *shmem_get_parent(struct dentry *child)
1916 {
1917 return ERR_PTR(-ESTALE);
1918 }
1919
1920 static int shmem_match(struct inode *ino, void *vfh)
1921 {
1922 __u32 *fh = vfh;
1923 __u64 inum = fh[2];
1924 inum = (inum << 32) | fh[1];
1925 return ino->i_ino == inum && fh[0] == ino->i_generation;
1926 }
1927
1928 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1929 struct fid *fid, int fh_len, int fh_type)
1930 {
1931 struct inode *inode;
1932 struct dentry *dentry = NULL;
1933 u64 inum = fid->raw[2];
1934 inum = (inum << 32) | fid->raw[1];
1935
1936 if (fh_len < 3)
1937 return NULL;
1938
1939 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1940 shmem_match, fid->raw);
1941 if (inode) {
1942 dentry = d_find_alias(inode);
1943 iput(inode);
1944 }
1945
1946 return dentry;
1947 }
1948
1949 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1950 int connectable)
1951 {
1952 struct inode *inode = dentry->d_inode;
1953
1954 if (*len < 3) {
1955 *len = 3;
1956 return 255;
1957 }
1958
1959 if (inode_unhashed(inode)) {
1960 /* Unfortunately insert_inode_hash is not idempotent,
1961 * so as we hash inodes here rather than at creation
1962 * time, we need a lock to ensure we only try
1963 * to do it once
1964 */
1965 static DEFINE_SPINLOCK(lock);
1966 spin_lock(&lock);
1967 if (inode_unhashed(inode))
1968 __insert_inode_hash(inode,
1969 inode->i_ino + inode->i_generation);
1970 spin_unlock(&lock);
1971 }
1972
1973 fh[0] = inode->i_generation;
1974 fh[1] = inode->i_ino;
1975 fh[2] = ((__u64)inode->i_ino) >> 32;
1976
1977 *len = 3;
1978 return 1;
1979 }
1980
1981 static const struct export_operations shmem_export_ops = {
1982 .get_parent = shmem_get_parent,
1983 .encode_fh = shmem_encode_fh,
1984 .fh_to_dentry = shmem_fh_to_dentry,
1985 };
1986
1987 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1988 bool remount)
1989 {
1990 char *this_char, *value, *rest;
1991
1992 while (options != NULL) {
1993 this_char = options;
1994 for (;;) {
1995 /*
1996 * NUL-terminate this option: unfortunately,
1997 * mount options form a comma-separated list,
1998 * but mpol's nodelist may also contain commas.
1999 */
2000 options = strchr(options, ',');
2001 if (options == NULL)
2002 break;
2003 options++;
2004 if (!isdigit(*options)) {
2005 options[-1] = '\0';
2006 break;
2007 }
2008 }
2009 if (!*this_char)
2010 continue;
2011 if ((value = strchr(this_char,'=')) != NULL) {
2012 *value++ = 0;
2013 } else {
2014 printk(KERN_ERR
2015 "tmpfs: No value for mount option '%s'\n",
2016 this_char);
2017 return 1;
2018 }
2019
2020 if (!strcmp(this_char,"size")) {
2021 unsigned long long size;
2022 size = memparse(value,&rest);
2023 if (*rest == '%') {
2024 size <<= PAGE_SHIFT;
2025 size *= totalram_pages;
2026 do_div(size, 100);
2027 rest++;
2028 }
2029 if (*rest)
2030 goto bad_val;
2031 sbinfo->max_blocks =
2032 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2033 } else if (!strcmp(this_char,"nr_blocks")) {
2034 sbinfo->max_blocks = memparse(value, &rest);
2035 if (*rest)
2036 goto bad_val;
2037 } else if (!strcmp(this_char,"nr_inodes")) {
2038 sbinfo->max_inodes = memparse(value, &rest);
2039 if (*rest)
2040 goto bad_val;
2041 } else if (!strcmp(this_char,"mode")) {
2042 if (remount)
2043 continue;
2044 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2045 if (*rest)
2046 goto bad_val;
2047 } else if (!strcmp(this_char,"uid")) {
2048 if (remount)
2049 continue;
2050 sbinfo->uid = simple_strtoul(value, &rest, 0);
2051 if (*rest)
2052 goto bad_val;
2053 } else if (!strcmp(this_char,"gid")) {
2054 if (remount)
2055 continue;
2056 sbinfo->gid = simple_strtoul(value, &rest, 0);
2057 if (*rest)
2058 goto bad_val;
2059 } else if (!strcmp(this_char,"mpol")) {
2060 if (mpol_parse_str(value, &sbinfo->mpol, 1))
2061 goto bad_val;
2062 } else {
2063 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2064 this_char);
2065 return 1;
2066 }
2067 }
2068 return 0;
2069
2070 bad_val:
2071 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2072 value, this_char);
2073 return 1;
2074
2075 }
2076
2077 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2078 {
2079 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2080 struct shmem_sb_info config = *sbinfo;
2081 unsigned long inodes;
2082 int error = -EINVAL;
2083
2084 if (shmem_parse_options(data, &config, true))
2085 return error;
2086
2087 spin_lock(&sbinfo->stat_lock);
2088 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2089 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2090 goto out;
2091 if (config.max_inodes < inodes)
2092 goto out;
2093 /*
2094 * Those tests disallow limited->unlimited while any are in use;
2095 * but we must separately disallow unlimited->limited, because
2096 * in that case we have no record of how much is already in use.
2097 */
2098 if (config.max_blocks && !sbinfo->max_blocks)
2099 goto out;
2100 if (config.max_inodes && !sbinfo->max_inodes)
2101 goto out;
2102
2103 error = 0;
2104 sbinfo->max_blocks = config.max_blocks;
2105 sbinfo->max_inodes = config.max_inodes;
2106 sbinfo->free_inodes = config.max_inodes - inodes;
2107
2108 mpol_put(sbinfo->mpol);
2109 sbinfo->mpol = config.mpol; /* transfers initial ref */
2110 out:
2111 spin_unlock(&sbinfo->stat_lock);
2112 return error;
2113 }
2114
2115 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2116 {
2117 struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2118
2119 if (sbinfo->max_blocks != shmem_default_max_blocks())
2120 seq_printf(seq, ",size=%luk",
2121 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2122 if (sbinfo->max_inodes != shmem_default_max_inodes())
2123 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2124 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2125 seq_printf(seq, ",mode=%03o", sbinfo->mode);
2126 if (sbinfo->uid != 0)
2127 seq_printf(seq, ",uid=%u", sbinfo->uid);
2128 if (sbinfo->gid != 0)
2129 seq_printf(seq, ",gid=%u", sbinfo->gid);
2130 shmem_show_mpol(seq, sbinfo->mpol);
2131 return 0;
2132 }
2133 #endif /* CONFIG_TMPFS */
2134
2135 static void shmem_put_super(struct super_block *sb)
2136 {
2137 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138
2139 percpu_counter_destroy(&sbinfo->used_blocks);
2140 kfree(sbinfo);
2141 sb->s_fs_info = NULL;
2142 }
2143
2144 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2145 {
2146 struct inode *inode;
2147 struct dentry *root;
2148 struct shmem_sb_info *sbinfo;
2149 int err = -ENOMEM;
2150
2151 /* Round up to L1_CACHE_BYTES to resist false sharing */
2152 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2153 L1_CACHE_BYTES), GFP_KERNEL);
2154 if (!sbinfo)
2155 return -ENOMEM;
2156
2157 sbinfo->mode = S_IRWXUGO | S_ISVTX;
2158 sbinfo->uid = current_fsuid();
2159 sbinfo->gid = current_fsgid();
2160 sb->s_fs_info = sbinfo;
2161
2162 #ifdef CONFIG_TMPFS
2163 /*
2164 * Per default we only allow half of the physical ram per
2165 * tmpfs instance, limiting inodes to one per page of lowmem;
2166 * but the internal instance is left unlimited.
2167 */
2168 if (!(sb->s_flags & MS_NOUSER)) {
2169 sbinfo->max_blocks = shmem_default_max_blocks();
2170 sbinfo->max_inodes = shmem_default_max_inodes();
2171 if (shmem_parse_options(data, sbinfo, false)) {
2172 err = -EINVAL;
2173 goto failed;
2174 }
2175 }
2176 sb->s_export_op = &shmem_export_ops;
2177 #else
2178 sb->s_flags |= MS_NOUSER;
2179 #endif
2180
2181 spin_lock_init(&sbinfo->stat_lock);
2182 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2183 goto failed;
2184 sbinfo->free_inodes = sbinfo->max_inodes;
2185
2186 sb->s_maxbytes = MAX_LFS_FILESIZE;
2187 sb->s_blocksize = PAGE_CACHE_SIZE;
2188 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2189 sb->s_magic = TMPFS_MAGIC;
2190 sb->s_op = &shmem_ops;
2191 sb->s_time_gran = 1;
2192 #ifdef CONFIG_TMPFS_XATTR
2193 sb->s_xattr = shmem_xattr_handlers;
2194 #endif
2195 #ifdef CONFIG_TMPFS_POSIX_ACL
2196 sb->s_flags |= MS_POSIXACL;
2197 #endif
2198
2199 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2200 if (!inode)
2201 goto failed;
2202 inode->i_uid = sbinfo->uid;
2203 inode->i_gid = sbinfo->gid;
2204 root = d_alloc_root(inode);
2205 if (!root)
2206 goto failed_iput;
2207 sb->s_root = root;
2208 return 0;
2209
2210 failed_iput:
2211 iput(inode);
2212 failed:
2213 shmem_put_super(sb);
2214 return err;
2215 }
2216
2217 static struct kmem_cache *shmem_inode_cachep;
2218
2219 static struct inode *shmem_alloc_inode(struct super_block *sb)
2220 {
2221 struct shmem_inode_info *info;
2222 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2223 if (!info)
2224 return NULL;
2225 return &info->vfs_inode;
2226 }
2227
2228 static void shmem_destroy_callback(struct rcu_head *head)
2229 {
2230 struct inode *inode = container_of(head, struct inode, i_rcu);
2231 INIT_LIST_HEAD(&inode->i_dentry);
2232 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2233 }
2234
2235 static void shmem_destroy_inode(struct inode *inode)
2236 {
2237 if ((inode->i_mode & S_IFMT) == S_IFREG)
2238 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2239 call_rcu(&inode->i_rcu, shmem_destroy_callback);
2240 }
2241
2242 static void shmem_init_inode(void *foo)
2243 {
2244 struct shmem_inode_info *info = foo;
2245 inode_init_once(&info->vfs_inode);
2246 }
2247
2248 static int shmem_init_inodecache(void)
2249 {
2250 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2251 sizeof(struct shmem_inode_info),
2252 0, SLAB_PANIC, shmem_init_inode);
2253 return 0;
2254 }
2255
2256 static void shmem_destroy_inodecache(void)
2257 {
2258 kmem_cache_destroy(shmem_inode_cachep);
2259 }
2260
2261 static const struct address_space_operations shmem_aops = {
2262 .writepage = shmem_writepage,
2263 .set_page_dirty = __set_page_dirty_no_writeback,
2264 #ifdef CONFIG_TMPFS
2265 .write_begin = shmem_write_begin,
2266 .write_end = shmem_write_end,
2267 #endif
2268 .migratepage = migrate_page,
2269 .error_remove_page = generic_error_remove_page,
2270 };
2271
2272 static const struct file_operations shmem_file_operations = {
2273 .mmap = shmem_mmap,
2274 #ifdef CONFIG_TMPFS
2275 .llseek = generic_file_llseek,
2276 .read = do_sync_read,
2277 .write = do_sync_write,
2278 .aio_read = shmem_file_aio_read,
2279 .aio_write = generic_file_aio_write,
2280 .fsync = noop_fsync,
2281 .splice_read = shmem_file_splice_read,
2282 .splice_write = generic_file_splice_write,
2283 #endif
2284 };
2285
2286 static const struct inode_operations shmem_inode_operations = {
2287 .setattr = shmem_setattr,
2288 .truncate_range = shmem_truncate_range,
2289 #ifdef CONFIG_TMPFS_XATTR
2290 .setxattr = shmem_setxattr,
2291 .getxattr = shmem_getxattr,
2292 .listxattr = shmem_listxattr,
2293 .removexattr = shmem_removexattr,
2294 #endif
2295 };
2296
2297 static const struct inode_operations shmem_dir_inode_operations = {
2298 #ifdef CONFIG_TMPFS
2299 .create = shmem_create,
2300 .lookup = simple_lookup,
2301 .link = shmem_link,
2302 .unlink = shmem_unlink,
2303 .symlink = shmem_symlink,
2304 .mkdir = shmem_mkdir,
2305 .rmdir = shmem_rmdir,
2306 .mknod = shmem_mknod,
2307 .rename = shmem_rename,
2308 #endif
2309 #ifdef CONFIG_TMPFS_XATTR
2310 .setxattr = shmem_setxattr,
2311 .getxattr = shmem_getxattr,
2312 .listxattr = shmem_listxattr,
2313 .removexattr = shmem_removexattr,
2314 #endif
2315 #ifdef CONFIG_TMPFS_POSIX_ACL
2316 .setattr = shmem_setattr,
2317 #endif
2318 };
2319
2320 static const struct inode_operations shmem_special_inode_operations = {
2321 #ifdef CONFIG_TMPFS_XATTR
2322 .setxattr = shmem_setxattr,
2323 .getxattr = shmem_getxattr,
2324 .listxattr = shmem_listxattr,
2325 .removexattr = shmem_removexattr,
2326 #endif
2327 #ifdef CONFIG_TMPFS_POSIX_ACL
2328 .setattr = shmem_setattr,
2329 #endif
2330 };
2331
2332 static const struct super_operations shmem_ops = {
2333 .alloc_inode = shmem_alloc_inode,
2334 .destroy_inode = shmem_destroy_inode,
2335 #ifdef CONFIG_TMPFS
2336 .statfs = shmem_statfs,
2337 .remount_fs = shmem_remount_fs,
2338 .show_options = shmem_show_options,
2339 #endif
2340 .evict_inode = shmem_evict_inode,
2341 .drop_inode = generic_delete_inode,
2342 .put_super = shmem_put_super,
2343 };
2344
2345 static const struct vm_operations_struct shmem_vm_ops = {
2346 .fault = shmem_fault,
2347 #ifdef CONFIG_NUMA
2348 .set_policy = shmem_set_policy,
2349 .get_policy = shmem_get_policy,
2350 #endif
2351 };
2352
2353 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2354 int flags, const char *dev_name, void *data)
2355 {
2356 return mount_nodev(fs_type, flags, data, shmem_fill_super);
2357 }
2358
2359 static struct file_system_type shmem_fs_type = {
2360 .owner = THIS_MODULE,
2361 .name = "tmpfs",
2362 .mount = shmem_mount,
2363 .kill_sb = kill_litter_super,
2364 };
2365
2366 int __init shmem_init(void)
2367 {
2368 int error;
2369
2370 error = bdi_init(&shmem_backing_dev_info);
2371 if (error)
2372 goto out4;
2373
2374 error = shmem_init_inodecache();
2375 if (error)
2376 goto out3;
2377
2378 error = register_filesystem(&shmem_fs_type);
2379 if (error) {
2380 printk(KERN_ERR "Could not register tmpfs\n");
2381 goto out2;
2382 }
2383
2384 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2385 shmem_fs_type.name, NULL);
2386 if (IS_ERR(shm_mnt)) {
2387 error = PTR_ERR(shm_mnt);
2388 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2389 goto out1;
2390 }
2391 return 0;
2392
2393 out1:
2394 unregister_filesystem(&shmem_fs_type);
2395 out2:
2396 shmem_destroy_inodecache();
2397 out3:
2398 bdi_destroy(&shmem_backing_dev_info);
2399 out4:
2400 shm_mnt = ERR_PTR(error);
2401 return error;
2402 }
2403
2404 #else /* !CONFIG_SHMEM */
2405
2406 /*
2407 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2408 *
2409 * This is intended for small system where the benefits of the full
2410 * shmem code (swap-backed and resource-limited) are outweighed by
2411 * their complexity. On systems without swap this code should be
2412 * effectively equivalent, but much lighter weight.
2413 */
2414
2415 #include <linux/ramfs.h>
2416
2417 static struct file_system_type shmem_fs_type = {
2418 .name = "tmpfs",
2419 .mount = ramfs_mount,
2420 .kill_sb = kill_litter_super,
2421 };
2422
2423 int __init shmem_init(void)
2424 {
2425 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2426
2427 shm_mnt = kern_mount(&shmem_fs_type);
2428 BUG_ON(IS_ERR(shm_mnt));
2429
2430 return 0;
2431 }
2432
2433 int shmem_unuse(swp_entry_t swap, struct page *page)
2434 {
2435 return 0;
2436 }
2437
2438 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2439 {
2440 return 0;
2441 }
2442
2443 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2444 {
2445 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2446 }
2447 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2448
2449 #define shmem_vm_ops generic_file_vm_ops
2450 #define shmem_file_operations ramfs_file_operations
2451 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2452 #define shmem_acct_size(flags, size) 0
2453 #define shmem_unacct_size(flags, size) do {} while (0)
2454
2455 #endif /* CONFIG_SHMEM */
2456
2457 /* common code */
2458
2459 /**
2460 * shmem_file_setup - get an unlinked file living in tmpfs
2461 * @name: name for dentry (to be seen in /proc/<pid>/maps
2462 * @size: size to be set for the file
2463 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2464 */
2465 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2466 {
2467 int error;
2468 struct file *file;
2469 struct inode *inode;
2470 struct path path;
2471 struct dentry *root;
2472 struct qstr this;
2473
2474 if (IS_ERR(shm_mnt))
2475 return (void *)shm_mnt;
2476
2477 if (size < 0 || size > MAX_LFS_FILESIZE)
2478 return ERR_PTR(-EINVAL);
2479
2480 if (shmem_acct_size(flags, size))
2481 return ERR_PTR(-ENOMEM);
2482
2483 error = -ENOMEM;
2484 this.name = name;
2485 this.len = strlen(name);
2486 this.hash = 0; /* will go */
2487 root = shm_mnt->mnt_root;
2488 path.dentry = d_alloc(root, &this);
2489 if (!path.dentry)
2490 goto put_memory;
2491 path.mnt = mntget(shm_mnt);
2492
2493 error = -ENOSPC;
2494 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2495 if (!inode)
2496 goto put_dentry;
2497
2498 d_instantiate(path.dentry, inode);
2499 inode->i_size = size;
2500 inode->i_nlink = 0; /* It is unlinked */
2501 #ifndef CONFIG_MMU
2502 error = ramfs_nommu_expand_for_mapping(inode, size);
2503 if (error)
2504 goto put_dentry;
2505 #endif
2506
2507 error = -ENFILE;
2508 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2509 &shmem_file_operations);
2510 if (!file)
2511 goto put_dentry;
2512
2513 return file;
2514
2515 put_dentry:
2516 path_put(&path);
2517 put_memory:
2518 shmem_unacct_size(flags, size);
2519 return ERR_PTR(error);
2520 }
2521 EXPORT_SYMBOL_GPL(shmem_file_setup);
2522
2523 /**
2524 * shmem_zero_setup - setup a shared anonymous mapping
2525 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2526 */
2527 int shmem_zero_setup(struct vm_area_struct *vma)
2528 {
2529 struct file *file;
2530 loff_t size = vma->vm_end - vma->vm_start;
2531
2532 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2533 if (IS_ERR(file))
2534 return PTR_ERR(file);
2535
2536 if (vma->vm_file)
2537 fput(vma->vm_file);
2538 vma->vm_file = file;
2539 vma->vm_ops = &shmem_vm_ops;
2540 vma->vm_flags |= VM_CAN_NONLINEAR;
2541 return 0;
2542 }
2543
2544 /**
2545 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2546 * @mapping: the page's address_space
2547 * @index: the page index
2548 * @gfp: the page allocator flags to use if allocating
2549 *
2550 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2551 * with any new page allocations done using the specified allocation flags.
2552 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2553 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2554 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2555 *
2556 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2557 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2558 */
2559 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2560 pgoff_t index, gfp_t gfp)
2561 {
2562 #ifdef CONFIG_SHMEM
2563 struct inode *inode = mapping->host;
2564 struct page *page;
2565 int error;
2566
2567 BUG_ON(mapping->a_ops != &shmem_aops);
2568 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2569 if (error)
2570 page = ERR_PTR(error);
2571 else
2572 unlock_page(page);
2573 return page;
2574 #else
2575 /*
2576 * The tiny !SHMEM case uses ramfs without swap
2577 */
2578 return read_cache_page_gfp(mapping, index, gfp);
2579 #endif
2580 }
2581 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);