]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/shmem.c
Merge tag 'f2fs-for-5.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[mirror_ubuntu-eoan-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
42
43 static struct vfsmount *shm_mnt;
44
45 #ifdef CONFIG_SHMEM
46 /*
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
50 */
51
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 #ifdef CONFIG_TMPFS
111 static unsigned long shmem_default_max_blocks(void)
112 {
113 return totalram_pages() / 2;
114 }
115
116 static unsigned long shmem_default_max_inodes(void)
117 {
118 unsigned long nr_pages = totalram_pages();
119
120 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
121 }
122 #endif
123
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 vm_fault_t *fault_type);
131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
132 struct page **pagep, enum sgp_type sgp,
133 gfp_t gfp, struct vm_area_struct *vma,
134 struct vm_fault *vmf, vm_fault_t *fault_type);
135
136 int shmem_getpage(struct inode *inode, pgoff_t index,
137 struct page **pagep, enum sgp_type sgp)
138 {
139 return shmem_getpage_gfp(inode, index, pagep, sgp,
140 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
141 }
142
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
144 {
145 return sb->s_fs_info;
146 }
147
148 /*
149 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150 * for shared memory and for shared anonymous (/dev/zero) mappings
151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152 * consistent with the pre-accounting of private mappings ...
153 */
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
155 {
156 return (flags & VM_NORESERVE) ?
157 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
158 }
159
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
161 {
162 if (!(flags & VM_NORESERVE))
163 vm_unacct_memory(VM_ACCT(size));
164 }
165
166 static inline int shmem_reacct_size(unsigned long flags,
167 loff_t oldsize, loff_t newsize)
168 {
169 if (!(flags & VM_NORESERVE)) {
170 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 return security_vm_enough_memory_mm(current->mm,
172 VM_ACCT(newsize) - VM_ACCT(oldsize));
173 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
175 }
176 return 0;
177 }
178
179 /*
180 * ... whereas tmpfs objects are accounted incrementally as
181 * pages are allocated, in order to allow large sparse files.
182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
184 */
185 static inline int shmem_acct_block(unsigned long flags, long pages)
186 {
187 if (!(flags & VM_NORESERVE))
188 return 0;
189
190 return security_vm_enough_memory_mm(current->mm,
191 pages * VM_ACCT(PAGE_SIZE));
192 }
193
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
195 {
196 if (flags & VM_NORESERVE)
197 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
198 }
199
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
201 {
202 struct shmem_inode_info *info = SHMEM_I(inode);
203 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
204
205 if (shmem_acct_block(info->flags, pages))
206 return false;
207
208 if (sbinfo->max_blocks) {
209 if (percpu_counter_compare(&sbinfo->used_blocks,
210 sbinfo->max_blocks - pages) > 0)
211 goto unacct;
212 percpu_counter_add(&sbinfo->used_blocks, pages);
213 }
214
215 return true;
216
217 unacct:
218 shmem_unacct_blocks(info->flags, pages);
219 return false;
220 }
221
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
223 {
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226
227 if (sbinfo->max_blocks)
228 percpu_counter_sub(&sbinfo->used_blocks, pages);
229 shmem_unacct_blocks(info->flags, pages);
230 }
231
232 static const struct super_operations shmem_ops;
233 static const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
240
241 bool vma_is_shmem(struct vm_area_struct *vma)
242 {
243 return vma->vm_ops == &shmem_vm_ops;
244 }
245
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
248
249 static int shmem_reserve_inode(struct super_block *sb)
250 {
251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252 if (sbinfo->max_inodes) {
253 spin_lock(&sbinfo->stat_lock);
254 if (!sbinfo->free_inodes) {
255 spin_unlock(&sbinfo->stat_lock);
256 return -ENOSPC;
257 }
258 sbinfo->free_inodes--;
259 spin_unlock(&sbinfo->stat_lock);
260 }
261 return 0;
262 }
263
264 static void shmem_free_inode(struct super_block *sb)
265 {
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 sbinfo->free_inodes++;
270 spin_unlock(&sbinfo->stat_lock);
271 }
272 }
273
274 /**
275 * shmem_recalc_inode - recalculate the block usage of an inode
276 * @inode: inode to recalc
277 *
278 * We have to calculate the free blocks since the mm can drop
279 * undirtied hole pages behind our back.
280 *
281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
283 *
284 * It has to be called with the spinlock held.
285 */
286 static void shmem_recalc_inode(struct inode *inode)
287 {
288 struct shmem_inode_info *info = SHMEM_I(inode);
289 long freed;
290
291 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
292 if (freed > 0) {
293 info->alloced -= freed;
294 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
295 shmem_inode_unacct_blocks(inode, freed);
296 }
297 }
298
299 bool shmem_charge(struct inode *inode, long pages)
300 {
301 struct shmem_inode_info *info = SHMEM_I(inode);
302 unsigned long flags;
303
304 if (!shmem_inode_acct_block(inode, pages))
305 return false;
306
307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 inode->i_mapping->nrpages += pages;
309
310 spin_lock_irqsave(&info->lock, flags);
311 info->alloced += pages;
312 inode->i_blocks += pages * BLOCKS_PER_PAGE;
313 shmem_recalc_inode(inode);
314 spin_unlock_irqrestore(&info->lock, flags);
315
316 return true;
317 }
318
319 void shmem_uncharge(struct inode *inode, long pages)
320 {
321 struct shmem_inode_info *info = SHMEM_I(inode);
322 unsigned long flags;
323
324 /* nrpages adjustment done by __delete_from_page_cache() or caller */
325
326 spin_lock_irqsave(&info->lock, flags);
327 info->alloced -= pages;
328 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
329 shmem_recalc_inode(inode);
330 spin_unlock_irqrestore(&info->lock, flags);
331
332 shmem_inode_unacct_blocks(inode, pages);
333 }
334
335 /*
336 * Replace item expected in xarray by a new item, while holding xa_lock.
337 */
338 static int shmem_replace_entry(struct address_space *mapping,
339 pgoff_t index, void *expected, void *replacement)
340 {
341 XA_STATE(xas, &mapping->i_pages, index);
342 void *item;
343
344 VM_BUG_ON(!expected);
345 VM_BUG_ON(!replacement);
346 item = xas_load(&xas);
347 if (item != expected)
348 return -ENOENT;
349 xas_store(&xas, replacement);
350 return 0;
351 }
352
353 /*
354 * Sometimes, before we decide whether to proceed or to fail, we must check
355 * that an entry was not already brought back from swap by a racing thread.
356 *
357 * Checking page is not enough: by the time a SwapCache page is locked, it
358 * might be reused, and again be SwapCache, using the same swap as before.
359 */
360 static bool shmem_confirm_swap(struct address_space *mapping,
361 pgoff_t index, swp_entry_t swap)
362 {
363 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
364 }
365
366 /*
367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
368 *
369 * SHMEM_HUGE_NEVER:
370 * disables huge pages for the mount;
371 * SHMEM_HUGE_ALWAYS:
372 * enables huge pages for the mount;
373 * SHMEM_HUGE_WITHIN_SIZE:
374 * only allocate huge pages if the page will be fully within i_size,
375 * also respect fadvise()/madvise() hints;
376 * SHMEM_HUGE_ADVISE:
377 * only allocate huge pages if requested with fadvise()/madvise();
378 */
379
380 #define SHMEM_HUGE_NEVER 0
381 #define SHMEM_HUGE_ALWAYS 1
382 #define SHMEM_HUGE_WITHIN_SIZE 2
383 #define SHMEM_HUGE_ADVISE 3
384
385 /*
386 * Special values.
387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
388 *
389 * SHMEM_HUGE_DENY:
390 * disables huge on shm_mnt and all mounts, for emergency use;
391 * SHMEM_HUGE_FORCE:
392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
393 *
394 */
395 #define SHMEM_HUGE_DENY (-1)
396 #define SHMEM_HUGE_FORCE (-2)
397
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
400
401 static int shmem_huge __read_mostly;
402
403 #if defined(CONFIG_SYSFS)
404 static int shmem_parse_huge(const char *str)
405 {
406 if (!strcmp(str, "never"))
407 return SHMEM_HUGE_NEVER;
408 if (!strcmp(str, "always"))
409 return SHMEM_HUGE_ALWAYS;
410 if (!strcmp(str, "within_size"))
411 return SHMEM_HUGE_WITHIN_SIZE;
412 if (!strcmp(str, "advise"))
413 return SHMEM_HUGE_ADVISE;
414 if (!strcmp(str, "deny"))
415 return SHMEM_HUGE_DENY;
416 if (!strcmp(str, "force"))
417 return SHMEM_HUGE_FORCE;
418 return -EINVAL;
419 }
420 #endif
421
422 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
423 static const char *shmem_format_huge(int huge)
424 {
425 switch (huge) {
426 case SHMEM_HUGE_NEVER:
427 return "never";
428 case SHMEM_HUGE_ALWAYS:
429 return "always";
430 case SHMEM_HUGE_WITHIN_SIZE:
431 return "within_size";
432 case SHMEM_HUGE_ADVISE:
433 return "advise";
434 case SHMEM_HUGE_DENY:
435 return "deny";
436 case SHMEM_HUGE_FORCE:
437 return "force";
438 default:
439 VM_BUG_ON(1);
440 return "bad_val";
441 }
442 }
443 #endif
444
445 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
446 struct shrink_control *sc, unsigned long nr_to_split)
447 {
448 LIST_HEAD(list), *pos, *next;
449 LIST_HEAD(to_remove);
450 struct inode *inode;
451 struct shmem_inode_info *info;
452 struct page *page;
453 unsigned long batch = sc ? sc->nr_to_scan : 128;
454 int removed = 0, split = 0;
455
456 if (list_empty(&sbinfo->shrinklist))
457 return SHRINK_STOP;
458
459 spin_lock(&sbinfo->shrinklist_lock);
460 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
461 info = list_entry(pos, struct shmem_inode_info, shrinklist);
462
463 /* pin the inode */
464 inode = igrab(&info->vfs_inode);
465
466 /* inode is about to be evicted */
467 if (!inode) {
468 list_del_init(&info->shrinklist);
469 removed++;
470 goto next;
471 }
472
473 /* Check if there's anything to gain */
474 if (round_up(inode->i_size, PAGE_SIZE) ==
475 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
476 list_move(&info->shrinklist, &to_remove);
477 removed++;
478 goto next;
479 }
480
481 list_move(&info->shrinklist, &list);
482 next:
483 if (!--batch)
484 break;
485 }
486 spin_unlock(&sbinfo->shrinklist_lock);
487
488 list_for_each_safe(pos, next, &to_remove) {
489 info = list_entry(pos, struct shmem_inode_info, shrinklist);
490 inode = &info->vfs_inode;
491 list_del_init(&info->shrinklist);
492 iput(inode);
493 }
494
495 list_for_each_safe(pos, next, &list) {
496 int ret;
497
498 info = list_entry(pos, struct shmem_inode_info, shrinklist);
499 inode = &info->vfs_inode;
500
501 if (nr_to_split && split >= nr_to_split)
502 goto leave;
503
504 page = find_get_page(inode->i_mapping,
505 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
506 if (!page)
507 goto drop;
508
509 /* No huge page at the end of the file: nothing to split */
510 if (!PageTransHuge(page)) {
511 put_page(page);
512 goto drop;
513 }
514
515 /*
516 * Leave the inode on the list if we failed to lock
517 * the page at this time.
518 *
519 * Waiting for the lock may lead to deadlock in the
520 * reclaim path.
521 */
522 if (!trylock_page(page)) {
523 put_page(page);
524 goto leave;
525 }
526
527 ret = split_huge_page(page);
528 unlock_page(page);
529 put_page(page);
530
531 /* If split failed leave the inode on the list */
532 if (ret)
533 goto leave;
534
535 split++;
536 drop:
537 list_del_init(&info->shrinklist);
538 removed++;
539 leave:
540 iput(inode);
541 }
542
543 spin_lock(&sbinfo->shrinklist_lock);
544 list_splice_tail(&list, &sbinfo->shrinklist);
545 sbinfo->shrinklist_len -= removed;
546 spin_unlock(&sbinfo->shrinklist_lock);
547
548 return split;
549 }
550
551 static long shmem_unused_huge_scan(struct super_block *sb,
552 struct shrink_control *sc)
553 {
554 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
555
556 if (!READ_ONCE(sbinfo->shrinklist_len))
557 return SHRINK_STOP;
558
559 return shmem_unused_huge_shrink(sbinfo, sc, 0);
560 }
561
562 static long shmem_unused_huge_count(struct super_block *sb,
563 struct shrink_control *sc)
564 {
565 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
566 return READ_ONCE(sbinfo->shrinklist_len);
567 }
568 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
569
570 #define shmem_huge SHMEM_HUGE_DENY
571
572 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
573 struct shrink_control *sc, unsigned long nr_to_split)
574 {
575 return 0;
576 }
577 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
578
579 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
580 {
581 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
582 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
583 shmem_huge != SHMEM_HUGE_DENY)
584 return true;
585 return false;
586 }
587
588 /*
589 * Like add_to_page_cache_locked, but error if expected item has gone.
590 */
591 static int shmem_add_to_page_cache(struct page *page,
592 struct address_space *mapping,
593 pgoff_t index, void *expected, gfp_t gfp)
594 {
595 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
596 unsigned long i = 0;
597 unsigned long nr = 1UL << compound_order(page);
598
599 VM_BUG_ON_PAGE(PageTail(page), page);
600 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
601 VM_BUG_ON_PAGE(!PageLocked(page), page);
602 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
603 VM_BUG_ON(expected && PageTransHuge(page));
604
605 page_ref_add(page, nr);
606 page->mapping = mapping;
607 page->index = index;
608
609 do {
610 void *entry;
611 xas_lock_irq(&xas);
612 entry = xas_find_conflict(&xas);
613 if (entry != expected)
614 xas_set_err(&xas, -EEXIST);
615 xas_create_range(&xas);
616 if (xas_error(&xas))
617 goto unlock;
618 next:
619 xas_store(&xas, page + i);
620 if (++i < nr) {
621 xas_next(&xas);
622 goto next;
623 }
624 if (PageTransHuge(page)) {
625 count_vm_event(THP_FILE_ALLOC);
626 __inc_node_page_state(page, NR_SHMEM_THPS);
627 }
628 mapping->nrpages += nr;
629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
631 unlock:
632 xas_unlock_irq(&xas);
633 } while (xas_nomem(&xas, gfp));
634
635 if (xas_error(&xas)) {
636 page->mapping = NULL;
637 page_ref_sub(page, nr);
638 return xas_error(&xas);
639 }
640
641 return 0;
642 }
643
644 /*
645 * Like delete_from_page_cache, but substitutes swap for page.
646 */
647 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
648 {
649 struct address_space *mapping = page->mapping;
650 int error;
651
652 VM_BUG_ON_PAGE(PageCompound(page), page);
653
654 xa_lock_irq(&mapping->i_pages);
655 error = shmem_replace_entry(mapping, page->index, page, radswap);
656 page->mapping = NULL;
657 mapping->nrpages--;
658 __dec_node_page_state(page, NR_FILE_PAGES);
659 __dec_node_page_state(page, NR_SHMEM);
660 xa_unlock_irq(&mapping->i_pages);
661 put_page(page);
662 BUG_ON(error);
663 }
664
665 /*
666 * Remove swap entry from page cache, free the swap and its page cache.
667 */
668 static int shmem_free_swap(struct address_space *mapping,
669 pgoff_t index, void *radswap)
670 {
671 void *old;
672
673 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
674 if (old != radswap)
675 return -ENOENT;
676 free_swap_and_cache(radix_to_swp_entry(radswap));
677 return 0;
678 }
679
680 /*
681 * Determine (in bytes) how many of the shmem object's pages mapped by the
682 * given offsets are swapped out.
683 *
684 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
685 * as long as the inode doesn't go away and racy results are not a problem.
686 */
687 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
688 pgoff_t start, pgoff_t end)
689 {
690 XA_STATE(xas, &mapping->i_pages, start);
691 struct page *page;
692 unsigned long swapped = 0;
693
694 rcu_read_lock();
695 xas_for_each(&xas, page, end - 1) {
696 if (xas_retry(&xas, page))
697 continue;
698 if (xa_is_value(page))
699 swapped++;
700
701 if (need_resched()) {
702 xas_pause(&xas);
703 cond_resched_rcu();
704 }
705 }
706
707 rcu_read_unlock();
708
709 return swapped << PAGE_SHIFT;
710 }
711
712 /*
713 * Determine (in bytes) how many of the shmem object's pages mapped by the
714 * given vma is swapped out.
715 *
716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
717 * as long as the inode doesn't go away and racy results are not a problem.
718 */
719 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
720 {
721 struct inode *inode = file_inode(vma->vm_file);
722 struct shmem_inode_info *info = SHMEM_I(inode);
723 struct address_space *mapping = inode->i_mapping;
724 unsigned long swapped;
725
726 /* Be careful as we don't hold info->lock */
727 swapped = READ_ONCE(info->swapped);
728
729 /*
730 * The easier cases are when the shmem object has nothing in swap, or
731 * the vma maps it whole. Then we can simply use the stats that we
732 * already track.
733 */
734 if (!swapped)
735 return 0;
736
737 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
738 return swapped << PAGE_SHIFT;
739
740 /* Here comes the more involved part */
741 return shmem_partial_swap_usage(mapping,
742 linear_page_index(vma, vma->vm_start),
743 linear_page_index(vma, vma->vm_end));
744 }
745
746 /*
747 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
748 */
749 void shmem_unlock_mapping(struct address_space *mapping)
750 {
751 struct pagevec pvec;
752 pgoff_t indices[PAGEVEC_SIZE];
753 pgoff_t index = 0;
754
755 pagevec_init(&pvec);
756 /*
757 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
758 */
759 while (!mapping_unevictable(mapping)) {
760 /*
761 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
762 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
763 */
764 pvec.nr = find_get_entries(mapping, index,
765 PAGEVEC_SIZE, pvec.pages, indices);
766 if (!pvec.nr)
767 break;
768 index = indices[pvec.nr - 1] + 1;
769 pagevec_remove_exceptionals(&pvec);
770 check_move_unevictable_pages(&pvec);
771 pagevec_release(&pvec);
772 cond_resched();
773 }
774 }
775
776 /*
777 * Remove range of pages and swap entries from page cache, and free them.
778 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
779 */
780 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
781 bool unfalloc)
782 {
783 struct address_space *mapping = inode->i_mapping;
784 struct shmem_inode_info *info = SHMEM_I(inode);
785 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
786 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
787 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
788 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
789 struct pagevec pvec;
790 pgoff_t indices[PAGEVEC_SIZE];
791 long nr_swaps_freed = 0;
792 pgoff_t index;
793 int i;
794
795 if (lend == -1)
796 end = -1; /* unsigned, so actually very big */
797
798 pagevec_init(&pvec);
799 index = start;
800 while (index < end) {
801 pvec.nr = find_get_entries(mapping, index,
802 min(end - index, (pgoff_t)PAGEVEC_SIZE),
803 pvec.pages, indices);
804 if (!pvec.nr)
805 break;
806 for (i = 0; i < pagevec_count(&pvec); i++) {
807 struct page *page = pvec.pages[i];
808
809 index = indices[i];
810 if (index >= end)
811 break;
812
813 if (xa_is_value(page)) {
814 if (unfalloc)
815 continue;
816 nr_swaps_freed += !shmem_free_swap(mapping,
817 index, page);
818 continue;
819 }
820
821 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
822
823 if (!trylock_page(page))
824 continue;
825
826 if (PageTransTail(page)) {
827 /* Middle of THP: zero out the page */
828 clear_highpage(page);
829 unlock_page(page);
830 continue;
831 } else if (PageTransHuge(page)) {
832 if (index == round_down(end, HPAGE_PMD_NR)) {
833 /*
834 * Range ends in the middle of THP:
835 * zero out the page
836 */
837 clear_highpage(page);
838 unlock_page(page);
839 continue;
840 }
841 index += HPAGE_PMD_NR - 1;
842 i += HPAGE_PMD_NR - 1;
843 }
844
845 if (!unfalloc || !PageUptodate(page)) {
846 VM_BUG_ON_PAGE(PageTail(page), page);
847 if (page_mapping(page) == mapping) {
848 VM_BUG_ON_PAGE(PageWriteback(page), page);
849 truncate_inode_page(mapping, page);
850 }
851 }
852 unlock_page(page);
853 }
854 pagevec_remove_exceptionals(&pvec);
855 pagevec_release(&pvec);
856 cond_resched();
857 index++;
858 }
859
860 if (partial_start) {
861 struct page *page = NULL;
862 shmem_getpage(inode, start - 1, &page, SGP_READ);
863 if (page) {
864 unsigned int top = PAGE_SIZE;
865 if (start > end) {
866 top = partial_end;
867 partial_end = 0;
868 }
869 zero_user_segment(page, partial_start, top);
870 set_page_dirty(page);
871 unlock_page(page);
872 put_page(page);
873 }
874 }
875 if (partial_end) {
876 struct page *page = NULL;
877 shmem_getpage(inode, end, &page, SGP_READ);
878 if (page) {
879 zero_user_segment(page, 0, partial_end);
880 set_page_dirty(page);
881 unlock_page(page);
882 put_page(page);
883 }
884 }
885 if (start >= end)
886 return;
887
888 index = start;
889 while (index < end) {
890 cond_resched();
891
892 pvec.nr = find_get_entries(mapping, index,
893 min(end - index, (pgoff_t)PAGEVEC_SIZE),
894 pvec.pages, indices);
895 if (!pvec.nr) {
896 /* If all gone or hole-punch or unfalloc, we're done */
897 if (index == start || end != -1)
898 break;
899 /* But if truncating, restart to make sure all gone */
900 index = start;
901 continue;
902 }
903 for (i = 0; i < pagevec_count(&pvec); i++) {
904 struct page *page = pvec.pages[i];
905
906 index = indices[i];
907 if (index >= end)
908 break;
909
910 if (xa_is_value(page)) {
911 if (unfalloc)
912 continue;
913 if (shmem_free_swap(mapping, index, page)) {
914 /* Swap was replaced by page: retry */
915 index--;
916 break;
917 }
918 nr_swaps_freed++;
919 continue;
920 }
921
922 lock_page(page);
923
924 if (PageTransTail(page)) {
925 /* Middle of THP: zero out the page */
926 clear_highpage(page);
927 unlock_page(page);
928 /*
929 * Partial thp truncate due 'start' in middle
930 * of THP: don't need to look on these pages
931 * again on !pvec.nr restart.
932 */
933 if (index != round_down(end, HPAGE_PMD_NR))
934 start++;
935 continue;
936 } else if (PageTransHuge(page)) {
937 if (index == round_down(end, HPAGE_PMD_NR)) {
938 /*
939 * Range ends in the middle of THP:
940 * zero out the page
941 */
942 clear_highpage(page);
943 unlock_page(page);
944 continue;
945 }
946 index += HPAGE_PMD_NR - 1;
947 i += HPAGE_PMD_NR - 1;
948 }
949
950 if (!unfalloc || !PageUptodate(page)) {
951 VM_BUG_ON_PAGE(PageTail(page), page);
952 if (page_mapping(page) == mapping) {
953 VM_BUG_ON_PAGE(PageWriteback(page), page);
954 truncate_inode_page(mapping, page);
955 } else {
956 /* Page was replaced by swap: retry */
957 unlock_page(page);
958 index--;
959 break;
960 }
961 }
962 unlock_page(page);
963 }
964 pagevec_remove_exceptionals(&pvec);
965 pagevec_release(&pvec);
966 index++;
967 }
968
969 spin_lock_irq(&info->lock);
970 info->swapped -= nr_swaps_freed;
971 shmem_recalc_inode(inode);
972 spin_unlock_irq(&info->lock);
973 }
974
975 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
976 {
977 shmem_undo_range(inode, lstart, lend, false);
978 inode->i_ctime = inode->i_mtime = current_time(inode);
979 }
980 EXPORT_SYMBOL_GPL(shmem_truncate_range);
981
982 static int shmem_getattr(const struct path *path, struct kstat *stat,
983 u32 request_mask, unsigned int query_flags)
984 {
985 struct inode *inode = path->dentry->d_inode;
986 struct shmem_inode_info *info = SHMEM_I(inode);
987 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
988
989 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
990 spin_lock_irq(&info->lock);
991 shmem_recalc_inode(inode);
992 spin_unlock_irq(&info->lock);
993 }
994 generic_fillattr(inode, stat);
995
996 if (is_huge_enabled(sb_info))
997 stat->blksize = HPAGE_PMD_SIZE;
998
999 return 0;
1000 }
1001
1002 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1003 {
1004 struct inode *inode = d_inode(dentry);
1005 struct shmem_inode_info *info = SHMEM_I(inode);
1006 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1007 int error;
1008
1009 error = setattr_prepare(dentry, attr);
1010 if (error)
1011 return error;
1012
1013 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1014 loff_t oldsize = inode->i_size;
1015 loff_t newsize = attr->ia_size;
1016
1017 /* protected by i_mutex */
1018 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1019 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1020 return -EPERM;
1021
1022 if (newsize != oldsize) {
1023 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1024 oldsize, newsize);
1025 if (error)
1026 return error;
1027 i_size_write(inode, newsize);
1028 inode->i_ctime = inode->i_mtime = current_time(inode);
1029 }
1030 if (newsize <= oldsize) {
1031 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1032 if (oldsize > holebegin)
1033 unmap_mapping_range(inode->i_mapping,
1034 holebegin, 0, 1);
1035 if (info->alloced)
1036 shmem_truncate_range(inode,
1037 newsize, (loff_t)-1);
1038 /* unmap again to remove racily COWed private pages */
1039 if (oldsize > holebegin)
1040 unmap_mapping_range(inode->i_mapping,
1041 holebegin, 0, 1);
1042
1043 /*
1044 * Part of the huge page can be beyond i_size: subject
1045 * to shrink under memory pressure.
1046 */
1047 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1048 spin_lock(&sbinfo->shrinklist_lock);
1049 /*
1050 * _careful to defend against unlocked access to
1051 * ->shrink_list in shmem_unused_huge_shrink()
1052 */
1053 if (list_empty_careful(&info->shrinklist)) {
1054 list_add_tail(&info->shrinklist,
1055 &sbinfo->shrinklist);
1056 sbinfo->shrinklist_len++;
1057 }
1058 spin_unlock(&sbinfo->shrinklist_lock);
1059 }
1060 }
1061 }
1062
1063 setattr_copy(inode, attr);
1064 if (attr->ia_valid & ATTR_MODE)
1065 error = posix_acl_chmod(inode, inode->i_mode);
1066 return error;
1067 }
1068
1069 static void shmem_evict_inode(struct inode *inode)
1070 {
1071 struct shmem_inode_info *info = SHMEM_I(inode);
1072 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1073
1074 if (inode->i_mapping->a_ops == &shmem_aops) {
1075 shmem_unacct_size(info->flags, inode->i_size);
1076 inode->i_size = 0;
1077 shmem_truncate_range(inode, 0, (loff_t)-1);
1078 if (!list_empty(&info->shrinklist)) {
1079 spin_lock(&sbinfo->shrinklist_lock);
1080 if (!list_empty(&info->shrinklist)) {
1081 list_del_init(&info->shrinklist);
1082 sbinfo->shrinklist_len--;
1083 }
1084 spin_unlock(&sbinfo->shrinklist_lock);
1085 }
1086 while (!list_empty(&info->swaplist)) {
1087 /* Wait while shmem_unuse() is scanning this inode... */
1088 wait_var_event(&info->stop_eviction,
1089 !atomic_read(&info->stop_eviction));
1090 mutex_lock(&shmem_swaplist_mutex);
1091 /* ...but beware of the race if we peeked too early */
1092 if (!atomic_read(&info->stop_eviction))
1093 list_del_init(&info->swaplist);
1094 mutex_unlock(&shmem_swaplist_mutex);
1095 }
1096 }
1097
1098 simple_xattrs_free(&info->xattrs);
1099 WARN_ON(inode->i_blocks);
1100 shmem_free_inode(inode->i_sb);
1101 clear_inode(inode);
1102 }
1103
1104 extern struct swap_info_struct *swap_info[];
1105
1106 static int shmem_find_swap_entries(struct address_space *mapping,
1107 pgoff_t start, unsigned int nr_entries,
1108 struct page **entries, pgoff_t *indices,
1109 unsigned int type, bool frontswap)
1110 {
1111 XA_STATE(xas, &mapping->i_pages, start);
1112 struct page *page;
1113 swp_entry_t entry;
1114 unsigned int ret = 0;
1115
1116 if (!nr_entries)
1117 return 0;
1118
1119 rcu_read_lock();
1120 xas_for_each(&xas, page, ULONG_MAX) {
1121 if (xas_retry(&xas, page))
1122 continue;
1123
1124 if (!xa_is_value(page))
1125 continue;
1126
1127 entry = radix_to_swp_entry(page);
1128 if (swp_type(entry) != type)
1129 continue;
1130 if (frontswap &&
1131 !frontswap_test(swap_info[type], swp_offset(entry)))
1132 continue;
1133
1134 indices[ret] = xas.xa_index;
1135 entries[ret] = page;
1136
1137 if (need_resched()) {
1138 xas_pause(&xas);
1139 cond_resched_rcu();
1140 }
1141 if (++ret == nr_entries)
1142 break;
1143 }
1144 rcu_read_unlock();
1145
1146 return ret;
1147 }
1148
1149 /*
1150 * Move the swapped pages for an inode to page cache. Returns the count
1151 * of pages swapped in, or the error in case of failure.
1152 */
1153 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1154 pgoff_t *indices)
1155 {
1156 int i = 0;
1157 int ret = 0;
1158 int error = 0;
1159 struct address_space *mapping = inode->i_mapping;
1160
1161 for (i = 0; i < pvec.nr; i++) {
1162 struct page *page = pvec.pages[i];
1163
1164 if (!xa_is_value(page))
1165 continue;
1166 error = shmem_swapin_page(inode, indices[i],
1167 &page, SGP_CACHE,
1168 mapping_gfp_mask(mapping),
1169 NULL, NULL);
1170 if (error == 0) {
1171 unlock_page(page);
1172 put_page(page);
1173 ret++;
1174 }
1175 if (error == -ENOMEM)
1176 break;
1177 error = 0;
1178 }
1179 return error ? error : ret;
1180 }
1181
1182 /*
1183 * If swap found in inode, free it and move page from swapcache to filecache.
1184 */
1185 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1186 bool frontswap, unsigned long *fs_pages_to_unuse)
1187 {
1188 struct address_space *mapping = inode->i_mapping;
1189 pgoff_t start = 0;
1190 struct pagevec pvec;
1191 pgoff_t indices[PAGEVEC_SIZE];
1192 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1193 int ret = 0;
1194
1195 pagevec_init(&pvec);
1196 do {
1197 unsigned int nr_entries = PAGEVEC_SIZE;
1198
1199 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1200 nr_entries = *fs_pages_to_unuse;
1201
1202 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1203 pvec.pages, indices,
1204 type, frontswap);
1205 if (pvec.nr == 0) {
1206 ret = 0;
1207 break;
1208 }
1209
1210 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1211 if (ret < 0)
1212 break;
1213
1214 if (frontswap_partial) {
1215 *fs_pages_to_unuse -= ret;
1216 if (*fs_pages_to_unuse == 0) {
1217 ret = FRONTSWAP_PAGES_UNUSED;
1218 break;
1219 }
1220 }
1221
1222 start = indices[pvec.nr - 1];
1223 } while (true);
1224
1225 return ret;
1226 }
1227
1228 /*
1229 * Read all the shared memory data that resides in the swap
1230 * device 'type' back into memory, so the swap device can be
1231 * unused.
1232 */
1233 int shmem_unuse(unsigned int type, bool frontswap,
1234 unsigned long *fs_pages_to_unuse)
1235 {
1236 struct shmem_inode_info *info, *next;
1237 int error = 0;
1238
1239 if (list_empty(&shmem_swaplist))
1240 return 0;
1241
1242 mutex_lock(&shmem_swaplist_mutex);
1243 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1244 if (!info->swapped) {
1245 list_del_init(&info->swaplist);
1246 continue;
1247 }
1248 /*
1249 * Drop the swaplist mutex while searching the inode for swap;
1250 * but before doing so, make sure shmem_evict_inode() will not
1251 * remove placeholder inode from swaplist, nor let it be freed
1252 * (igrab() would protect from unlink, but not from unmount).
1253 */
1254 atomic_inc(&info->stop_eviction);
1255 mutex_unlock(&shmem_swaplist_mutex);
1256
1257 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1258 fs_pages_to_unuse);
1259 cond_resched();
1260
1261 mutex_lock(&shmem_swaplist_mutex);
1262 next = list_next_entry(info, swaplist);
1263 if (!info->swapped)
1264 list_del_init(&info->swaplist);
1265 if (atomic_dec_and_test(&info->stop_eviction))
1266 wake_up_var(&info->stop_eviction);
1267 if (error)
1268 break;
1269 }
1270 mutex_unlock(&shmem_swaplist_mutex);
1271
1272 return error;
1273 }
1274
1275 /*
1276 * Move the page from the page cache to the swap cache.
1277 */
1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1279 {
1280 struct shmem_inode_info *info;
1281 struct address_space *mapping;
1282 struct inode *inode;
1283 swp_entry_t swap;
1284 pgoff_t index;
1285
1286 VM_BUG_ON_PAGE(PageCompound(page), page);
1287 BUG_ON(!PageLocked(page));
1288 mapping = page->mapping;
1289 index = page->index;
1290 inode = mapping->host;
1291 info = SHMEM_I(inode);
1292 if (info->flags & VM_LOCKED)
1293 goto redirty;
1294 if (!total_swap_pages)
1295 goto redirty;
1296
1297 /*
1298 * Our capabilities prevent regular writeback or sync from ever calling
1299 * shmem_writepage; but a stacking filesystem might use ->writepage of
1300 * its underlying filesystem, in which case tmpfs should write out to
1301 * swap only in response to memory pressure, and not for the writeback
1302 * threads or sync.
1303 */
1304 if (!wbc->for_reclaim) {
1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1306 goto redirty;
1307 }
1308
1309 /*
1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1311 * value into swapfile.c, the only way we can correctly account for a
1312 * fallocated page arriving here is now to initialize it and write it.
1313 *
1314 * That's okay for a page already fallocated earlier, but if we have
1315 * not yet completed the fallocation, then (a) we want to keep track
1316 * of this page in case we have to undo it, and (b) it may not be a
1317 * good idea to continue anyway, once we're pushing into swap. So
1318 * reactivate the page, and let shmem_fallocate() quit when too many.
1319 */
1320 if (!PageUptodate(page)) {
1321 if (inode->i_private) {
1322 struct shmem_falloc *shmem_falloc;
1323 spin_lock(&inode->i_lock);
1324 shmem_falloc = inode->i_private;
1325 if (shmem_falloc &&
1326 !shmem_falloc->waitq &&
1327 index >= shmem_falloc->start &&
1328 index < shmem_falloc->next)
1329 shmem_falloc->nr_unswapped++;
1330 else
1331 shmem_falloc = NULL;
1332 spin_unlock(&inode->i_lock);
1333 if (shmem_falloc)
1334 goto redirty;
1335 }
1336 clear_highpage(page);
1337 flush_dcache_page(page);
1338 SetPageUptodate(page);
1339 }
1340
1341 swap = get_swap_page(page);
1342 if (!swap.val)
1343 goto redirty;
1344
1345 /*
1346 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1347 * if it's not already there. Do it now before the page is
1348 * moved to swap cache, when its pagelock no longer protects
1349 * the inode from eviction. But don't unlock the mutex until
1350 * we've incremented swapped, because shmem_unuse_inode() will
1351 * prune a !swapped inode from the swaplist under this mutex.
1352 */
1353 mutex_lock(&shmem_swaplist_mutex);
1354 if (list_empty(&info->swaplist))
1355 list_add(&info->swaplist, &shmem_swaplist);
1356
1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1358 spin_lock_irq(&info->lock);
1359 shmem_recalc_inode(inode);
1360 info->swapped++;
1361 spin_unlock_irq(&info->lock);
1362
1363 swap_shmem_alloc(swap);
1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1365
1366 mutex_unlock(&shmem_swaplist_mutex);
1367 BUG_ON(page_mapped(page));
1368 swap_writepage(page, wbc);
1369 return 0;
1370 }
1371
1372 mutex_unlock(&shmem_swaplist_mutex);
1373 put_swap_page(page, swap);
1374 redirty:
1375 set_page_dirty(page);
1376 if (wbc->for_reclaim)
1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1378 unlock_page(page);
1379 return 0;
1380 }
1381
1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1384 {
1385 char buffer[64];
1386
1387 if (!mpol || mpol->mode == MPOL_DEFAULT)
1388 return; /* show nothing */
1389
1390 mpol_to_str(buffer, sizeof(buffer), mpol);
1391
1392 seq_printf(seq, ",mpol=%s", buffer);
1393 }
1394
1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1396 {
1397 struct mempolicy *mpol = NULL;
1398 if (sbinfo->mpol) {
1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1400 mpol = sbinfo->mpol;
1401 mpol_get(mpol);
1402 spin_unlock(&sbinfo->stat_lock);
1403 }
1404 return mpol;
1405 }
1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1408 {
1409 }
1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411 {
1412 return NULL;
1413 }
1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1415 #ifndef CONFIG_NUMA
1416 #define vm_policy vm_private_data
1417 #endif
1418
1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1420 struct shmem_inode_info *info, pgoff_t index)
1421 {
1422 /* Create a pseudo vma that just contains the policy */
1423 vma_init(vma, NULL);
1424 /* Bias interleave by inode number to distribute better across nodes */
1425 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1426 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1427 }
1428
1429 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1430 {
1431 /* Drop reference taken by mpol_shared_policy_lookup() */
1432 mpol_cond_put(vma->vm_policy);
1433 }
1434
1435 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1436 struct shmem_inode_info *info, pgoff_t index)
1437 {
1438 struct vm_area_struct pvma;
1439 struct page *page;
1440 struct vm_fault vmf;
1441
1442 shmem_pseudo_vma_init(&pvma, info, index);
1443 vmf.vma = &pvma;
1444 vmf.address = 0;
1445 page = swap_cluster_readahead(swap, gfp, &vmf);
1446 shmem_pseudo_vma_destroy(&pvma);
1447
1448 return page;
1449 }
1450
1451 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1452 struct shmem_inode_info *info, pgoff_t index)
1453 {
1454 struct vm_area_struct pvma;
1455 struct address_space *mapping = info->vfs_inode.i_mapping;
1456 pgoff_t hindex;
1457 struct page *page;
1458
1459 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1460 return NULL;
1461
1462 hindex = round_down(index, HPAGE_PMD_NR);
1463 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1464 XA_PRESENT))
1465 return NULL;
1466
1467 shmem_pseudo_vma_init(&pvma, info, hindex);
1468 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1469 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1470 shmem_pseudo_vma_destroy(&pvma);
1471 if (page)
1472 prep_transhuge_page(page);
1473 return page;
1474 }
1475
1476 static struct page *shmem_alloc_page(gfp_t gfp,
1477 struct shmem_inode_info *info, pgoff_t index)
1478 {
1479 struct vm_area_struct pvma;
1480 struct page *page;
1481
1482 shmem_pseudo_vma_init(&pvma, info, index);
1483 page = alloc_page_vma(gfp, &pvma, 0);
1484 shmem_pseudo_vma_destroy(&pvma);
1485
1486 return page;
1487 }
1488
1489 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1490 struct inode *inode,
1491 pgoff_t index, bool huge)
1492 {
1493 struct shmem_inode_info *info = SHMEM_I(inode);
1494 struct page *page;
1495 int nr;
1496 int err = -ENOSPC;
1497
1498 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1499 huge = false;
1500 nr = huge ? HPAGE_PMD_NR : 1;
1501
1502 if (!shmem_inode_acct_block(inode, nr))
1503 goto failed;
1504
1505 if (huge)
1506 page = shmem_alloc_hugepage(gfp, info, index);
1507 else
1508 page = shmem_alloc_page(gfp, info, index);
1509 if (page) {
1510 __SetPageLocked(page);
1511 __SetPageSwapBacked(page);
1512 return page;
1513 }
1514
1515 err = -ENOMEM;
1516 shmem_inode_unacct_blocks(inode, nr);
1517 failed:
1518 return ERR_PTR(err);
1519 }
1520
1521 /*
1522 * When a page is moved from swapcache to shmem filecache (either by the
1523 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1524 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1525 * ignorance of the mapping it belongs to. If that mapping has special
1526 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1527 * we may need to copy to a suitable page before moving to filecache.
1528 *
1529 * In a future release, this may well be extended to respect cpuset and
1530 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1531 * but for now it is a simple matter of zone.
1532 */
1533 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1534 {
1535 return page_zonenum(page) > gfp_zone(gfp);
1536 }
1537
1538 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1539 struct shmem_inode_info *info, pgoff_t index)
1540 {
1541 struct page *oldpage, *newpage;
1542 struct address_space *swap_mapping;
1543 swp_entry_t entry;
1544 pgoff_t swap_index;
1545 int error;
1546
1547 oldpage = *pagep;
1548 entry.val = page_private(oldpage);
1549 swap_index = swp_offset(entry);
1550 swap_mapping = page_mapping(oldpage);
1551
1552 /*
1553 * We have arrived here because our zones are constrained, so don't
1554 * limit chance of success by further cpuset and node constraints.
1555 */
1556 gfp &= ~GFP_CONSTRAINT_MASK;
1557 newpage = shmem_alloc_page(gfp, info, index);
1558 if (!newpage)
1559 return -ENOMEM;
1560
1561 get_page(newpage);
1562 copy_highpage(newpage, oldpage);
1563 flush_dcache_page(newpage);
1564
1565 __SetPageLocked(newpage);
1566 __SetPageSwapBacked(newpage);
1567 SetPageUptodate(newpage);
1568 set_page_private(newpage, entry.val);
1569 SetPageSwapCache(newpage);
1570
1571 /*
1572 * Our caller will very soon move newpage out of swapcache, but it's
1573 * a nice clean interface for us to replace oldpage by newpage there.
1574 */
1575 xa_lock_irq(&swap_mapping->i_pages);
1576 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1577 if (!error) {
1578 __inc_node_page_state(newpage, NR_FILE_PAGES);
1579 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1580 }
1581 xa_unlock_irq(&swap_mapping->i_pages);
1582
1583 if (unlikely(error)) {
1584 /*
1585 * Is this possible? I think not, now that our callers check
1586 * both PageSwapCache and page_private after getting page lock;
1587 * but be defensive. Reverse old to newpage for clear and free.
1588 */
1589 oldpage = newpage;
1590 } else {
1591 mem_cgroup_migrate(oldpage, newpage);
1592 lru_cache_add_anon(newpage);
1593 *pagep = newpage;
1594 }
1595
1596 ClearPageSwapCache(oldpage);
1597 set_page_private(oldpage, 0);
1598
1599 unlock_page(oldpage);
1600 put_page(oldpage);
1601 put_page(oldpage);
1602 return error;
1603 }
1604
1605 /*
1606 * Swap in the page pointed to by *pagep.
1607 * Caller has to make sure that *pagep contains a valid swapped page.
1608 * Returns 0 and the page in pagep if success. On failure, returns the
1609 * the error code and NULL in *pagep.
1610 */
1611 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1612 struct page **pagep, enum sgp_type sgp,
1613 gfp_t gfp, struct vm_area_struct *vma,
1614 vm_fault_t *fault_type)
1615 {
1616 struct address_space *mapping = inode->i_mapping;
1617 struct shmem_inode_info *info = SHMEM_I(inode);
1618 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1619 struct mem_cgroup *memcg;
1620 struct page *page;
1621 swp_entry_t swap;
1622 int error;
1623
1624 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1625 swap = radix_to_swp_entry(*pagep);
1626 *pagep = NULL;
1627
1628 /* Look it up and read it in.. */
1629 page = lookup_swap_cache(swap, NULL, 0);
1630 if (!page) {
1631 /* Or update major stats only when swapin succeeds?? */
1632 if (fault_type) {
1633 *fault_type |= VM_FAULT_MAJOR;
1634 count_vm_event(PGMAJFAULT);
1635 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1636 }
1637 /* Here we actually start the io */
1638 page = shmem_swapin(swap, gfp, info, index);
1639 if (!page) {
1640 error = -ENOMEM;
1641 goto failed;
1642 }
1643 }
1644
1645 /* We have to do this with page locked to prevent races */
1646 lock_page(page);
1647 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1648 !shmem_confirm_swap(mapping, index, swap)) {
1649 error = -EEXIST;
1650 goto unlock;
1651 }
1652 if (!PageUptodate(page)) {
1653 error = -EIO;
1654 goto failed;
1655 }
1656 wait_on_page_writeback(page);
1657
1658 if (shmem_should_replace_page(page, gfp)) {
1659 error = shmem_replace_page(&page, gfp, info, index);
1660 if (error)
1661 goto failed;
1662 }
1663
1664 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1665 false);
1666 if (!error) {
1667 error = shmem_add_to_page_cache(page, mapping, index,
1668 swp_to_radix_entry(swap), gfp);
1669 /*
1670 * We already confirmed swap under page lock, and make
1671 * no memory allocation here, so usually no possibility
1672 * of error; but free_swap_and_cache() only trylocks a
1673 * page, so it is just possible that the entry has been
1674 * truncated or holepunched since swap was confirmed.
1675 * shmem_undo_range() will have done some of the
1676 * unaccounting, now delete_from_swap_cache() will do
1677 * the rest.
1678 */
1679 if (error) {
1680 mem_cgroup_cancel_charge(page, memcg, false);
1681 delete_from_swap_cache(page);
1682 }
1683 }
1684 if (error)
1685 goto failed;
1686
1687 mem_cgroup_commit_charge(page, memcg, true, false);
1688
1689 spin_lock_irq(&info->lock);
1690 info->swapped--;
1691 shmem_recalc_inode(inode);
1692 spin_unlock_irq(&info->lock);
1693
1694 if (sgp == SGP_WRITE)
1695 mark_page_accessed(page);
1696
1697 delete_from_swap_cache(page);
1698 set_page_dirty(page);
1699 swap_free(swap);
1700
1701 *pagep = page;
1702 return 0;
1703 failed:
1704 if (!shmem_confirm_swap(mapping, index, swap))
1705 error = -EEXIST;
1706 unlock:
1707 if (page) {
1708 unlock_page(page);
1709 put_page(page);
1710 }
1711
1712 return error;
1713 }
1714
1715 /*
1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1717 *
1718 * If we allocate a new one we do not mark it dirty. That's up to the
1719 * vm. If we swap it in we mark it dirty since we also free the swap
1720 * entry since a page cannot live in both the swap and page cache.
1721 *
1722 * fault_mm and fault_type are only supplied by shmem_fault:
1723 * otherwise they are NULL.
1724 */
1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1726 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1727 struct vm_area_struct *vma, struct vm_fault *vmf,
1728 vm_fault_t *fault_type)
1729 {
1730 struct address_space *mapping = inode->i_mapping;
1731 struct shmem_inode_info *info = SHMEM_I(inode);
1732 struct shmem_sb_info *sbinfo;
1733 struct mm_struct *charge_mm;
1734 struct mem_cgroup *memcg;
1735 struct page *page;
1736 enum sgp_type sgp_huge = sgp;
1737 pgoff_t hindex = index;
1738 int error;
1739 int once = 0;
1740 int alloced = 0;
1741
1742 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1743 return -EFBIG;
1744 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1745 sgp = SGP_CACHE;
1746 repeat:
1747 if (sgp <= SGP_CACHE &&
1748 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1749 return -EINVAL;
1750 }
1751
1752 sbinfo = SHMEM_SB(inode->i_sb);
1753 charge_mm = vma ? vma->vm_mm : current->mm;
1754
1755 page = find_lock_entry(mapping, index);
1756 if (xa_is_value(page)) {
1757 error = shmem_swapin_page(inode, index, &page,
1758 sgp, gfp, vma, fault_type);
1759 if (error == -EEXIST)
1760 goto repeat;
1761
1762 *pagep = page;
1763 return error;
1764 }
1765
1766 if (page && sgp == SGP_WRITE)
1767 mark_page_accessed(page);
1768
1769 /* fallocated page? */
1770 if (page && !PageUptodate(page)) {
1771 if (sgp != SGP_READ)
1772 goto clear;
1773 unlock_page(page);
1774 put_page(page);
1775 page = NULL;
1776 }
1777 if (page || sgp == SGP_READ) {
1778 *pagep = page;
1779 return 0;
1780 }
1781
1782 /*
1783 * Fast cache lookup did not find it:
1784 * bring it back from swap or allocate.
1785 */
1786
1787 if (vma && userfaultfd_missing(vma)) {
1788 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1789 return 0;
1790 }
1791
1792 /* shmem_symlink() */
1793 if (mapping->a_ops != &shmem_aops)
1794 goto alloc_nohuge;
1795 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1796 goto alloc_nohuge;
1797 if (shmem_huge == SHMEM_HUGE_FORCE)
1798 goto alloc_huge;
1799 switch (sbinfo->huge) {
1800 loff_t i_size;
1801 pgoff_t off;
1802 case SHMEM_HUGE_NEVER:
1803 goto alloc_nohuge;
1804 case SHMEM_HUGE_WITHIN_SIZE:
1805 off = round_up(index, HPAGE_PMD_NR);
1806 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1807 if (i_size >= HPAGE_PMD_SIZE &&
1808 i_size >> PAGE_SHIFT >= off)
1809 goto alloc_huge;
1810 /* fallthrough */
1811 case SHMEM_HUGE_ADVISE:
1812 if (sgp_huge == SGP_HUGE)
1813 goto alloc_huge;
1814 /* TODO: implement fadvise() hints */
1815 goto alloc_nohuge;
1816 }
1817
1818 alloc_huge:
1819 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1820 if (IS_ERR(page)) {
1821 alloc_nohuge:
1822 page = shmem_alloc_and_acct_page(gfp, inode,
1823 index, false);
1824 }
1825 if (IS_ERR(page)) {
1826 int retry = 5;
1827
1828 error = PTR_ERR(page);
1829 page = NULL;
1830 if (error != -ENOSPC)
1831 goto unlock;
1832 /*
1833 * Try to reclaim some space by splitting a huge page
1834 * beyond i_size on the filesystem.
1835 */
1836 while (retry--) {
1837 int ret;
1838
1839 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1840 if (ret == SHRINK_STOP)
1841 break;
1842 if (ret)
1843 goto alloc_nohuge;
1844 }
1845 goto unlock;
1846 }
1847
1848 if (PageTransHuge(page))
1849 hindex = round_down(index, HPAGE_PMD_NR);
1850 else
1851 hindex = index;
1852
1853 if (sgp == SGP_WRITE)
1854 __SetPageReferenced(page);
1855
1856 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1857 PageTransHuge(page));
1858 if (error)
1859 goto unacct;
1860 error = shmem_add_to_page_cache(page, mapping, hindex,
1861 NULL, gfp & GFP_RECLAIM_MASK);
1862 if (error) {
1863 mem_cgroup_cancel_charge(page, memcg,
1864 PageTransHuge(page));
1865 goto unacct;
1866 }
1867 mem_cgroup_commit_charge(page, memcg, false,
1868 PageTransHuge(page));
1869 lru_cache_add_anon(page);
1870
1871 spin_lock_irq(&info->lock);
1872 info->alloced += 1 << compound_order(page);
1873 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1874 shmem_recalc_inode(inode);
1875 spin_unlock_irq(&info->lock);
1876 alloced = true;
1877
1878 if (PageTransHuge(page) &&
1879 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1880 hindex + HPAGE_PMD_NR - 1) {
1881 /*
1882 * Part of the huge page is beyond i_size: subject
1883 * to shrink under memory pressure.
1884 */
1885 spin_lock(&sbinfo->shrinklist_lock);
1886 /*
1887 * _careful to defend against unlocked access to
1888 * ->shrink_list in shmem_unused_huge_shrink()
1889 */
1890 if (list_empty_careful(&info->shrinklist)) {
1891 list_add_tail(&info->shrinklist,
1892 &sbinfo->shrinklist);
1893 sbinfo->shrinklist_len++;
1894 }
1895 spin_unlock(&sbinfo->shrinklist_lock);
1896 }
1897
1898 /*
1899 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1900 */
1901 if (sgp == SGP_FALLOC)
1902 sgp = SGP_WRITE;
1903 clear:
1904 /*
1905 * Let SGP_WRITE caller clear ends if write does not fill page;
1906 * but SGP_FALLOC on a page fallocated earlier must initialize
1907 * it now, lest undo on failure cancel our earlier guarantee.
1908 */
1909 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1910 struct page *head = compound_head(page);
1911 int i;
1912
1913 for (i = 0; i < (1 << compound_order(head)); i++) {
1914 clear_highpage(head + i);
1915 flush_dcache_page(head + i);
1916 }
1917 SetPageUptodate(head);
1918 }
1919
1920 /* Perhaps the file has been truncated since we checked */
1921 if (sgp <= SGP_CACHE &&
1922 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1923 if (alloced) {
1924 ClearPageDirty(page);
1925 delete_from_page_cache(page);
1926 spin_lock_irq(&info->lock);
1927 shmem_recalc_inode(inode);
1928 spin_unlock_irq(&info->lock);
1929 }
1930 error = -EINVAL;
1931 goto unlock;
1932 }
1933 *pagep = page + index - hindex;
1934 return 0;
1935
1936 /*
1937 * Error recovery.
1938 */
1939 unacct:
1940 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1941
1942 if (PageTransHuge(page)) {
1943 unlock_page(page);
1944 put_page(page);
1945 goto alloc_nohuge;
1946 }
1947 unlock:
1948 if (page) {
1949 unlock_page(page);
1950 put_page(page);
1951 }
1952 if (error == -ENOSPC && !once++) {
1953 spin_lock_irq(&info->lock);
1954 shmem_recalc_inode(inode);
1955 spin_unlock_irq(&info->lock);
1956 goto repeat;
1957 }
1958 if (error == -EEXIST)
1959 goto repeat;
1960 return error;
1961 }
1962
1963 /*
1964 * This is like autoremove_wake_function, but it removes the wait queue
1965 * entry unconditionally - even if something else had already woken the
1966 * target.
1967 */
1968 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1969 {
1970 int ret = default_wake_function(wait, mode, sync, key);
1971 list_del_init(&wait->entry);
1972 return ret;
1973 }
1974
1975 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1976 {
1977 struct vm_area_struct *vma = vmf->vma;
1978 struct inode *inode = file_inode(vma->vm_file);
1979 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1980 enum sgp_type sgp;
1981 int err;
1982 vm_fault_t ret = VM_FAULT_LOCKED;
1983
1984 /*
1985 * Trinity finds that probing a hole which tmpfs is punching can
1986 * prevent the hole-punch from ever completing: which in turn
1987 * locks writers out with its hold on i_mutex. So refrain from
1988 * faulting pages into the hole while it's being punched. Although
1989 * shmem_undo_range() does remove the additions, it may be unable to
1990 * keep up, as each new page needs its own unmap_mapping_range() call,
1991 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1992 *
1993 * It does not matter if we sometimes reach this check just before the
1994 * hole-punch begins, so that one fault then races with the punch:
1995 * we just need to make racing faults a rare case.
1996 *
1997 * The implementation below would be much simpler if we just used a
1998 * standard mutex or completion: but we cannot take i_mutex in fault,
1999 * and bloating every shmem inode for this unlikely case would be sad.
2000 */
2001 if (unlikely(inode->i_private)) {
2002 struct shmem_falloc *shmem_falloc;
2003
2004 spin_lock(&inode->i_lock);
2005 shmem_falloc = inode->i_private;
2006 if (shmem_falloc &&
2007 shmem_falloc->waitq &&
2008 vmf->pgoff >= shmem_falloc->start &&
2009 vmf->pgoff < shmem_falloc->next) {
2010 wait_queue_head_t *shmem_falloc_waitq;
2011 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2012
2013 ret = VM_FAULT_NOPAGE;
2014 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2015 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2016 /* It's polite to up mmap_sem if we can */
2017 up_read(&vma->vm_mm->mmap_sem);
2018 ret = VM_FAULT_RETRY;
2019 }
2020
2021 shmem_falloc_waitq = shmem_falloc->waitq;
2022 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2023 TASK_UNINTERRUPTIBLE);
2024 spin_unlock(&inode->i_lock);
2025 schedule();
2026
2027 /*
2028 * shmem_falloc_waitq points into the shmem_fallocate()
2029 * stack of the hole-punching task: shmem_falloc_waitq
2030 * is usually invalid by the time we reach here, but
2031 * finish_wait() does not dereference it in that case;
2032 * though i_lock needed lest racing with wake_up_all().
2033 */
2034 spin_lock(&inode->i_lock);
2035 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2036 spin_unlock(&inode->i_lock);
2037 return ret;
2038 }
2039 spin_unlock(&inode->i_lock);
2040 }
2041
2042 sgp = SGP_CACHE;
2043
2044 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2045 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2046 sgp = SGP_NOHUGE;
2047 else if (vma->vm_flags & VM_HUGEPAGE)
2048 sgp = SGP_HUGE;
2049
2050 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2051 gfp, vma, vmf, &ret);
2052 if (err)
2053 return vmf_error(err);
2054 return ret;
2055 }
2056
2057 unsigned long shmem_get_unmapped_area(struct file *file,
2058 unsigned long uaddr, unsigned long len,
2059 unsigned long pgoff, unsigned long flags)
2060 {
2061 unsigned long (*get_area)(struct file *,
2062 unsigned long, unsigned long, unsigned long, unsigned long);
2063 unsigned long addr;
2064 unsigned long offset;
2065 unsigned long inflated_len;
2066 unsigned long inflated_addr;
2067 unsigned long inflated_offset;
2068
2069 if (len > TASK_SIZE)
2070 return -ENOMEM;
2071
2072 get_area = current->mm->get_unmapped_area;
2073 addr = get_area(file, uaddr, len, pgoff, flags);
2074
2075 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2076 return addr;
2077 if (IS_ERR_VALUE(addr))
2078 return addr;
2079 if (addr & ~PAGE_MASK)
2080 return addr;
2081 if (addr > TASK_SIZE - len)
2082 return addr;
2083
2084 if (shmem_huge == SHMEM_HUGE_DENY)
2085 return addr;
2086 if (len < HPAGE_PMD_SIZE)
2087 return addr;
2088 if (flags & MAP_FIXED)
2089 return addr;
2090 /*
2091 * Our priority is to support MAP_SHARED mapped hugely;
2092 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2093 * But if caller specified an address hint, respect that as before.
2094 */
2095 if (uaddr)
2096 return addr;
2097
2098 if (shmem_huge != SHMEM_HUGE_FORCE) {
2099 struct super_block *sb;
2100
2101 if (file) {
2102 VM_BUG_ON(file->f_op != &shmem_file_operations);
2103 sb = file_inode(file)->i_sb;
2104 } else {
2105 /*
2106 * Called directly from mm/mmap.c, or drivers/char/mem.c
2107 * for "/dev/zero", to create a shared anonymous object.
2108 */
2109 if (IS_ERR(shm_mnt))
2110 return addr;
2111 sb = shm_mnt->mnt_sb;
2112 }
2113 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2114 return addr;
2115 }
2116
2117 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2118 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2119 return addr;
2120 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2121 return addr;
2122
2123 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2124 if (inflated_len > TASK_SIZE)
2125 return addr;
2126 if (inflated_len < len)
2127 return addr;
2128
2129 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2130 if (IS_ERR_VALUE(inflated_addr))
2131 return addr;
2132 if (inflated_addr & ~PAGE_MASK)
2133 return addr;
2134
2135 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2136 inflated_addr += offset - inflated_offset;
2137 if (inflated_offset > offset)
2138 inflated_addr += HPAGE_PMD_SIZE;
2139
2140 if (inflated_addr > TASK_SIZE - len)
2141 return addr;
2142 return inflated_addr;
2143 }
2144
2145 #ifdef CONFIG_NUMA
2146 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2147 {
2148 struct inode *inode = file_inode(vma->vm_file);
2149 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2150 }
2151
2152 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2153 unsigned long addr)
2154 {
2155 struct inode *inode = file_inode(vma->vm_file);
2156 pgoff_t index;
2157
2158 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2159 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2160 }
2161 #endif
2162
2163 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2164 {
2165 struct inode *inode = file_inode(file);
2166 struct shmem_inode_info *info = SHMEM_I(inode);
2167 int retval = -ENOMEM;
2168
2169 spin_lock_irq(&info->lock);
2170 if (lock && !(info->flags & VM_LOCKED)) {
2171 if (!user_shm_lock(inode->i_size, user))
2172 goto out_nomem;
2173 info->flags |= VM_LOCKED;
2174 mapping_set_unevictable(file->f_mapping);
2175 }
2176 if (!lock && (info->flags & VM_LOCKED) && user) {
2177 user_shm_unlock(inode->i_size, user);
2178 info->flags &= ~VM_LOCKED;
2179 mapping_clear_unevictable(file->f_mapping);
2180 }
2181 retval = 0;
2182
2183 out_nomem:
2184 spin_unlock_irq(&info->lock);
2185 return retval;
2186 }
2187
2188 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2189 {
2190 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2191
2192 if (info->seals & F_SEAL_FUTURE_WRITE) {
2193 /*
2194 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2195 * "future write" seal active.
2196 */
2197 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2198 return -EPERM;
2199
2200 /*
2201 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED
2202 * read-only mapping, take care to not allow mprotect to revert
2203 * protections.
2204 */
2205 vma->vm_flags &= ~(VM_MAYWRITE);
2206 }
2207
2208 file_accessed(file);
2209 vma->vm_ops = &shmem_vm_ops;
2210 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2211 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2212 (vma->vm_end & HPAGE_PMD_MASK)) {
2213 khugepaged_enter(vma, vma->vm_flags);
2214 }
2215 return 0;
2216 }
2217
2218 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2219 umode_t mode, dev_t dev, unsigned long flags)
2220 {
2221 struct inode *inode;
2222 struct shmem_inode_info *info;
2223 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2224
2225 if (shmem_reserve_inode(sb))
2226 return NULL;
2227
2228 inode = new_inode(sb);
2229 if (inode) {
2230 inode->i_ino = get_next_ino();
2231 inode_init_owner(inode, dir, mode);
2232 inode->i_blocks = 0;
2233 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2234 inode->i_generation = prandom_u32();
2235 info = SHMEM_I(inode);
2236 memset(info, 0, (char *)inode - (char *)info);
2237 spin_lock_init(&info->lock);
2238 atomic_set(&info->stop_eviction, 0);
2239 info->seals = F_SEAL_SEAL;
2240 info->flags = flags & VM_NORESERVE;
2241 INIT_LIST_HEAD(&info->shrinklist);
2242 INIT_LIST_HEAD(&info->swaplist);
2243 simple_xattrs_init(&info->xattrs);
2244 cache_no_acl(inode);
2245
2246 switch (mode & S_IFMT) {
2247 default:
2248 inode->i_op = &shmem_special_inode_operations;
2249 init_special_inode(inode, mode, dev);
2250 break;
2251 case S_IFREG:
2252 inode->i_mapping->a_ops = &shmem_aops;
2253 inode->i_op = &shmem_inode_operations;
2254 inode->i_fop = &shmem_file_operations;
2255 mpol_shared_policy_init(&info->policy,
2256 shmem_get_sbmpol(sbinfo));
2257 break;
2258 case S_IFDIR:
2259 inc_nlink(inode);
2260 /* Some things misbehave if size == 0 on a directory */
2261 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2262 inode->i_op = &shmem_dir_inode_operations;
2263 inode->i_fop = &simple_dir_operations;
2264 break;
2265 case S_IFLNK:
2266 /*
2267 * Must not load anything in the rbtree,
2268 * mpol_free_shared_policy will not be called.
2269 */
2270 mpol_shared_policy_init(&info->policy, NULL);
2271 break;
2272 }
2273
2274 lockdep_annotate_inode_mutex_key(inode);
2275 } else
2276 shmem_free_inode(sb);
2277 return inode;
2278 }
2279
2280 bool shmem_mapping(struct address_space *mapping)
2281 {
2282 return mapping->a_ops == &shmem_aops;
2283 }
2284
2285 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2286 pmd_t *dst_pmd,
2287 struct vm_area_struct *dst_vma,
2288 unsigned long dst_addr,
2289 unsigned long src_addr,
2290 bool zeropage,
2291 struct page **pagep)
2292 {
2293 struct inode *inode = file_inode(dst_vma->vm_file);
2294 struct shmem_inode_info *info = SHMEM_I(inode);
2295 struct address_space *mapping = inode->i_mapping;
2296 gfp_t gfp = mapping_gfp_mask(mapping);
2297 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2298 struct mem_cgroup *memcg;
2299 spinlock_t *ptl;
2300 void *page_kaddr;
2301 struct page *page;
2302 pte_t _dst_pte, *dst_pte;
2303 int ret;
2304 pgoff_t offset, max_off;
2305
2306 ret = -ENOMEM;
2307 if (!shmem_inode_acct_block(inode, 1))
2308 goto out;
2309
2310 if (!*pagep) {
2311 page = shmem_alloc_page(gfp, info, pgoff);
2312 if (!page)
2313 goto out_unacct_blocks;
2314
2315 if (!zeropage) { /* mcopy_atomic */
2316 page_kaddr = kmap_atomic(page);
2317 ret = copy_from_user(page_kaddr,
2318 (const void __user *)src_addr,
2319 PAGE_SIZE);
2320 kunmap_atomic(page_kaddr);
2321
2322 /* fallback to copy_from_user outside mmap_sem */
2323 if (unlikely(ret)) {
2324 *pagep = page;
2325 shmem_inode_unacct_blocks(inode, 1);
2326 /* don't free the page */
2327 return -ENOENT;
2328 }
2329 } else { /* mfill_zeropage_atomic */
2330 clear_highpage(page);
2331 }
2332 } else {
2333 page = *pagep;
2334 *pagep = NULL;
2335 }
2336
2337 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2338 __SetPageLocked(page);
2339 __SetPageSwapBacked(page);
2340 __SetPageUptodate(page);
2341
2342 ret = -EFAULT;
2343 offset = linear_page_index(dst_vma, dst_addr);
2344 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2345 if (unlikely(offset >= max_off))
2346 goto out_release;
2347
2348 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2349 if (ret)
2350 goto out_release;
2351
2352 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2353 gfp & GFP_RECLAIM_MASK);
2354 if (ret)
2355 goto out_release_uncharge;
2356
2357 mem_cgroup_commit_charge(page, memcg, false, false);
2358
2359 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2360 if (dst_vma->vm_flags & VM_WRITE)
2361 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2362 else {
2363 /*
2364 * We don't set the pte dirty if the vma has no
2365 * VM_WRITE permission, so mark the page dirty or it
2366 * could be freed from under us. We could do it
2367 * unconditionally before unlock_page(), but doing it
2368 * only if VM_WRITE is not set is faster.
2369 */
2370 set_page_dirty(page);
2371 }
2372
2373 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2374
2375 ret = -EFAULT;
2376 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2377 if (unlikely(offset >= max_off))
2378 goto out_release_uncharge_unlock;
2379
2380 ret = -EEXIST;
2381 if (!pte_none(*dst_pte))
2382 goto out_release_uncharge_unlock;
2383
2384 lru_cache_add_anon(page);
2385
2386 spin_lock(&info->lock);
2387 info->alloced++;
2388 inode->i_blocks += BLOCKS_PER_PAGE;
2389 shmem_recalc_inode(inode);
2390 spin_unlock(&info->lock);
2391
2392 inc_mm_counter(dst_mm, mm_counter_file(page));
2393 page_add_file_rmap(page, false);
2394 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2395
2396 /* No need to invalidate - it was non-present before */
2397 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2398 pte_unmap_unlock(dst_pte, ptl);
2399 unlock_page(page);
2400 ret = 0;
2401 out:
2402 return ret;
2403 out_release_uncharge_unlock:
2404 pte_unmap_unlock(dst_pte, ptl);
2405 ClearPageDirty(page);
2406 delete_from_page_cache(page);
2407 out_release_uncharge:
2408 mem_cgroup_cancel_charge(page, memcg, false);
2409 out_release:
2410 unlock_page(page);
2411 put_page(page);
2412 out_unacct_blocks:
2413 shmem_inode_unacct_blocks(inode, 1);
2414 goto out;
2415 }
2416
2417 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2418 pmd_t *dst_pmd,
2419 struct vm_area_struct *dst_vma,
2420 unsigned long dst_addr,
2421 unsigned long src_addr,
2422 struct page **pagep)
2423 {
2424 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2425 dst_addr, src_addr, false, pagep);
2426 }
2427
2428 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2429 pmd_t *dst_pmd,
2430 struct vm_area_struct *dst_vma,
2431 unsigned long dst_addr)
2432 {
2433 struct page *page = NULL;
2434
2435 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2436 dst_addr, 0, true, &page);
2437 }
2438
2439 #ifdef CONFIG_TMPFS
2440 static const struct inode_operations shmem_symlink_inode_operations;
2441 static const struct inode_operations shmem_short_symlink_operations;
2442
2443 #ifdef CONFIG_TMPFS_XATTR
2444 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2445 #else
2446 #define shmem_initxattrs NULL
2447 #endif
2448
2449 static int
2450 shmem_write_begin(struct file *file, struct address_space *mapping,
2451 loff_t pos, unsigned len, unsigned flags,
2452 struct page **pagep, void **fsdata)
2453 {
2454 struct inode *inode = mapping->host;
2455 struct shmem_inode_info *info = SHMEM_I(inode);
2456 pgoff_t index = pos >> PAGE_SHIFT;
2457
2458 /* i_mutex is held by caller */
2459 if (unlikely(info->seals & (F_SEAL_GROW |
2460 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2461 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2462 return -EPERM;
2463 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2464 return -EPERM;
2465 }
2466
2467 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2468 }
2469
2470 static int
2471 shmem_write_end(struct file *file, struct address_space *mapping,
2472 loff_t pos, unsigned len, unsigned copied,
2473 struct page *page, void *fsdata)
2474 {
2475 struct inode *inode = mapping->host;
2476
2477 if (pos + copied > inode->i_size)
2478 i_size_write(inode, pos + copied);
2479
2480 if (!PageUptodate(page)) {
2481 struct page *head = compound_head(page);
2482 if (PageTransCompound(page)) {
2483 int i;
2484
2485 for (i = 0; i < HPAGE_PMD_NR; i++) {
2486 if (head + i == page)
2487 continue;
2488 clear_highpage(head + i);
2489 flush_dcache_page(head + i);
2490 }
2491 }
2492 if (copied < PAGE_SIZE) {
2493 unsigned from = pos & (PAGE_SIZE - 1);
2494 zero_user_segments(page, 0, from,
2495 from + copied, PAGE_SIZE);
2496 }
2497 SetPageUptodate(head);
2498 }
2499 set_page_dirty(page);
2500 unlock_page(page);
2501 put_page(page);
2502
2503 return copied;
2504 }
2505
2506 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2507 {
2508 struct file *file = iocb->ki_filp;
2509 struct inode *inode = file_inode(file);
2510 struct address_space *mapping = inode->i_mapping;
2511 pgoff_t index;
2512 unsigned long offset;
2513 enum sgp_type sgp = SGP_READ;
2514 int error = 0;
2515 ssize_t retval = 0;
2516 loff_t *ppos = &iocb->ki_pos;
2517
2518 /*
2519 * Might this read be for a stacking filesystem? Then when reading
2520 * holes of a sparse file, we actually need to allocate those pages,
2521 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2522 */
2523 if (!iter_is_iovec(to))
2524 sgp = SGP_CACHE;
2525
2526 index = *ppos >> PAGE_SHIFT;
2527 offset = *ppos & ~PAGE_MASK;
2528
2529 for (;;) {
2530 struct page *page = NULL;
2531 pgoff_t end_index;
2532 unsigned long nr, ret;
2533 loff_t i_size = i_size_read(inode);
2534
2535 end_index = i_size >> PAGE_SHIFT;
2536 if (index > end_index)
2537 break;
2538 if (index == end_index) {
2539 nr = i_size & ~PAGE_MASK;
2540 if (nr <= offset)
2541 break;
2542 }
2543
2544 error = shmem_getpage(inode, index, &page, sgp);
2545 if (error) {
2546 if (error == -EINVAL)
2547 error = 0;
2548 break;
2549 }
2550 if (page) {
2551 if (sgp == SGP_CACHE)
2552 set_page_dirty(page);
2553 unlock_page(page);
2554 }
2555
2556 /*
2557 * We must evaluate after, since reads (unlike writes)
2558 * are called without i_mutex protection against truncate
2559 */
2560 nr = PAGE_SIZE;
2561 i_size = i_size_read(inode);
2562 end_index = i_size >> PAGE_SHIFT;
2563 if (index == end_index) {
2564 nr = i_size & ~PAGE_MASK;
2565 if (nr <= offset) {
2566 if (page)
2567 put_page(page);
2568 break;
2569 }
2570 }
2571 nr -= offset;
2572
2573 if (page) {
2574 /*
2575 * If users can be writing to this page using arbitrary
2576 * virtual addresses, take care about potential aliasing
2577 * before reading the page on the kernel side.
2578 */
2579 if (mapping_writably_mapped(mapping))
2580 flush_dcache_page(page);
2581 /*
2582 * Mark the page accessed if we read the beginning.
2583 */
2584 if (!offset)
2585 mark_page_accessed(page);
2586 } else {
2587 page = ZERO_PAGE(0);
2588 get_page(page);
2589 }
2590
2591 /*
2592 * Ok, we have the page, and it's up-to-date, so
2593 * now we can copy it to user space...
2594 */
2595 ret = copy_page_to_iter(page, offset, nr, to);
2596 retval += ret;
2597 offset += ret;
2598 index += offset >> PAGE_SHIFT;
2599 offset &= ~PAGE_MASK;
2600
2601 put_page(page);
2602 if (!iov_iter_count(to))
2603 break;
2604 if (ret < nr) {
2605 error = -EFAULT;
2606 break;
2607 }
2608 cond_resched();
2609 }
2610
2611 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2612 file_accessed(file);
2613 return retval ? retval : error;
2614 }
2615
2616 /*
2617 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2618 */
2619 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2620 pgoff_t index, pgoff_t end, int whence)
2621 {
2622 struct page *page;
2623 struct pagevec pvec;
2624 pgoff_t indices[PAGEVEC_SIZE];
2625 bool done = false;
2626 int i;
2627
2628 pagevec_init(&pvec);
2629 pvec.nr = 1; /* start small: we may be there already */
2630 while (!done) {
2631 pvec.nr = find_get_entries(mapping, index,
2632 pvec.nr, pvec.pages, indices);
2633 if (!pvec.nr) {
2634 if (whence == SEEK_DATA)
2635 index = end;
2636 break;
2637 }
2638 for (i = 0; i < pvec.nr; i++, index++) {
2639 if (index < indices[i]) {
2640 if (whence == SEEK_HOLE) {
2641 done = true;
2642 break;
2643 }
2644 index = indices[i];
2645 }
2646 page = pvec.pages[i];
2647 if (page && !xa_is_value(page)) {
2648 if (!PageUptodate(page))
2649 page = NULL;
2650 }
2651 if (index >= end ||
2652 (page && whence == SEEK_DATA) ||
2653 (!page && whence == SEEK_HOLE)) {
2654 done = true;
2655 break;
2656 }
2657 }
2658 pagevec_remove_exceptionals(&pvec);
2659 pagevec_release(&pvec);
2660 pvec.nr = PAGEVEC_SIZE;
2661 cond_resched();
2662 }
2663 return index;
2664 }
2665
2666 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2667 {
2668 struct address_space *mapping = file->f_mapping;
2669 struct inode *inode = mapping->host;
2670 pgoff_t start, end;
2671 loff_t new_offset;
2672
2673 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2674 return generic_file_llseek_size(file, offset, whence,
2675 MAX_LFS_FILESIZE, i_size_read(inode));
2676 inode_lock(inode);
2677 /* We're holding i_mutex so we can access i_size directly */
2678
2679 if (offset < 0 || offset >= inode->i_size)
2680 offset = -ENXIO;
2681 else {
2682 start = offset >> PAGE_SHIFT;
2683 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2684 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2685 new_offset <<= PAGE_SHIFT;
2686 if (new_offset > offset) {
2687 if (new_offset < inode->i_size)
2688 offset = new_offset;
2689 else if (whence == SEEK_DATA)
2690 offset = -ENXIO;
2691 else
2692 offset = inode->i_size;
2693 }
2694 }
2695
2696 if (offset >= 0)
2697 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2698 inode_unlock(inode);
2699 return offset;
2700 }
2701
2702 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2703 loff_t len)
2704 {
2705 struct inode *inode = file_inode(file);
2706 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2707 struct shmem_inode_info *info = SHMEM_I(inode);
2708 struct shmem_falloc shmem_falloc;
2709 pgoff_t start, index, end;
2710 int error;
2711
2712 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2713 return -EOPNOTSUPP;
2714
2715 inode_lock(inode);
2716
2717 if (mode & FALLOC_FL_PUNCH_HOLE) {
2718 struct address_space *mapping = file->f_mapping;
2719 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2720 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2721 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2722
2723 /* protected by i_mutex */
2724 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2725 error = -EPERM;
2726 goto out;
2727 }
2728
2729 shmem_falloc.waitq = &shmem_falloc_waitq;
2730 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2731 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2732 spin_lock(&inode->i_lock);
2733 inode->i_private = &shmem_falloc;
2734 spin_unlock(&inode->i_lock);
2735
2736 if ((u64)unmap_end > (u64)unmap_start)
2737 unmap_mapping_range(mapping, unmap_start,
2738 1 + unmap_end - unmap_start, 0);
2739 shmem_truncate_range(inode, offset, offset + len - 1);
2740 /* No need to unmap again: hole-punching leaves COWed pages */
2741
2742 spin_lock(&inode->i_lock);
2743 inode->i_private = NULL;
2744 wake_up_all(&shmem_falloc_waitq);
2745 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2746 spin_unlock(&inode->i_lock);
2747 error = 0;
2748 goto out;
2749 }
2750
2751 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2752 error = inode_newsize_ok(inode, offset + len);
2753 if (error)
2754 goto out;
2755
2756 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2757 error = -EPERM;
2758 goto out;
2759 }
2760
2761 start = offset >> PAGE_SHIFT;
2762 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2763 /* Try to avoid a swapstorm if len is impossible to satisfy */
2764 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2765 error = -ENOSPC;
2766 goto out;
2767 }
2768
2769 shmem_falloc.waitq = NULL;
2770 shmem_falloc.start = start;
2771 shmem_falloc.next = start;
2772 shmem_falloc.nr_falloced = 0;
2773 shmem_falloc.nr_unswapped = 0;
2774 spin_lock(&inode->i_lock);
2775 inode->i_private = &shmem_falloc;
2776 spin_unlock(&inode->i_lock);
2777
2778 for (index = start; index < end; index++) {
2779 struct page *page;
2780
2781 /*
2782 * Good, the fallocate(2) manpage permits EINTR: we may have
2783 * been interrupted because we are using up too much memory.
2784 */
2785 if (signal_pending(current))
2786 error = -EINTR;
2787 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2788 error = -ENOMEM;
2789 else
2790 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2791 if (error) {
2792 /* Remove the !PageUptodate pages we added */
2793 if (index > start) {
2794 shmem_undo_range(inode,
2795 (loff_t)start << PAGE_SHIFT,
2796 ((loff_t)index << PAGE_SHIFT) - 1, true);
2797 }
2798 goto undone;
2799 }
2800
2801 /*
2802 * Inform shmem_writepage() how far we have reached.
2803 * No need for lock or barrier: we have the page lock.
2804 */
2805 shmem_falloc.next++;
2806 if (!PageUptodate(page))
2807 shmem_falloc.nr_falloced++;
2808
2809 /*
2810 * If !PageUptodate, leave it that way so that freeable pages
2811 * can be recognized if we need to rollback on error later.
2812 * But set_page_dirty so that memory pressure will swap rather
2813 * than free the pages we are allocating (and SGP_CACHE pages
2814 * might still be clean: we now need to mark those dirty too).
2815 */
2816 set_page_dirty(page);
2817 unlock_page(page);
2818 put_page(page);
2819 cond_resched();
2820 }
2821
2822 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2823 i_size_write(inode, offset + len);
2824 inode->i_ctime = current_time(inode);
2825 undone:
2826 spin_lock(&inode->i_lock);
2827 inode->i_private = NULL;
2828 spin_unlock(&inode->i_lock);
2829 out:
2830 inode_unlock(inode);
2831 return error;
2832 }
2833
2834 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2835 {
2836 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2837
2838 buf->f_type = TMPFS_MAGIC;
2839 buf->f_bsize = PAGE_SIZE;
2840 buf->f_namelen = NAME_MAX;
2841 if (sbinfo->max_blocks) {
2842 buf->f_blocks = sbinfo->max_blocks;
2843 buf->f_bavail =
2844 buf->f_bfree = sbinfo->max_blocks -
2845 percpu_counter_sum(&sbinfo->used_blocks);
2846 }
2847 if (sbinfo->max_inodes) {
2848 buf->f_files = sbinfo->max_inodes;
2849 buf->f_ffree = sbinfo->free_inodes;
2850 }
2851 /* else leave those fields 0 like simple_statfs */
2852 return 0;
2853 }
2854
2855 /*
2856 * File creation. Allocate an inode, and we're done..
2857 */
2858 static int
2859 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2860 {
2861 struct inode *inode;
2862 int error = -ENOSPC;
2863
2864 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2865 if (inode) {
2866 error = simple_acl_create(dir, inode);
2867 if (error)
2868 goto out_iput;
2869 error = security_inode_init_security(inode, dir,
2870 &dentry->d_name,
2871 shmem_initxattrs, NULL);
2872 if (error && error != -EOPNOTSUPP)
2873 goto out_iput;
2874
2875 error = 0;
2876 dir->i_size += BOGO_DIRENT_SIZE;
2877 dir->i_ctime = dir->i_mtime = current_time(dir);
2878 d_instantiate(dentry, inode);
2879 dget(dentry); /* Extra count - pin the dentry in core */
2880 }
2881 return error;
2882 out_iput:
2883 iput(inode);
2884 return error;
2885 }
2886
2887 static int
2888 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2889 {
2890 struct inode *inode;
2891 int error = -ENOSPC;
2892
2893 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2894 if (inode) {
2895 error = security_inode_init_security(inode, dir,
2896 NULL,
2897 shmem_initxattrs, NULL);
2898 if (error && error != -EOPNOTSUPP)
2899 goto out_iput;
2900 error = simple_acl_create(dir, inode);
2901 if (error)
2902 goto out_iput;
2903 d_tmpfile(dentry, inode);
2904 }
2905 return error;
2906 out_iput:
2907 iput(inode);
2908 return error;
2909 }
2910
2911 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2912 {
2913 int error;
2914
2915 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2916 return error;
2917 inc_nlink(dir);
2918 return 0;
2919 }
2920
2921 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2922 bool excl)
2923 {
2924 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2925 }
2926
2927 /*
2928 * Link a file..
2929 */
2930 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2931 {
2932 struct inode *inode = d_inode(old_dentry);
2933 int ret = 0;
2934
2935 /*
2936 * No ordinary (disk based) filesystem counts links as inodes;
2937 * but each new link needs a new dentry, pinning lowmem, and
2938 * tmpfs dentries cannot be pruned until they are unlinked.
2939 * But if an O_TMPFILE file is linked into the tmpfs, the
2940 * first link must skip that, to get the accounting right.
2941 */
2942 if (inode->i_nlink) {
2943 ret = shmem_reserve_inode(inode->i_sb);
2944 if (ret)
2945 goto out;
2946 }
2947
2948 dir->i_size += BOGO_DIRENT_SIZE;
2949 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2950 inc_nlink(inode);
2951 ihold(inode); /* New dentry reference */
2952 dget(dentry); /* Extra pinning count for the created dentry */
2953 d_instantiate(dentry, inode);
2954 out:
2955 return ret;
2956 }
2957
2958 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2959 {
2960 struct inode *inode = d_inode(dentry);
2961
2962 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2963 shmem_free_inode(inode->i_sb);
2964
2965 dir->i_size -= BOGO_DIRENT_SIZE;
2966 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2967 drop_nlink(inode);
2968 dput(dentry); /* Undo the count from "create" - this does all the work */
2969 return 0;
2970 }
2971
2972 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2973 {
2974 if (!simple_empty(dentry))
2975 return -ENOTEMPTY;
2976
2977 drop_nlink(d_inode(dentry));
2978 drop_nlink(dir);
2979 return shmem_unlink(dir, dentry);
2980 }
2981
2982 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2983 {
2984 bool old_is_dir = d_is_dir(old_dentry);
2985 bool new_is_dir = d_is_dir(new_dentry);
2986
2987 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2988 if (old_is_dir) {
2989 drop_nlink(old_dir);
2990 inc_nlink(new_dir);
2991 } else {
2992 drop_nlink(new_dir);
2993 inc_nlink(old_dir);
2994 }
2995 }
2996 old_dir->i_ctime = old_dir->i_mtime =
2997 new_dir->i_ctime = new_dir->i_mtime =
2998 d_inode(old_dentry)->i_ctime =
2999 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3000
3001 return 0;
3002 }
3003
3004 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3005 {
3006 struct dentry *whiteout;
3007 int error;
3008
3009 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3010 if (!whiteout)
3011 return -ENOMEM;
3012
3013 error = shmem_mknod(old_dir, whiteout,
3014 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3015 dput(whiteout);
3016 if (error)
3017 return error;
3018
3019 /*
3020 * Cheat and hash the whiteout while the old dentry is still in
3021 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3022 *
3023 * d_lookup() will consistently find one of them at this point,
3024 * not sure which one, but that isn't even important.
3025 */
3026 d_rehash(whiteout);
3027 return 0;
3028 }
3029
3030 /*
3031 * The VFS layer already does all the dentry stuff for rename,
3032 * we just have to decrement the usage count for the target if
3033 * it exists so that the VFS layer correctly free's it when it
3034 * gets overwritten.
3035 */
3036 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3037 {
3038 struct inode *inode = d_inode(old_dentry);
3039 int they_are_dirs = S_ISDIR(inode->i_mode);
3040
3041 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3042 return -EINVAL;
3043
3044 if (flags & RENAME_EXCHANGE)
3045 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3046
3047 if (!simple_empty(new_dentry))
3048 return -ENOTEMPTY;
3049
3050 if (flags & RENAME_WHITEOUT) {
3051 int error;
3052
3053 error = shmem_whiteout(old_dir, old_dentry);
3054 if (error)
3055 return error;
3056 }
3057
3058 if (d_really_is_positive(new_dentry)) {
3059 (void) shmem_unlink(new_dir, new_dentry);
3060 if (they_are_dirs) {
3061 drop_nlink(d_inode(new_dentry));
3062 drop_nlink(old_dir);
3063 }
3064 } else if (they_are_dirs) {
3065 drop_nlink(old_dir);
3066 inc_nlink(new_dir);
3067 }
3068
3069 old_dir->i_size -= BOGO_DIRENT_SIZE;
3070 new_dir->i_size += BOGO_DIRENT_SIZE;
3071 old_dir->i_ctime = old_dir->i_mtime =
3072 new_dir->i_ctime = new_dir->i_mtime =
3073 inode->i_ctime = current_time(old_dir);
3074 return 0;
3075 }
3076
3077 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3078 {
3079 int error;
3080 int len;
3081 struct inode *inode;
3082 struct page *page;
3083
3084 len = strlen(symname) + 1;
3085 if (len > PAGE_SIZE)
3086 return -ENAMETOOLONG;
3087
3088 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3089 VM_NORESERVE);
3090 if (!inode)
3091 return -ENOSPC;
3092
3093 error = security_inode_init_security(inode, dir, &dentry->d_name,
3094 shmem_initxattrs, NULL);
3095 if (error) {
3096 if (error != -EOPNOTSUPP) {
3097 iput(inode);
3098 return error;
3099 }
3100 error = 0;
3101 }
3102
3103 inode->i_size = len-1;
3104 if (len <= SHORT_SYMLINK_LEN) {
3105 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3106 if (!inode->i_link) {
3107 iput(inode);
3108 return -ENOMEM;
3109 }
3110 inode->i_op = &shmem_short_symlink_operations;
3111 } else {
3112 inode_nohighmem(inode);
3113 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3114 if (error) {
3115 iput(inode);
3116 return error;
3117 }
3118 inode->i_mapping->a_ops = &shmem_aops;
3119 inode->i_op = &shmem_symlink_inode_operations;
3120 memcpy(page_address(page), symname, len);
3121 SetPageUptodate(page);
3122 set_page_dirty(page);
3123 unlock_page(page);
3124 put_page(page);
3125 }
3126 dir->i_size += BOGO_DIRENT_SIZE;
3127 dir->i_ctime = dir->i_mtime = current_time(dir);
3128 d_instantiate(dentry, inode);
3129 dget(dentry);
3130 return 0;
3131 }
3132
3133 static void shmem_put_link(void *arg)
3134 {
3135 mark_page_accessed(arg);
3136 put_page(arg);
3137 }
3138
3139 static const char *shmem_get_link(struct dentry *dentry,
3140 struct inode *inode,
3141 struct delayed_call *done)
3142 {
3143 struct page *page = NULL;
3144 int error;
3145 if (!dentry) {
3146 page = find_get_page(inode->i_mapping, 0);
3147 if (!page)
3148 return ERR_PTR(-ECHILD);
3149 if (!PageUptodate(page)) {
3150 put_page(page);
3151 return ERR_PTR(-ECHILD);
3152 }
3153 } else {
3154 error = shmem_getpage(inode, 0, &page, SGP_READ);
3155 if (error)
3156 return ERR_PTR(error);
3157 unlock_page(page);
3158 }
3159 set_delayed_call(done, shmem_put_link, page);
3160 return page_address(page);
3161 }
3162
3163 #ifdef CONFIG_TMPFS_XATTR
3164 /*
3165 * Superblocks without xattr inode operations may get some security.* xattr
3166 * support from the LSM "for free". As soon as we have any other xattrs
3167 * like ACLs, we also need to implement the security.* handlers at
3168 * filesystem level, though.
3169 */
3170
3171 /*
3172 * Callback for security_inode_init_security() for acquiring xattrs.
3173 */
3174 static int shmem_initxattrs(struct inode *inode,
3175 const struct xattr *xattr_array,
3176 void *fs_info)
3177 {
3178 struct shmem_inode_info *info = SHMEM_I(inode);
3179 const struct xattr *xattr;
3180 struct simple_xattr *new_xattr;
3181 size_t len;
3182
3183 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3184 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3185 if (!new_xattr)
3186 return -ENOMEM;
3187
3188 len = strlen(xattr->name) + 1;
3189 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3190 GFP_KERNEL);
3191 if (!new_xattr->name) {
3192 kfree(new_xattr);
3193 return -ENOMEM;
3194 }
3195
3196 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3197 XATTR_SECURITY_PREFIX_LEN);
3198 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3199 xattr->name, len);
3200
3201 simple_xattr_list_add(&info->xattrs, new_xattr);
3202 }
3203
3204 return 0;
3205 }
3206
3207 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3208 struct dentry *unused, struct inode *inode,
3209 const char *name, void *buffer, size_t size)
3210 {
3211 struct shmem_inode_info *info = SHMEM_I(inode);
3212
3213 name = xattr_full_name(handler, name);
3214 return simple_xattr_get(&info->xattrs, name, buffer, size);
3215 }
3216
3217 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3218 struct dentry *unused, struct inode *inode,
3219 const char *name, const void *value,
3220 size_t size, int flags)
3221 {
3222 struct shmem_inode_info *info = SHMEM_I(inode);
3223
3224 name = xattr_full_name(handler, name);
3225 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3226 }
3227
3228 static const struct xattr_handler shmem_security_xattr_handler = {
3229 .prefix = XATTR_SECURITY_PREFIX,
3230 .get = shmem_xattr_handler_get,
3231 .set = shmem_xattr_handler_set,
3232 };
3233
3234 static const struct xattr_handler shmem_trusted_xattr_handler = {
3235 .prefix = XATTR_TRUSTED_PREFIX,
3236 .get = shmem_xattr_handler_get,
3237 .set = shmem_xattr_handler_set,
3238 };
3239
3240 static const struct xattr_handler *shmem_xattr_handlers[] = {
3241 #ifdef CONFIG_TMPFS_POSIX_ACL
3242 &posix_acl_access_xattr_handler,
3243 &posix_acl_default_xattr_handler,
3244 #endif
3245 &shmem_security_xattr_handler,
3246 &shmem_trusted_xattr_handler,
3247 NULL
3248 };
3249
3250 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3251 {
3252 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3253 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3254 }
3255 #endif /* CONFIG_TMPFS_XATTR */
3256
3257 static const struct inode_operations shmem_short_symlink_operations = {
3258 .get_link = simple_get_link,
3259 #ifdef CONFIG_TMPFS_XATTR
3260 .listxattr = shmem_listxattr,
3261 #endif
3262 };
3263
3264 static const struct inode_operations shmem_symlink_inode_operations = {
3265 .get_link = shmem_get_link,
3266 #ifdef CONFIG_TMPFS_XATTR
3267 .listxattr = shmem_listxattr,
3268 #endif
3269 };
3270
3271 static struct dentry *shmem_get_parent(struct dentry *child)
3272 {
3273 return ERR_PTR(-ESTALE);
3274 }
3275
3276 static int shmem_match(struct inode *ino, void *vfh)
3277 {
3278 __u32 *fh = vfh;
3279 __u64 inum = fh[2];
3280 inum = (inum << 32) | fh[1];
3281 return ino->i_ino == inum && fh[0] == ino->i_generation;
3282 }
3283
3284 /* Find any alias of inode, but prefer a hashed alias */
3285 static struct dentry *shmem_find_alias(struct inode *inode)
3286 {
3287 struct dentry *alias = d_find_alias(inode);
3288
3289 return alias ?: d_find_any_alias(inode);
3290 }
3291
3292
3293 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3294 struct fid *fid, int fh_len, int fh_type)
3295 {
3296 struct inode *inode;
3297 struct dentry *dentry = NULL;
3298 u64 inum;
3299
3300 if (fh_len < 3)
3301 return NULL;
3302
3303 inum = fid->raw[2];
3304 inum = (inum << 32) | fid->raw[1];
3305
3306 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3307 shmem_match, fid->raw);
3308 if (inode) {
3309 dentry = shmem_find_alias(inode);
3310 iput(inode);
3311 }
3312
3313 return dentry;
3314 }
3315
3316 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3317 struct inode *parent)
3318 {
3319 if (*len < 3) {
3320 *len = 3;
3321 return FILEID_INVALID;
3322 }
3323
3324 if (inode_unhashed(inode)) {
3325 /* Unfortunately insert_inode_hash is not idempotent,
3326 * so as we hash inodes here rather than at creation
3327 * time, we need a lock to ensure we only try
3328 * to do it once
3329 */
3330 static DEFINE_SPINLOCK(lock);
3331 spin_lock(&lock);
3332 if (inode_unhashed(inode))
3333 __insert_inode_hash(inode,
3334 inode->i_ino + inode->i_generation);
3335 spin_unlock(&lock);
3336 }
3337
3338 fh[0] = inode->i_generation;
3339 fh[1] = inode->i_ino;
3340 fh[2] = ((__u64)inode->i_ino) >> 32;
3341
3342 *len = 3;
3343 return 1;
3344 }
3345
3346 static const struct export_operations shmem_export_ops = {
3347 .get_parent = shmem_get_parent,
3348 .encode_fh = shmem_encode_fh,
3349 .fh_to_dentry = shmem_fh_to_dentry,
3350 };
3351
3352 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3353 bool remount)
3354 {
3355 char *this_char, *value, *rest;
3356 struct mempolicy *mpol = NULL;
3357 uid_t uid;
3358 gid_t gid;
3359
3360 while (options != NULL) {
3361 this_char = options;
3362 for (;;) {
3363 /*
3364 * NUL-terminate this option: unfortunately,
3365 * mount options form a comma-separated list,
3366 * but mpol's nodelist may also contain commas.
3367 */
3368 options = strchr(options, ',');
3369 if (options == NULL)
3370 break;
3371 options++;
3372 if (!isdigit(*options)) {
3373 options[-1] = '\0';
3374 break;
3375 }
3376 }
3377 if (!*this_char)
3378 continue;
3379 if ((value = strchr(this_char,'=')) != NULL) {
3380 *value++ = 0;
3381 } else {
3382 pr_err("tmpfs: No value for mount option '%s'\n",
3383 this_char);
3384 goto error;
3385 }
3386
3387 if (!strcmp(this_char,"size")) {
3388 unsigned long long size;
3389 size = memparse(value,&rest);
3390 if (*rest == '%') {
3391 size <<= PAGE_SHIFT;
3392 size *= totalram_pages();
3393 do_div(size, 100);
3394 rest++;
3395 }
3396 if (*rest)
3397 goto bad_val;
3398 sbinfo->max_blocks =
3399 DIV_ROUND_UP(size, PAGE_SIZE);
3400 } else if (!strcmp(this_char,"nr_blocks")) {
3401 sbinfo->max_blocks = memparse(value, &rest);
3402 if (*rest)
3403 goto bad_val;
3404 } else if (!strcmp(this_char,"nr_inodes")) {
3405 sbinfo->max_inodes = memparse(value, &rest);
3406 if (*rest)
3407 goto bad_val;
3408 } else if (!strcmp(this_char,"mode")) {
3409 if (remount)
3410 continue;
3411 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3412 if (*rest)
3413 goto bad_val;
3414 } else if (!strcmp(this_char,"uid")) {
3415 if (remount)
3416 continue;
3417 uid = simple_strtoul(value, &rest, 0);
3418 if (*rest)
3419 goto bad_val;
3420 sbinfo->uid = make_kuid(current_user_ns(), uid);
3421 if (!uid_valid(sbinfo->uid))
3422 goto bad_val;
3423 } else if (!strcmp(this_char,"gid")) {
3424 if (remount)
3425 continue;
3426 gid = simple_strtoul(value, &rest, 0);
3427 if (*rest)
3428 goto bad_val;
3429 sbinfo->gid = make_kgid(current_user_ns(), gid);
3430 if (!gid_valid(sbinfo->gid))
3431 goto bad_val;
3432 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3433 } else if (!strcmp(this_char, "huge")) {
3434 int huge;
3435 huge = shmem_parse_huge(value);
3436 if (huge < 0)
3437 goto bad_val;
3438 if (!has_transparent_hugepage() &&
3439 huge != SHMEM_HUGE_NEVER)
3440 goto bad_val;
3441 sbinfo->huge = huge;
3442 #endif
3443 #ifdef CONFIG_NUMA
3444 } else if (!strcmp(this_char,"mpol")) {
3445 mpol_put(mpol);
3446 mpol = NULL;
3447 if (mpol_parse_str(value, &mpol))
3448 goto bad_val;
3449 #endif
3450 } else {
3451 pr_err("tmpfs: Bad mount option %s\n", this_char);
3452 goto error;
3453 }
3454 }
3455 sbinfo->mpol = mpol;
3456 return 0;
3457
3458 bad_val:
3459 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3460 value, this_char);
3461 error:
3462 mpol_put(mpol);
3463 return 1;
3464
3465 }
3466
3467 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3468 {
3469 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3470 struct shmem_sb_info config = *sbinfo;
3471 unsigned long inodes;
3472 int error = -EINVAL;
3473
3474 config.mpol = NULL;
3475 if (shmem_parse_options(data, &config, true))
3476 return error;
3477
3478 spin_lock(&sbinfo->stat_lock);
3479 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3480 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3481 goto out;
3482 if (config.max_inodes < inodes)
3483 goto out;
3484 /*
3485 * Those tests disallow limited->unlimited while any are in use;
3486 * but we must separately disallow unlimited->limited, because
3487 * in that case we have no record of how much is already in use.
3488 */
3489 if (config.max_blocks && !sbinfo->max_blocks)
3490 goto out;
3491 if (config.max_inodes && !sbinfo->max_inodes)
3492 goto out;
3493
3494 error = 0;
3495 sbinfo->huge = config.huge;
3496 sbinfo->max_blocks = config.max_blocks;
3497 sbinfo->max_inodes = config.max_inodes;
3498 sbinfo->free_inodes = config.max_inodes - inodes;
3499
3500 /*
3501 * Preserve previous mempolicy unless mpol remount option was specified.
3502 */
3503 if (config.mpol) {
3504 mpol_put(sbinfo->mpol);
3505 sbinfo->mpol = config.mpol; /* transfers initial ref */
3506 }
3507 out:
3508 spin_unlock(&sbinfo->stat_lock);
3509 return error;
3510 }
3511
3512 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3513 {
3514 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3515
3516 if (sbinfo->max_blocks != shmem_default_max_blocks())
3517 seq_printf(seq, ",size=%luk",
3518 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3519 if (sbinfo->max_inodes != shmem_default_max_inodes())
3520 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3521 if (sbinfo->mode != (0777 | S_ISVTX))
3522 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3523 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3524 seq_printf(seq, ",uid=%u",
3525 from_kuid_munged(&init_user_ns, sbinfo->uid));
3526 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3527 seq_printf(seq, ",gid=%u",
3528 from_kgid_munged(&init_user_ns, sbinfo->gid));
3529 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3530 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3531 if (sbinfo->huge)
3532 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3533 #endif
3534 shmem_show_mpol(seq, sbinfo->mpol);
3535 return 0;
3536 }
3537
3538 #endif /* CONFIG_TMPFS */
3539
3540 static void shmem_put_super(struct super_block *sb)
3541 {
3542 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3543
3544 percpu_counter_destroy(&sbinfo->used_blocks);
3545 mpol_put(sbinfo->mpol);
3546 kfree(sbinfo);
3547 sb->s_fs_info = NULL;
3548 }
3549
3550 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3551 {
3552 struct inode *inode;
3553 struct shmem_sb_info *sbinfo;
3554 int err = -ENOMEM;
3555
3556 /* Round up to L1_CACHE_BYTES to resist false sharing */
3557 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3558 L1_CACHE_BYTES), GFP_KERNEL);
3559 if (!sbinfo)
3560 return -ENOMEM;
3561
3562 sbinfo->mode = 0777 | S_ISVTX;
3563 sbinfo->uid = current_fsuid();
3564 sbinfo->gid = current_fsgid();
3565 sb->s_fs_info = sbinfo;
3566
3567 #ifdef CONFIG_TMPFS
3568 /*
3569 * Per default we only allow half of the physical ram per
3570 * tmpfs instance, limiting inodes to one per page of lowmem;
3571 * but the internal instance is left unlimited.
3572 */
3573 if (!(sb->s_flags & SB_KERNMOUNT)) {
3574 sbinfo->max_blocks = shmem_default_max_blocks();
3575 sbinfo->max_inodes = shmem_default_max_inodes();
3576 if (shmem_parse_options(data, sbinfo, false)) {
3577 err = -EINVAL;
3578 goto failed;
3579 }
3580 } else {
3581 sb->s_flags |= SB_NOUSER;
3582 }
3583 sb->s_export_op = &shmem_export_ops;
3584 sb->s_flags |= SB_NOSEC;
3585 #else
3586 sb->s_flags |= SB_NOUSER;
3587 #endif
3588
3589 spin_lock_init(&sbinfo->stat_lock);
3590 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3591 goto failed;
3592 sbinfo->free_inodes = sbinfo->max_inodes;
3593 spin_lock_init(&sbinfo->shrinklist_lock);
3594 INIT_LIST_HEAD(&sbinfo->shrinklist);
3595
3596 sb->s_maxbytes = MAX_LFS_FILESIZE;
3597 sb->s_blocksize = PAGE_SIZE;
3598 sb->s_blocksize_bits = PAGE_SHIFT;
3599 sb->s_magic = TMPFS_MAGIC;
3600 sb->s_op = &shmem_ops;
3601 sb->s_time_gran = 1;
3602 #ifdef CONFIG_TMPFS_XATTR
3603 sb->s_xattr = shmem_xattr_handlers;
3604 #endif
3605 #ifdef CONFIG_TMPFS_POSIX_ACL
3606 sb->s_flags |= SB_POSIXACL;
3607 #endif
3608 uuid_gen(&sb->s_uuid);
3609
3610 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3611 if (!inode)
3612 goto failed;
3613 inode->i_uid = sbinfo->uid;
3614 inode->i_gid = sbinfo->gid;
3615 sb->s_root = d_make_root(inode);
3616 if (!sb->s_root)
3617 goto failed;
3618 return 0;
3619
3620 failed:
3621 shmem_put_super(sb);
3622 return err;
3623 }
3624
3625 static struct kmem_cache *shmem_inode_cachep;
3626
3627 static struct inode *shmem_alloc_inode(struct super_block *sb)
3628 {
3629 struct shmem_inode_info *info;
3630 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3631 if (!info)
3632 return NULL;
3633 return &info->vfs_inode;
3634 }
3635
3636 static void shmem_free_in_core_inode(struct inode *inode)
3637 {
3638 if (S_ISLNK(inode->i_mode))
3639 kfree(inode->i_link);
3640 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3641 }
3642
3643 static void shmem_destroy_inode(struct inode *inode)
3644 {
3645 if (S_ISREG(inode->i_mode))
3646 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3647 }
3648
3649 static void shmem_init_inode(void *foo)
3650 {
3651 struct shmem_inode_info *info = foo;
3652 inode_init_once(&info->vfs_inode);
3653 }
3654
3655 static void shmem_init_inodecache(void)
3656 {
3657 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3658 sizeof(struct shmem_inode_info),
3659 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3660 }
3661
3662 static void shmem_destroy_inodecache(void)
3663 {
3664 kmem_cache_destroy(shmem_inode_cachep);
3665 }
3666
3667 static const struct address_space_operations shmem_aops = {
3668 .writepage = shmem_writepage,
3669 .set_page_dirty = __set_page_dirty_no_writeback,
3670 #ifdef CONFIG_TMPFS
3671 .write_begin = shmem_write_begin,
3672 .write_end = shmem_write_end,
3673 #endif
3674 #ifdef CONFIG_MIGRATION
3675 .migratepage = migrate_page,
3676 #endif
3677 .error_remove_page = generic_error_remove_page,
3678 };
3679
3680 static const struct file_operations shmem_file_operations = {
3681 .mmap = shmem_mmap,
3682 .get_unmapped_area = shmem_get_unmapped_area,
3683 #ifdef CONFIG_TMPFS
3684 .llseek = shmem_file_llseek,
3685 .read_iter = shmem_file_read_iter,
3686 .write_iter = generic_file_write_iter,
3687 .fsync = noop_fsync,
3688 .splice_read = generic_file_splice_read,
3689 .splice_write = iter_file_splice_write,
3690 .fallocate = shmem_fallocate,
3691 #endif
3692 };
3693
3694 static const struct inode_operations shmem_inode_operations = {
3695 .getattr = shmem_getattr,
3696 .setattr = shmem_setattr,
3697 #ifdef CONFIG_TMPFS_XATTR
3698 .listxattr = shmem_listxattr,
3699 .set_acl = simple_set_acl,
3700 #endif
3701 };
3702
3703 static const struct inode_operations shmem_dir_inode_operations = {
3704 #ifdef CONFIG_TMPFS
3705 .create = shmem_create,
3706 .lookup = simple_lookup,
3707 .link = shmem_link,
3708 .unlink = shmem_unlink,
3709 .symlink = shmem_symlink,
3710 .mkdir = shmem_mkdir,
3711 .rmdir = shmem_rmdir,
3712 .mknod = shmem_mknod,
3713 .rename = shmem_rename2,
3714 .tmpfile = shmem_tmpfile,
3715 #endif
3716 #ifdef CONFIG_TMPFS_XATTR
3717 .listxattr = shmem_listxattr,
3718 #endif
3719 #ifdef CONFIG_TMPFS_POSIX_ACL
3720 .setattr = shmem_setattr,
3721 .set_acl = simple_set_acl,
3722 #endif
3723 };
3724
3725 static const struct inode_operations shmem_special_inode_operations = {
3726 #ifdef CONFIG_TMPFS_XATTR
3727 .listxattr = shmem_listxattr,
3728 #endif
3729 #ifdef CONFIG_TMPFS_POSIX_ACL
3730 .setattr = shmem_setattr,
3731 .set_acl = simple_set_acl,
3732 #endif
3733 };
3734
3735 static const struct super_operations shmem_ops = {
3736 .alloc_inode = shmem_alloc_inode,
3737 .free_inode = shmem_free_in_core_inode,
3738 .destroy_inode = shmem_destroy_inode,
3739 #ifdef CONFIG_TMPFS
3740 .statfs = shmem_statfs,
3741 .remount_fs = shmem_remount_fs,
3742 .show_options = shmem_show_options,
3743 #endif
3744 .evict_inode = shmem_evict_inode,
3745 .drop_inode = generic_delete_inode,
3746 .put_super = shmem_put_super,
3747 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3748 .nr_cached_objects = shmem_unused_huge_count,
3749 .free_cached_objects = shmem_unused_huge_scan,
3750 #endif
3751 };
3752
3753 static const struct vm_operations_struct shmem_vm_ops = {
3754 .fault = shmem_fault,
3755 .map_pages = filemap_map_pages,
3756 #ifdef CONFIG_NUMA
3757 .set_policy = shmem_set_policy,
3758 .get_policy = shmem_get_policy,
3759 #endif
3760 };
3761
3762 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3763 int flags, const char *dev_name, void *data)
3764 {
3765 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3766 }
3767
3768 static struct file_system_type shmem_fs_type = {
3769 .owner = THIS_MODULE,
3770 .name = "tmpfs",
3771 .mount = shmem_mount,
3772 .kill_sb = kill_litter_super,
3773 .fs_flags = FS_USERNS_MOUNT,
3774 };
3775
3776 int __init shmem_init(void)
3777 {
3778 int error;
3779
3780 shmem_init_inodecache();
3781
3782 error = register_filesystem(&shmem_fs_type);
3783 if (error) {
3784 pr_err("Could not register tmpfs\n");
3785 goto out2;
3786 }
3787
3788 shm_mnt = kern_mount(&shmem_fs_type);
3789 if (IS_ERR(shm_mnt)) {
3790 error = PTR_ERR(shm_mnt);
3791 pr_err("Could not kern_mount tmpfs\n");
3792 goto out1;
3793 }
3794
3795 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3796 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3797 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3798 else
3799 shmem_huge = 0; /* just in case it was patched */
3800 #endif
3801 return 0;
3802
3803 out1:
3804 unregister_filesystem(&shmem_fs_type);
3805 out2:
3806 shmem_destroy_inodecache();
3807 shm_mnt = ERR_PTR(error);
3808 return error;
3809 }
3810
3811 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3812 static ssize_t shmem_enabled_show(struct kobject *kobj,
3813 struct kobj_attribute *attr, char *buf)
3814 {
3815 int values[] = {
3816 SHMEM_HUGE_ALWAYS,
3817 SHMEM_HUGE_WITHIN_SIZE,
3818 SHMEM_HUGE_ADVISE,
3819 SHMEM_HUGE_NEVER,
3820 SHMEM_HUGE_DENY,
3821 SHMEM_HUGE_FORCE,
3822 };
3823 int i, count;
3824
3825 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3826 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3827
3828 count += sprintf(buf + count, fmt,
3829 shmem_format_huge(values[i]));
3830 }
3831 buf[count - 1] = '\n';
3832 return count;
3833 }
3834
3835 static ssize_t shmem_enabled_store(struct kobject *kobj,
3836 struct kobj_attribute *attr, const char *buf, size_t count)
3837 {
3838 char tmp[16];
3839 int huge;
3840
3841 if (count + 1 > sizeof(tmp))
3842 return -EINVAL;
3843 memcpy(tmp, buf, count);
3844 tmp[count] = '\0';
3845 if (count && tmp[count - 1] == '\n')
3846 tmp[count - 1] = '\0';
3847
3848 huge = shmem_parse_huge(tmp);
3849 if (huge == -EINVAL)
3850 return -EINVAL;
3851 if (!has_transparent_hugepage() &&
3852 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3853 return -EINVAL;
3854
3855 shmem_huge = huge;
3856 if (shmem_huge > SHMEM_HUGE_DENY)
3857 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3858 return count;
3859 }
3860
3861 struct kobj_attribute shmem_enabled_attr =
3862 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3863 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3864
3865 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3866 bool shmem_huge_enabled(struct vm_area_struct *vma)
3867 {
3868 struct inode *inode = file_inode(vma->vm_file);
3869 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3870 loff_t i_size;
3871 pgoff_t off;
3872
3873 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3874 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3875 return false;
3876 if (shmem_huge == SHMEM_HUGE_FORCE)
3877 return true;
3878 if (shmem_huge == SHMEM_HUGE_DENY)
3879 return false;
3880 switch (sbinfo->huge) {
3881 case SHMEM_HUGE_NEVER:
3882 return false;
3883 case SHMEM_HUGE_ALWAYS:
3884 return true;
3885 case SHMEM_HUGE_WITHIN_SIZE:
3886 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3887 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3888 if (i_size >= HPAGE_PMD_SIZE &&
3889 i_size >> PAGE_SHIFT >= off)
3890 return true;
3891 /* fall through */
3892 case SHMEM_HUGE_ADVISE:
3893 /* TODO: implement fadvise() hints */
3894 return (vma->vm_flags & VM_HUGEPAGE);
3895 default:
3896 VM_BUG_ON(1);
3897 return false;
3898 }
3899 }
3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3901
3902 #else /* !CONFIG_SHMEM */
3903
3904 /*
3905 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3906 *
3907 * This is intended for small system where the benefits of the full
3908 * shmem code (swap-backed and resource-limited) are outweighed by
3909 * their complexity. On systems without swap this code should be
3910 * effectively equivalent, but much lighter weight.
3911 */
3912
3913 static struct file_system_type shmem_fs_type = {
3914 .name = "tmpfs",
3915 .mount = ramfs_mount,
3916 .kill_sb = kill_litter_super,
3917 .fs_flags = FS_USERNS_MOUNT,
3918 };
3919
3920 int __init shmem_init(void)
3921 {
3922 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3923
3924 shm_mnt = kern_mount(&shmem_fs_type);
3925 BUG_ON(IS_ERR(shm_mnt));
3926
3927 return 0;
3928 }
3929
3930 int shmem_unuse(unsigned int type, bool frontswap,
3931 unsigned long *fs_pages_to_unuse)
3932 {
3933 return 0;
3934 }
3935
3936 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3937 {
3938 return 0;
3939 }
3940
3941 void shmem_unlock_mapping(struct address_space *mapping)
3942 {
3943 }
3944
3945 #ifdef CONFIG_MMU
3946 unsigned long shmem_get_unmapped_area(struct file *file,
3947 unsigned long addr, unsigned long len,
3948 unsigned long pgoff, unsigned long flags)
3949 {
3950 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3951 }
3952 #endif
3953
3954 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3955 {
3956 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3957 }
3958 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3959
3960 #define shmem_vm_ops generic_file_vm_ops
3961 #define shmem_file_operations ramfs_file_operations
3962 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3963 #define shmem_acct_size(flags, size) 0
3964 #define shmem_unacct_size(flags, size) do {} while (0)
3965
3966 #endif /* CONFIG_SHMEM */
3967
3968 /* common code */
3969
3970 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3971 unsigned long flags, unsigned int i_flags)
3972 {
3973 struct inode *inode;
3974 struct file *res;
3975
3976 if (IS_ERR(mnt))
3977 return ERR_CAST(mnt);
3978
3979 if (size < 0 || size > MAX_LFS_FILESIZE)
3980 return ERR_PTR(-EINVAL);
3981
3982 if (shmem_acct_size(flags, size))
3983 return ERR_PTR(-ENOMEM);
3984
3985 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3986 flags);
3987 if (unlikely(!inode)) {
3988 shmem_unacct_size(flags, size);
3989 return ERR_PTR(-ENOSPC);
3990 }
3991 inode->i_flags |= i_flags;
3992 inode->i_size = size;
3993 clear_nlink(inode); /* It is unlinked */
3994 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3995 if (!IS_ERR(res))
3996 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3997 &shmem_file_operations);
3998 if (IS_ERR(res))
3999 iput(inode);
4000 return res;
4001 }
4002
4003 /**
4004 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4005 * kernel internal. There will be NO LSM permission checks against the
4006 * underlying inode. So users of this interface must do LSM checks at a
4007 * higher layer. The users are the big_key and shm implementations. LSM
4008 * checks are provided at the key or shm level rather than the inode.
4009 * @name: name for dentry (to be seen in /proc/<pid>/maps
4010 * @size: size to be set for the file
4011 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4012 */
4013 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4014 {
4015 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4016 }
4017
4018 /**
4019 * shmem_file_setup - get an unlinked file living in tmpfs
4020 * @name: name for dentry (to be seen in /proc/<pid>/maps
4021 * @size: size to be set for the file
4022 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4023 */
4024 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4025 {
4026 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4027 }
4028 EXPORT_SYMBOL_GPL(shmem_file_setup);
4029
4030 /**
4031 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4032 * @mnt: the tmpfs mount where the file will be created
4033 * @name: name for dentry (to be seen in /proc/<pid>/maps
4034 * @size: size to be set for the file
4035 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4036 */
4037 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4038 loff_t size, unsigned long flags)
4039 {
4040 return __shmem_file_setup(mnt, name, size, flags, 0);
4041 }
4042 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4043
4044 /**
4045 * shmem_zero_setup - setup a shared anonymous mapping
4046 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4047 */
4048 int shmem_zero_setup(struct vm_area_struct *vma)
4049 {
4050 struct file *file;
4051 loff_t size = vma->vm_end - vma->vm_start;
4052
4053 /*
4054 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4055 * between XFS directory reading and selinux: since this file is only
4056 * accessible to the user through its mapping, use S_PRIVATE flag to
4057 * bypass file security, in the same way as shmem_kernel_file_setup().
4058 */
4059 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4060 if (IS_ERR(file))
4061 return PTR_ERR(file);
4062
4063 if (vma->vm_file)
4064 fput(vma->vm_file);
4065 vma->vm_file = file;
4066 vma->vm_ops = &shmem_vm_ops;
4067
4068 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4069 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4070 (vma->vm_end & HPAGE_PMD_MASK)) {
4071 khugepaged_enter(vma, vma->vm_flags);
4072 }
4073
4074 return 0;
4075 }
4076
4077 /**
4078 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4079 * @mapping: the page's address_space
4080 * @index: the page index
4081 * @gfp: the page allocator flags to use if allocating
4082 *
4083 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4084 * with any new page allocations done using the specified allocation flags.
4085 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4086 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4087 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4088 *
4089 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4090 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4091 */
4092 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4093 pgoff_t index, gfp_t gfp)
4094 {
4095 #ifdef CONFIG_SHMEM
4096 struct inode *inode = mapping->host;
4097 struct page *page;
4098 int error;
4099
4100 BUG_ON(mapping->a_ops != &shmem_aops);
4101 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4102 gfp, NULL, NULL, NULL);
4103 if (error)
4104 page = ERR_PTR(error);
4105 else
4106 unlock_page(page);
4107 return page;
4108 #else
4109 /*
4110 * The tiny !SHMEM case uses ramfs without swap
4111 */
4112 return read_cache_page_gfp(mapping, index, gfp);
4113 #endif
4114 }
4115 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);