]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/shmem.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41
42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44 static struct vfsmount *shm_mnt;
45
46 #ifdef CONFIG_SHMEM
47 /*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/blkdev.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/userfaultfd_k.h>
81 #include <linux/rmap.h>
82 #include <linux/uuid.h>
83
84 #include <linux/uaccess.h>
85
86 #include "internal.h"
87
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
90
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
96
97 /*
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
101 */
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
108 };
109
110 struct shmem_options {
111 unsigned long long blocks;
112 unsigned long long inodes;
113 struct mempolicy *mpol;
114 kuid_t uid;
115 kgid_t gid;
116 umode_t mode;
117 bool full_inums;
118 int huge;
119 int seen;
120 #define SHMEM_SEEN_BLOCKS 1
121 #define SHMEM_SEEN_INODES 2
122 #define SHMEM_SEEN_HUGE 4
123 #define SHMEM_SEEN_INUMS 8
124 };
125
126 #ifdef CONFIG_TMPFS
127 static unsigned long shmem_default_max_blocks(void)
128 {
129 return totalram_pages() / 2;
130 }
131
132 static unsigned long shmem_default_max_inodes(void)
133 {
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137 }
138 #endif
139
140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
141 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
142 struct shmem_inode_info *info, pgoff_t index);
143 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
144 struct page **pagep, enum sgp_type sgp,
145 gfp_t gfp, struct vm_area_struct *vma,
146 vm_fault_t *fault_type);
147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
148 struct page **pagep, enum sgp_type sgp,
149 gfp_t gfp, struct vm_area_struct *vma,
150 struct vm_fault *vmf, vm_fault_t *fault_type);
151
152 int shmem_getpage(struct inode *inode, pgoff_t index,
153 struct page **pagep, enum sgp_type sgp)
154 {
155 return shmem_getpage_gfp(inode, index, pagep, sgp,
156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
157 }
158
159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
160 {
161 return sb->s_fs_info;
162 }
163
164 /*
165 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
166 * for shared memory and for shared anonymous (/dev/zero) mappings
167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
168 * consistent with the pre-accounting of private mappings ...
169 */
170 static inline int shmem_acct_size(unsigned long flags, loff_t size)
171 {
172 return (flags & VM_NORESERVE) ?
173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
174 }
175
176 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
177 {
178 if (!(flags & VM_NORESERVE))
179 vm_unacct_memory(VM_ACCT(size));
180 }
181
182 static inline int shmem_reacct_size(unsigned long flags,
183 loff_t oldsize, loff_t newsize)
184 {
185 if (!(flags & VM_NORESERVE)) {
186 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
187 return security_vm_enough_memory_mm(current->mm,
188 VM_ACCT(newsize) - VM_ACCT(oldsize));
189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
191 }
192 return 0;
193 }
194
195 /*
196 * ... whereas tmpfs objects are accounted incrementally as
197 * pages are allocated, in order to allow large sparse files.
198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
200 */
201 static inline int shmem_acct_block(unsigned long flags, long pages)
202 {
203 if (!(flags & VM_NORESERVE))
204 return 0;
205
206 return security_vm_enough_memory_mm(current->mm,
207 pages * VM_ACCT(PAGE_SIZE));
208 }
209
210 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
211 {
212 if (flags & VM_NORESERVE)
213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
214 }
215
216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
217 {
218 struct shmem_inode_info *info = SHMEM_I(inode);
219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
220
221 if (shmem_acct_block(info->flags, pages))
222 return false;
223
224 if (sbinfo->max_blocks) {
225 if (percpu_counter_compare(&sbinfo->used_blocks,
226 sbinfo->max_blocks - pages) > 0)
227 goto unacct;
228 percpu_counter_add(&sbinfo->used_blocks, pages);
229 }
230
231 return true;
232
233 unacct:
234 shmem_unacct_blocks(info->flags, pages);
235 return false;
236 }
237
238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
239 {
240 struct shmem_inode_info *info = SHMEM_I(inode);
241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242
243 if (sbinfo->max_blocks)
244 percpu_counter_sub(&sbinfo->used_blocks, pages);
245 shmem_unacct_blocks(info->flags, pages);
246 }
247
248 static const struct super_operations shmem_ops;
249 const struct address_space_operations shmem_aops;
250 static const struct file_operations shmem_file_operations;
251 static const struct inode_operations shmem_inode_operations;
252 static const struct inode_operations shmem_dir_inode_operations;
253 static const struct inode_operations shmem_special_inode_operations;
254 static const struct vm_operations_struct shmem_vm_ops;
255 static struct file_system_type shmem_fs_type;
256
257 bool vma_is_shmem(struct vm_area_struct *vma)
258 {
259 return vma->vm_ops == &shmem_vm_ops;
260 }
261
262 static LIST_HEAD(shmem_swaplist);
263 static DEFINE_MUTEX(shmem_swaplist_mutex);
264
265 /*
266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
267 * produces a novel ino for the newly allocated inode.
268 *
269 * It may also be called when making a hard link to permit the space needed by
270 * each dentry. However, in that case, no new inode number is needed since that
271 * internally draws from another pool of inode numbers (currently global
272 * get_next_ino()). This case is indicated by passing NULL as inop.
273 */
274 #define SHMEM_INO_BATCH 1024
275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
276 {
277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
278 ino_t ino;
279
280 if (!(sb->s_flags & SB_KERNMOUNT)) {
281 spin_lock(&sbinfo->stat_lock);
282 if (sbinfo->max_inodes) {
283 if (!sbinfo->free_inodes) {
284 spin_unlock(&sbinfo->stat_lock);
285 return -ENOSPC;
286 }
287 sbinfo->free_inodes--;
288 }
289 if (inop) {
290 ino = sbinfo->next_ino++;
291 if (unlikely(is_zero_ino(ino)))
292 ino = sbinfo->next_ino++;
293 if (unlikely(!sbinfo->full_inums &&
294 ino > UINT_MAX)) {
295 /*
296 * Emulate get_next_ino uint wraparound for
297 * compatibility
298 */
299 if (IS_ENABLED(CONFIG_64BIT))
300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
301 __func__, MINOR(sb->s_dev));
302 sbinfo->next_ino = 1;
303 ino = sbinfo->next_ino++;
304 }
305 *inop = ino;
306 }
307 spin_unlock(&sbinfo->stat_lock);
308 } else if (inop) {
309 /*
310 * __shmem_file_setup, one of our callers, is lock-free: it
311 * doesn't hold stat_lock in shmem_reserve_inode since
312 * max_inodes is always 0, and is called from potentially
313 * unknown contexts. As such, use a per-cpu batched allocator
314 * which doesn't require the per-sb stat_lock unless we are at
315 * the batch boundary.
316 *
317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
318 * shmem mounts are not exposed to userspace, so we don't need
319 * to worry about things like glibc compatibility.
320 */
321 ino_t *next_ino;
322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
323 ino = *next_ino;
324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
325 spin_lock(&sbinfo->stat_lock);
326 ino = sbinfo->next_ino;
327 sbinfo->next_ino += SHMEM_INO_BATCH;
328 spin_unlock(&sbinfo->stat_lock);
329 if (unlikely(is_zero_ino(ino)))
330 ino++;
331 }
332 *inop = ino;
333 *next_ino = ++ino;
334 put_cpu();
335 }
336
337 return 0;
338 }
339
340 static void shmem_free_inode(struct super_block *sb)
341 {
342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
343 if (sbinfo->max_inodes) {
344 spin_lock(&sbinfo->stat_lock);
345 sbinfo->free_inodes++;
346 spin_unlock(&sbinfo->stat_lock);
347 }
348 }
349
350 /**
351 * shmem_recalc_inode - recalculate the block usage of an inode
352 * @inode: inode to recalc
353 *
354 * We have to calculate the free blocks since the mm can drop
355 * undirtied hole pages behind our back.
356 *
357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
359 *
360 * It has to be called with the spinlock held.
361 */
362 static void shmem_recalc_inode(struct inode *inode)
363 {
364 struct shmem_inode_info *info = SHMEM_I(inode);
365 long freed;
366
367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
368 if (freed > 0) {
369 info->alloced -= freed;
370 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
371 shmem_inode_unacct_blocks(inode, freed);
372 }
373 }
374
375 bool shmem_charge(struct inode *inode, long pages)
376 {
377 struct shmem_inode_info *info = SHMEM_I(inode);
378 unsigned long flags;
379
380 if (!shmem_inode_acct_block(inode, pages))
381 return false;
382
383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
384 inode->i_mapping->nrpages += pages;
385
386 spin_lock_irqsave(&info->lock, flags);
387 info->alloced += pages;
388 inode->i_blocks += pages * BLOCKS_PER_PAGE;
389 shmem_recalc_inode(inode);
390 spin_unlock_irqrestore(&info->lock, flags);
391
392 return true;
393 }
394
395 void shmem_uncharge(struct inode *inode, long pages)
396 {
397 struct shmem_inode_info *info = SHMEM_I(inode);
398 unsigned long flags;
399
400 /* nrpages adjustment done by __delete_from_page_cache() or caller */
401
402 spin_lock_irqsave(&info->lock, flags);
403 info->alloced -= pages;
404 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
405 shmem_recalc_inode(inode);
406 spin_unlock_irqrestore(&info->lock, flags);
407
408 shmem_inode_unacct_blocks(inode, pages);
409 }
410
411 /*
412 * Replace item expected in xarray by a new item, while holding xa_lock.
413 */
414 static int shmem_replace_entry(struct address_space *mapping,
415 pgoff_t index, void *expected, void *replacement)
416 {
417 XA_STATE(xas, &mapping->i_pages, index);
418 void *item;
419
420 VM_BUG_ON(!expected);
421 VM_BUG_ON(!replacement);
422 item = xas_load(&xas);
423 if (item != expected)
424 return -ENOENT;
425 xas_store(&xas, replacement);
426 return 0;
427 }
428
429 /*
430 * Sometimes, before we decide whether to proceed or to fail, we must check
431 * that an entry was not already brought back from swap by a racing thread.
432 *
433 * Checking page is not enough: by the time a SwapCache page is locked, it
434 * might be reused, and again be SwapCache, using the same swap as before.
435 */
436 static bool shmem_confirm_swap(struct address_space *mapping,
437 pgoff_t index, swp_entry_t swap)
438 {
439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
440 }
441
442 /*
443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
444 *
445 * SHMEM_HUGE_NEVER:
446 * disables huge pages for the mount;
447 * SHMEM_HUGE_ALWAYS:
448 * enables huge pages for the mount;
449 * SHMEM_HUGE_WITHIN_SIZE:
450 * only allocate huge pages if the page will be fully within i_size,
451 * also respect fadvise()/madvise() hints;
452 * SHMEM_HUGE_ADVISE:
453 * only allocate huge pages if requested with fadvise()/madvise();
454 */
455
456 #define SHMEM_HUGE_NEVER 0
457 #define SHMEM_HUGE_ALWAYS 1
458 #define SHMEM_HUGE_WITHIN_SIZE 2
459 #define SHMEM_HUGE_ADVISE 3
460
461 /*
462 * Special values.
463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
464 *
465 * SHMEM_HUGE_DENY:
466 * disables huge on shm_mnt and all mounts, for emergency use;
467 * SHMEM_HUGE_FORCE:
468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
469 *
470 */
471 #define SHMEM_HUGE_DENY (-1)
472 #define SHMEM_HUGE_FORCE (-2)
473
474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
475 /* ifdef here to avoid bloating shmem.o when not necessary */
476
477 static int shmem_huge __read_mostly;
478
479 #if defined(CONFIG_SYSFS)
480 static int shmem_parse_huge(const char *str)
481 {
482 if (!strcmp(str, "never"))
483 return SHMEM_HUGE_NEVER;
484 if (!strcmp(str, "always"))
485 return SHMEM_HUGE_ALWAYS;
486 if (!strcmp(str, "within_size"))
487 return SHMEM_HUGE_WITHIN_SIZE;
488 if (!strcmp(str, "advise"))
489 return SHMEM_HUGE_ADVISE;
490 if (!strcmp(str, "deny"))
491 return SHMEM_HUGE_DENY;
492 if (!strcmp(str, "force"))
493 return SHMEM_HUGE_FORCE;
494 return -EINVAL;
495 }
496 #endif
497
498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
499 static const char *shmem_format_huge(int huge)
500 {
501 switch (huge) {
502 case SHMEM_HUGE_NEVER:
503 return "never";
504 case SHMEM_HUGE_ALWAYS:
505 return "always";
506 case SHMEM_HUGE_WITHIN_SIZE:
507 return "within_size";
508 case SHMEM_HUGE_ADVISE:
509 return "advise";
510 case SHMEM_HUGE_DENY:
511 return "deny";
512 case SHMEM_HUGE_FORCE:
513 return "force";
514 default:
515 VM_BUG_ON(1);
516 return "bad_val";
517 }
518 }
519 #endif
520
521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
522 struct shrink_control *sc, unsigned long nr_to_split)
523 {
524 LIST_HEAD(list), *pos, *next;
525 LIST_HEAD(to_remove);
526 struct inode *inode;
527 struct shmem_inode_info *info;
528 struct page *page;
529 unsigned long batch = sc ? sc->nr_to_scan : 128;
530 int removed = 0, split = 0;
531
532 if (list_empty(&sbinfo->shrinklist))
533 return SHRINK_STOP;
534
535 spin_lock(&sbinfo->shrinklist_lock);
536 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
537 info = list_entry(pos, struct shmem_inode_info, shrinklist);
538
539 /* pin the inode */
540 inode = igrab(&info->vfs_inode);
541
542 /* inode is about to be evicted */
543 if (!inode) {
544 list_del_init(&info->shrinklist);
545 removed++;
546 goto next;
547 }
548
549 /* Check if there's anything to gain */
550 if (round_up(inode->i_size, PAGE_SIZE) ==
551 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
552 list_move(&info->shrinklist, &to_remove);
553 removed++;
554 goto next;
555 }
556
557 list_move(&info->shrinklist, &list);
558 next:
559 if (!--batch)
560 break;
561 }
562 spin_unlock(&sbinfo->shrinklist_lock);
563
564 list_for_each_safe(pos, next, &to_remove) {
565 info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 inode = &info->vfs_inode;
567 list_del_init(&info->shrinklist);
568 iput(inode);
569 }
570
571 list_for_each_safe(pos, next, &list) {
572 int ret;
573
574 info = list_entry(pos, struct shmem_inode_info, shrinklist);
575 inode = &info->vfs_inode;
576
577 if (nr_to_split && split >= nr_to_split)
578 goto leave;
579
580 page = find_get_page(inode->i_mapping,
581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
582 if (!page)
583 goto drop;
584
585 /* No huge page at the end of the file: nothing to split */
586 if (!PageTransHuge(page)) {
587 put_page(page);
588 goto drop;
589 }
590
591 /*
592 * Leave the inode on the list if we failed to lock
593 * the page at this time.
594 *
595 * Waiting for the lock may lead to deadlock in the
596 * reclaim path.
597 */
598 if (!trylock_page(page)) {
599 put_page(page);
600 goto leave;
601 }
602
603 ret = split_huge_page(page);
604 unlock_page(page);
605 put_page(page);
606
607 /* If split failed leave the inode on the list */
608 if (ret)
609 goto leave;
610
611 split++;
612 drop:
613 list_del_init(&info->shrinklist);
614 removed++;
615 leave:
616 iput(inode);
617 }
618
619 spin_lock(&sbinfo->shrinklist_lock);
620 list_splice_tail(&list, &sbinfo->shrinklist);
621 sbinfo->shrinklist_len -= removed;
622 spin_unlock(&sbinfo->shrinklist_lock);
623
624 return split;
625 }
626
627 static long shmem_unused_huge_scan(struct super_block *sb,
628 struct shrink_control *sc)
629 {
630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
631
632 if (!READ_ONCE(sbinfo->shrinklist_len))
633 return SHRINK_STOP;
634
635 return shmem_unused_huge_shrink(sbinfo, sc, 0);
636 }
637
638 static long shmem_unused_huge_count(struct super_block *sb,
639 struct shrink_control *sc)
640 {
641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
642 return READ_ONCE(sbinfo->shrinklist_len);
643 }
644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
645
646 #define shmem_huge SHMEM_HUGE_DENY
647
648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
649 struct shrink_control *sc, unsigned long nr_to_split)
650 {
651 return 0;
652 }
653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
654
655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
656 {
657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
659 shmem_huge != SHMEM_HUGE_DENY)
660 return true;
661 return false;
662 }
663
664 /*
665 * Like add_to_page_cache_locked, but error if expected item has gone.
666 */
667 static int shmem_add_to_page_cache(struct page *page,
668 struct address_space *mapping,
669 pgoff_t index, void *expected, gfp_t gfp,
670 struct mm_struct *charge_mm)
671 {
672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
673 unsigned long i = 0;
674 unsigned long nr = compound_nr(page);
675 int error;
676
677 VM_BUG_ON_PAGE(PageTail(page), page);
678 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
679 VM_BUG_ON_PAGE(!PageLocked(page), page);
680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
681 VM_BUG_ON(expected && PageTransHuge(page));
682
683 page_ref_add(page, nr);
684 page->mapping = mapping;
685 page->index = index;
686
687 if (!PageSwapCache(page)) {
688 error = mem_cgroup_charge(page, charge_mm, gfp);
689 if (error) {
690 if (PageTransHuge(page)) {
691 count_vm_event(THP_FILE_FALLBACK);
692 count_vm_event(THP_FILE_FALLBACK_CHARGE);
693 }
694 goto error;
695 }
696 }
697 cgroup_throttle_swaprate(page, gfp);
698
699 do {
700 void *entry;
701 xas_lock_irq(&xas);
702 entry = xas_find_conflict(&xas);
703 if (entry != expected)
704 xas_set_err(&xas, -EEXIST);
705 xas_create_range(&xas);
706 if (xas_error(&xas))
707 goto unlock;
708 next:
709 xas_store(&xas, page);
710 if (++i < nr) {
711 xas_next(&xas);
712 goto next;
713 }
714 if (PageTransHuge(page)) {
715 count_vm_event(THP_FILE_ALLOC);
716 __inc_lruvec_page_state(page, NR_SHMEM_THPS);
717 }
718 mapping->nrpages += nr;
719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
720 __mod_lruvec_page_state(page, NR_SHMEM, nr);
721 unlock:
722 xas_unlock_irq(&xas);
723 } while (xas_nomem(&xas, gfp));
724
725 if (xas_error(&xas)) {
726 error = xas_error(&xas);
727 goto error;
728 }
729
730 return 0;
731 error:
732 page->mapping = NULL;
733 page_ref_sub(page, nr);
734 return error;
735 }
736
737 /*
738 * Like delete_from_page_cache, but substitutes swap for page.
739 */
740 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
741 {
742 struct address_space *mapping = page->mapping;
743 int error;
744
745 VM_BUG_ON_PAGE(PageCompound(page), page);
746
747 xa_lock_irq(&mapping->i_pages);
748 error = shmem_replace_entry(mapping, page->index, page, radswap);
749 page->mapping = NULL;
750 mapping->nrpages--;
751 __dec_lruvec_page_state(page, NR_FILE_PAGES);
752 __dec_lruvec_page_state(page, NR_SHMEM);
753 xa_unlock_irq(&mapping->i_pages);
754 put_page(page);
755 BUG_ON(error);
756 }
757
758 /*
759 * Remove swap entry from page cache, free the swap and its page cache.
760 */
761 static int shmem_free_swap(struct address_space *mapping,
762 pgoff_t index, void *radswap)
763 {
764 void *old;
765
766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
767 if (old != radswap)
768 return -ENOENT;
769 free_swap_and_cache(radix_to_swp_entry(radswap));
770 return 0;
771 }
772
773 /*
774 * Determine (in bytes) how many of the shmem object's pages mapped by the
775 * given offsets are swapped out.
776 *
777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
778 * as long as the inode doesn't go away and racy results are not a problem.
779 */
780 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
781 pgoff_t start, pgoff_t end)
782 {
783 XA_STATE(xas, &mapping->i_pages, start);
784 struct page *page;
785 unsigned long swapped = 0;
786
787 rcu_read_lock();
788 xas_for_each(&xas, page, end - 1) {
789 if (xas_retry(&xas, page))
790 continue;
791 if (xa_is_value(page))
792 swapped++;
793
794 if (need_resched()) {
795 xas_pause(&xas);
796 cond_resched_rcu();
797 }
798 }
799
800 rcu_read_unlock();
801
802 return swapped << PAGE_SHIFT;
803 }
804
805 /*
806 * Determine (in bytes) how many of the shmem object's pages mapped by the
807 * given vma is swapped out.
808 *
809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
810 * as long as the inode doesn't go away and racy results are not a problem.
811 */
812 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
813 {
814 struct inode *inode = file_inode(vma->vm_file);
815 struct shmem_inode_info *info = SHMEM_I(inode);
816 struct address_space *mapping = inode->i_mapping;
817 unsigned long swapped;
818
819 /* Be careful as we don't hold info->lock */
820 swapped = READ_ONCE(info->swapped);
821
822 /*
823 * The easier cases are when the shmem object has nothing in swap, or
824 * the vma maps it whole. Then we can simply use the stats that we
825 * already track.
826 */
827 if (!swapped)
828 return 0;
829
830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
831 return swapped << PAGE_SHIFT;
832
833 /* Here comes the more involved part */
834 return shmem_partial_swap_usage(mapping,
835 linear_page_index(vma, vma->vm_start),
836 linear_page_index(vma, vma->vm_end));
837 }
838
839 /*
840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
841 */
842 void shmem_unlock_mapping(struct address_space *mapping)
843 {
844 struct pagevec pvec;
845 pgoff_t indices[PAGEVEC_SIZE];
846 pgoff_t index = 0;
847
848 pagevec_init(&pvec);
849 /*
850 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
851 */
852 while (!mapping_unevictable(mapping)) {
853 /*
854 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
855 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
856 */
857 pvec.nr = find_get_entries(mapping, index,
858 PAGEVEC_SIZE, pvec.pages, indices);
859 if (!pvec.nr)
860 break;
861 index = indices[pvec.nr - 1] + 1;
862 pagevec_remove_exceptionals(&pvec);
863 check_move_unevictable_pages(&pvec);
864 pagevec_release(&pvec);
865 cond_resched();
866 }
867 }
868
869 /*
870 * Check whether a hole-punch or truncation needs to split a huge page,
871 * returning true if no split was required, or the split has been successful.
872 *
873 * Eviction (or truncation to 0 size) should never need to split a huge page;
874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on
875 * head, and then succeeded to trylock on tail.
876 *
877 * A split can only succeed when there are no additional references on the
878 * huge page: so the split below relies upon find_get_entries() having stopped
879 * when it found a subpage of the huge page, without getting further references.
880 */
881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
882 {
883 if (!PageTransCompound(page))
884 return true;
885
886 /* Just proceed to delete a huge page wholly within the range punched */
887 if (PageHead(page) &&
888 page->index >= start && page->index + HPAGE_PMD_NR <= end)
889 return true;
890
891 /* Try to split huge page, so we can truly punch the hole or truncate */
892 return split_huge_page(page) >= 0;
893 }
894
895 /*
896 * Remove range of pages and swap entries from page cache, and free them.
897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
898 */
899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
900 bool unfalloc)
901 {
902 struct address_space *mapping = inode->i_mapping;
903 struct shmem_inode_info *info = SHMEM_I(inode);
904 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
905 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
906 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
907 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
908 struct pagevec pvec;
909 pgoff_t indices[PAGEVEC_SIZE];
910 long nr_swaps_freed = 0;
911 pgoff_t index;
912 int i;
913
914 if (lend == -1)
915 end = -1; /* unsigned, so actually very big */
916
917 pagevec_init(&pvec);
918 index = start;
919 while (index < end) {
920 pvec.nr = find_get_entries(mapping, index,
921 min(end - index, (pgoff_t)PAGEVEC_SIZE),
922 pvec.pages, indices);
923 if (!pvec.nr)
924 break;
925 for (i = 0; i < pagevec_count(&pvec); i++) {
926 struct page *page = pvec.pages[i];
927
928 index = indices[i];
929 if (index >= end)
930 break;
931
932 if (xa_is_value(page)) {
933 if (unfalloc)
934 continue;
935 nr_swaps_freed += !shmem_free_swap(mapping,
936 index, page);
937 continue;
938 }
939
940 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
941
942 if (!trylock_page(page))
943 continue;
944
945 if ((!unfalloc || !PageUptodate(page)) &&
946 page_mapping(page) == mapping) {
947 VM_BUG_ON_PAGE(PageWriteback(page), page);
948 if (shmem_punch_compound(page, start, end))
949 truncate_inode_page(mapping, page);
950 }
951 unlock_page(page);
952 }
953 pagevec_remove_exceptionals(&pvec);
954 pagevec_release(&pvec);
955 cond_resched();
956 index++;
957 }
958
959 if (partial_start) {
960 struct page *page = NULL;
961 shmem_getpage(inode, start - 1, &page, SGP_READ);
962 if (page) {
963 unsigned int top = PAGE_SIZE;
964 if (start > end) {
965 top = partial_end;
966 partial_end = 0;
967 }
968 zero_user_segment(page, partial_start, top);
969 set_page_dirty(page);
970 unlock_page(page);
971 put_page(page);
972 }
973 }
974 if (partial_end) {
975 struct page *page = NULL;
976 shmem_getpage(inode, end, &page, SGP_READ);
977 if (page) {
978 zero_user_segment(page, 0, partial_end);
979 set_page_dirty(page);
980 unlock_page(page);
981 put_page(page);
982 }
983 }
984 if (start >= end)
985 return;
986
987 index = start;
988 while (index < end) {
989 cond_resched();
990
991 pvec.nr = find_get_entries(mapping, index,
992 min(end - index, (pgoff_t)PAGEVEC_SIZE),
993 pvec.pages, indices);
994 if (!pvec.nr) {
995 /* If all gone or hole-punch or unfalloc, we're done */
996 if (index == start || end != -1)
997 break;
998 /* But if truncating, restart to make sure all gone */
999 index = start;
1000 continue;
1001 }
1002 for (i = 0; i < pagevec_count(&pvec); i++) {
1003 struct page *page = pvec.pages[i];
1004
1005 index = indices[i];
1006 if (index >= end)
1007 break;
1008
1009 if (xa_is_value(page)) {
1010 if (unfalloc)
1011 continue;
1012 if (shmem_free_swap(mapping, index, page)) {
1013 /* Swap was replaced by page: retry */
1014 index--;
1015 break;
1016 }
1017 nr_swaps_freed++;
1018 continue;
1019 }
1020
1021 lock_page(page);
1022
1023 if (!unfalloc || !PageUptodate(page)) {
1024 if (page_mapping(page) != mapping) {
1025 /* Page was replaced by swap: retry */
1026 unlock_page(page);
1027 index--;
1028 break;
1029 }
1030 VM_BUG_ON_PAGE(PageWriteback(page), page);
1031 if (shmem_punch_compound(page, start, end))
1032 truncate_inode_page(mapping, page);
1033 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034 /* Wipe the page and don't get stuck */
1035 clear_highpage(page);
1036 flush_dcache_page(page);
1037 set_page_dirty(page);
1038 if (index <
1039 round_up(start, HPAGE_PMD_NR))
1040 start = index + 1;
1041 }
1042 }
1043 unlock_page(page);
1044 }
1045 pagevec_remove_exceptionals(&pvec);
1046 pagevec_release(&pvec);
1047 index++;
1048 }
1049
1050 spin_lock_irq(&info->lock);
1051 info->swapped -= nr_swaps_freed;
1052 shmem_recalc_inode(inode);
1053 spin_unlock_irq(&info->lock);
1054 }
1055
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058 shmem_undo_range(inode, lstart, lend, false);
1059 inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062
1063 static int shmem_getattr(const struct path *path, struct kstat *stat,
1064 u32 request_mask, unsigned int query_flags)
1065 {
1066 struct inode *inode = path->dentry->d_inode;
1067 struct shmem_inode_info *info = SHMEM_I(inode);
1068 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1069
1070 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071 spin_lock_irq(&info->lock);
1072 shmem_recalc_inode(inode);
1073 spin_unlock_irq(&info->lock);
1074 }
1075 generic_fillattr(inode, stat);
1076
1077 if (is_huge_enabled(sb_info))
1078 stat->blksize = HPAGE_PMD_SIZE;
1079
1080 return 0;
1081 }
1082
1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1084 {
1085 struct inode *inode = d_inode(dentry);
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088 int error;
1089
1090 error = setattr_prepare(dentry, attr);
1091 if (error)
1092 return error;
1093
1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 loff_t oldsize = inode->i_size;
1096 loff_t newsize = attr->ia_size;
1097
1098 /* protected by i_mutex */
1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 return -EPERM;
1102
1103 if (newsize != oldsize) {
1104 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105 oldsize, newsize);
1106 if (error)
1107 return error;
1108 i_size_write(inode, newsize);
1109 inode->i_ctime = inode->i_mtime = current_time(inode);
1110 }
1111 if (newsize <= oldsize) {
1112 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113 if (oldsize > holebegin)
1114 unmap_mapping_range(inode->i_mapping,
1115 holebegin, 0, 1);
1116 if (info->alloced)
1117 shmem_truncate_range(inode,
1118 newsize, (loff_t)-1);
1119 /* unmap again to remove racily COWed private pages */
1120 if (oldsize > holebegin)
1121 unmap_mapping_range(inode->i_mapping,
1122 holebegin, 0, 1);
1123
1124 /*
1125 * Part of the huge page can be beyond i_size: subject
1126 * to shrink under memory pressure.
1127 */
1128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1129 spin_lock(&sbinfo->shrinklist_lock);
1130 /*
1131 * _careful to defend against unlocked access to
1132 * ->shrink_list in shmem_unused_huge_shrink()
1133 */
1134 if (list_empty_careful(&info->shrinklist)) {
1135 list_add_tail(&info->shrinklist,
1136 &sbinfo->shrinklist);
1137 sbinfo->shrinklist_len++;
1138 }
1139 spin_unlock(&sbinfo->shrinklist_lock);
1140 }
1141 }
1142 }
1143
1144 setattr_copy(inode, attr);
1145 if (attr->ia_valid & ATTR_MODE)
1146 error = posix_acl_chmod(inode, inode->i_mode);
1147 return error;
1148 }
1149
1150 static void shmem_evict_inode(struct inode *inode)
1151 {
1152 struct shmem_inode_info *info = SHMEM_I(inode);
1153 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1154
1155 if (shmem_mapping(inode->i_mapping)) {
1156 shmem_unacct_size(info->flags, inode->i_size);
1157 inode->i_size = 0;
1158 shmem_truncate_range(inode, 0, (loff_t)-1);
1159 if (!list_empty(&info->shrinklist)) {
1160 spin_lock(&sbinfo->shrinklist_lock);
1161 if (!list_empty(&info->shrinklist)) {
1162 list_del_init(&info->shrinklist);
1163 sbinfo->shrinklist_len--;
1164 }
1165 spin_unlock(&sbinfo->shrinklist_lock);
1166 }
1167 while (!list_empty(&info->swaplist)) {
1168 /* Wait while shmem_unuse() is scanning this inode... */
1169 wait_var_event(&info->stop_eviction,
1170 !atomic_read(&info->stop_eviction));
1171 mutex_lock(&shmem_swaplist_mutex);
1172 /* ...but beware of the race if we peeked too early */
1173 if (!atomic_read(&info->stop_eviction))
1174 list_del_init(&info->swaplist);
1175 mutex_unlock(&shmem_swaplist_mutex);
1176 }
1177 }
1178
1179 simple_xattrs_free(&info->xattrs);
1180 WARN_ON(inode->i_blocks);
1181 shmem_free_inode(inode->i_sb);
1182 clear_inode(inode);
1183 }
1184
1185 extern struct swap_info_struct *swap_info[];
1186
1187 static int shmem_find_swap_entries(struct address_space *mapping,
1188 pgoff_t start, unsigned int nr_entries,
1189 struct page **entries, pgoff_t *indices,
1190 unsigned int type, bool frontswap)
1191 {
1192 XA_STATE(xas, &mapping->i_pages, start);
1193 struct page *page;
1194 swp_entry_t entry;
1195 unsigned int ret = 0;
1196
1197 if (!nr_entries)
1198 return 0;
1199
1200 rcu_read_lock();
1201 xas_for_each(&xas, page, ULONG_MAX) {
1202 if (xas_retry(&xas, page))
1203 continue;
1204
1205 if (!xa_is_value(page))
1206 continue;
1207
1208 entry = radix_to_swp_entry(page);
1209 if (swp_type(entry) != type)
1210 continue;
1211 if (frontswap &&
1212 !frontswap_test(swap_info[type], swp_offset(entry)))
1213 continue;
1214
1215 indices[ret] = xas.xa_index;
1216 entries[ret] = page;
1217
1218 if (need_resched()) {
1219 xas_pause(&xas);
1220 cond_resched_rcu();
1221 }
1222 if (++ret == nr_entries)
1223 break;
1224 }
1225 rcu_read_unlock();
1226
1227 return ret;
1228 }
1229
1230 /*
1231 * Move the swapped pages for an inode to page cache. Returns the count
1232 * of pages swapped in, or the error in case of failure.
1233 */
1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1235 pgoff_t *indices)
1236 {
1237 int i = 0;
1238 int ret = 0;
1239 int error = 0;
1240 struct address_space *mapping = inode->i_mapping;
1241
1242 for (i = 0; i < pvec.nr; i++) {
1243 struct page *page = pvec.pages[i];
1244
1245 if (!xa_is_value(page))
1246 continue;
1247 error = shmem_swapin_page(inode, indices[i],
1248 &page, SGP_CACHE,
1249 mapping_gfp_mask(mapping),
1250 NULL, NULL);
1251 if (error == 0) {
1252 unlock_page(page);
1253 put_page(page);
1254 ret++;
1255 }
1256 if (error == -ENOMEM)
1257 break;
1258 error = 0;
1259 }
1260 return error ? error : ret;
1261 }
1262
1263 /*
1264 * If swap found in inode, free it and move page from swapcache to filecache.
1265 */
1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1267 bool frontswap, unsigned long *fs_pages_to_unuse)
1268 {
1269 struct address_space *mapping = inode->i_mapping;
1270 pgoff_t start = 0;
1271 struct pagevec pvec;
1272 pgoff_t indices[PAGEVEC_SIZE];
1273 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1274 int ret = 0;
1275
1276 pagevec_init(&pvec);
1277 do {
1278 unsigned int nr_entries = PAGEVEC_SIZE;
1279
1280 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1281 nr_entries = *fs_pages_to_unuse;
1282
1283 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1284 pvec.pages, indices,
1285 type, frontswap);
1286 if (pvec.nr == 0) {
1287 ret = 0;
1288 break;
1289 }
1290
1291 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1292 if (ret < 0)
1293 break;
1294
1295 if (frontswap_partial) {
1296 *fs_pages_to_unuse -= ret;
1297 if (*fs_pages_to_unuse == 0) {
1298 ret = FRONTSWAP_PAGES_UNUSED;
1299 break;
1300 }
1301 }
1302
1303 start = indices[pvec.nr - 1];
1304 } while (true);
1305
1306 return ret;
1307 }
1308
1309 /*
1310 * Read all the shared memory data that resides in the swap
1311 * device 'type' back into memory, so the swap device can be
1312 * unused.
1313 */
1314 int shmem_unuse(unsigned int type, bool frontswap,
1315 unsigned long *fs_pages_to_unuse)
1316 {
1317 struct shmem_inode_info *info, *next;
1318 int error = 0;
1319
1320 if (list_empty(&shmem_swaplist))
1321 return 0;
1322
1323 mutex_lock(&shmem_swaplist_mutex);
1324 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1325 if (!info->swapped) {
1326 list_del_init(&info->swaplist);
1327 continue;
1328 }
1329 /*
1330 * Drop the swaplist mutex while searching the inode for swap;
1331 * but before doing so, make sure shmem_evict_inode() will not
1332 * remove placeholder inode from swaplist, nor let it be freed
1333 * (igrab() would protect from unlink, but not from unmount).
1334 */
1335 atomic_inc(&info->stop_eviction);
1336 mutex_unlock(&shmem_swaplist_mutex);
1337
1338 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1339 fs_pages_to_unuse);
1340 cond_resched();
1341
1342 mutex_lock(&shmem_swaplist_mutex);
1343 next = list_next_entry(info, swaplist);
1344 if (!info->swapped)
1345 list_del_init(&info->swaplist);
1346 if (atomic_dec_and_test(&info->stop_eviction))
1347 wake_up_var(&info->stop_eviction);
1348 if (error)
1349 break;
1350 }
1351 mutex_unlock(&shmem_swaplist_mutex);
1352
1353 return error;
1354 }
1355
1356 /*
1357 * Move the page from the page cache to the swap cache.
1358 */
1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1360 {
1361 struct shmem_inode_info *info;
1362 struct address_space *mapping;
1363 struct inode *inode;
1364 swp_entry_t swap;
1365 pgoff_t index;
1366
1367 VM_BUG_ON_PAGE(PageCompound(page), page);
1368 BUG_ON(!PageLocked(page));
1369 mapping = page->mapping;
1370 index = page->index;
1371 inode = mapping->host;
1372 info = SHMEM_I(inode);
1373 if (info->flags & VM_LOCKED)
1374 goto redirty;
1375 if (!total_swap_pages)
1376 goto redirty;
1377
1378 /*
1379 * Our capabilities prevent regular writeback or sync from ever calling
1380 * shmem_writepage; but a stacking filesystem might use ->writepage of
1381 * its underlying filesystem, in which case tmpfs should write out to
1382 * swap only in response to memory pressure, and not for the writeback
1383 * threads or sync.
1384 */
1385 if (!wbc->for_reclaim) {
1386 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1387 goto redirty;
1388 }
1389
1390 /*
1391 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1392 * value into swapfile.c, the only way we can correctly account for a
1393 * fallocated page arriving here is now to initialize it and write it.
1394 *
1395 * That's okay for a page already fallocated earlier, but if we have
1396 * not yet completed the fallocation, then (a) we want to keep track
1397 * of this page in case we have to undo it, and (b) it may not be a
1398 * good idea to continue anyway, once we're pushing into swap. So
1399 * reactivate the page, and let shmem_fallocate() quit when too many.
1400 */
1401 if (!PageUptodate(page)) {
1402 if (inode->i_private) {
1403 struct shmem_falloc *shmem_falloc;
1404 spin_lock(&inode->i_lock);
1405 shmem_falloc = inode->i_private;
1406 if (shmem_falloc &&
1407 !shmem_falloc->waitq &&
1408 index >= shmem_falloc->start &&
1409 index < shmem_falloc->next)
1410 shmem_falloc->nr_unswapped++;
1411 else
1412 shmem_falloc = NULL;
1413 spin_unlock(&inode->i_lock);
1414 if (shmem_falloc)
1415 goto redirty;
1416 }
1417 clear_highpage(page);
1418 flush_dcache_page(page);
1419 SetPageUptodate(page);
1420 }
1421
1422 swap = get_swap_page(page);
1423 if (!swap.val)
1424 goto redirty;
1425
1426 /*
1427 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1428 * if it's not already there. Do it now before the page is
1429 * moved to swap cache, when its pagelock no longer protects
1430 * the inode from eviction. But don't unlock the mutex until
1431 * we've incremented swapped, because shmem_unuse_inode() will
1432 * prune a !swapped inode from the swaplist under this mutex.
1433 */
1434 mutex_lock(&shmem_swaplist_mutex);
1435 if (list_empty(&info->swaplist))
1436 list_add(&info->swaplist, &shmem_swaplist);
1437
1438 if (add_to_swap_cache(page, swap,
1439 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1440 NULL) == 0) {
1441 spin_lock_irq(&info->lock);
1442 shmem_recalc_inode(inode);
1443 info->swapped++;
1444 spin_unlock_irq(&info->lock);
1445
1446 swap_shmem_alloc(swap);
1447 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1448
1449 mutex_unlock(&shmem_swaplist_mutex);
1450 BUG_ON(page_mapped(page));
1451 swap_writepage(page, wbc);
1452 return 0;
1453 }
1454
1455 mutex_unlock(&shmem_swaplist_mutex);
1456 put_swap_page(page, swap);
1457 redirty:
1458 set_page_dirty(page);
1459 if (wbc->for_reclaim)
1460 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1461 unlock_page(page);
1462 return 0;
1463 }
1464
1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1467 {
1468 char buffer[64];
1469
1470 if (!mpol || mpol->mode == MPOL_DEFAULT)
1471 return; /* show nothing */
1472
1473 mpol_to_str(buffer, sizeof(buffer), mpol);
1474
1475 seq_printf(seq, ",mpol=%s", buffer);
1476 }
1477
1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1479 {
1480 struct mempolicy *mpol = NULL;
1481 if (sbinfo->mpol) {
1482 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1483 mpol = sbinfo->mpol;
1484 mpol_get(mpol);
1485 spin_unlock(&sbinfo->stat_lock);
1486 }
1487 return mpol;
1488 }
1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1491 {
1492 }
1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1494 {
1495 return NULL;
1496 }
1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1498 #ifndef CONFIG_NUMA
1499 #define vm_policy vm_private_data
1500 #endif
1501
1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1503 struct shmem_inode_info *info, pgoff_t index)
1504 {
1505 /* Create a pseudo vma that just contains the policy */
1506 vma_init(vma, NULL);
1507 /* Bias interleave by inode number to distribute better across nodes */
1508 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1509 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1510 }
1511
1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1513 {
1514 /* Drop reference taken by mpol_shared_policy_lookup() */
1515 mpol_cond_put(vma->vm_policy);
1516 }
1517
1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1519 struct shmem_inode_info *info, pgoff_t index)
1520 {
1521 struct vm_area_struct pvma;
1522 struct page *page;
1523 struct vm_fault vmf;
1524
1525 shmem_pseudo_vma_init(&pvma, info, index);
1526 vmf.vma = &pvma;
1527 vmf.address = 0;
1528 page = swap_cluster_readahead(swap, gfp, &vmf);
1529 shmem_pseudo_vma_destroy(&pvma);
1530
1531 return page;
1532 }
1533
1534 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1535 struct shmem_inode_info *info, pgoff_t index)
1536 {
1537 struct vm_area_struct pvma;
1538 struct address_space *mapping = info->vfs_inode.i_mapping;
1539 pgoff_t hindex;
1540 struct page *page;
1541
1542 hindex = round_down(index, HPAGE_PMD_NR);
1543 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1544 XA_PRESENT))
1545 return NULL;
1546
1547 shmem_pseudo_vma_init(&pvma, info, hindex);
1548 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1549 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1550 shmem_pseudo_vma_destroy(&pvma);
1551 if (page)
1552 prep_transhuge_page(page);
1553 else
1554 count_vm_event(THP_FILE_FALLBACK);
1555 return page;
1556 }
1557
1558 static struct page *shmem_alloc_page(gfp_t gfp,
1559 struct shmem_inode_info *info, pgoff_t index)
1560 {
1561 struct vm_area_struct pvma;
1562 struct page *page;
1563
1564 shmem_pseudo_vma_init(&pvma, info, index);
1565 page = alloc_page_vma(gfp, &pvma, 0);
1566 shmem_pseudo_vma_destroy(&pvma);
1567
1568 return page;
1569 }
1570
1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1572 struct inode *inode,
1573 pgoff_t index, bool huge)
1574 {
1575 struct shmem_inode_info *info = SHMEM_I(inode);
1576 struct page *page;
1577 int nr;
1578 int err = -ENOSPC;
1579
1580 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1581 huge = false;
1582 nr = huge ? HPAGE_PMD_NR : 1;
1583
1584 if (!shmem_inode_acct_block(inode, nr))
1585 goto failed;
1586
1587 if (huge)
1588 page = shmem_alloc_hugepage(gfp, info, index);
1589 else
1590 page = shmem_alloc_page(gfp, info, index);
1591 if (page) {
1592 __SetPageLocked(page);
1593 __SetPageSwapBacked(page);
1594 return page;
1595 }
1596
1597 err = -ENOMEM;
1598 shmem_inode_unacct_blocks(inode, nr);
1599 failed:
1600 return ERR_PTR(err);
1601 }
1602
1603 /*
1604 * When a page is moved from swapcache to shmem filecache (either by the
1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1607 * ignorance of the mapping it belongs to. If that mapping has special
1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1609 * we may need to copy to a suitable page before moving to filecache.
1610 *
1611 * In a future release, this may well be extended to respect cpuset and
1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1613 * but for now it is a simple matter of zone.
1614 */
1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1616 {
1617 return page_zonenum(page) > gfp_zone(gfp);
1618 }
1619
1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1621 struct shmem_inode_info *info, pgoff_t index)
1622 {
1623 struct page *oldpage, *newpage;
1624 struct address_space *swap_mapping;
1625 swp_entry_t entry;
1626 pgoff_t swap_index;
1627 int error;
1628
1629 oldpage = *pagep;
1630 entry.val = page_private(oldpage);
1631 swap_index = swp_offset(entry);
1632 swap_mapping = page_mapping(oldpage);
1633
1634 /*
1635 * We have arrived here because our zones are constrained, so don't
1636 * limit chance of success by further cpuset and node constraints.
1637 */
1638 gfp &= ~GFP_CONSTRAINT_MASK;
1639 newpage = shmem_alloc_page(gfp, info, index);
1640 if (!newpage)
1641 return -ENOMEM;
1642
1643 get_page(newpage);
1644 copy_highpage(newpage, oldpage);
1645 flush_dcache_page(newpage);
1646
1647 __SetPageLocked(newpage);
1648 __SetPageSwapBacked(newpage);
1649 SetPageUptodate(newpage);
1650 set_page_private(newpage, entry.val);
1651 SetPageSwapCache(newpage);
1652
1653 /*
1654 * Our caller will very soon move newpage out of swapcache, but it's
1655 * a nice clean interface for us to replace oldpage by newpage there.
1656 */
1657 xa_lock_irq(&swap_mapping->i_pages);
1658 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1659 if (!error) {
1660 mem_cgroup_migrate(oldpage, newpage);
1661 __inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663 }
1664 xa_unlock_irq(&swap_mapping->i_pages);
1665
1666 if (unlikely(error)) {
1667 /*
1668 * Is this possible? I think not, now that our callers check
1669 * both PageSwapCache and page_private after getting page lock;
1670 * but be defensive. Reverse old to newpage for clear and free.
1671 */
1672 oldpage = newpage;
1673 } else {
1674 lru_cache_add(newpage);
1675 *pagep = newpage;
1676 }
1677
1678 ClearPageSwapCache(oldpage);
1679 set_page_private(oldpage, 0);
1680
1681 unlock_page(oldpage);
1682 put_page(oldpage);
1683 put_page(oldpage);
1684 return error;
1685 }
1686
1687 /*
1688 * Swap in the page pointed to by *pagep.
1689 * Caller has to make sure that *pagep contains a valid swapped page.
1690 * Returns 0 and the page in pagep if success. On failure, returns the
1691 * error code and NULL in *pagep.
1692 */
1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1694 struct page **pagep, enum sgp_type sgp,
1695 gfp_t gfp, struct vm_area_struct *vma,
1696 vm_fault_t *fault_type)
1697 {
1698 struct address_space *mapping = inode->i_mapping;
1699 struct shmem_inode_info *info = SHMEM_I(inode);
1700 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1701 struct page *page;
1702 swp_entry_t swap;
1703 int error;
1704
1705 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1706 swap = radix_to_swp_entry(*pagep);
1707 *pagep = NULL;
1708
1709 /* Look it up and read it in.. */
1710 page = lookup_swap_cache(swap, NULL, 0);
1711 if (!page) {
1712 /* Or update major stats only when swapin succeeds?? */
1713 if (fault_type) {
1714 *fault_type |= VM_FAULT_MAJOR;
1715 count_vm_event(PGMAJFAULT);
1716 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1717 }
1718 /* Here we actually start the io */
1719 page = shmem_swapin(swap, gfp, info, index);
1720 if (!page) {
1721 error = -ENOMEM;
1722 goto failed;
1723 }
1724 }
1725
1726 /* We have to do this with page locked to prevent races */
1727 lock_page(page);
1728 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1729 !shmem_confirm_swap(mapping, index, swap)) {
1730 error = -EEXIST;
1731 goto unlock;
1732 }
1733 if (!PageUptodate(page)) {
1734 error = -EIO;
1735 goto failed;
1736 }
1737 wait_on_page_writeback(page);
1738
1739 /*
1740 * Some architectures may have to restore extra metadata to the
1741 * physical page after reading from swap.
1742 */
1743 arch_swap_restore(swap, page);
1744
1745 if (shmem_should_replace_page(page, gfp)) {
1746 error = shmem_replace_page(&page, gfp, info, index);
1747 if (error)
1748 goto failed;
1749 }
1750
1751 error = shmem_add_to_page_cache(page, mapping, index,
1752 swp_to_radix_entry(swap), gfp,
1753 charge_mm);
1754 if (error)
1755 goto failed;
1756
1757 spin_lock_irq(&info->lock);
1758 info->swapped--;
1759 shmem_recalc_inode(inode);
1760 spin_unlock_irq(&info->lock);
1761
1762 if (sgp == SGP_WRITE)
1763 mark_page_accessed(page);
1764
1765 delete_from_swap_cache(page);
1766 set_page_dirty(page);
1767 swap_free(swap);
1768
1769 *pagep = page;
1770 return 0;
1771 failed:
1772 if (!shmem_confirm_swap(mapping, index, swap))
1773 error = -EEXIST;
1774 unlock:
1775 if (page) {
1776 unlock_page(page);
1777 put_page(page);
1778 }
1779
1780 return error;
1781 }
1782
1783 /*
1784 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1785 *
1786 * If we allocate a new one we do not mark it dirty. That's up to the
1787 * vm. If we swap it in we mark it dirty since we also free the swap
1788 * entry since a page cannot live in both the swap and page cache.
1789 *
1790 * vmf and fault_type are only supplied by shmem_fault:
1791 * otherwise they are NULL.
1792 */
1793 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1794 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1795 struct vm_area_struct *vma, struct vm_fault *vmf,
1796 vm_fault_t *fault_type)
1797 {
1798 struct address_space *mapping = inode->i_mapping;
1799 struct shmem_inode_info *info = SHMEM_I(inode);
1800 struct shmem_sb_info *sbinfo;
1801 struct mm_struct *charge_mm;
1802 struct page *page;
1803 enum sgp_type sgp_huge = sgp;
1804 pgoff_t hindex = index;
1805 int error;
1806 int once = 0;
1807 int alloced = 0;
1808
1809 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1810 return -EFBIG;
1811 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1812 sgp = SGP_CACHE;
1813 repeat:
1814 if (sgp <= SGP_CACHE &&
1815 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1816 return -EINVAL;
1817 }
1818
1819 sbinfo = SHMEM_SB(inode->i_sb);
1820 charge_mm = vma ? vma->vm_mm : current->mm;
1821
1822 page = find_lock_entry(mapping, index);
1823 if (xa_is_value(page)) {
1824 error = shmem_swapin_page(inode, index, &page,
1825 sgp, gfp, vma, fault_type);
1826 if (error == -EEXIST)
1827 goto repeat;
1828
1829 *pagep = page;
1830 return error;
1831 }
1832
1833 if (page)
1834 hindex = page->index;
1835 if (page && sgp == SGP_WRITE)
1836 mark_page_accessed(page);
1837
1838 /* fallocated page? */
1839 if (page && !PageUptodate(page)) {
1840 if (sgp != SGP_READ)
1841 goto clear;
1842 unlock_page(page);
1843 put_page(page);
1844 page = NULL;
1845 hindex = index;
1846 }
1847 if (page || sgp == SGP_READ)
1848 goto out;
1849
1850 /*
1851 * Fast cache lookup did not find it:
1852 * bring it back from swap or allocate.
1853 */
1854
1855 if (vma && userfaultfd_missing(vma)) {
1856 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1857 return 0;
1858 }
1859
1860 /* shmem_symlink() */
1861 if (!shmem_mapping(mapping))
1862 goto alloc_nohuge;
1863 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1864 goto alloc_nohuge;
1865 if (shmem_huge == SHMEM_HUGE_FORCE)
1866 goto alloc_huge;
1867 switch (sbinfo->huge) {
1868 case SHMEM_HUGE_NEVER:
1869 goto alloc_nohuge;
1870 case SHMEM_HUGE_WITHIN_SIZE: {
1871 loff_t i_size;
1872 pgoff_t off;
1873
1874 off = round_up(index, HPAGE_PMD_NR);
1875 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1876 if (i_size >= HPAGE_PMD_SIZE &&
1877 i_size >> PAGE_SHIFT >= off)
1878 goto alloc_huge;
1879
1880 fallthrough;
1881 }
1882 case SHMEM_HUGE_ADVISE:
1883 if (sgp_huge == SGP_HUGE)
1884 goto alloc_huge;
1885 /* TODO: implement fadvise() hints */
1886 goto alloc_nohuge;
1887 }
1888
1889 alloc_huge:
1890 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1891 if (IS_ERR(page)) {
1892 alloc_nohuge:
1893 page = shmem_alloc_and_acct_page(gfp, inode,
1894 index, false);
1895 }
1896 if (IS_ERR(page)) {
1897 int retry = 5;
1898
1899 error = PTR_ERR(page);
1900 page = NULL;
1901 if (error != -ENOSPC)
1902 goto unlock;
1903 /*
1904 * Try to reclaim some space by splitting a huge page
1905 * beyond i_size on the filesystem.
1906 */
1907 while (retry--) {
1908 int ret;
1909
1910 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1911 if (ret == SHRINK_STOP)
1912 break;
1913 if (ret)
1914 goto alloc_nohuge;
1915 }
1916 goto unlock;
1917 }
1918
1919 if (PageTransHuge(page))
1920 hindex = round_down(index, HPAGE_PMD_NR);
1921 else
1922 hindex = index;
1923
1924 if (sgp == SGP_WRITE)
1925 __SetPageReferenced(page);
1926
1927 error = shmem_add_to_page_cache(page, mapping, hindex,
1928 NULL, gfp & GFP_RECLAIM_MASK,
1929 charge_mm);
1930 if (error)
1931 goto unacct;
1932 lru_cache_add(page);
1933
1934 spin_lock_irq(&info->lock);
1935 info->alloced += compound_nr(page);
1936 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1937 shmem_recalc_inode(inode);
1938 spin_unlock_irq(&info->lock);
1939 alloced = true;
1940
1941 if (PageTransHuge(page) &&
1942 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1943 hindex + HPAGE_PMD_NR - 1) {
1944 /*
1945 * Part of the huge page is beyond i_size: subject
1946 * to shrink under memory pressure.
1947 */
1948 spin_lock(&sbinfo->shrinklist_lock);
1949 /*
1950 * _careful to defend against unlocked access to
1951 * ->shrink_list in shmem_unused_huge_shrink()
1952 */
1953 if (list_empty_careful(&info->shrinklist)) {
1954 list_add_tail(&info->shrinklist,
1955 &sbinfo->shrinklist);
1956 sbinfo->shrinklist_len++;
1957 }
1958 spin_unlock(&sbinfo->shrinklist_lock);
1959 }
1960
1961 /*
1962 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1963 */
1964 if (sgp == SGP_FALLOC)
1965 sgp = SGP_WRITE;
1966 clear:
1967 /*
1968 * Let SGP_WRITE caller clear ends if write does not fill page;
1969 * but SGP_FALLOC on a page fallocated earlier must initialize
1970 * it now, lest undo on failure cancel our earlier guarantee.
1971 */
1972 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1973 int i;
1974
1975 for (i = 0; i < compound_nr(page); i++) {
1976 clear_highpage(page + i);
1977 flush_dcache_page(page + i);
1978 }
1979 SetPageUptodate(page);
1980 }
1981
1982 /* Perhaps the file has been truncated since we checked */
1983 if (sgp <= SGP_CACHE &&
1984 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1985 if (alloced) {
1986 ClearPageDirty(page);
1987 delete_from_page_cache(page);
1988 spin_lock_irq(&info->lock);
1989 shmem_recalc_inode(inode);
1990 spin_unlock_irq(&info->lock);
1991 }
1992 error = -EINVAL;
1993 goto unlock;
1994 }
1995 out:
1996 *pagep = page + index - hindex;
1997 return 0;
1998
1999 /*
2000 * Error recovery.
2001 */
2002 unacct:
2003 shmem_inode_unacct_blocks(inode, compound_nr(page));
2004
2005 if (PageTransHuge(page)) {
2006 unlock_page(page);
2007 put_page(page);
2008 goto alloc_nohuge;
2009 }
2010 unlock:
2011 if (page) {
2012 unlock_page(page);
2013 put_page(page);
2014 }
2015 if (error == -ENOSPC && !once++) {
2016 spin_lock_irq(&info->lock);
2017 shmem_recalc_inode(inode);
2018 spin_unlock_irq(&info->lock);
2019 goto repeat;
2020 }
2021 if (error == -EEXIST)
2022 goto repeat;
2023 return error;
2024 }
2025
2026 /*
2027 * This is like autoremove_wake_function, but it removes the wait queue
2028 * entry unconditionally - even if something else had already woken the
2029 * target.
2030 */
2031 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2032 {
2033 int ret = default_wake_function(wait, mode, sync, key);
2034 list_del_init(&wait->entry);
2035 return ret;
2036 }
2037
2038 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2039 {
2040 struct vm_area_struct *vma = vmf->vma;
2041 struct inode *inode = file_inode(vma->vm_file);
2042 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2043 enum sgp_type sgp;
2044 int err;
2045 vm_fault_t ret = VM_FAULT_LOCKED;
2046
2047 /*
2048 * Trinity finds that probing a hole which tmpfs is punching can
2049 * prevent the hole-punch from ever completing: which in turn
2050 * locks writers out with its hold on i_mutex. So refrain from
2051 * faulting pages into the hole while it's being punched. Although
2052 * shmem_undo_range() does remove the additions, it may be unable to
2053 * keep up, as each new page needs its own unmap_mapping_range() call,
2054 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2055 *
2056 * It does not matter if we sometimes reach this check just before the
2057 * hole-punch begins, so that one fault then races with the punch:
2058 * we just need to make racing faults a rare case.
2059 *
2060 * The implementation below would be much simpler if we just used a
2061 * standard mutex or completion: but we cannot take i_mutex in fault,
2062 * and bloating every shmem inode for this unlikely case would be sad.
2063 */
2064 if (unlikely(inode->i_private)) {
2065 struct shmem_falloc *shmem_falloc;
2066
2067 spin_lock(&inode->i_lock);
2068 shmem_falloc = inode->i_private;
2069 if (shmem_falloc &&
2070 shmem_falloc->waitq &&
2071 vmf->pgoff >= shmem_falloc->start &&
2072 vmf->pgoff < shmem_falloc->next) {
2073 struct file *fpin;
2074 wait_queue_head_t *shmem_falloc_waitq;
2075 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2076
2077 ret = VM_FAULT_NOPAGE;
2078 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2079 if (fpin)
2080 ret = VM_FAULT_RETRY;
2081
2082 shmem_falloc_waitq = shmem_falloc->waitq;
2083 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2084 TASK_UNINTERRUPTIBLE);
2085 spin_unlock(&inode->i_lock);
2086 schedule();
2087
2088 /*
2089 * shmem_falloc_waitq points into the shmem_fallocate()
2090 * stack of the hole-punching task: shmem_falloc_waitq
2091 * is usually invalid by the time we reach here, but
2092 * finish_wait() does not dereference it in that case;
2093 * though i_lock needed lest racing with wake_up_all().
2094 */
2095 spin_lock(&inode->i_lock);
2096 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2097 spin_unlock(&inode->i_lock);
2098
2099 if (fpin)
2100 fput(fpin);
2101 return ret;
2102 }
2103 spin_unlock(&inode->i_lock);
2104 }
2105
2106 sgp = SGP_CACHE;
2107
2108 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2109 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2110 sgp = SGP_NOHUGE;
2111 else if (vma->vm_flags & VM_HUGEPAGE)
2112 sgp = SGP_HUGE;
2113
2114 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2115 gfp, vma, vmf, &ret);
2116 if (err)
2117 return vmf_error(err);
2118 return ret;
2119 }
2120
2121 unsigned long shmem_get_unmapped_area(struct file *file,
2122 unsigned long uaddr, unsigned long len,
2123 unsigned long pgoff, unsigned long flags)
2124 {
2125 unsigned long (*get_area)(struct file *,
2126 unsigned long, unsigned long, unsigned long, unsigned long);
2127 unsigned long addr;
2128 unsigned long offset;
2129 unsigned long inflated_len;
2130 unsigned long inflated_addr;
2131 unsigned long inflated_offset;
2132
2133 if (len > TASK_SIZE)
2134 return -ENOMEM;
2135
2136 get_area = current->mm->get_unmapped_area;
2137 addr = get_area(file, uaddr, len, pgoff, flags);
2138
2139 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2140 return addr;
2141 if (IS_ERR_VALUE(addr))
2142 return addr;
2143 if (addr & ~PAGE_MASK)
2144 return addr;
2145 if (addr > TASK_SIZE - len)
2146 return addr;
2147
2148 if (shmem_huge == SHMEM_HUGE_DENY)
2149 return addr;
2150 if (len < HPAGE_PMD_SIZE)
2151 return addr;
2152 if (flags & MAP_FIXED)
2153 return addr;
2154 /*
2155 * Our priority is to support MAP_SHARED mapped hugely;
2156 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2157 * But if caller specified an address hint and we allocated area there
2158 * successfully, respect that as before.
2159 */
2160 if (uaddr == addr)
2161 return addr;
2162
2163 if (shmem_huge != SHMEM_HUGE_FORCE) {
2164 struct super_block *sb;
2165
2166 if (file) {
2167 VM_BUG_ON(file->f_op != &shmem_file_operations);
2168 sb = file_inode(file)->i_sb;
2169 } else {
2170 /*
2171 * Called directly from mm/mmap.c, or drivers/char/mem.c
2172 * for "/dev/zero", to create a shared anonymous object.
2173 */
2174 if (IS_ERR(shm_mnt))
2175 return addr;
2176 sb = shm_mnt->mnt_sb;
2177 }
2178 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2179 return addr;
2180 }
2181
2182 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2183 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2184 return addr;
2185 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2186 return addr;
2187
2188 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2189 if (inflated_len > TASK_SIZE)
2190 return addr;
2191 if (inflated_len < len)
2192 return addr;
2193
2194 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2195 if (IS_ERR_VALUE(inflated_addr))
2196 return addr;
2197 if (inflated_addr & ~PAGE_MASK)
2198 return addr;
2199
2200 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2201 inflated_addr += offset - inflated_offset;
2202 if (inflated_offset > offset)
2203 inflated_addr += HPAGE_PMD_SIZE;
2204
2205 if (inflated_addr > TASK_SIZE - len)
2206 return addr;
2207 return inflated_addr;
2208 }
2209
2210 #ifdef CONFIG_NUMA
2211 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2212 {
2213 struct inode *inode = file_inode(vma->vm_file);
2214 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2215 }
2216
2217 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2218 unsigned long addr)
2219 {
2220 struct inode *inode = file_inode(vma->vm_file);
2221 pgoff_t index;
2222
2223 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2224 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2225 }
2226 #endif
2227
2228 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2229 {
2230 struct inode *inode = file_inode(file);
2231 struct shmem_inode_info *info = SHMEM_I(inode);
2232 int retval = -ENOMEM;
2233
2234 /*
2235 * What serializes the accesses to info->flags?
2236 * ipc_lock_object() when called from shmctl_do_lock(),
2237 * no serialization needed when called from shm_destroy().
2238 */
2239 if (lock && !(info->flags & VM_LOCKED)) {
2240 if (!user_shm_lock(inode->i_size, user))
2241 goto out_nomem;
2242 info->flags |= VM_LOCKED;
2243 mapping_set_unevictable(file->f_mapping);
2244 }
2245 if (!lock && (info->flags & VM_LOCKED) && user) {
2246 user_shm_unlock(inode->i_size, user);
2247 info->flags &= ~VM_LOCKED;
2248 mapping_clear_unevictable(file->f_mapping);
2249 }
2250 retval = 0;
2251
2252 out_nomem:
2253 return retval;
2254 }
2255
2256 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2257 {
2258 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2259
2260 if (info->seals & F_SEAL_FUTURE_WRITE) {
2261 /*
2262 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2263 * "future write" seal active.
2264 */
2265 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2266 return -EPERM;
2267
2268 /*
2269 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2270 * MAP_SHARED and read-only, take care to not allow mprotect to
2271 * revert protections on such mappings. Do this only for shared
2272 * mappings. For private mappings, don't need to mask
2273 * VM_MAYWRITE as we still want them to be COW-writable.
2274 */
2275 if (vma->vm_flags & VM_SHARED)
2276 vma->vm_flags &= ~(VM_MAYWRITE);
2277 }
2278
2279 /* arm64 - allow memory tagging on RAM-based files */
2280 vma->vm_flags |= VM_MTE_ALLOWED;
2281
2282 file_accessed(file);
2283 vma->vm_ops = &shmem_vm_ops;
2284 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2285 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2286 (vma->vm_end & HPAGE_PMD_MASK)) {
2287 khugepaged_enter(vma, vma->vm_flags);
2288 }
2289 return 0;
2290 }
2291
2292 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2293 umode_t mode, dev_t dev, unsigned long flags)
2294 {
2295 struct inode *inode;
2296 struct shmem_inode_info *info;
2297 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2298 ino_t ino;
2299
2300 if (shmem_reserve_inode(sb, &ino))
2301 return NULL;
2302
2303 inode = new_inode(sb);
2304 if (inode) {
2305 inode->i_ino = ino;
2306 inode_init_owner(inode, dir, mode);
2307 inode->i_blocks = 0;
2308 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2309 inode->i_generation = prandom_u32();
2310 info = SHMEM_I(inode);
2311 memset(info, 0, (char *)inode - (char *)info);
2312 spin_lock_init(&info->lock);
2313 atomic_set(&info->stop_eviction, 0);
2314 info->seals = F_SEAL_SEAL;
2315 info->flags = flags & VM_NORESERVE;
2316 INIT_LIST_HEAD(&info->shrinklist);
2317 INIT_LIST_HEAD(&info->swaplist);
2318 simple_xattrs_init(&info->xattrs);
2319 cache_no_acl(inode);
2320
2321 switch (mode & S_IFMT) {
2322 default:
2323 inode->i_op = &shmem_special_inode_operations;
2324 init_special_inode(inode, mode, dev);
2325 break;
2326 case S_IFREG:
2327 inode->i_mapping->a_ops = &shmem_aops;
2328 inode->i_op = &shmem_inode_operations;
2329 inode->i_fop = &shmem_file_operations;
2330 mpol_shared_policy_init(&info->policy,
2331 shmem_get_sbmpol(sbinfo));
2332 break;
2333 case S_IFDIR:
2334 inc_nlink(inode);
2335 /* Some things misbehave if size == 0 on a directory */
2336 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2337 inode->i_op = &shmem_dir_inode_operations;
2338 inode->i_fop = &simple_dir_operations;
2339 break;
2340 case S_IFLNK:
2341 /*
2342 * Must not load anything in the rbtree,
2343 * mpol_free_shared_policy will not be called.
2344 */
2345 mpol_shared_policy_init(&info->policy, NULL);
2346 break;
2347 }
2348
2349 lockdep_annotate_inode_mutex_key(inode);
2350 } else
2351 shmem_free_inode(sb);
2352 return inode;
2353 }
2354
2355 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2356 pmd_t *dst_pmd,
2357 struct vm_area_struct *dst_vma,
2358 unsigned long dst_addr,
2359 unsigned long src_addr,
2360 bool zeropage,
2361 struct page **pagep)
2362 {
2363 struct inode *inode = file_inode(dst_vma->vm_file);
2364 struct shmem_inode_info *info = SHMEM_I(inode);
2365 struct address_space *mapping = inode->i_mapping;
2366 gfp_t gfp = mapping_gfp_mask(mapping);
2367 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2368 spinlock_t *ptl;
2369 void *page_kaddr;
2370 struct page *page;
2371 pte_t _dst_pte, *dst_pte;
2372 int ret;
2373 pgoff_t offset, max_off;
2374
2375 ret = -ENOMEM;
2376 if (!shmem_inode_acct_block(inode, 1))
2377 goto out;
2378
2379 if (!*pagep) {
2380 page = shmem_alloc_page(gfp, info, pgoff);
2381 if (!page)
2382 goto out_unacct_blocks;
2383
2384 if (!zeropage) { /* mcopy_atomic */
2385 page_kaddr = kmap_atomic(page);
2386 ret = copy_from_user(page_kaddr,
2387 (const void __user *)src_addr,
2388 PAGE_SIZE);
2389 kunmap_atomic(page_kaddr);
2390
2391 /* fallback to copy_from_user outside mmap_lock */
2392 if (unlikely(ret)) {
2393 *pagep = page;
2394 shmem_inode_unacct_blocks(inode, 1);
2395 /* don't free the page */
2396 return -ENOENT;
2397 }
2398 } else { /* mfill_zeropage_atomic */
2399 clear_highpage(page);
2400 }
2401 } else {
2402 page = *pagep;
2403 *pagep = NULL;
2404 }
2405
2406 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2407 __SetPageLocked(page);
2408 __SetPageSwapBacked(page);
2409 __SetPageUptodate(page);
2410
2411 ret = -EFAULT;
2412 offset = linear_page_index(dst_vma, dst_addr);
2413 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2414 if (unlikely(offset >= max_off))
2415 goto out_release;
2416
2417 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2418 gfp & GFP_RECLAIM_MASK, dst_mm);
2419 if (ret)
2420 goto out_release;
2421
2422 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2423 if (dst_vma->vm_flags & VM_WRITE)
2424 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2425 else {
2426 /*
2427 * We don't set the pte dirty if the vma has no
2428 * VM_WRITE permission, so mark the page dirty or it
2429 * could be freed from under us. We could do it
2430 * unconditionally before unlock_page(), but doing it
2431 * only if VM_WRITE is not set is faster.
2432 */
2433 set_page_dirty(page);
2434 }
2435
2436 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2437
2438 ret = -EFAULT;
2439 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2440 if (unlikely(offset >= max_off))
2441 goto out_release_unlock;
2442
2443 ret = -EEXIST;
2444 if (!pte_none(*dst_pte))
2445 goto out_release_unlock;
2446
2447 lru_cache_add(page);
2448
2449 spin_lock_irq(&info->lock);
2450 info->alloced++;
2451 inode->i_blocks += BLOCKS_PER_PAGE;
2452 shmem_recalc_inode(inode);
2453 spin_unlock_irq(&info->lock);
2454
2455 inc_mm_counter(dst_mm, mm_counter_file(page));
2456 page_add_file_rmap(page, false);
2457 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2458
2459 /* No need to invalidate - it was non-present before */
2460 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2461 pte_unmap_unlock(dst_pte, ptl);
2462 unlock_page(page);
2463 ret = 0;
2464 out:
2465 return ret;
2466 out_release_unlock:
2467 pte_unmap_unlock(dst_pte, ptl);
2468 ClearPageDirty(page);
2469 delete_from_page_cache(page);
2470 out_release:
2471 unlock_page(page);
2472 put_page(page);
2473 out_unacct_blocks:
2474 shmem_inode_unacct_blocks(inode, 1);
2475 goto out;
2476 }
2477
2478 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2479 pmd_t *dst_pmd,
2480 struct vm_area_struct *dst_vma,
2481 unsigned long dst_addr,
2482 unsigned long src_addr,
2483 struct page **pagep)
2484 {
2485 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2486 dst_addr, src_addr, false, pagep);
2487 }
2488
2489 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2490 pmd_t *dst_pmd,
2491 struct vm_area_struct *dst_vma,
2492 unsigned long dst_addr)
2493 {
2494 struct page *page = NULL;
2495
2496 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2497 dst_addr, 0, true, &page);
2498 }
2499
2500 #ifdef CONFIG_TMPFS
2501 static const struct inode_operations shmem_symlink_inode_operations;
2502 static const struct inode_operations shmem_short_symlink_operations;
2503
2504 #ifdef CONFIG_TMPFS_XATTR
2505 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2506 #else
2507 #define shmem_initxattrs NULL
2508 #endif
2509
2510 static int
2511 shmem_write_begin(struct file *file, struct address_space *mapping,
2512 loff_t pos, unsigned len, unsigned flags,
2513 struct page **pagep, void **fsdata)
2514 {
2515 struct inode *inode = mapping->host;
2516 struct shmem_inode_info *info = SHMEM_I(inode);
2517 pgoff_t index = pos >> PAGE_SHIFT;
2518
2519 /* i_mutex is held by caller */
2520 if (unlikely(info->seals & (F_SEAL_GROW |
2521 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2522 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2523 return -EPERM;
2524 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2525 return -EPERM;
2526 }
2527
2528 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2529 }
2530
2531 static int
2532 shmem_write_end(struct file *file, struct address_space *mapping,
2533 loff_t pos, unsigned len, unsigned copied,
2534 struct page *page, void *fsdata)
2535 {
2536 struct inode *inode = mapping->host;
2537
2538 if (pos + copied > inode->i_size)
2539 i_size_write(inode, pos + copied);
2540
2541 if (!PageUptodate(page)) {
2542 struct page *head = compound_head(page);
2543 if (PageTransCompound(page)) {
2544 int i;
2545
2546 for (i = 0; i < HPAGE_PMD_NR; i++) {
2547 if (head + i == page)
2548 continue;
2549 clear_highpage(head + i);
2550 flush_dcache_page(head + i);
2551 }
2552 }
2553 if (copied < PAGE_SIZE) {
2554 unsigned from = pos & (PAGE_SIZE - 1);
2555 zero_user_segments(page, 0, from,
2556 from + copied, PAGE_SIZE);
2557 }
2558 SetPageUptodate(head);
2559 }
2560 set_page_dirty(page);
2561 unlock_page(page);
2562 put_page(page);
2563
2564 return copied;
2565 }
2566
2567 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2568 {
2569 struct file *file = iocb->ki_filp;
2570 struct inode *inode = file_inode(file);
2571 struct address_space *mapping = inode->i_mapping;
2572 pgoff_t index;
2573 unsigned long offset;
2574 enum sgp_type sgp = SGP_READ;
2575 int error = 0;
2576 ssize_t retval = 0;
2577 loff_t *ppos = &iocb->ki_pos;
2578
2579 /*
2580 * Might this read be for a stacking filesystem? Then when reading
2581 * holes of a sparse file, we actually need to allocate those pages,
2582 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2583 */
2584 if (!iter_is_iovec(to))
2585 sgp = SGP_CACHE;
2586
2587 index = *ppos >> PAGE_SHIFT;
2588 offset = *ppos & ~PAGE_MASK;
2589
2590 for (;;) {
2591 struct page *page = NULL;
2592 pgoff_t end_index;
2593 unsigned long nr, ret;
2594 loff_t i_size = i_size_read(inode);
2595
2596 end_index = i_size >> PAGE_SHIFT;
2597 if (index > end_index)
2598 break;
2599 if (index == end_index) {
2600 nr = i_size & ~PAGE_MASK;
2601 if (nr <= offset)
2602 break;
2603 }
2604
2605 error = shmem_getpage(inode, index, &page, sgp);
2606 if (error) {
2607 if (error == -EINVAL)
2608 error = 0;
2609 break;
2610 }
2611 if (page) {
2612 if (sgp == SGP_CACHE)
2613 set_page_dirty(page);
2614 unlock_page(page);
2615 }
2616
2617 /*
2618 * We must evaluate after, since reads (unlike writes)
2619 * are called without i_mutex protection against truncate
2620 */
2621 nr = PAGE_SIZE;
2622 i_size = i_size_read(inode);
2623 end_index = i_size >> PAGE_SHIFT;
2624 if (index == end_index) {
2625 nr = i_size & ~PAGE_MASK;
2626 if (nr <= offset) {
2627 if (page)
2628 put_page(page);
2629 break;
2630 }
2631 }
2632 nr -= offset;
2633
2634 if (page) {
2635 /*
2636 * If users can be writing to this page using arbitrary
2637 * virtual addresses, take care about potential aliasing
2638 * before reading the page on the kernel side.
2639 */
2640 if (mapping_writably_mapped(mapping))
2641 flush_dcache_page(page);
2642 /*
2643 * Mark the page accessed if we read the beginning.
2644 */
2645 if (!offset)
2646 mark_page_accessed(page);
2647 } else {
2648 page = ZERO_PAGE(0);
2649 get_page(page);
2650 }
2651
2652 /*
2653 * Ok, we have the page, and it's up-to-date, so
2654 * now we can copy it to user space...
2655 */
2656 ret = copy_page_to_iter(page, offset, nr, to);
2657 retval += ret;
2658 offset += ret;
2659 index += offset >> PAGE_SHIFT;
2660 offset &= ~PAGE_MASK;
2661
2662 put_page(page);
2663 if (!iov_iter_count(to))
2664 break;
2665 if (ret < nr) {
2666 error = -EFAULT;
2667 break;
2668 }
2669 cond_resched();
2670 }
2671
2672 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2673 file_accessed(file);
2674 return retval ? retval : error;
2675 }
2676
2677 /*
2678 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2679 */
2680 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2681 pgoff_t index, pgoff_t end, int whence)
2682 {
2683 struct page *page;
2684 struct pagevec pvec;
2685 pgoff_t indices[PAGEVEC_SIZE];
2686 bool done = false;
2687 int i;
2688
2689 pagevec_init(&pvec);
2690 pvec.nr = 1; /* start small: we may be there already */
2691 while (!done) {
2692 pvec.nr = find_get_entries(mapping, index,
2693 pvec.nr, pvec.pages, indices);
2694 if (!pvec.nr) {
2695 if (whence == SEEK_DATA)
2696 index = end;
2697 break;
2698 }
2699 for (i = 0; i < pvec.nr; i++, index++) {
2700 if (index < indices[i]) {
2701 if (whence == SEEK_HOLE) {
2702 done = true;
2703 break;
2704 }
2705 index = indices[i];
2706 }
2707 page = pvec.pages[i];
2708 if (page && !xa_is_value(page)) {
2709 if (!PageUptodate(page))
2710 page = NULL;
2711 }
2712 if (index >= end ||
2713 (page && whence == SEEK_DATA) ||
2714 (!page && whence == SEEK_HOLE)) {
2715 done = true;
2716 break;
2717 }
2718 }
2719 pagevec_remove_exceptionals(&pvec);
2720 pagevec_release(&pvec);
2721 pvec.nr = PAGEVEC_SIZE;
2722 cond_resched();
2723 }
2724 return index;
2725 }
2726
2727 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2728 {
2729 struct address_space *mapping = file->f_mapping;
2730 struct inode *inode = mapping->host;
2731 pgoff_t start, end;
2732 loff_t new_offset;
2733
2734 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2735 return generic_file_llseek_size(file, offset, whence,
2736 MAX_LFS_FILESIZE, i_size_read(inode));
2737 inode_lock(inode);
2738 /* We're holding i_mutex so we can access i_size directly */
2739
2740 if (offset < 0 || offset >= inode->i_size)
2741 offset = -ENXIO;
2742 else {
2743 start = offset >> PAGE_SHIFT;
2744 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2745 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2746 new_offset <<= PAGE_SHIFT;
2747 if (new_offset > offset) {
2748 if (new_offset < inode->i_size)
2749 offset = new_offset;
2750 else if (whence == SEEK_DATA)
2751 offset = -ENXIO;
2752 else
2753 offset = inode->i_size;
2754 }
2755 }
2756
2757 if (offset >= 0)
2758 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2759 inode_unlock(inode);
2760 return offset;
2761 }
2762
2763 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2764 loff_t len)
2765 {
2766 struct inode *inode = file_inode(file);
2767 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2768 struct shmem_inode_info *info = SHMEM_I(inode);
2769 struct shmem_falloc shmem_falloc;
2770 pgoff_t start, index, end;
2771 int error;
2772
2773 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2774 return -EOPNOTSUPP;
2775
2776 inode_lock(inode);
2777
2778 if (mode & FALLOC_FL_PUNCH_HOLE) {
2779 struct address_space *mapping = file->f_mapping;
2780 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2781 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2782 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2783
2784 /* protected by i_mutex */
2785 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2786 error = -EPERM;
2787 goto out;
2788 }
2789
2790 shmem_falloc.waitq = &shmem_falloc_waitq;
2791 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2792 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2793 spin_lock(&inode->i_lock);
2794 inode->i_private = &shmem_falloc;
2795 spin_unlock(&inode->i_lock);
2796
2797 if ((u64)unmap_end > (u64)unmap_start)
2798 unmap_mapping_range(mapping, unmap_start,
2799 1 + unmap_end - unmap_start, 0);
2800 shmem_truncate_range(inode, offset, offset + len - 1);
2801 /* No need to unmap again: hole-punching leaves COWed pages */
2802
2803 spin_lock(&inode->i_lock);
2804 inode->i_private = NULL;
2805 wake_up_all(&shmem_falloc_waitq);
2806 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2807 spin_unlock(&inode->i_lock);
2808 error = 0;
2809 goto out;
2810 }
2811
2812 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2813 error = inode_newsize_ok(inode, offset + len);
2814 if (error)
2815 goto out;
2816
2817 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2818 error = -EPERM;
2819 goto out;
2820 }
2821
2822 start = offset >> PAGE_SHIFT;
2823 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2824 /* Try to avoid a swapstorm if len is impossible to satisfy */
2825 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2826 error = -ENOSPC;
2827 goto out;
2828 }
2829
2830 shmem_falloc.waitq = NULL;
2831 shmem_falloc.start = start;
2832 shmem_falloc.next = start;
2833 shmem_falloc.nr_falloced = 0;
2834 shmem_falloc.nr_unswapped = 0;
2835 spin_lock(&inode->i_lock);
2836 inode->i_private = &shmem_falloc;
2837 spin_unlock(&inode->i_lock);
2838
2839 for (index = start; index < end; index++) {
2840 struct page *page;
2841
2842 /*
2843 * Good, the fallocate(2) manpage permits EINTR: we may have
2844 * been interrupted because we are using up too much memory.
2845 */
2846 if (signal_pending(current))
2847 error = -EINTR;
2848 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2849 error = -ENOMEM;
2850 else
2851 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2852 if (error) {
2853 /* Remove the !PageUptodate pages we added */
2854 if (index > start) {
2855 shmem_undo_range(inode,
2856 (loff_t)start << PAGE_SHIFT,
2857 ((loff_t)index << PAGE_SHIFT) - 1, true);
2858 }
2859 goto undone;
2860 }
2861
2862 /*
2863 * Inform shmem_writepage() how far we have reached.
2864 * No need for lock or barrier: we have the page lock.
2865 */
2866 shmem_falloc.next++;
2867 if (!PageUptodate(page))
2868 shmem_falloc.nr_falloced++;
2869
2870 /*
2871 * If !PageUptodate, leave it that way so that freeable pages
2872 * can be recognized if we need to rollback on error later.
2873 * But set_page_dirty so that memory pressure will swap rather
2874 * than free the pages we are allocating (and SGP_CACHE pages
2875 * might still be clean: we now need to mark those dirty too).
2876 */
2877 set_page_dirty(page);
2878 unlock_page(page);
2879 put_page(page);
2880 cond_resched();
2881 }
2882
2883 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2884 i_size_write(inode, offset + len);
2885 inode->i_ctime = current_time(inode);
2886 undone:
2887 spin_lock(&inode->i_lock);
2888 inode->i_private = NULL;
2889 spin_unlock(&inode->i_lock);
2890 out:
2891 inode_unlock(inode);
2892 return error;
2893 }
2894
2895 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2896 {
2897 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2898
2899 buf->f_type = TMPFS_MAGIC;
2900 buf->f_bsize = PAGE_SIZE;
2901 buf->f_namelen = NAME_MAX;
2902 if (sbinfo->max_blocks) {
2903 buf->f_blocks = sbinfo->max_blocks;
2904 buf->f_bavail =
2905 buf->f_bfree = sbinfo->max_blocks -
2906 percpu_counter_sum(&sbinfo->used_blocks);
2907 }
2908 if (sbinfo->max_inodes) {
2909 buf->f_files = sbinfo->max_inodes;
2910 buf->f_ffree = sbinfo->free_inodes;
2911 }
2912 /* else leave those fields 0 like simple_statfs */
2913 return 0;
2914 }
2915
2916 /*
2917 * File creation. Allocate an inode, and we're done..
2918 */
2919 static int
2920 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2921 {
2922 struct inode *inode;
2923 int error = -ENOSPC;
2924
2925 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2926 if (inode) {
2927 error = simple_acl_create(dir, inode);
2928 if (error)
2929 goto out_iput;
2930 error = security_inode_init_security(inode, dir,
2931 &dentry->d_name,
2932 shmem_initxattrs, NULL);
2933 if (error && error != -EOPNOTSUPP)
2934 goto out_iput;
2935
2936 error = 0;
2937 dir->i_size += BOGO_DIRENT_SIZE;
2938 dir->i_ctime = dir->i_mtime = current_time(dir);
2939 d_instantiate(dentry, inode);
2940 dget(dentry); /* Extra count - pin the dentry in core */
2941 }
2942 return error;
2943 out_iput:
2944 iput(inode);
2945 return error;
2946 }
2947
2948 static int
2949 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2950 {
2951 struct inode *inode;
2952 int error = -ENOSPC;
2953
2954 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2955 if (inode) {
2956 error = security_inode_init_security(inode, dir,
2957 NULL,
2958 shmem_initxattrs, NULL);
2959 if (error && error != -EOPNOTSUPP)
2960 goto out_iput;
2961 error = simple_acl_create(dir, inode);
2962 if (error)
2963 goto out_iput;
2964 d_tmpfile(dentry, inode);
2965 }
2966 return error;
2967 out_iput:
2968 iput(inode);
2969 return error;
2970 }
2971
2972 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2973 {
2974 int error;
2975
2976 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2977 return error;
2978 inc_nlink(dir);
2979 return 0;
2980 }
2981
2982 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2983 bool excl)
2984 {
2985 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2986 }
2987
2988 /*
2989 * Link a file..
2990 */
2991 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2992 {
2993 struct inode *inode = d_inode(old_dentry);
2994 int ret = 0;
2995
2996 /*
2997 * No ordinary (disk based) filesystem counts links as inodes;
2998 * but each new link needs a new dentry, pinning lowmem, and
2999 * tmpfs dentries cannot be pruned until they are unlinked.
3000 * But if an O_TMPFILE file is linked into the tmpfs, the
3001 * first link must skip that, to get the accounting right.
3002 */
3003 if (inode->i_nlink) {
3004 ret = shmem_reserve_inode(inode->i_sb, NULL);
3005 if (ret)
3006 goto out;
3007 }
3008
3009 dir->i_size += BOGO_DIRENT_SIZE;
3010 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3011 inc_nlink(inode);
3012 ihold(inode); /* New dentry reference */
3013 dget(dentry); /* Extra pinning count for the created dentry */
3014 d_instantiate(dentry, inode);
3015 out:
3016 return ret;
3017 }
3018
3019 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3020 {
3021 struct inode *inode = d_inode(dentry);
3022
3023 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3024 shmem_free_inode(inode->i_sb);
3025
3026 dir->i_size -= BOGO_DIRENT_SIZE;
3027 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3028 drop_nlink(inode);
3029 dput(dentry); /* Undo the count from "create" - this does all the work */
3030 return 0;
3031 }
3032
3033 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3034 {
3035 if (!simple_empty(dentry))
3036 return -ENOTEMPTY;
3037
3038 drop_nlink(d_inode(dentry));
3039 drop_nlink(dir);
3040 return shmem_unlink(dir, dentry);
3041 }
3042
3043 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3044 {
3045 bool old_is_dir = d_is_dir(old_dentry);
3046 bool new_is_dir = d_is_dir(new_dentry);
3047
3048 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3049 if (old_is_dir) {
3050 drop_nlink(old_dir);
3051 inc_nlink(new_dir);
3052 } else {
3053 drop_nlink(new_dir);
3054 inc_nlink(old_dir);
3055 }
3056 }
3057 old_dir->i_ctime = old_dir->i_mtime =
3058 new_dir->i_ctime = new_dir->i_mtime =
3059 d_inode(old_dentry)->i_ctime =
3060 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3061
3062 return 0;
3063 }
3064
3065 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3066 {
3067 struct dentry *whiteout;
3068 int error;
3069
3070 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3071 if (!whiteout)
3072 return -ENOMEM;
3073
3074 error = shmem_mknod(old_dir, whiteout,
3075 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3076 dput(whiteout);
3077 if (error)
3078 return error;
3079
3080 /*
3081 * Cheat and hash the whiteout while the old dentry is still in
3082 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3083 *
3084 * d_lookup() will consistently find one of them at this point,
3085 * not sure which one, but that isn't even important.
3086 */
3087 d_rehash(whiteout);
3088 return 0;
3089 }
3090
3091 /*
3092 * The VFS layer already does all the dentry stuff for rename,
3093 * we just have to decrement the usage count for the target if
3094 * it exists so that the VFS layer correctly free's it when it
3095 * gets overwritten.
3096 */
3097 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3098 {
3099 struct inode *inode = d_inode(old_dentry);
3100 int they_are_dirs = S_ISDIR(inode->i_mode);
3101
3102 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3103 return -EINVAL;
3104
3105 if (flags & RENAME_EXCHANGE)
3106 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3107
3108 if (!simple_empty(new_dentry))
3109 return -ENOTEMPTY;
3110
3111 if (flags & RENAME_WHITEOUT) {
3112 int error;
3113
3114 error = shmem_whiteout(old_dir, old_dentry);
3115 if (error)
3116 return error;
3117 }
3118
3119 if (d_really_is_positive(new_dentry)) {
3120 (void) shmem_unlink(new_dir, new_dentry);
3121 if (they_are_dirs) {
3122 drop_nlink(d_inode(new_dentry));
3123 drop_nlink(old_dir);
3124 }
3125 } else if (they_are_dirs) {
3126 drop_nlink(old_dir);
3127 inc_nlink(new_dir);
3128 }
3129
3130 old_dir->i_size -= BOGO_DIRENT_SIZE;
3131 new_dir->i_size += BOGO_DIRENT_SIZE;
3132 old_dir->i_ctime = old_dir->i_mtime =
3133 new_dir->i_ctime = new_dir->i_mtime =
3134 inode->i_ctime = current_time(old_dir);
3135 return 0;
3136 }
3137
3138 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3139 {
3140 int error;
3141 int len;
3142 struct inode *inode;
3143 struct page *page;
3144
3145 len = strlen(symname) + 1;
3146 if (len > PAGE_SIZE)
3147 return -ENAMETOOLONG;
3148
3149 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3150 VM_NORESERVE);
3151 if (!inode)
3152 return -ENOSPC;
3153
3154 error = security_inode_init_security(inode, dir, &dentry->d_name,
3155 shmem_initxattrs, NULL);
3156 if (error && error != -EOPNOTSUPP) {
3157 iput(inode);
3158 return error;
3159 }
3160
3161 inode->i_size = len-1;
3162 if (len <= SHORT_SYMLINK_LEN) {
3163 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3164 if (!inode->i_link) {
3165 iput(inode);
3166 return -ENOMEM;
3167 }
3168 inode->i_op = &shmem_short_symlink_operations;
3169 } else {
3170 inode_nohighmem(inode);
3171 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3172 if (error) {
3173 iput(inode);
3174 return error;
3175 }
3176 inode->i_mapping->a_ops = &shmem_aops;
3177 inode->i_op = &shmem_symlink_inode_operations;
3178 memcpy(page_address(page), symname, len);
3179 SetPageUptodate(page);
3180 set_page_dirty(page);
3181 unlock_page(page);
3182 put_page(page);
3183 }
3184 dir->i_size += BOGO_DIRENT_SIZE;
3185 dir->i_ctime = dir->i_mtime = current_time(dir);
3186 d_instantiate(dentry, inode);
3187 dget(dentry);
3188 return 0;
3189 }
3190
3191 static void shmem_put_link(void *arg)
3192 {
3193 mark_page_accessed(arg);
3194 put_page(arg);
3195 }
3196
3197 static const char *shmem_get_link(struct dentry *dentry,
3198 struct inode *inode,
3199 struct delayed_call *done)
3200 {
3201 struct page *page = NULL;
3202 int error;
3203 if (!dentry) {
3204 page = find_get_page(inode->i_mapping, 0);
3205 if (!page)
3206 return ERR_PTR(-ECHILD);
3207 if (!PageUptodate(page)) {
3208 put_page(page);
3209 return ERR_PTR(-ECHILD);
3210 }
3211 } else {
3212 error = shmem_getpage(inode, 0, &page, SGP_READ);
3213 if (error)
3214 return ERR_PTR(error);
3215 unlock_page(page);
3216 }
3217 set_delayed_call(done, shmem_put_link, page);
3218 return page_address(page);
3219 }
3220
3221 #ifdef CONFIG_TMPFS_XATTR
3222 /*
3223 * Superblocks without xattr inode operations may get some security.* xattr
3224 * support from the LSM "for free". As soon as we have any other xattrs
3225 * like ACLs, we also need to implement the security.* handlers at
3226 * filesystem level, though.
3227 */
3228
3229 /*
3230 * Callback for security_inode_init_security() for acquiring xattrs.
3231 */
3232 static int shmem_initxattrs(struct inode *inode,
3233 const struct xattr *xattr_array,
3234 void *fs_info)
3235 {
3236 struct shmem_inode_info *info = SHMEM_I(inode);
3237 const struct xattr *xattr;
3238 struct simple_xattr *new_xattr;
3239 size_t len;
3240
3241 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3242 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3243 if (!new_xattr)
3244 return -ENOMEM;
3245
3246 len = strlen(xattr->name) + 1;
3247 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3248 GFP_KERNEL);
3249 if (!new_xattr->name) {
3250 kvfree(new_xattr);
3251 return -ENOMEM;
3252 }
3253
3254 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3255 XATTR_SECURITY_PREFIX_LEN);
3256 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3257 xattr->name, len);
3258
3259 simple_xattr_list_add(&info->xattrs, new_xattr);
3260 }
3261
3262 return 0;
3263 }
3264
3265 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3266 struct dentry *unused, struct inode *inode,
3267 const char *name, void *buffer, size_t size)
3268 {
3269 struct shmem_inode_info *info = SHMEM_I(inode);
3270
3271 name = xattr_full_name(handler, name);
3272 return simple_xattr_get(&info->xattrs, name, buffer, size);
3273 }
3274
3275 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3276 struct dentry *unused, struct inode *inode,
3277 const char *name, const void *value,
3278 size_t size, int flags)
3279 {
3280 struct shmem_inode_info *info = SHMEM_I(inode);
3281
3282 name = xattr_full_name(handler, name);
3283 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3284 }
3285
3286 static const struct xattr_handler shmem_security_xattr_handler = {
3287 .prefix = XATTR_SECURITY_PREFIX,
3288 .get = shmem_xattr_handler_get,
3289 .set = shmem_xattr_handler_set,
3290 };
3291
3292 static const struct xattr_handler shmem_trusted_xattr_handler = {
3293 .prefix = XATTR_TRUSTED_PREFIX,
3294 .get = shmem_xattr_handler_get,
3295 .set = shmem_xattr_handler_set,
3296 };
3297
3298 static const struct xattr_handler *shmem_xattr_handlers[] = {
3299 #ifdef CONFIG_TMPFS_POSIX_ACL
3300 &posix_acl_access_xattr_handler,
3301 &posix_acl_default_xattr_handler,
3302 #endif
3303 &shmem_security_xattr_handler,
3304 &shmem_trusted_xattr_handler,
3305 NULL
3306 };
3307
3308 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3309 {
3310 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3311 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3312 }
3313 #endif /* CONFIG_TMPFS_XATTR */
3314
3315 static const struct inode_operations shmem_short_symlink_operations = {
3316 .get_link = simple_get_link,
3317 #ifdef CONFIG_TMPFS_XATTR
3318 .listxattr = shmem_listxattr,
3319 #endif
3320 };
3321
3322 static const struct inode_operations shmem_symlink_inode_operations = {
3323 .get_link = shmem_get_link,
3324 #ifdef CONFIG_TMPFS_XATTR
3325 .listxattr = shmem_listxattr,
3326 #endif
3327 };
3328
3329 static struct dentry *shmem_get_parent(struct dentry *child)
3330 {
3331 return ERR_PTR(-ESTALE);
3332 }
3333
3334 static int shmem_match(struct inode *ino, void *vfh)
3335 {
3336 __u32 *fh = vfh;
3337 __u64 inum = fh[2];
3338 inum = (inum << 32) | fh[1];
3339 return ino->i_ino == inum && fh[0] == ino->i_generation;
3340 }
3341
3342 /* Find any alias of inode, but prefer a hashed alias */
3343 static struct dentry *shmem_find_alias(struct inode *inode)
3344 {
3345 struct dentry *alias = d_find_alias(inode);
3346
3347 return alias ?: d_find_any_alias(inode);
3348 }
3349
3350
3351 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3352 struct fid *fid, int fh_len, int fh_type)
3353 {
3354 struct inode *inode;
3355 struct dentry *dentry = NULL;
3356 u64 inum;
3357
3358 if (fh_len < 3)
3359 return NULL;
3360
3361 inum = fid->raw[2];
3362 inum = (inum << 32) | fid->raw[1];
3363
3364 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3365 shmem_match, fid->raw);
3366 if (inode) {
3367 dentry = shmem_find_alias(inode);
3368 iput(inode);
3369 }
3370
3371 return dentry;
3372 }
3373
3374 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3375 struct inode *parent)
3376 {
3377 if (*len < 3) {
3378 *len = 3;
3379 return FILEID_INVALID;
3380 }
3381
3382 if (inode_unhashed(inode)) {
3383 /* Unfortunately insert_inode_hash is not idempotent,
3384 * so as we hash inodes here rather than at creation
3385 * time, we need a lock to ensure we only try
3386 * to do it once
3387 */
3388 static DEFINE_SPINLOCK(lock);
3389 spin_lock(&lock);
3390 if (inode_unhashed(inode))
3391 __insert_inode_hash(inode,
3392 inode->i_ino + inode->i_generation);
3393 spin_unlock(&lock);
3394 }
3395
3396 fh[0] = inode->i_generation;
3397 fh[1] = inode->i_ino;
3398 fh[2] = ((__u64)inode->i_ino) >> 32;
3399
3400 *len = 3;
3401 return 1;
3402 }
3403
3404 static const struct export_operations shmem_export_ops = {
3405 .get_parent = shmem_get_parent,
3406 .encode_fh = shmem_encode_fh,
3407 .fh_to_dentry = shmem_fh_to_dentry,
3408 };
3409
3410 enum shmem_param {
3411 Opt_gid,
3412 Opt_huge,
3413 Opt_mode,
3414 Opt_mpol,
3415 Opt_nr_blocks,
3416 Opt_nr_inodes,
3417 Opt_size,
3418 Opt_uid,
3419 Opt_inode32,
3420 Opt_inode64,
3421 };
3422
3423 static const struct constant_table shmem_param_enums_huge[] = {
3424 {"never", SHMEM_HUGE_NEVER },
3425 {"always", SHMEM_HUGE_ALWAYS },
3426 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3427 {"advise", SHMEM_HUGE_ADVISE },
3428 {}
3429 };
3430
3431 const struct fs_parameter_spec shmem_fs_parameters[] = {
3432 fsparam_u32 ("gid", Opt_gid),
3433 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3434 fsparam_u32oct("mode", Opt_mode),
3435 fsparam_string("mpol", Opt_mpol),
3436 fsparam_string("nr_blocks", Opt_nr_blocks),
3437 fsparam_string("nr_inodes", Opt_nr_inodes),
3438 fsparam_string("size", Opt_size),
3439 fsparam_u32 ("uid", Opt_uid),
3440 fsparam_flag ("inode32", Opt_inode32),
3441 fsparam_flag ("inode64", Opt_inode64),
3442 {}
3443 };
3444
3445 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3446 {
3447 struct shmem_options *ctx = fc->fs_private;
3448 struct fs_parse_result result;
3449 unsigned long long size;
3450 char *rest;
3451 int opt;
3452
3453 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3454 if (opt < 0)
3455 return opt;
3456
3457 switch (opt) {
3458 case Opt_size:
3459 size = memparse(param->string, &rest);
3460 if (*rest == '%') {
3461 size <<= PAGE_SHIFT;
3462 size *= totalram_pages();
3463 do_div(size, 100);
3464 rest++;
3465 }
3466 if (*rest)
3467 goto bad_value;
3468 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3469 ctx->seen |= SHMEM_SEEN_BLOCKS;
3470 break;
3471 case Opt_nr_blocks:
3472 ctx->blocks = memparse(param->string, &rest);
3473 if (*rest)
3474 goto bad_value;
3475 ctx->seen |= SHMEM_SEEN_BLOCKS;
3476 break;
3477 case Opt_nr_inodes:
3478 ctx->inodes = memparse(param->string, &rest);
3479 if (*rest)
3480 goto bad_value;
3481 ctx->seen |= SHMEM_SEEN_INODES;
3482 break;
3483 case Opt_mode:
3484 ctx->mode = result.uint_32 & 07777;
3485 break;
3486 case Opt_uid:
3487 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3488 if (!uid_valid(ctx->uid))
3489 goto bad_value;
3490 break;
3491 case Opt_gid:
3492 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3493 if (!gid_valid(ctx->gid))
3494 goto bad_value;
3495 break;
3496 case Opt_huge:
3497 ctx->huge = result.uint_32;
3498 if (ctx->huge != SHMEM_HUGE_NEVER &&
3499 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3500 has_transparent_hugepage()))
3501 goto unsupported_parameter;
3502 ctx->seen |= SHMEM_SEEN_HUGE;
3503 break;
3504 case Opt_mpol:
3505 if (IS_ENABLED(CONFIG_NUMA)) {
3506 mpol_put(ctx->mpol);
3507 ctx->mpol = NULL;
3508 if (mpol_parse_str(param->string, &ctx->mpol))
3509 goto bad_value;
3510 break;
3511 }
3512 goto unsupported_parameter;
3513 case Opt_inode32:
3514 ctx->full_inums = false;
3515 ctx->seen |= SHMEM_SEEN_INUMS;
3516 break;
3517 case Opt_inode64:
3518 if (sizeof(ino_t) < 8) {
3519 return invalfc(fc,
3520 "Cannot use inode64 with <64bit inums in kernel\n");
3521 }
3522 ctx->full_inums = true;
3523 ctx->seen |= SHMEM_SEEN_INUMS;
3524 break;
3525 }
3526 return 0;
3527
3528 unsupported_parameter:
3529 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3530 bad_value:
3531 return invalfc(fc, "Bad value for '%s'", param->key);
3532 }
3533
3534 static int shmem_parse_options(struct fs_context *fc, void *data)
3535 {
3536 char *options = data;
3537
3538 if (options) {
3539 int err = security_sb_eat_lsm_opts(options, &fc->security);
3540 if (err)
3541 return err;
3542 }
3543
3544 while (options != NULL) {
3545 char *this_char = options;
3546 for (;;) {
3547 /*
3548 * NUL-terminate this option: unfortunately,
3549 * mount options form a comma-separated list,
3550 * but mpol's nodelist may also contain commas.
3551 */
3552 options = strchr(options, ',');
3553 if (options == NULL)
3554 break;
3555 options++;
3556 if (!isdigit(*options)) {
3557 options[-1] = '\0';
3558 break;
3559 }
3560 }
3561 if (*this_char) {
3562 char *value = strchr(this_char,'=');
3563 size_t len = 0;
3564 int err;
3565
3566 if (value) {
3567 *value++ = '\0';
3568 len = strlen(value);
3569 }
3570 err = vfs_parse_fs_string(fc, this_char, value, len);
3571 if (err < 0)
3572 return err;
3573 }
3574 }
3575 return 0;
3576 }
3577
3578 /*
3579 * Reconfigure a shmem filesystem.
3580 *
3581 * Note that we disallow change from limited->unlimited blocks/inodes while any
3582 * are in use; but we must separately disallow unlimited->limited, because in
3583 * that case we have no record of how much is already in use.
3584 */
3585 static int shmem_reconfigure(struct fs_context *fc)
3586 {
3587 struct shmem_options *ctx = fc->fs_private;
3588 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3589 unsigned long inodes;
3590 const char *err;
3591
3592 spin_lock(&sbinfo->stat_lock);
3593 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3594 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3595 if (!sbinfo->max_blocks) {
3596 err = "Cannot retroactively limit size";
3597 goto out;
3598 }
3599 if (percpu_counter_compare(&sbinfo->used_blocks,
3600 ctx->blocks) > 0) {
3601 err = "Too small a size for current use";
3602 goto out;
3603 }
3604 }
3605 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3606 if (!sbinfo->max_inodes) {
3607 err = "Cannot retroactively limit inodes";
3608 goto out;
3609 }
3610 if (ctx->inodes < inodes) {
3611 err = "Too few inodes for current use";
3612 goto out;
3613 }
3614 }
3615
3616 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3617 sbinfo->next_ino > UINT_MAX) {
3618 err = "Current inum too high to switch to 32-bit inums";
3619 goto out;
3620 }
3621
3622 if (ctx->seen & SHMEM_SEEN_HUGE)
3623 sbinfo->huge = ctx->huge;
3624 if (ctx->seen & SHMEM_SEEN_INUMS)
3625 sbinfo->full_inums = ctx->full_inums;
3626 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3627 sbinfo->max_blocks = ctx->blocks;
3628 if (ctx->seen & SHMEM_SEEN_INODES) {
3629 sbinfo->max_inodes = ctx->inodes;
3630 sbinfo->free_inodes = ctx->inodes - inodes;
3631 }
3632
3633 /*
3634 * Preserve previous mempolicy unless mpol remount option was specified.
3635 */
3636 if (ctx->mpol) {
3637 mpol_put(sbinfo->mpol);
3638 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3639 ctx->mpol = NULL;
3640 }
3641 spin_unlock(&sbinfo->stat_lock);
3642 return 0;
3643 out:
3644 spin_unlock(&sbinfo->stat_lock);
3645 return invalfc(fc, "%s", err);
3646 }
3647
3648 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3649 {
3650 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3651
3652 if (sbinfo->max_blocks != shmem_default_max_blocks())
3653 seq_printf(seq, ",size=%luk",
3654 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3655 if (sbinfo->max_inodes != shmem_default_max_inodes())
3656 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3657 if (sbinfo->mode != (0777 | S_ISVTX))
3658 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3659 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3660 seq_printf(seq, ",uid=%u",
3661 from_kuid_munged(&init_user_ns, sbinfo->uid));
3662 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3663 seq_printf(seq, ",gid=%u",
3664 from_kgid_munged(&init_user_ns, sbinfo->gid));
3665
3666 /*
3667 * Showing inode{64,32} might be useful even if it's the system default,
3668 * since then people don't have to resort to checking both here and
3669 * /proc/config.gz to confirm 64-bit inums were successfully applied
3670 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3671 *
3672 * We hide it when inode64 isn't the default and we are using 32-bit
3673 * inodes, since that probably just means the feature isn't even under
3674 * consideration.
3675 *
3676 * As such:
3677 *
3678 * +-----------------+-----------------+
3679 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3680 * +------------------+-----------------+-----------------+
3681 * | full_inums=true | show | show |
3682 * | full_inums=false | show | hide |
3683 * +------------------+-----------------+-----------------+
3684 *
3685 */
3686 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3687 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3688 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3689 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3690 if (sbinfo->huge)
3691 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3692 #endif
3693 shmem_show_mpol(seq, sbinfo->mpol);
3694 return 0;
3695 }
3696
3697 #endif /* CONFIG_TMPFS */
3698
3699 static void shmem_put_super(struct super_block *sb)
3700 {
3701 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3702
3703 free_percpu(sbinfo->ino_batch);
3704 percpu_counter_destroy(&sbinfo->used_blocks);
3705 mpol_put(sbinfo->mpol);
3706 kfree(sbinfo);
3707 sb->s_fs_info = NULL;
3708 }
3709
3710 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3711 {
3712 struct shmem_options *ctx = fc->fs_private;
3713 struct inode *inode;
3714 struct shmem_sb_info *sbinfo;
3715 int err = -ENOMEM;
3716
3717 /* Round up to L1_CACHE_BYTES to resist false sharing */
3718 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3719 L1_CACHE_BYTES), GFP_KERNEL);
3720 if (!sbinfo)
3721 return -ENOMEM;
3722
3723 sb->s_fs_info = sbinfo;
3724
3725 #ifdef CONFIG_TMPFS
3726 /*
3727 * Per default we only allow half of the physical ram per
3728 * tmpfs instance, limiting inodes to one per page of lowmem;
3729 * but the internal instance is left unlimited.
3730 */
3731 if (!(sb->s_flags & SB_KERNMOUNT)) {
3732 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3733 ctx->blocks = shmem_default_max_blocks();
3734 if (!(ctx->seen & SHMEM_SEEN_INODES))
3735 ctx->inodes = shmem_default_max_inodes();
3736 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3737 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3738 } else {
3739 sb->s_flags |= SB_NOUSER;
3740 }
3741 sb->s_export_op = &shmem_export_ops;
3742 sb->s_flags |= SB_NOSEC;
3743 #else
3744 sb->s_flags |= SB_NOUSER;
3745 #endif
3746 sbinfo->max_blocks = ctx->blocks;
3747 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3748 if (sb->s_flags & SB_KERNMOUNT) {
3749 sbinfo->ino_batch = alloc_percpu(ino_t);
3750 if (!sbinfo->ino_batch)
3751 goto failed;
3752 }
3753 sbinfo->uid = ctx->uid;
3754 sbinfo->gid = ctx->gid;
3755 sbinfo->full_inums = ctx->full_inums;
3756 sbinfo->mode = ctx->mode;
3757 sbinfo->huge = ctx->huge;
3758 sbinfo->mpol = ctx->mpol;
3759 ctx->mpol = NULL;
3760
3761 spin_lock_init(&sbinfo->stat_lock);
3762 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3763 goto failed;
3764 spin_lock_init(&sbinfo->shrinklist_lock);
3765 INIT_LIST_HEAD(&sbinfo->shrinklist);
3766
3767 sb->s_maxbytes = MAX_LFS_FILESIZE;
3768 sb->s_blocksize = PAGE_SIZE;
3769 sb->s_blocksize_bits = PAGE_SHIFT;
3770 sb->s_magic = TMPFS_MAGIC;
3771 sb->s_op = &shmem_ops;
3772 sb->s_time_gran = 1;
3773 #ifdef CONFIG_TMPFS_XATTR
3774 sb->s_xattr = shmem_xattr_handlers;
3775 #endif
3776 #ifdef CONFIG_TMPFS_POSIX_ACL
3777 sb->s_flags |= SB_POSIXACL;
3778 #endif
3779 uuid_gen(&sb->s_uuid);
3780
3781 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3782 if (!inode)
3783 goto failed;
3784 inode->i_uid = sbinfo->uid;
3785 inode->i_gid = sbinfo->gid;
3786 sb->s_root = d_make_root(inode);
3787 if (!sb->s_root)
3788 goto failed;
3789 return 0;
3790
3791 failed:
3792 shmem_put_super(sb);
3793 return err;
3794 }
3795
3796 static int shmem_get_tree(struct fs_context *fc)
3797 {
3798 return get_tree_nodev(fc, shmem_fill_super);
3799 }
3800
3801 static void shmem_free_fc(struct fs_context *fc)
3802 {
3803 struct shmem_options *ctx = fc->fs_private;
3804
3805 if (ctx) {
3806 mpol_put(ctx->mpol);
3807 kfree(ctx);
3808 }
3809 }
3810
3811 static const struct fs_context_operations shmem_fs_context_ops = {
3812 .free = shmem_free_fc,
3813 .get_tree = shmem_get_tree,
3814 #ifdef CONFIG_TMPFS
3815 .parse_monolithic = shmem_parse_options,
3816 .parse_param = shmem_parse_one,
3817 .reconfigure = shmem_reconfigure,
3818 #endif
3819 };
3820
3821 static struct kmem_cache *shmem_inode_cachep;
3822
3823 static struct inode *shmem_alloc_inode(struct super_block *sb)
3824 {
3825 struct shmem_inode_info *info;
3826 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3827 if (!info)
3828 return NULL;
3829 return &info->vfs_inode;
3830 }
3831
3832 static void shmem_free_in_core_inode(struct inode *inode)
3833 {
3834 if (S_ISLNK(inode->i_mode))
3835 kfree(inode->i_link);
3836 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3837 }
3838
3839 static void shmem_destroy_inode(struct inode *inode)
3840 {
3841 if (S_ISREG(inode->i_mode))
3842 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3843 }
3844
3845 static void shmem_init_inode(void *foo)
3846 {
3847 struct shmem_inode_info *info = foo;
3848 inode_init_once(&info->vfs_inode);
3849 }
3850
3851 static void shmem_init_inodecache(void)
3852 {
3853 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3854 sizeof(struct shmem_inode_info),
3855 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3856 }
3857
3858 static void shmem_destroy_inodecache(void)
3859 {
3860 kmem_cache_destroy(shmem_inode_cachep);
3861 }
3862
3863 const struct address_space_operations shmem_aops = {
3864 .writepage = shmem_writepage,
3865 .set_page_dirty = __set_page_dirty_no_writeback,
3866 #ifdef CONFIG_TMPFS
3867 .write_begin = shmem_write_begin,
3868 .write_end = shmem_write_end,
3869 #endif
3870 #ifdef CONFIG_MIGRATION
3871 .migratepage = migrate_page,
3872 #endif
3873 .error_remove_page = generic_error_remove_page,
3874 };
3875 EXPORT_SYMBOL(shmem_aops);
3876
3877 static const struct file_operations shmem_file_operations = {
3878 .mmap = shmem_mmap,
3879 .get_unmapped_area = shmem_get_unmapped_area,
3880 #ifdef CONFIG_TMPFS
3881 .llseek = shmem_file_llseek,
3882 .read_iter = shmem_file_read_iter,
3883 .write_iter = generic_file_write_iter,
3884 .fsync = noop_fsync,
3885 .splice_read = generic_file_splice_read,
3886 .splice_write = iter_file_splice_write,
3887 .fallocate = shmem_fallocate,
3888 #endif
3889 };
3890
3891 static const struct inode_operations shmem_inode_operations = {
3892 .getattr = shmem_getattr,
3893 .setattr = shmem_setattr,
3894 #ifdef CONFIG_TMPFS_XATTR
3895 .listxattr = shmem_listxattr,
3896 .set_acl = simple_set_acl,
3897 #endif
3898 };
3899
3900 static const struct inode_operations shmem_dir_inode_operations = {
3901 #ifdef CONFIG_TMPFS
3902 .create = shmem_create,
3903 .lookup = simple_lookup,
3904 .link = shmem_link,
3905 .unlink = shmem_unlink,
3906 .symlink = shmem_symlink,
3907 .mkdir = shmem_mkdir,
3908 .rmdir = shmem_rmdir,
3909 .mknod = shmem_mknod,
3910 .rename = shmem_rename2,
3911 .tmpfile = shmem_tmpfile,
3912 #endif
3913 #ifdef CONFIG_TMPFS_XATTR
3914 .listxattr = shmem_listxattr,
3915 #endif
3916 #ifdef CONFIG_TMPFS_POSIX_ACL
3917 .setattr = shmem_setattr,
3918 .set_acl = simple_set_acl,
3919 #endif
3920 };
3921
3922 static const struct inode_operations shmem_special_inode_operations = {
3923 #ifdef CONFIG_TMPFS_XATTR
3924 .listxattr = shmem_listxattr,
3925 #endif
3926 #ifdef CONFIG_TMPFS_POSIX_ACL
3927 .setattr = shmem_setattr,
3928 .set_acl = simple_set_acl,
3929 #endif
3930 };
3931
3932 static const struct super_operations shmem_ops = {
3933 .alloc_inode = shmem_alloc_inode,
3934 .free_inode = shmem_free_in_core_inode,
3935 .destroy_inode = shmem_destroy_inode,
3936 #ifdef CONFIG_TMPFS
3937 .statfs = shmem_statfs,
3938 .show_options = shmem_show_options,
3939 #endif
3940 .evict_inode = shmem_evict_inode,
3941 .drop_inode = generic_delete_inode,
3942 .put_super = shmem_put_super,
3943 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3944 .nr_cached_objects = shmem_unused_huge_count,
3945 .free_cached_objects = shmem_unused_huge_scan,
3946 #endif
3947 };
3948
3949 static const struct vm_operations_struct shmem_vm_ops = {
3950 .fault = shmem_fault,
3951 .map_pages = filemap_map_pages,
3952 #ifdef CONFIG_NUMA
3953 .set_policy = shmem_set_policy,
3954 .get_policy = shmem_get_policy,
3955 #endif
3956 };
3957
3958 int shmem_init_fs_context(struct fs_context *fc)
3959 {
3960 struct shmem_options *ctx;
3961
3962 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3963 if (!ctx)
3964 return -ENOMEM;
3965
3966 ctx->mode = 0777 | S_ISVTX;
3967 ctx->uid = current_fsuid();
3968 ctx->gid = current_fsgid();
3969
3970 fc->fs_private = ctx;
3971 fc->ops = &shmem_fs_context_ops;
3972 return 0;
3973 }
3974
3975 static struct file_system_type shmem_fs_type = {
3976 .owner = THIS_MODULE,
3977 .name = "tmpfs",
3978 .init_fs_context = shmem_init_fs_context,
3979 #ifdef CONFIG_TMPFS
3980 .parameters = shmem_fs_parameters,
3981 #endif
3982 .kill_sb = kill_litter_super,
3983 .fs_flags = FS_USERNS_MOUNT | FS_THP_SUPPORT,
3984 };
3985
3986 int __init shmem_init(void)
3987 {
3988 int error;
3989
3990 shmem_init_inodecache();
3991
3992 error = register_filesystem(&shmem_fs_type);
3993 if (error) {
3994 pr_err("Could not register tmpfs\n");
3995 goto out2;
3996 }
3997
3998 shm_mnt = kern_mount(&shmem_fs_type);
3999 if (IS_ERR(shm_mnt)) {
4000 error = PTR_ERR(shm_mnt);
4001 pr_err("Could not kern_mount tmpfs\n");
4002 goto out1;
4003 }
4004
4005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4006 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4007 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4008 else
4009 shmem_huge = 0; /* just in case it was patched */
4010 #endif
4011 return 0;
4012
4013 out1:
4014 unregister_filesystem(&shmem_fs_type);
4015 out2:
4016 shmem_destroy_inodecache();
4017 shm_mnt = ERR_PTR(error);
4018 return error;
4019 }
4020
4021 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4022 static ssize_t shmem_enabled_show(struct kobject *kobj,
4023 struct kobj_attribute *attr, char *buf)
4024 {
4025 static const int values[] = {
4026 SHMEM_HUGE_ALWAYS,
4027 SHMEM_HUGE_WITHIN_SIZE,
4028 SHMEM_HUGE_ADVISE,
4029 SHMEM_HUGE_NEVER,
4030 SHMEM_HUGE_DENY,
4031 SHMEM_HUGE_FORCE,
4032 };
4033 int len = 0;
4034 int i;
4035
4036 for (i = 0; i < ARRAY_SIZE(values); i++) {
4037 len += sysfs_emit_at(buf, len,
4038 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4039 i ? " " : "",
4040 shmem_format_huge(values[i]));
4041 }
4042
4043 len += sysfs_emit_at(buf, len, "\n");
4044
4045 return len;
4046 }
4047
4048 static ssize_t shmem_enabled_store(struct kobject *kobj,
4049 struct kobj_attribute *attr, const char *buf, size_t count)
4050 {
4051 char tmp[16];
4052 int huge;
4053
4054 if (count + 1 > sizeof(tmp))
4055 return -EINVAL;
4056 memcpy(tmp, buf, count);
4057 tmp[count] = '\0';
4058 if (count && tmp[count - 1] == '\n')
4059 tmp[count - 1] = '\0';
4060
4061 huge = shmem_parse_huge(tmp);
4062 if (huge == -EINVAL)
4063 return -EINVAL;
4064 if (!has_transparent_hugepage() &&
4065 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4066 return -EINVAL;
4067
4068 shmem_huge = huge;
4069 if (shmem_huge > SHMEM_HUGE_DENY)
4070 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4071 return count;
4072 }
4073
4074 struct kobj_attribute shmem_enabled_attr =
4075 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4076 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4077
4078 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4079 bool shmem_huge_enabled(struct vm_area_struct *vma)
4080 {
4081 struct inode *inode = file_inode(vma->vm_file);
4082 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4083 loff_t i_size;
4084 pgoff_t off;
4085
4086 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
4087 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
4088 return false;
4089 if (shmem_huge == SHMEM_HUGE_FORCE)
4090 return true;
4091 if (shmem_huge == SHMEM_HUGE_DENY)
4092 return false;
4093 switch (sbinfo->huge) {
4094 case SHMEM_HUGE_NEVER:
4095 return false;
4096 case SHMEM_HUGE_ALWAYS:
4097 return true;
4098 case SHMEM_HUGE_WITHIN_SIZE:
4099 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4100 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4101 if (i_size >= HPAGE_PMD_SIZE &&
4102 i_size >> PAGE_SHIFT >= off)
4103 return true;
4104 fallthrough;
4105 case SHMEM_HUGE_ADVISE:
4106 /* TODO: implement fadvise() hints */
4107 return (vma->vm_flags & VM_HUGEPAGE);
4108 default:
4109 VM_BUG_ON(1);
4110 return false;
4111 }
4112 }
4113 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4114
4115 #else /* !CONFIG_SHMEM */
4116
4117 /*
4118 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4119 *
4120 * This is intended for small system where the benefits of the full
4121 * shmem code (swap-backed and resource-limited) are outweighed by
4122 * their complexity. On systems without swap this code should be
4123 * effectively equivalent, but much lighter weight.
4124 */
4125
4126 static struct file_system_type shmem_fs_type = {
4127 .name = "tmpfs",
4128 .init_fs_context = ramfs_init_fs_context,
4129 .parameters = ramfs_fs_parameters,
4130 .kill_sb = kill_litter_super,
4131 .fs_flags = FS_USERNS_MOUNT,
4132 };
4133
4134 int __init shmem_init(void)
4135 {
4136 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4137
4138 shm_mnt = kern_mount(&shmem_fs_type);
4139 BUG_ON(IS_ERR(shm_mnt));
4140
4141 return 0;
4142 }
4143
4144 int shmem_unuse(unsigned int type, bool frontswap,
4145 unsigned long *fs_pages_to_unuse)
4146 {
4147 return 0;
4148 }
4149
4150 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4151 {
4152 return 0;
4153 }
4154
4155 void shmem_unlock_mapping(struct address_space *mapping)
4156 {
4157 }
4158
4159 #ifdef CONFIG_MMU
4160 unsigned long shmem_get_unmapped_area(struct file *file,
4161 unsigned long addr, unsigned long len,
4162 unsigned long pgoff, unsigned long flags)
4163 {
4164 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4165 }
4166 #endif
4167
4168 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4169 {
4170 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4171 }
4172 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4173
4174 #define shmem_vm_ops generic_file_vm_ops
4175 #define shmem_file_operations ramfs_file_operations
4176 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4177 #define shmem_acct_size(flags, size) 0
4178 #define shmem_unacct_size(flags, size) do {} while (0)
4179
4180 #endif /* CONFIG_SHMEM */
4181
4182 /* common code */
4183
4184 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4185 unsigned long flags, unsigned int i_flags)
4186 {
4187 struct inode *inode;
4188 struct file *res;
4189
4190 if (IS_ERR(mnt))
4191 return ERR_CAST(mnt);
4192
4193 if (size < 0 || size > MAX_LFS_FILESIZE)
4194 return ERR_PTR(-EINVAL);
4195
4196 if (shmem_acct_size(flags, size))
4197 return ERR_PTR(-ENOMEM);
4198
4199 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4200 flags);
4201 if (unlikely(!inode)) {
4202 shmem_unacct_size(flags, size);
4203 return ERR_PTR(-ENOSPC);
4204 }
4205 inode->i_flags |= i_flags;
4206 inode->i_size = size;
4207 clear_nlink(inode); /* It is unlinked */
4208 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4209 if (!IS_ERR(res))
4210 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4211 &shmem_file_operations);
4212 if (IS_ERR(res))
4213 iput(inode);
4214 return res;
4215 }
4216
4217 /**
4218 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4219 * kernel internal. There will be NO LSM permission checks against the
4220 * underlying inode. So users of this interface must do LSM checks at a
4221 * higher layer. The users are the big_key and shm implementations. LSM
4222 * checks are provided at the key or shm level rather than the inode.
4223 * @name: name for dentry (to be seen in /proc/<pid>/maps
4224 * @size: size to be set for the file
4225 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4226 */
4227 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4228 {
4229 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4230 }
4231
4232 /**
4233 * shmem_file_setup - get an unlinked file living in tmpfs
4234 * @name: name for dentry (to be seen in /proc/<pid>/maps
4235 * @size: size to be set for the file
4236 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4237 */
4238 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4239 {
4240 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4241 }
4242 EXPORT_SYMBOL_GPL(shmem_file_setup);
4243
4244 /**
4245 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4246 * @mnt: the tmpfs mount where the file will be created
4247 * @name: name for dentry (to be seen in /proc/<pid>/maps
4248 * @size: size to be set for the file
4249 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4250 */
4251 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4252 loff_t size, unsigned long flags)
4253 {
4254 return __shmem_file_setup(mnt, name, size, flags, 0);
4255 }
4256 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4257
4258 /**
4259 * shmem_zero_setup - setup a shared anonymous mapping
4260 * @vma: the vma to be mmapped is prepared by do_mmap
4261 */
4262 int shmem_zero_setup(struct vm_area_struct *vma)
4263 {
4264 struct file *file;
4265 loff_t size = vma->vm_end - vma->vm_start;
4266
4267 /*
4268 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4269 * between XFS directory reading and selinux: since this file is only
4270 * accessible to the user through its mapping, use S_PRIVATE flag to
4271 * bypass file security, in the same way as shmem_kernel_file_setup().
4272 */
4273 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4274 if (IS_ERR(file))
4275 return PTR_ERR(file);
4276
4277 if (vma->vm_file)
4278 fput(vma->vm_file);
4279 vma->vm_file = file;
4280 vma->vm_ops = &shmem_vm_ops;
4281
4282 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4283 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4284 (vma->vm_end & HPAGE_PMD_MASK)) {
4285 khugepaged_enter(vma, vma->vm_flags);
4286 }
4287
4288 return 0;
4289 }
4290 EXPORT_SYMBOL_GPL(shmem_zero_setup);
4291
4292 /**
4293 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4294 * @mapping: the page's address_space
4295 * @index: the page index
4296 * @gfp: the page allocator flags to use if allocating
4297 *
4298 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4299 * with any new page allocations done using the specified allocation flags.
4300 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4301 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4302 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4303 *
4304 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4305 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4306 */
4307 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4308 pgoff_t index, gfp_t gfp)
4309 {
4310 #ifdef CONFIG_SHMEM
4311 struct inode *inode = mapping->host;
4312 struct page *page;
4313 int error;
4314
4315 BUG_ON(!shmem_mapping(mapping));
4316 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4317 gfp, NULL, NULL, NULL);
4318 if (error)
4319 page = ERR_PTR(error);
4320 else
4321 unlock_page(page);
4322 return page;
4323 #else
4324 /*
4325 * The tiny !SHMEM case uses ramfs without swap
4326 */
4327 return read_cache_page_gfp(mapping, index, gfp);
4328 #endif
4329 }
4330 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);