]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/shmem.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / mm / shmem.c
1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 #include <linux/khugepaged.h>
36
37 static struct vfsmount *shm_mnt;
38
39 #ifdef CONFIG_SHMEM
40 /*
41 * This virtual memory filesystem is heavily based on the ramfs. It
42 * extends ramfs by the ability to use swap and honor resource limits
43 * which makes it a completely usable filesystem.
44 */
45
46 #include <linux/xattr.h>
47 #include <linux/exportfs.h>
48 #include <linux/posix_acl.h>
49 #include <linux/posix_acl_xattr.h>
50 #include <linux/mman.h>
51 #include <linux/string.h>
52 #include <linux/slab.h>
53 #include <linux/backing-dev.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/writeback.h>
56 #include <linux/blkdev.h>
57 #include <linux/pagevec.h>
58 #include <linux/percpu_counter.h>
59 #include <linux/falloc.h>
60 #include <linux/splice.h>
61 #include <linux/security.h>
62 #include <linux/swapops.h>
63 #include <linux/mempolicy.h>
64 #include <linux/namei.h>
65 #include <linux/ctype.h>
66 #include <linux/migrate.h>
67 #include <linux/highmem.h>
68 #include <linux/seq_file.h>
69 #include <linux/magic.h>
70 #include <linux/syscalls.h>
71 #include <linux/fcntl.h>
72 #include <uapi/linux/memfd.h>
73
74 #include <asm/uaccess.h>
75 #include <asm/pgtable.h>
76
77 #include "internal.h"
78
79 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
80 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
81
82 /* Pretend that each entry is of this size in directory's i_size */
83 #define BOGO_DIRENT_SIZE 20
84
85 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
86 #define SHORT_SYMLINK_LEN 128
87
88 /*
89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
90 * inode->i_private (with i_mutex making sure that it has only one user at
91 * a time): we would prefer not to enlarge the shmem inode just for that.
92 */
93 struct shmem_falloc {
94 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
95 pgoff_t start; /* start of range currently being fallocated */
96 pgoff_t next; /* the next page offset to be fallocated */
97 pgoff_t nr_falloced; /* how many new pages have been fallocated */
98 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
99 };
100
101 #ifdef CONFIG_TMPFS
102 static unsigned long shmem_default_max_blocks(void)
103 {
104 return totalram_pages / 2;
105 }
106
107 static unsigned long shmem_default_max_inodes(void)
108 {
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110 }
111 #endif
112
113 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
116 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp,
118 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
119
120 int shmem_getpage(struct inode *inode, pgoff_t index,
121 struct page **pagep, enum sgp_type sgp)
122 {
123 return shmem_getpage_gfp(inode, index, pagep, sgp,
124 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
125 }
126
127 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
128 {
129 return sb->s_fs_info;
130 }
131
132 /*
133 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
134 * for shared memory and for shared anonymous (/dev/zero) mappings
135 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
136 * consistent with the pre-accounting of private mappings ...
137 */
138 static inline int shmem_acct_size(unsigned long flags, loff_t size)
139 {
140 return (flags & VM_NORESERVE) ?
141 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
142 }
143
144 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
145 {
146 if (!(flags & VM_NORESERVE))
147 vm_unacct_memory(VM_ACCT(size));
148 }
149
150 static inline int shmem_reacct_size(unsigned long flags,
151 loff_t oldsize, loff_t newsize)
152 {
153 if (!(flags & VM_NORESERVE)) {
154 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
155 return security_vm_enough_memory_mm(current->mm,
156 VM_ACCT(newsize) - VM_ACCT(oldsize));
157 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
158 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
159 }
160 return 0;
161 }
162
163 /*
164 * ... whereas tmpfs objects are accounted incrementally as
165 * pages are allocated, in order to allow large sparse files.
166 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
167 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
168 */
169 static inline int shmem_acct_block(unsigned long flags, long pages)
170 {
171 if (!(flags & VM_NORESERVE))
172 return 0;
173
174 return security_vm_enough_memory_mm(current->mm,
175 pages * VM_ACCT(PAGE_SIZE));
176 }
177
178 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
179 {
180 if (flags & VM_NORESERVE)
181 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
182 }
183
184 static const struct super_operations shmem_ops;
185 static const struct address_space_operations shmem_aops;
186 static const struct file_operations shmem_file_operations;
187 static const struct inode_operations shmem_inode_operations;
188 static const struct inode_operations shmem_dir_inode_operations;
189 static const struct inode_operations shmem_special_inode_operations;
190 static const struct vm_operations_struct shmem_vm_ops;
191 static struct file_system_type shmem_fs_type;
192
193 static LIST_HEAD(shmem_swaplist);
194 static DEFINE_MUTEX(shmem_swaplist_mutex);
195
196 static int shmem_reserve_inode(struct super_block *sb)
197 {
198 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
199 if (sbinfo->max_inodes) {
200 spin_lock(&sbinfo->stat_lock);
201 if (!sbinfo->free_inodes) {
202 spin_unlock(&sbinfo->stat_lock);
203 return -ENOSPC;
204 }
205 sbinfo->free_inodes--;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208 return 0;
209 }
210
211 static void shmem_free_inode(struct super_block *sb)
212 {
213 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
214 if (sbinfo->max_inodes) {
215 spin_lock(&sbinfo->stat_lock);
216 sbinfo->free_inodes++;
217 spin_unlock(&sbinfo->stat_lock);
218 }
219 }
220
221 /**
222 * shmem_recalc_inode - recalculate the block usage of an inode
223 * @inode: inode to recalc
224 *
225 * We have to calculate the free blocks since the mm can drop
226 * undirtied hole pages behind our back.
227 *
228 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
229 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
230 *
231 * It has to be called with the spinlock held.
232 */
233 static void shmem_recalc_inode(struct inode *inode)
234 {
235 struct shmem_inode_info *info = SHMEM_I(inode);
236 long freed;
237
238 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
239 if (freed > 0) {
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241 if (sbinfo->max_blocks)
242 percpu_counter_add(&sbinfo->used_blocks, -freed);
243 info->alloced -= freed;
244 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
245 shmem_unacct_blocks(info->flags, freed);
246 }
247 }
248
249 bool shmem_charge(struct inode *inode, long pages)
250 {
251 struct shmem_inode_info *info = SHMEM_I(inode);
252 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253 unsigned long flags;
254
255 if (shmem_acct_block(info->flags, pages))
256 return false;
257 spin_lock_irqsave(&info->lock, flags);
258 info->alloced += pages;
259 inode->i_blocks += pages * BLOCKS_PER_PAGE;
260 shmem_recalc_inode(inode);
261 spin_unlock_irqrestore(&info->lock, flags);
262 inode->i_mapping->nrpages += pages;
263
264 if (!sbinfo->max_blocks)
265 return true;
266 if (percpu_counter_compare(&sbinfo->used_blocks,
267 sbinfo->max_blocks - pages) > 0) {
268 inode->i_mapping->nrpages -= pages;
269 spin_lock_irqsave(&info->lock, flags);
270 info->alloced -= pages;
271 shmem_recalc_inode(inode);
272 spin_unlock_irqrestore(&info->lock, flags);
273 shmem_unacct_blocks(info->flags, pages);
274 return false;
275 }
276 percpu_counter_add(&sbinfo->used_blocks, pages);
277 return true;
278 }
279
280 void shmem_uncharge(struct inode *inode, long pages)
281 {
282 struct shmem_inode_info *info = SHMEM_I(inode);
283 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
284 unsigned long flags;
285
286 spin_lock_irqsave(&info->lock, flags);
287 info->alloced -= pages;
288 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
289 shmem_recalc_inode(inode);
290 spin_unlock_irqrestore(&info->lock, flags);
291
292 if (sbinfo->max_blocks)
293 percpu_counter_sub(&sbinfo->used_blocks, pages);
294 shmem_unacct_blocks(info->flags, pages);
295 }
296
297 /*
298 * Replace item expected in radix tree by a new item, while holding tree lock.
299 */
300 static int shmem_radix_tree_replace(struct address_space *mapping,
301 pgoff_t index, void *expected, void *replacement)
302 {
303 void **pslot;
304 void *item;
305
306 VM_BUG_ON(!expected);
307 VM_BUG_ON(!replacement);
308 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
309 if (!pslot)
310 return -ENOENT;
311 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
312 if (item != expected)
313 return -ENOENT;
314 radix_tree_replace_slot(pslot, replacement);
315 return 0;
316 }
317
318 /*
319 * Sometimes, before we decide whether to proceed or to fail, we must check
320 * that an entry was not already brought back from swap by a racing thread.
321 *
322 * Checking page is not enough: by the time a SwapCache page is locked, it
323 * might be reused, and again be SwapCache, using the same swap as before.
324 */
325 static bool shmem_confirm_swap(struct address_space *mapping,
326 pgoff_t index, swp_entry_t swap)
327 {
328 void *item;
329
330 rcu_read_lock();
331 item = radix_tree_lookup(&mapping->page_tree, index);
332 rcu_read_unlock();
333 return item == swp_to_radix_entry(swap);
334 }
335
336 /*
337 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
338 *
339 * SHMEM_HUGE_NEVER:
340 * disables huge pages for the mount;
341 * SHMEM_HUGE_ALWAYS:
342 * enables huge pages for the mount;
343 * SHMEM_HUGE_WITHIN_SIZE:
344 * only allocate huge pages if the page will be fully within i_size,
345 * also respect fadvise()/madvise() hints;
346 * SHMEM_HUGE_ADVISE:
347 * only allocate huge pages if requested with fadvise()/madvise();
348 */
349
350 #define SHMEM_HUGE_NEVER 0
351 #define SHMEM_HUGE_ALWAYS 1
352 #define SHMEM_HUGE_WITHIN_SIZE 2
353 #define SHMEM_HUGE_ADVISE 3
354
355 /*
356 * Special values.
357 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
358 *
359 * SHMEM_HUGE_DENY:
360 * disables huge on shm_mnt and all mounts, for emergency use;
361 * SHMEM_HUGE_FORCE:
362 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
363 *
364 */
365 #define SHMEM_HUGE_DENY (-1)
366 #define SHMEM_HUGE_FORCE (-2)
367
368 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
369 /* ifdef here to avoid bloating shmem.o when not necessary */
370
371 int shmem_huge __read_mostly;
372
373 static int shmem_parse_huge(const char *str)
374 {
375 if (!strcmp(str, "never"))
376 return SHMEM_HUGE_NEVER;
377 if (!strcmp(str, "always"))
378 return SHMEM_HUGE_ALWAYS;
379 if (!strcmp(str, "within_size"))
380 return SHMEM_HUGE_WITHIN_SIZE;
381 if (!strcmp(str, "advise"))
382 return SHMEM_HUGE_ADVISE;
383 if (!strcmp(str, "deny"))
384 return SHMEM_HUGE_DENY;
385 if (!strcmp(str, "force"))
386 return SHMEM_HUGE_FORCE;
387 return -EINVAL;
388 }
389
390 static const char *shmem_format_huge(int huge)
391 {
392 switch (huge) {
393 case SHMEM_HUGE_NEVER:
394 return "never";
395 case SHMEM_HUGE_ALWAYS:
396 return "always";
397 case SHMEM_HUGE_WITHIN_SIZE:
398 return "within_size";
399 case SHMEM_HUGE_ADVISE:
400 return "advise";
401 case SHMEM_HUGE_DENY:
402 return "deny";
403 case SHMEM_HUGE_FORCE:
404 return "force";
405 default:
406 VM_BUG_ON(1);
407 return "bad_val";
408 }
409 }
410
411 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
412 struct shrink_control *sc, unsigned long nr_to_split)
413 {
414 LIST_HEAD(list), *pos, *next;
415 struct inode *inode;
416 struct shmem_inode_info *info;
417 struct page *page;
418 unsigned long batch = sc ? sc->nr_to_scan : 128;
419 int removed = 0, split = 0;
420
421 if (list_empty(&sbinfo->shrinklist))
422 return SHRINK_STOP;
423
424 spin_lock(&sbinfo->shrinklist_lock);
425 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
426 info = list_entry(pos, struct shmem_inode_info, shrinklist);
427
428 /* pin the inode */
429 inode = igrab(&info->vfs_inode);
430
431 /* inode is about to be evicted */
432 if (!inode) {
433 list_del_init(&info->shrinklist);
434 removed++;
435 goto next;
436 }
437
438 /* Check if there's anything to gain */
439 if (round_up(inode->i_size, PAGE_SIZE) ==
440 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
441 list_del_init(&info->shrinklist);
442 removed++;
443 iput(inode);
444 goto next;
445 }
446
447 list_move(&info->shrinklist, &list);
448 next:
449 if (!--batch)
450 break;
451 }
452 spin_unlock(&sbinfo->shrinklist_lock);
453
454 list_for_each_safe(pos, next, &list) {
455 int ret;
456
457 info = list_entry(pos, struct shmem_inode_info, shrinklist);
458 inode = &info->vfs_inode;
459
460 if (nr_to_split && split >= nr_to_split) {
461 iput(inode);
462 continue;
463 }
464
465 page = find_lock_page(inode->i_mapping,
466 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
467 if (!page)
468 goto drop;
469
470 if (!PageTransHuge(page)) {
471 unlock_page(page);
472 put_page(page);
473 goto drop;
474 }
475
476 ret = split_huge_page(page);
477 unlock_page(page);
478 put_page(page);
479
480 if (ret) {
481 /* split failed: leave it on the list */
482 iput(inode);
483 continue;
484 }
485
486 split++;
487 drop:
488 list_del_init(&info->shrinklist);
489 removed++;
490 iput(inode);
491 }
492
493 spin_lock(&sbinfo->shrinklist_lock);
494 list_splice_tail(&list, &sbinfo->shrinklist);
495 sbinfo->shrinklist_len -= removed;
496 spin_unlock(&sbinfo->shrinklist_lock);
497
498 return split;
499 }
500
501 static long shmem_unused_huge_scan(struct super_block *sb,
502 struct shrink_control *sc)
503 {
504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
505
506 if (!READ_ONCE(sbinfo->shrinklist_len))
507 return SHRINK_STOP;
508
509 return shmem_unused_huge_shrink(sbinfo, sc, 0);
510 }
511
512 static long shmem_unused_huge_count(struct super_block *sb,
513 struct shrink_control *sc)
514 {
515 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
516 return READ_ONCE(sbinfo->shrinklist_len);
517 }
518 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
519
520 #define shmem_huge SHMEM_HUGE_DENY
521
522 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
523 struct shrink_control *sc, unsigned long nr_to_split)
524 {
525 return 0;
526 }
527 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
528
529 /*
530 * Like add_to_page_cache_locked, but error if expected item has gone.
531 */
532 static int shmem_add_to_page_cache(struct page *page,
533 struct address_space *mapping,
534 pgoff_t index, void *expected)
535 {
536 int error, nr = hpage_nr_pages(page);
537
538 VM_BUG_ON_PAGE(PageTail(page), page);
539 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
540 VM_BUG_ON_PAGE(!PageLocked(page), page);
541 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
542 VM_BUG_ON(expected && PageTransHuge(page));
543
544 page_ref_add(page, nr);
545 page->mapping = mapping;
546 page->index = index;
547
548 spin_lock_irq(&mapping->tree_lock);
549 if (PageTransHuge(page)) {
550 void __rcu **results;
551 pgoff_t idx;
552 int i;
553
554 error = 0;
555 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
556 &results, &idx, index, 1) &&
557 idx < index + HPAGE_PMD_NR) {
558 error = -EEXIST;
559 }
560
561 if (!error) {
562 for (i = 0; i < HPAGE_PMD_NR; i++) {
563 error = radix_tree_insert(&mapping->page_tree,
564 index + i, page + i);
565 VM_BUG_ON(error);
566 }
567 count_vm_event(THP_FILE_ALLOC);
568 }
569 } else if (!expected) {
570 error = radix_tree_insert(&mapping->page_tree, index, page);
571 } else {
572 error = shmem_radix_tree_replace(mapping, index, expected,
573 page);
574 }
575
576 if (!error) {
577 mapping->nrpages += nr;
578 if (PageTransHuge(page))
579 __inc_node_page_state(page, NR_SHMEM_THPS);
580 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
581 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
582 spin_unlock_irq(&mapping->tree_lock);
583 } else {
584 page->mapping = NULL;
585 spin_unlock_irq(&mapping->tree_lock);
586 page_ref_sub(page, nr);
587 }
588 return error;
589 }
590
591 /*
592 * Like delete_from_page_cache, but substitutes swap for page.
593 */
594 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
595 {
596 struct address_space *mapping = page->mapping;
597 int error;
598
599 VM_BUG_ON_PAGE(PageCompound(page), page);
600
601 spin_lock_irq(&mapping->tree_lock);
602 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
603 page->mapping = NULL;
604 mapping->nrpages--;
605 __dec_node_page_state(page, NR_FILE_PAGES);
606 __dec_node_page_state(page, NR_SHMEM);
607 spin_unlock_irq(&mapping->tree_lock);
608 put_page(page);
609 BUG_ON(error);
610 }
611
612 /*
613 * Remove swap entry from radix tree, free the swap and its page cache.
614 */
615 static int shmem_free_swap(struct address_space *mapping,
616 pgoff_t index, void *radswap)
617 {
618 void *old;
619
620 spin_lock_irq(&mapping->tree_lock);
621 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
622 spin_unlock_irq(&mapping->tree_lock);
623 if (old != radswap)
624 return -ENOENT;
625 free_swap_and_cache(radix_to_swp_entry(radswap));
626 return 0;
627 }
628
629 /*
630 * Determine (in bytes) how many of the shmem object's pages mapped by the
631 * given offsets are swapped out.
632 *
633 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
634 * as long as the inode doesn't go away and racy results are not a problem.
635 */
636 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
637 pgoff_t start, pgoff_t end)
638 {
639 struct radix_tree_iter iter;
640 void **slot;
641 struct page *page;
642 unsigned long swapped = 0;
643
644 rcu_read_lock();
645
646 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
647 if (iter.index >= end)
648 break;
649
650 page = radix_tree_deref_slot(slot);
651
652 if (radix_tree_deref_retry(page)) {
653 slot = radix_tree_iter_retry(&iter);
654 continue;
655 }
656
657 if (radix_tree_exceptional_entry(page))
658 swapped++;
659
660 if (need_resched()) {
661 cond_resched_rcu();
662 slot = radix_tree_iter_next(&iter);
663 }
664 }
665
666 rcu_read_unlock();
667
668 return swapped << PAGE_SHIFT;
669 }
670
671 /*
672 * Determine (in bytes) how many of the shmem object's pages mapped by the
673 * given vma is swapped out.
674 *
675 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
676 * as long as the inode doesn't go away and racy results are not a problem.
677 */
678 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
679 {
680 struct inode *inode = file_inode(vma->vm_file);
681 struct shmem_inode_info *info = SHMEM_I(inode);
682 struct address_space *mapping = inode->i_mapping;
683 unsigned long swapped;
684
685 /* Be careful as we don't hold info->lock */
686 swapped = READ_ONCE(info->swapped);
687
688 /*
689 * The easier cases are when the shmem object has nothing in swap, or
690 * the vma maps it whole. Then we can simply use the stats that we
691 * already track.
692 */
693 if (!swapped)
694 return 0;
695
696 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
697 return swapped << PAGE_SHIFT;
698
699 /* Here comes the more involved part */
700 return shmem_partial_swap_usage(mapping,
701 linear_page_index(vma, vma->vm_start),
702 linear_page_index(vma, vma->vm_end));
703 }
704
705 /*
706 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
707 */
708 void shmem_unlock_mapping(struct address_space *mapping)
709 {
710 struct pagevec pvec;
711 pgoff_t indices[PAGEVEC_SIZE];
712 pgoff_t index = 0;
713
714 pagevec_init(&pvec, 0);
715 /*
716 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
717 */
718 while (!mapping_unevictable(mapping)) {
719 /*
720 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
721 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
722 */
723 pvec.nr = find_get_entries(mapping, index,
724 PAGEVEC_SIZE, pvec.pages, indices);
725 if (!pvec.nr)
726 break;
727 index = indices[pvec.nr - 1] + 1;
728 pagevec_remove_exceptionals(&pvec);
729 check_move_unevictable_pages(pvec.pages, pvec.nr);
730 pagevec_release(&pvec);
731 cond_resched();
732 }
733 }
734
735 /*
736 * Remove range of pages and swap entries from radix tree, and free them.
737 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
738 */
739 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
740 bool unfalloc)
741 {
742 struct address_space *mapping = inode->i_mapping;
743 struct shmem_inode_info *info = SHMEM_I(inode);
744 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
745 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
746 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
747 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
748 struct pagevec pvec;
749 pgoff_t indices[PAGEVEC_SIZE];
750 long nr_swaps_freed = 0;
751 pgoff_t index;
752 int i;
753
754 if (lend == -1)
755 end = -1; /* unsigned, so actually very big */
756
757 pagevec_init(&pvec, 0);
758 index = start;
759 while (index < end) {
760 pvec.nr = find_get_entries(mapping, index,
761 min(end - index, (pgoff_t)PAGEVEC_SIZE),
762 pvec.pages, indices);
763 if (!pvec.nr)
764 break;
765 for (i = 0; i < pagevec_count(&pvec); i++) {
766 struct page *page = pvec.pages[i];
767
768 index = indices[i];
769 if (index >= end)
770 break;
771
772 if (radix_tree_exceptional_entry(page)) {
773 if (unfalloc)
774 continue;
775 nr_swaps_freed += !shmem_free_swap(mapping,
776 index, page);
777 continue;
778 }
779
780 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
781
782 if (!trylock_page(page))
783 continue;
784
785 if (PageTransTail(page)) {
786 /* Middle of THP: zero out the page */
787 clear_highpage(page);
788 unlock_page(page);
789 continue;
790 } else if (PageTransHuge(page)) {
791 if (index == round_down(end, HPAGE_PMD_NR)) {
792 /*
793 * Range ends in the middle of THP:
794 * zero out the page
795 */
796 clear_highpage(page);
797 unlock_page(page);
798 continue;
799 }
800 index += HPAGE_PMD_NR - 1;
801 i += HPAGE_PMD_NR - 1;
802 }
803
804 if (!unfalloc || !PageUptodate(page)) {
805 VM_BUG_ON_PAGE(PageTail(page), page);
806 if (page_mapping(page) == mapping) {
807 VM_BUG_ON_PAGE(PageWriteback(page), page);
808 truncate_inode_page(mapping, page);
809 }
810 }
811 unlock_page(page);
812 }
813 pagevec_remove_exceptionals(&pvec);
814 pagevec_release(&pvec);
815 cond_resched();
816 index++;
817 }
818
819 if (partial_start) {
820 struct page *page = NULL;
821 shmem_getpage(inode, start - 1, &page, SGP_READ);
822 if (page) {
823 unsigned int top = PAGE_SIZE;
824 if (start > end) {
825 top = partial_end;
826 partial_end = 0;
827 }
828 zero_user_segment(page, partial_start, top);
829 set_page_dirty(page);
830 unlock_page(page);
831 put_page(page);
832 }
833 }
834 if (partial_end) {
835 struct page *page = NULL;
836 shmem_getpage(inode, end, &page, SGP_READ);
837 if (page) {
838 zero_user_segment(page, 0, partial_end);
839 set_page_dirty(page);
840 unlock_page(page);
841 put_page(page);
842 }
843 }
844 if (start >= end)
845 return;
846
847 index = start;
848 while (index < end) {
849 cond_resched();
850
851 pvec.nr = find_get_entries(mapping, index,
852 min(end - index, (pgoff_t)PAGEVEC_SIZE),
853 pvec.pages, indices);
854 if (!pvec.nr) {
855 /* If all gone or hole-punch or unfalloc, we're done */
856 if (index == start || end != -1)
857 break;
858 /* But if truncating, restart to make sure all gone */
859 index = start;
860 continue;
861 }
862 for (i = 0; i < pagevec_count(&pvec); i++) {
863 struct page *page = pvec.pages[i];
864
865 index = indices[i];
866 if (index >= end)
867 break;
868
869 if (radix_tree_exceptional_entry(page)) {
870 if (unfalloc)
871 continue;
872 if (shmem_free_swap(mapping, index, page)) {
873 /* Swap was replaced by page: retry */
874 index--;
875 break;
876 }
877 nr_swaps_freed++;
878 continue;
879 }
880
881 lock_page(page);
882
883 if (PageTransTail(page)) {
884 /* Middle of THP: zero out the page */
885 clear_highpage(page);
886 unlock_page(page);
887 /*
888 * Partial thp truncate due 'start' in middle
889 * of THP: don't need to look on these pages
890 * again on !pvec.nr restart.
891 */
892 if (index != round_down(end, HPAGE_PMD_NR))
893 start++;
894 continue;
895 } else if (PageTransHuge(page)) {
896 if (index == round_down(end, HPAGE_PMD_NR)) {
897 /*
898 * Range ends in the middle of THP:
899 * zero out the page
900 */
901 clear_highpage(page);
902 unlock_page(page);
903 continue;
904 }
905 index += HPAGE_PMD_NR - 1;
906 i += HPAGE_PMD_NR - 1;
907 }
908
909 if (!unfalloc || !PageUptodate(page)) {
910 VM_BUG_ON_PAGE(PageTail(page), page);
911 if (page_mapping(page) == mapping) {
912 VM_BUG_ON_PAGE(PageWriteback(page), page);
913 truncate_inode_page(mapping, page);
914 } else {
915 /* Page was replaced by swap: retry */
916 unlock_page(page);
917 index--;
918 break;
919 }
920 }
921 unlock_page(page);
922 }
923 pagevec_remove_exceptionals(&pvec);
924 pagevec_release(&pvec);
925 index++;
926 }
927
928 spin_lock_irq(&info->lock);
929 info->swapped -= nr_swaps_freed;
930 shmem_recalc_inode(inode);
931 spin_unlock_irq(&info->lock);
932 }
933
934 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
935 {
936 shmem_undo_range(inode, lstart, lend, false);
937 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
938 }
939 EXPORT_SYMBOL_GPL(shmem_truncate_range);
940
941 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
942 struct kstat *stat)
943 {
944 struct inode *inode = dentry->d_inode;
945 struct shmem_inode_info *info = SHMEM_I(inode);
946
947 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
948 spin_lock_irq(&info->lock);
949 shmem_recalc_inode(inode);
950 spin_unlock_irq(&info->lock);
951 }
952 generic_fillattr(inode, stat);
953 return 0;
954 }
955
956 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
957 {
958 struct inode *inode = d_inode(dentry);
959 struct shmem_inode_info *info = SHMEM_I(inode);
960 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
961 int error;
962
963 error = inode_change_ok(inode, attr);
964 if (error)
965 return error;
966
967 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
968 loff_t oldsize = inode->i_size;
969 loff_t newsize = attr->ia_size;
970
971 /* protected by i_mutex */
972 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
973 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
974 return -EPERM;
975
976 if (newsize != oldsize) {
977 error = shmem_reacct_size(SHMEM_I(inode)->flags,
978 oldsize, newsize);
979 if (error)
980 return error;
981 i_size_write(inode, newsize);
982 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
983 }
984 if (newsize <= oldsize) {
985 loff_t holebegin = round_up(newsize, PAGE_SIZE);
986 if (oldsize > holebegin)
987 unmap_mapping_range(inode->i_mapping,
988 holebegin, 0, 1);
989 if (info->alloced)
990 shmem_truncate_range(inode,
991 newsize, (loff_t)-1);
992 /* unmap again to remove racily COWed private pages */
993 if (oldsize > holebegin)
994 unmap_mapping_range(inode->i_mapping,
995 holebegin, 0, 1);
996
997 /*
998 * Part of the huge page can be beyond i_size: subject
999 * to shrink under memory pressure.
1000 */
1001 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1002 spin_lock(&sbinfo->shrinklist_lock);
1003 if (list_empty(&info->shrinklist)) {
1004 list_add_tail(&info->shrinklist,
1005 &sbinfo->shrinklist);
1006 sbinfo->shrinklist_len++;
1007 }
1008 spin_unlock(&sbinfo->shrinklist_lock);
1009 }
1010 }
1011 }
1012
1013 setattr_copy(inode, attr);
1014 if (attr->ia_valid & ATTR_MODE)
1015 error = posix_acl_chmod(inode, inode->i_mode);
1016 return error;
1017 }
1018
1019 static void shmem_evict_inode(struct inode *inode)
1020 {
1021 struct shmem_inode_info *info = SHMEM_I(inode);
1022 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1023
1024 if (inode->i_mapping->a_ops == &shmem_aops) {
1025 shmem_unacct_size(info->flags, inode->i_size);
1026 inode->i_size = 0;
1027 shmem_truncate_range(inode, 0, (loff_t)-1);
1028 if (!list_empty(&info->shrinklist)) {
1029 spin_lock(&sbinfo->shrinklist_lock);
1030 if (!list_empty(&info->shrinklist)) {
1031 list_del_init(&info->shrinklist);
1032 sbinfo->shrinklist_len--;
1033 }
1034 spin_unlock(&sbinfo->shrinklist_lock);
1035 }
1036 if (!list_empty(&info->swaplist)) {
1037 mutex_lock(&shmem_swaplist_mutex);
1038 list_del_init(&info->swaplist);
1039 mutex_unlock(&shmem_swaplist_mutex);
1040 }
1041 }
1042
1043 simple_xattrs_free(&info->xattrs);
1044 WARN_ON(inode->i_blocks);
1045 shmem_free_inode(inode->i_sb);
1046 clear_inode(inode);
1047 }
1048
1049 /*
1050 * If swap found in inode, free it and move page from swapcache to filecache.
1051 */
1052 static int shmem_unuse_inode(struct shmem_inode_info *info,
1053 swp_entry_t swap, struct page **pagep)
1054 {
1055 struct address_space *mapping = info->vfs_inode.i_mapping;
1056 void *radswap;
1057 pgoff_t index;
1058 gfp_t gfp;
1059 int error = 0;
1060
1061 radswap = swp_to_radix_entry(swap);
1062 index = radix_tree_locate_item(&mapping->page_tree, radswap);
1063 if (index == -1)
1064 return -EAGAIN; /* tell shmem_unuse we found nothing */
1065
1066 /*
1067 * Move _head_ to start search for next from here.
1068 * But be careful: shmem_evict_inode checks list_empty without taking
1069 * mutex, and there's an instant in list_move_tail when info->swaplist
1070 * would appear empty, if it were the only one on shmem_swaplist.
1071 */
1072 if (shmem_swaplist.next != &info->swaplist)
1073 list_move_tail(&shmem_swaplist, &info->swaplist);
1074
1075 gfp = mapping_gfp_mask(mapping);
1076 if (shmem_should_replace_page(*pagep, gfp)) {
1077 mutex_unlock(&shmem_swaplist_mutex);
1078 error = shmem_replace_page(pagep, gfp, info, index);
1079 mutex_lock(&shmem_swaplist_mutex);
1080 /*
1081 * We needed to drop mutex to make that restrictive page
1082 * allocation, but the inode might have been freed while we
1083 * dropped it: although a racing shmem_evict_inode() cannot
1084 * complete without emptying the radix_tree, our page lock
1085 * on this swapcache page is not enough to prevent that -
1086 * free_swap_and_cache() of our swap entry will only
1087 * trylock_page(), removing swap from radix_tree whatever.
1088 *
1089 * We must not proceed to shmem_add_to_page_cache() if the
1090 * inode has been freed, but of course we cannot rely on
1091 * inode or mapping or info to check that. However, we can
1092 * safely check if our swap entry is still in use (and here
1093 * it can't have got reused for another page): if it's still
1094 * in use, then the inode cannot have been freed yet, and we
1095 * can safely proceed (if it's no longer in use, that tells
1096 * nothing about the inode, but we don't need to unuse swap).
1097 */
1098 if (!page_swapcount(*pagep))
1099 error = -ENOENT;
1100 }
1101
1102 /*
1103 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1104 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1105 * beneath us (pagelock doesn't help until the page is in pagecache).
1106 */
1107 if (!error)
1108 error = shmem_add_to_page_cache(*pagep, mapping, index,
1109 radswap);
1110 if (error != -ENOMEM) {
1111 /*
1112 * Truncation and eviction use free_swap_and_cache(), which
1113 * only does trylock page: if we raced, best clean up here.
1114 */
1115 delete_from_swap_cache(*pagep);
1116 set_page_dirty(*pagep);
1117 if (!error) {
1118 spin_lock_irq(&info->lock);
1119 info->swapped--;
1120 spin_unlock_irq(&info->lock);
1121 swap_free(swap);
1122 }
1123 }
1124 return error;
1125 }
1126
1127 /*
1128 * Search through swapped inodes to find and replace swap by page.
1129 */
1130 int shmem_unuse(swp_entry_t swap, struct page *page)
1131 {
1132 struct list_head *this, *next;
1133 struct shmem_inode_info *info;
1134 struct mem_cgroup *memcg;
1135 int error = 0;
1136
1137 /*
1138 * There's a faint possibility that swap page was replaced before
1139 * caller locked it: caller will come back later with the right page.
1140 */
1141 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1142 goto out;
1143
1144 /*
1145 * Charge page using GFP_KERNEL while we can wait, before taking
1146 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1147 * Charged back to the user (not to caller) when swap account is used.
1148 */
1149 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1150 false);
1151 if (error)
1152 goto out;
1153 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1154 error = -EAGAIN;
1155
1156 mutex_lock(&shmem_swaplist_mutex);
1157 list_for_each_safe(this, next, &shmem_swaplist) {
1158 info = list_entry(this, struct shmem_inode_info, swaplist);
1159 if (info->swapped)
1160 error = shmem_unuse_inode(info, swap, &page);
1161 else
1162 list_del_init(&info->swaplist);
1163 cond_resched();
1164 if (error != -EAGAIN)
1165 break;
1166 /* found nothing in this: move on to search the next */
1167 }
1168 mutex_unlock(&shmem_swaplist_mutex);
1169
1170 if (error) {
1171 if (error != -ENOMEM)
1172 error = 0;
1173 mem_cgroup_cancel_charge(page, memcg, false);
1174 } else
1175 mem_cgroup_commit_charge(page, memcg, true, false);
1176 out:
1177 unlock_page(page);
1178 put_page(page);
1179 return error;
1180 }
1181
1182 /*
1183 * Move the page from the page cache to the swap cache.
1184 */
1185 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1186 {
1187 struct shmem_inode_info *info;
1188 struct address_space *mapping;
1189 struct inode *inode;
1190 swp_entry_t swap;
1191 pgoff_t index;
1192
1193 VM_BUG_ON_PAGE(PageCompound(page), page);
1194 BUG_ON(!PageLocked(page));
1195 mapping = page->mapping;
1196 index = page->index;
1197 inode = mapping->host;
1198 info = SHMEM_I(inode);
1199 if (info->flags & VM_LOCKED)
1200 goto redirty;
1201 if (!total_swap_pages)
1202 goto redirty;
1203
1204 /*
1205 * Our capabilities prevent regular writeback or sync from ever calling
1206 * shmem_writepage; but a stacking filesystem might use ->writepage of
1207 * its underlying filesystem, in which case tmpfs should write out to
1208 * swap only in response to memory pressure, and not for the writeback
1209 * threads or sync.
1210 */
1211 if (!wbc->for_reclaim) {
1212 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1213 goto redirty;
1214 }
1215
1216 /*
1217 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1218 * value into swapfile.c, the only way we can correctly account for a
1219 * fallocated page arriving here is now to initialize it and write it.
1220 *
1221 * That's okay for a page already fallocated earlier, but if we have
1222 * not yet completed the fallocation, then (a) we want to keep track
1223 * of this page in case we have to undo it, and (b) it may not be a
1224 * good idea to continue anyway, once we're pushing into swap. So
1225 * reactivate the page, and let shmem_fallocate() quit when too many.
1226 */
1227 if (!PageUptodate(page)) {
1228 if (inode->i_private) {
1229 struct shmem_falloc *shmem_falloc;
1230 spin_lock(&inode->i_lock);
1231 shmem_falloc = inode->i_private;
1232 if (shmem_falloc &&
1233 !shmem_falloc->waitq &&
1234 index >= shmem_falloc->start &&
1235 index < shmem_falloc->next)
1236 shmem_falloc->nr_unswapped++;
1237 else
1238 shmem_falloc = NULL;
1239 spin_unlock(&inode->i_lock);
1240 if (shmem_falloc)
1241 goto redirty;
1242 }
1243 clear_highpage(page);
1244 flush_dcache_page(page);
1245 SetPageUptodate(page);
1246 }
1247
1248 swap = get_swap_page();
1249 if (!swap.val)
1250 goto redirty;
1251
1252 if (mem_cgroup_try_charge_swap(page, swap))
1253 goto free_swap;
1254
1255 /*
1256 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1257 * if it's not already there. Do it now before the page is
1258 * moved to swap cache, when its pagelock no longer protects
1259 * the inode from eviction. But don't unlock the mutex until
1260 * we've incremented swapped, because shmem_unuse_inode() will
1261 * prune a !swapped inode from the swaplist under this mutex.
1262 */
1263 mutex_lock(&shmem_swaplist_mutex);
1264 if (list_empty(&info->swaplist))
1265 list_add_tail(&info->swaplist, &shmem_swaplist);
1266
1267 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1268 spin_lock_irq(&info->lock);
1269 shmem_recalc_inode(inode);
1270 info->swapped++;
1271 spin_unlock_irq(&info->lock);
1272
1273 swap_shmem_alloc(swap);
1274 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1275
1276 mutex_unlock(&shmem_swaplist_mutex);
1277 BUG_ON(page_mapped(page));
1278 swap_writepage(page, wbc);
1279 return 0;
1280 }
1281
1282 mutex_unlock(&shmem_swaplist_mutex);
1283 free_swap:
1284 swapcache_free(swap);
1285 redirty:
1286 set_page_dirty(page);
1287 if (wbc->for_reclaim)
1288 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1289 unlock_page(page);
1290 return 0;
1291 }
1292
1293 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1294 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1295 {
1296 char buffer[64];
1297
1298 if (!mpol || mpol->mode == MPOL_DEFAULT)
1299 return; /* show nothing */
1300
1301 mpol_to_str(buffer, sizeof(buffer), mpol);
1302
1303 seq_printf(seq, ",mpol=%s", buffer);
1304 }
1305
1306 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1307 {
1308 struct mempolicy *mpol = NULL;
1309 if (sbinfo->mpol) {
1310 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1311 mpol = sbinfo->mpol;
1312 mpol_get(mpol);
1313 spin_unlock(&sbinfo->stat_lock);
1314 }
1315 return mpol;
1316 }
1317 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1318 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1319 {
1320 }
1321 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1322 {
1323 return NULL;
1324 }
1325 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1326 #ifndef CONFIG_NUMA
1327 #define vm_policy vm_private_data
1328 #endif
1329
1330 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1331 struct shmem_inode_info *info, pgoff_t index)
1332 {
1333 /* Create a pseudo vma that just contains the policy */
1334 vma->vm_start = 0;
1335 /* Bias interleave by inode number to distribute better across nodes */
1336 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1337 vma->vm_ops = NULL;
1338 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1339 }
1340
1341 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1342 {
1343 /* Drop reference taken by mpol_shared_policy_lookup() */
1344 mpol_cond_put(vma->vm_policy);
1345 }
1346
1347 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1348 struct shmem_inode_info *info, pgoff_t index)
1349 {
1350 struct vm_area_struct pvma;
1351 struct page *page;
1352
1353 shmem_pseudo_vma_init(&pvma, info, index);
1354 page = swapin_readahead(swap, gfp, &pvma, 0);
1355 shmem_pseudo_vma_destroy(&pvma);
1356
1357 return page;
1358 }
1359
1360 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1361 struct shmem_inode_info *info, pgoff_t index)
1362 {
1363 struct vm_area_struct pvma;
1364 struct inode *inode = &info->vfs_inode;
1365 struct address_space *mapping = inode->i_mapping;
1366 pgoff_t idx, hindex;
1367 void __rcu **results;
1368 struct page *page;
1369
1370 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1371 return NULL;
1372
1373 hindex = round_down(index, HPAGE_PMD_NR);
1374 rcu_read_lock();
1375 if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1376 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1377 rcu_read_unlock();
1378 return NULL;
1379 }
1380 rcu_read_unlock();
1381
1382 shmem_pseudo_vma_init(&pvma, info, hindex);
1383 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1384 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1385 shmem_pseudo_vma_destroy(&pvma);
1386 if (page)
1387 prep_transhuge_page(page);
1388 return page;
1389 }
1390
1391 static struct page *shmem_alloc_page(gfp_t gfp,
1392 struct shmem_inode_info *info, pgoff_t index)
1393 {
1394 struct vm_area_struct pvma;
1395 struct page *page;
1396
1397 shmem_pseudo_vma_init(&pvma, info, index);
1398 page = alloc_page_vma(gfp, &pvma, 0);
1399 shmem_pseudo_vma_destroy(&pvma);
1400
1401 return page;
1402 }
1403
1404 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1405 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1406 pgoff_t index, bool huge)
1407 {
1408 struct page *page;
1409 int nr;
1410 int err = -ENOSPC;
1411
1412 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1413 huge = false;
1414 nr = huge ? HPAGE_PMD_NR : 1;
1415
1416 if (shmem_acct_block(info->flags, nr))
1417 goto failed;
1418 if (sbinfo->max_blocks) {
1419 if (percpu_counter_compare(&sbinfo->used_blocks,
1420 sbinfo->max_blocks - nr) > 0)
1421 goto unacct;
1422 percpu_counter_add(&sbinfo->used_blocks, nr);
1423 }
1424
1425 if (huge)
1426 page = shmem_alloc_hugepage(gfp, info, index);
1427 else
1428 page = shmem_alloc_page(gfp, info, index);
1429 if (page) {
1430 __SetPageLocked(page);
1431 __SetPageSwapBacked(page);
1432 return page;
1433 }
1434
1435 err = -ENOMEM;
1436 if (sbinfo->max_blocks)
1437 percpu_counter_add(&sbinfo->used_blocks, -nr);
1438 unacct:
1439 shmem_unacct_blocks(info->flags, nr);
1440 failed:
1441 return ERR_PTR(err);
1442 }
1443
1444 /*
1445 * When a page is moved from swapcache to shmem filecache (either by the
1446 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1447 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1448 * ignorance of the mapping it belongs to. If that mapping has special
1449 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1450 * we may need to copy to a suitable page before moving to filecache.
1451 *
1452 * In a future release, this may well be extended to respect cpuset and
1453 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1454 * but for now it is a simple matter of zone.
1455 */
1456 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1457 {
1458 return page_zonenum(page) > gfp_zone(gfp);
1459 }
1460
1461 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1462 struct shmem_inode_info *info, pgoff_t index)
1463 {
1464 struct page *oldpage, *newpage;
1465 struct address_space *swap_mapping;
1466 pgoff_t swap_index;
1467 int error;
1468
1469 oldpage = *pagep;
1470 swap_index = page_private(oldpage);
1471 swap_mapping = page_mapping(oldpage);
1472
1473 /*
1474 * We have arrived here because our zones are constrained, so don't
1475 * limit chance of success by further cpuset and node constraints.
1476 */
1477 gfp &= ~GFP_CONSTRAINT_MASK;
1478 newpage = shmem_alloc_page(gfp, info, index);
1479 if (!newpage)
1480 return -ENOMEM;
1481
1482 get_page(newpage);
1483 copy_highpage(newpage, oldpage);
1484 flush_dcache_page(newpage);
1485
1486 SetPageUptodate(newpage);
1487 set_page_private(newpage, swap_index);
1488 SetPageSwapCache(newpage);
1489
1490 /*
1491 * Our caller will very soon move newpage out of swapcache, but it's
1492 * a nice clean interface for us to replace oldpage by newpage there.
1493 */
1494 spin_lock_irq(&swap_mapping->tree_lock);
1495 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1496 newpage);
1497 if (!error) {
1498 __inc_node_page_state(newpage, NR_FILE_PAGES);
1499 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1500 }
1501 spin_unlock_irq(&swap_mapping->tree_lock);
1502
1503 if (unlikely(error)) {
1504 /*
1505 * Is this possible? I think not, now that our callers check
1506 * both PageSwapCache and page_private after getting page lock;
1507 * but be defensive. Reverse old to newpage for clear and free.
1508 */
1509 oldpage = newpage;
1510 } else {
1511 mem_cgroup_migrate(oldpage, newpage);
1512 lru_cache_add_anon(newpage);
1513 *pagep = newpage;
1514 }
1515
1516 ClearPageSwapCache(oldpage);
1517 set_page_private(oldpage, 0);
1518
1519 unlock_page(oldpage);
1520 put_page(oldpage);
1521 put_page(oldpage);
1522 return error;
1523 }
1524
1525 /*
1526 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1527 *
1528 * If we allocate a new one we do not mark it dirty. That's up to the
1529 * vm. If we swap it in we mark it dirty since we also free the swap
1530 * entry since a page cannot live in both the swap and page cache.
1531 *
1532 * fault_mm and fault_type are only supplied by shmem_fault:
1533 * otherwise they are NULL.
1534 */
1535 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1536 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1537 struct mm_struct *fault_mm, int *fault_type)
1538 {
1539 struct address_space *mapping = inode->i_mapping;
1540 struct shmem_inode_info *info;
1541 struct shmem_sb_info *sbinfo;
1542 struct mm_struct *charge_mm;
1543 struct mem_cgroup *memcg;
1544 struct page *page;
1545 swp_entry_t swap;
1546 enum sgp_type sgp_huge = sgp;
1547 pgoff_t hindex = index;
1548 int error;
1549 int once = 0;
1550 int alloced = 0;
1551
1552 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1553 return -EFBIG;
1554 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1555 sgp = SGP_CACHE;
1556 repeat:
1557 swap.val = 0;
1558 page = find_lock_entry(mapping, index);
1559 if (radix_tree_exceptional_entry(page)) {
1560 swap = radix_to_swp_entry(page);
1561 page = NULL;
1562 }
1563
1564 if (sgp <= SGP_CACHE &&
1565 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1566 error = -EINVAL;
1567 goto unlock;
1568 }
1569
1570 if (page && sgp == SGP_WRITE)
1571 mark_page_accessed(page);
1572
1573 /* fallocated page? */
1574 if (page && !PageUptodate(page)) {
1575 if (sgp != SGP_READ)
1576 goto clear;
1577 unlock_page(page);
1578 put_page(page);
1579 page = NULL;
1580 }
1581 if (page || (sgp == SGP_READ && !swap.val)) {
1582 *pagep = page;
1583 return 0;
1584 }
1585
1586 /*
1587 * Fast cache lookup did not find it:
1588 * bring it back from swap or allocate.
1589 */
1590 info = SHMEM_I(inode);
1591 sbinfo = SHMEM_SB(inode->i_sb);
1592 charge_mm = fault_mm ? : current->mm;
1593
1594 if (swap.val) {
1595 /* Look it up and read it in.. */
1596 page = lookup_swap_cache(swap);
1597 if (!page) {
1598 /* Or update major stats only when swapin succeeds?? */
1599 if (fault_type) {
1600 *fault_type |= VM_FAULT_MAJOR;
1601 count_vm_event(PGMAJFAULT);
1602 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1603 }
1604 /* Here we actually start the io */
1605 page = shmem_swapin(swap, gfp, info, index);
1606 if (!page) {
1607 error = -ENOMEM;
1608 goto failed;
1609 }
1610 }
1611
1612 /* We have to do this with page locked to prevent races */
1613 lock_page(page);
1614 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1615 !shmem_confirm_swap(mapping, index, swap)) {
1616 error = -EEXIST; /* try again */
1617 goto unlock;
1618 }
1619 if (!PageUptodate(page)) {
1620 error = -EIO;
1621 goto failed;
1622 }
1623 wait_on_page_writeback(page);
1624
1625 if (shmem_should_replace_page(page, gfp)) {
1626 error = shmem_replace_page(&page, gfp, info, index);
1627 if (error)
1628 goto failed;
1629 }
1630
1631 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1632 false);
1633 if (!error) {
1634 error = shmem_add_to_page_cache(page, mapping, index,
1635 swp_to_radix_entry(swap));
1636 /*
1637 * We already confirmed swap under page lock, and make
1638 * no memory allocation here, so usually no possibility
1639 * of error; but free_swap_and_cache() only trylocks a
1640 * page, so it is just possible that the entry has been
1641 * truncated or holepunched since swap was confirmed.
1642 * shmem_undo_range() will have done some of the
1643 * unaccounting, now delete_from_swap_cache() will do
1644 * the rest.
1645 * Reset swap.val? No, leave it so "failed" goes back to
1646 * "repeat": reading a hole and writing should succeed.
1647 */
1648 if (error) {
1649 mem_cgroup_cancel_charge(page, memcg, false);
1650 delete_from_swap_cache(page);
1651 }
1652 }
1653 if (error)
1654 goto failed;
1655
1656 mem_cgroup_commit_charge(page, memcg, true, false);
1657
1658 spin_lock_irq(&info->lock);
1659 info->swapped--;
1660 shmem_recalc_inode(inode);
1661 spin_unlock_irq(&info->lock);
1662
1663 if (sgp == SGP_WRITE)
1664 mark_page_accessed(page);
1665
1666 delete_from_swap_cache(page);
1667 set_page_dirty(page);
1668 swap_free(swap);
1669
1670 } else {
1671 /* shmem_symlink() */
1672 if (mapping->a_ops != &shmem_aops)
1673 goto alloc_nohuge;
1674 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1675 goto alloc_nohuge;
1676 if (shmem_huge == SHMEM_HUGE_FORCE)
1677 goto alloc_huge;
1678 switch (sbinfo->huge) {
1679 loff_t i_size;
1680 pgoff_t off;
1681 case SHMEM_HUGE_NEVER:
1682 goto alloc_nohuge;
1683 case SHMEM_HUGE_WITHIN_SIZE:
1684 off = round_up(index, HPAGE_PMD_NR);
1685 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1686 if (i_size >= HPAGE_PMD_SIZE &&
1687 i_size >> PAGE_SHIFT >= off)
1688 goto alloc_huge;
1689 /* fallthrough */
1690 case SHMEM_HUGE_ADVISE:
1691 if (sgp_huge == SGP_HUGE)
1692 goto alloc_huge;
1693 /* TODO: implement fadvise() hints */
1694 goto alloc_nohuge;
1695 }
1696
1697 alloc_huge:
1698 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1699 index, true);
1700 if (IS_ERR(page)) {
1701 alloc_nohuge: page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1702 index, false);
1703 }
1704 if (IS_ERR(page)) {
1705 int retry = 5;
1706 error = PTR_ERR(page);
1707 page = NULL;
1708 if (error != -ENOSPC)
1709 goto failed;
1710 /*
1711 * Try to reclaim some spece by splitting a huge page
1712 * beyond i_size on the filesystem.
1713 */
1714 while (retry--) {
1715 int ret;
1716 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1717 if (ret == SHRINK_STOP)
1718 break;
1719 if (ret)
1720 goto alloc_nohuge;
1721 }
1722 goto failed;
1723 }
1724
1725 if (PageTransHuge(page))
1726 hindex = round_down(index, HPAGE_PMD_NR);
1727 else
1728 hindex = index;
1729
1730 if (sgp == SGP_WRITE)
1731 __SetPageReferenced(page);
1732
1733 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1734 PageTransHuge(page));
1735 if (error)
1736 goto unacct;
1737 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1738 compound_order(page));
1739 if (!error) {
1740 error = shmem_add_to_page_cache(page, mapping, hindex,
1741 NULL);
1742 radix_tree_preload_end();
1743 }
1744 if (error) {
1745 mem_cgroup_cancel_charge(page, memcg,
1746 PageTransHuge(page));
1747 goto unacct;
1748 }
1749 mem_cgroup_commit_charge(page, memcg, false,
1750 PageTransHuge(page));
1751 lru_cache_add_anon(page);
1752
1753 spin_lock_irq(&info->lock);
1754 info->alloced += 1 << compound_order(page);
1755 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1756 shmem_recalc_inode(inode);
1757 spin_unlock_irq(&info->lock);
1758 alloced = true;
1759
1760 if (PageTransHuge(page) &&
1761 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1762 hindex + HPAGE_PMD_NR - 1) {
1763 /*
1764 * Part of the huge page is beyond i_size: subject
1765 * to shrink under memory pressure.
1766 */
1767 spin_lock(&sbinfo->shrinklist_lock);
1768 if (list_empty(&info->shrinklist)) {
1769 list_add_tail(&info->shrinklist,
1770 &sbinfo->shrinklist);
1771 sbinfo->shrinklist_len++;
1772 }
1773 spin_unlock(&sbinfo->shrinklist_lock);
1774 }
1775
1776 /*
1777 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1778 */
1779 if (sgp == SGP_FALLOC)
1780 sgp = SGP_WRITE;
1781 clear:
1782 /*
1783 * Let SGP_WRITE caller clear ends if write does not fill page;
1784 * but SGP_FALLOC on a page fallocated earlier must initialize
1785 * it now, lest undo on failure cancel our earlier guarantee.
1786 */
1787 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1788 struct page *head = compound_head(page);
1789 int i;
1790
1791 for (i = 0; i < (1 << compound_order(head)); i++) {
1792 clear_highpage(head + i);
1793 flush_dcache_page(head + i);
1794 }
1795 SetPageUptodate(head);
1796 }
1797 }
1798
1799 /* Perhaps the file has been truncated since we checked */
1800 if (sgp <= SGP_CACHE &&
1801 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1802 if (alloced) {
1803 ClearPageDirty(page);
1804 delete_from_page_cache(page);
1805 spin_lock_irq(&info->lock);
1806 shmem_recalc_inode(inode);
1807 spin_unlock_irq(&info->lock);
1808 }
1809 error = -EINVAL;
1810 goto unlock;
1811 }
1812 *pagep = page + index - hindex;
1813 return 0;
1814
1815 /*
1816 * Error recovery.
1817 */
1818 unacct:
1819 if (sbinfo->max_blocks)
1820 percpu_counter_sub(&sbinfo->used_blocks,
1821 1 << compound_order(page));
1822 shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1823
1824 if (PageTransHuge(page)) {
1825 unlock_page(page);
1826 put_page(page);
1827 goto alloc_nohuge;
1828 }
1829 failed:
1830 if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1831 error = -EEXIST;
1832 unlock:
1833 if (page) {
1834 unlock_page(page);
1835 put_page(page);
1836 }
1837 if (error == -ENOSPC && !once++) {
1838 info = SHMEM_I(inode);
1839 spin_lock_irq(&info->lock);
1840 shmem_recalc_inode(inode);
1841 spin_unlock_irq(&info->lock);
1842 goto repeat;
1843 }
1844 if (error == -EEXIST) /* from above or from radix_tree_insert */
1845 goto repeat;
1846 return error;
1847 }
1848
1849 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1850 {
1851 struct inode *inode = file_inode(vma->vm_file);
1852 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1853 enum sgp_type sgp;
1854 int error;
1855 int ret = VM_FAULT_LOCKED;
1856
1857 /*
1858 * Trinity finds that probing a hole which tmpfs is punching can
1859 * prevent the hole-punch from ever completing: which in turn
1860 * locks writers out with its hold on i_mutex. So refrain from
1861 * faulting pages into the hole while it's being punched. Although
1862 * shmem_undo_range() does remove the additions, it may be unable to
1863 * keep up, as each new page needs its own unmap_mapping_range() call,
1864 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1865 *
1866 * It does not matter if we sometimes reach this check just before the
1867 * hole-punch begins, so that one fault then races with the punch:
1868 * we just need to make racing faults a rare case.
1869 *
1870 * The implementation below would be much simpler if we just used a
1871 * standard mutex or completion: but we cannot take i_mutex in fault,
1872 * and bloating every shmem inode for this unlikely case would be sad.
1873 */
1874 if (unlikely(inode->i_private)) {
1875 struct shmem_falloc *shmem_falloc;
1876
1877 spin_lock(&inode->i_lock);
1878 shmem_falloc = inode->i_private;
1879 if (shmem_falloc &&
1880 shmem_falloc->waitq &&
1881 vmf->pgoff >= shmem_falloc->start &&
1882 vmf->pgoff < shmem_falloc->next) {
1883 wait_queue_head_t *shmem_falloc_waitq;
1884 DEFINE_WAIT(shmem_fault_wait);
1885
1886 ret = VM_FAULT_NOPAGE;
1887 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1888 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1889 /* It's polite to up mmap_sem if we can */
1890 up_read(&vma->vm_mm->mmap_sem);
1891 ret = VM_FAULT_RETRY;
1892 }
1893
1894 shmem_falloc_waitq = shmem_falloc->waitq;
1895 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1896 TASK_UNINTERRUPTIBLE);
1897 spin_unlock(&inode->i_lock);
1898 schedule();
1899
1900 /*
1901 * shmem_falloc_waitq points into the shmem_fallocate()
1902 * stack of the hole-punching task: shmem_falloc_waitq
1903 * is usually invalid by the time we reach here, but
1904 * finish_wait() does not dereference it in that case;
1905 * though i_lock needed lest racing with wake_up_all().
1906 */
1907 spin_lock(&inode->i_lock);
1908 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1909 spin_unlock(&inode->i_lock);
1910 return ret;
1911 }
1912 spin_unlock(&inode->i_lock);
1913 }
1914
1915 sgp = SGP_CACHE;
1916 if (vma->vm_flags & VM_HUGEPAGE)
1917 sgp = SGP_HUGE;
1918 else if (vma->vm_flags & VM_NOHUGEPAGE)
1919 sgp = SGP_NOHUGE;
1920
1921 error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1922 gfp, vma->vm_mm, &ret);
1923 if (error)
1924 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1925 return ret;
1926 }
1927
1928 unsigned long shmem_get_unmapped_area(struct file *file,
1929 unsigned long uaddr, unsigned long len,
1930 unsigned long pgoff, unsigned long flags)
1931 {
1932 unsigned long (*get_area)(struct file *,
1933 unsigned long, unsigned long, unsigned long, unsigned long);
1934 unsigned long addr;
1935 unsigned long offset;
1936 unsigned long inflated_len;
1937 unsigned long inflated_addr;
1938 unsigned long inflated_offset;
1939
1940 if (len > TASK_SIZE)
1941 return -ENOMEM;
1942
1943 get_area = current->mm->get_unmapped_area;
1944 addr = get_area(file, uaddr, len, pgoff, flags);
1945
1946 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1947 return addr;
1948 if (IS_ERR_VALUE(addr))
1949 return addr;
1950 if (addr & ~PAGE_MASK)
1951 return addr;
1952 if (addr > TASK_SIZE - len)
1953 return addr;
1954
1955 if (shmem_huge == SHMEM_HUGE_DENY)
1956 return addr;
1957 if (len < HPAGE_PMD_SIZE)
1958 return addr;
1959 if (flags & MAP_FIXED)
1960 return addr;
1961 /*
1962 * Our priority is to support MAP_SHARED mapped hugely;
1963 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1964 * But if caller specified an address hint, respect that as before.
1965 */
1966 if (uaddr)
1967 return addr;
1968
1969 if (shmem_huge != SHMEM_HUGE_FORCE) {
1970 struct super_block *sb;
1971
1972 if (file) {
1973 VM_BUG_ON(file->f_op != &shmem_file_operations);
1974 sb = file_inode(file)->i_sb;
1975 } else {
1976 /*
1977 * Called directly from mm/mmap.c, or drivers/char/mem.c
1978 * for "/dev/zero", to create a shared anonymous object.
1979 */
1980 if (IS_ERR(shm_mnt))
1981 return addr;
1982 sb = shm_mnt->mnt_sb;
1983 }
1984 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
1985 return addr;
1986 }
1987
1988 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1989 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1990 return addr;
1991 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1992 return addr;
1993
1994 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1995 if (inflated_len > TASK_SIZE)
1996 return addr;
1997 if (inflated_len < len)
1998 return addr;
1999
2000 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2001 if (IS_ERR_VALUE(inflated_addr))
2002 return addr;
2003 if (inflated_addr & ~PAGE_MASK)
2004 return addr;
2005
2006 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2007 inflated_addr += offset - inflated_offset;
2008 if (inflated_offset > offset)
2009 inflated_addr += HPAGE_PMD_SIZE;
2010
2011 if (inflated_addr > TASK_SIZE - len)
2012 return addr;
2013 return inflated_addr;
2014 }
2015
2016 #ifdef CONFIG_NUMA
2017 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2018 {
2019 struct inode *inode = file_inode(vma->vm_file);
2020 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2021 }
2022
2023 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2024 unsigned long addr)
2025 {
2026 struct inode *inode = file_inode(vma->vm_file);
2027 pgoff_t index;
2028
2029 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2030 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2031 }
2032 #endif
2033
2034 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2035 {
2036 struct inode *inode = file_inode(file);
2037 struct shmem_inode_info *info = SHMEM_I(inode);
2038 int retval = -ENOMEM;
2039
2040 spin_lock_irq(&info->lock);
2041 if (lock && !(info->flags & VM_LOCKED)) {
2042 if (!user_shm_lock(inode->i_size, user))
2043 goto out_nomem;
2044 info->flags |= VM_LOCKED;
2045 mapping_set_unevictable(file->f_mapping);
2046 }
2047 if (!lock && (info->flags & VM_LOCKED) && user) {
2048 user_shm_unlock(inode->i_size, user);
2049 info->flags &= ~VM_LOCKED;
2050 mapping_clear_unevictable(file->f_mapping);
2051 }
2052 retval = 0;
2053
2054 out_nomem:
2055 spin_unlock_irq(&info->lock);
2056 return retval;
2057 }
2058
2059 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2060 {
2061 file_accessed(file);
2062 vma->vm_ops = &shmem_vm_ops;
2063 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2064 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2065 (vma->vm_end & HPAGE_PMD_MASK)) {
2066 khugepaged_enter(vma, vma->vm_flags);
2067 }
2068 return 0;
2069 }
2070
2071 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2072 umode_t mode, dev_t dev, unsigned long flags)
2073 {
2074 struct inode *inode;
2075 struct shmem_inode_info *info;
2076 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2077
2078 if (shmem_reserve_inode(sb))
2079 return NULL;
2080
2081 inode = new_inode(sb);
2082 if (inode) {
2083 inode->i_ino = get_next_ino();
2084 inode_init_owner(inode, dir, mode);
2085 inode->i_blocks = 0;
2086 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2087 inode->i_generation = get_seconds();
2088 info = SHMEM_I(inode);
2089 memset(info, 0, (char *)inode - (char *)info);
2090 spin_lock_init(&info->lock);
2091 info->seals = F_SEAL_SEAL;
2092 info->flags = flags & VM_NORESERVE;
2093 INIT_LIST_HEAD(&info->shrinklist);
2094 INIT_LIST_HEAD(&info->swaplist);
2095 simple_xattrs_init(&info->xattrs);
2096 cache_no_acl(inode);
2097
2098 switch (mode & S_IFMT) {
2099 default:
2100 inode->i_op = &shmem_special_inode_operations;
2101 init_special_inode(inode, mode, dev);
2102 break;
2103 case S_IFREG:
2104 inode->i_mapping->a_ops = &shmem_aops;
2105 inode->i_op = &shmem_inode_operations;
2106 inode->i_fop = &shmem_file_operations;
2107 mpol_shared_policy_init(&info->policy,
2108 shmem_get_sbmpol(sbinfo));
2109 break;
2110 case S_IFDIR:
2111 inc_nlink(inode);
2112 /* Some things misbehave if size == 0 on a directory */
2113 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2114 inode->i_op = &shmem_dir_inode_operations;
2115 inode->i_fop = &simple_dir_operations;
2116 break;
2117 case S_IFLNK:
2118 /*
2119 * Must not load anything in the rbtree,
2120 * mpol_free_shared_policy will not be called.
2121 */
2122 mpol_shared_policy_init(&info->policy, NULL);
2123 break;
2124 }
2125 } else
2126 shmem_free_inode(sb);
2127 return inode;
2128 }
2129
2130 bool shmem_mapping(struct address_space *mapping)
2131 {
2132 if (!mapping->host)
2133 return false;
2134
2135 return mapping->host->i_sb->s_op == &shmem_ops;
2136 }
2137
2138 #ifdef CONFIG_TMPFS
2139 static const struct inode_operations shmem_symlink_inode_operations;
2140 static const struct inode_operations shmem_short_symlink_operations;
2141
2142 #ifdef CONFIG_TMPFS_XATTR
2143 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2144 #else
2145 #define shmem_initxattrs NULL
2146 #endif
2147
2148 static int
2149 shmem_write_begin(struct file *file, struct address_space *mapping,
2150 loff_t pos, unsigned len, unsigned flags,
2151 struct page **pagep, void **fsdata)
2152 {
2153 struct inode *inode = mapping->host;
2154 struct shmem_inode_info *info = SHMEM_I(inode);
2155 pgoff_t index = pos >> PAGE_SHIFT;
2156
2157 /* i_mutex is held by caller */
2158 if (unlikely(info->seals)) {
2159 if (info->seals & F_SEAL_WRITE)
2160 return -EPERM;
2161 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2162 return -EPERM;
2163 }
2164
2165 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2166 }
2167
2168 static int
2169 shmem_write_end(struct file *file, struct address_space *mapping,
2170 loff_t pos, unsigned len, unsigned copied,
2171 struct page *page, void *fsdata)
2172 {
2173 struct inode *inode = mapping->host;
2174
2175 if (pos + copied > inode->i_size)
2176 i_size_write(inode, pos + copied);
2177
2178 if (!PageUptodate(page)) {
2179 struct page *head = compound_head(page);
2180 if (PageTransCompound(page)) {
2181 int i;
2182
2183 for (i = 0; i < HPAGE_PMD_NR; i++) {
2184 if (head + i == page)
2185 continue;
2186 clear_highpage(head + i);
2187 flush_dcache_page(head + i);
2188 }
2189 }
2190 if (copied < PAGE_SIZE) {
2191 unsigned from = pos & (PAGE_SIZE - 1);
2192 zero_user_segments(page, 0, from,
2193 from + copied, PAGE_SIZE);
2194 }
2195 SetPageUptodate(head);
2196 }
2197 set_page_dirty(page);
2198 unlock_page(page);
2199 put_page(page);
2200
2201 return copied;
2202 }
2203
2204 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2205 {
2206 struct file *file = iocb->ki_filp;
2207 struct inode *inode = file_inode(file);
2208 struct address_space *mapping = inode->i_mapping;
2209 pgoff_t index;
2210 unsigned long offset;
2211 enum sgp_type sgp = SGP_READ;
2212 int error = 0;
2213 ssize_t retval = 0;
2214 loff_t *ppos = &iocb->ki_pos;
2215
2216 /*
2217 * Might this read be for a stacking filesystem? Then when reading
2218 * holes of a sparse file, we actually need to allocate those pages,
2219 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2220 */
2221 if (!iter_is_iovec(to))
2222 sgp = SGP_CACHE;
2223
2224 index = *ppos >> PAGE_SHIFT;
2225 offset = *ppos & ~PAGE_MASK;
2226
2227 for (;;) {
2228 struct page *page = NULL;
2229 pgoff_t end_index;
2230 unsigned long nr, ret;
2231 loff_t i_size = i_size_read(inode);
2232
2233 end_index = i_size >> PAGE_SHIFT;
2234 if (index > end_index)
2235 break;
2236 if (index == end_index) {
2237 nr = i_size & ~PAGE_MASK;
2238 if (nr <= offset)
2239 break;
2240 }
2241
2242 error = shmem_getpage(inode, index, &page, sgp);
2243 if (error) {
2244 if (error == -EINVAL)
2245 error = 0;
2246 break;
2247 }
2248 if (page) {
2249 if (sgp == SGP_CACHE)
2250 set_page_dirty(page);
2251 unlock_page(page);
2252 }
2253
2254 /*
2255 * We must evaluate after, since reads (unlike writes)
2256 * are called without i_mutex protection against truncate
2257 */
2258 nr = PAGE_SIZE;
2259 i_size = i_size_read(inode);
2260 end_index = i_size >> PAGE_SHIFT;
2261 if (index == end_index) {
2262 nr = i_size & ~PAGE_MASK;
2263 if (nr <= offset) {
2264 if (page)
2265 put_page(page);
2266 break;
2267 }
2268 }
2269 nr -= offset;
2270
2271 if (page) {
2272 /*
2273 * If users can be writing to this page using arbitrary
2274 * virtual addresses, take care about potential aliasing
2275 * before reading the page on the kernel side.
2276 */
2277 if (mapping_writably_mapped(mapping))
2278 flush_dcache_page(page);
2279 /*
2280 * Mark the page accessed if we read the beginning.
2281 */
2282 if (!offset)
2283 mark_page_accessed(page);
2284 } else {
2285 page = ZERO_PAGE(0);
2286 get_page(page);
2287 }
2288
2289 /*
2290 * Ok, we have the page, and it's up-to-date, so
2291 * now we can copy it to user space...
2292 */
2293 ret = copy_page_to_iter(page, offset, nr, to);
2294 retval += ret;
2295 offset += ret;
2296 index += offset >> PAGE_SHIFT;
2297 offset &= ~PAGE_MASK;
2298
2299 put_page(page);
2300 if (!iov_iter_count(to))
2301 break;
2302 if (ret < nr) {
2303 error = -EFAULT;
2304 break;
2305 }
2306 cond_resched();
2307 }
2308
2309 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2310 file_accessed(file);
2311 return retval ? retval : error;
2312 }
2313
2314 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2315 struct pipe_inode_info *pipe, size_t len,
2316 unsigned int flags)
2317 {
2318 struct address_space *mapping = in->f_mapping;
2319 struct inode *inode = mapping->host;
2320 unsigned int loff, nr_pages, req_pages;
2321 struct page *pages[PIPE_DEF_BUFFERS];
2322 struct partial_page partial[PIPE_DEF_BUFFERS];
2323 struct page *page;
2324 pgoff_t index, end_index;
2325 loff_t isize, left;
2326 int error, page_nr;
2327 struct splice_pipe_desc spd = {
2328 .pages = pages,
2329 .partial = partial,
2330 .nr_pages_max = PIPE_DEF_BUFFERS,
2331 .flags = flags,
2332 .ops = &page_cache_pipe_buf_ops,
2333 .spd_release = spd_release_page,
2334 };
2335
2336 isize = i_size_read(inode);
2337 if (unlikely(*ppos >= isize))
2338 return 0;
2339
2340 left = isize - *ppos;
2341 if (unlikely(left < len))
2342 len = left;
2343
2344 if (splice_grow_spd(pipe, &spd))
2345 return -ENOMEM;
2346
2347 index = *ppos >> PAGE_SHIFT;
2348 loff = *ppos & ~PAGE_MASK;
2349 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
2350 nr_pages = min(req_pages, spd.nr_pages_max);
2351
2352 spd.nr_pages = find_get_pages_contig(mapping, index,
2353 nr_pages, spd.pages);
2354 index += spd.nr_pages;
2355 error = 0;
2356
2357 while (spd.nr_pages < nr_pages) {
2358 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2359 if (error)
2360 break;
2361 unlock_page(page);
2362 spd.pages[spd.nr_pages++] = page;
2363 index++;
2364 }
2365
2366 index = *ppos >> PAGE_SHIFT;
2367 nr_pages = spd.nr_pages;
2368 spd.nr_pages = 0;
2369
2370 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
2371 unsigned int this_len;
2372
2373 if (!len)
2374 break;
2375
2376 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
2377 page = spd.pages[page_nr];
2378
2379 if (!PageUptodate(page) || page->mapping != mapping) {
2380 error = shmem_getpage(inode, index, &page, SGP_CACHE);
2381 if (error)
2382 break;
2383 unlock_page(page);
2384 put_page(spd.pages[page_nr]);
2385 spd.pages[page_nr] = page;
2386 }
2387
2388 isize = i_size_read(inode);
2389 end_index = (isize - 1) >> PAGE_SHIFT;
2390 if (unlikely(!isize || index > end_index))
2391 break;
2392
2393 if (end_index == index) {
2394 unsigned int plen;
2395
2396 plen = ((isize - 1) & ~PAGE_MASK) + 1;
2397 if (plen <= loff)
2398 break;
2399
2400 this_len = min(this_len, plen - loff);
2401 len = this_len;
2402 }
2403
2404 spd.partial[page_nr].offset = loff;
2405 spd.partial[page_nr].len = this_len;
2406 len -= this_len;
2407 loff = 0;
2408 spd.nr_pages++;
2409 index++;
2410 }
2411
2412 while (page_nr < nr_pages)
2413 put_page(spd.pages[page_nr++]);
2414
2415 if (spd.nr_pages)
2416 error = splice_to_pipe(pipe, &spd);
2417
2418 splice_shrink_spd(&spd);
2419
2420 if (error > 0) {
2421 *ppos += error;
2422 file_accessed(in);
2423 }
2424 return error;
2425 }
2426
2427 /*
2428 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2429 */
2430 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2431 pgoff_t index, pgoff_t end, int whence)
2432 {
2433 struct page *page;
2434 struct pagevec pvec;
2435 pgoff_t indices[PAGEVEC_SIZE];
2436 bool done = false;
2437 int i;
2438
2439 pagevec_init(&pvec, 0);
2440 pvec.nr = 1; /* start small: we may be there already */
2441 while (!done) {
2442 pvec.nr = find_get_entries(mapping, index,
2443 pvec.nr, pvec.pages, indices);
2444 if (!pvec.nr) {
2445 if (whence == SEEK_DATA)
2446 index = end;
2447 break;
2448 }
2449 for (i = 0; i < pvec.nr; i++, index++) {
2450 if (index < indices[i]) {
2451 if (whence == SEEK_HOLE) {
2452 done = true;
2453 break;
2454 }
2455 index = indices[i];
2456 }
2457 page = pvec.pages[i];
2458 if (page && !radix_tree_exceptional_entry(page)) {
2459 if (!PageUptodate(page))
2460 page = NULL;
2461 }
2462 if (index >= end ||
2463 (page && whence == SEEK_DATA) ||
2464 (!page && whence == SEEK_HOLE)) {
2465 done = true;
2466 break;
2467 }
2468 }
2469 pagevec_remove_exceptionals(&pvec);
2470 pagevec_release(&pvec);
2471 pvec.nr = PAGEVEC_SIZE;
2472 cond_resched();
2473 }
2474 return index;
2475 }
2476
2477 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2478 {
2479 struct address_space *mapping = file->f_mapping;
2480 struct inode *inode = mapping->host;
2481 pgoff_t start, end;
2482 loff_t new_offset;
2483
2484 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2485 return generic_file_llseek_size(file, offset, whence,
2486 MAX_LFS_FILESIZE, i_size_read(inode));
2487 inode_lock(inode);
2488 /* We're holding i_mutex so we can access i_size directly */
2489
2490 if (offset < 0)
2491 offset = -EINVAL;
2492 else if (offset >= inode->i_size)
2493 offset = -ENXIO;
2494 else {
2495 start = offset >> PAGE_SHIFT;
2496 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2497 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2498 new_offset <<= PAGE_SHIFT;
2499 if (new_offset > offset) {
2500 if (new_offset < inode->i_size)
2501 offset = new_offset;
2502 else if (whence == SEEK_DATA)
2503 offset = -ENXIO;
2504 else
2505 offset = inode->i_size;
2506 }
2507 }
2508
2509 if (offset >= 0)
2510 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2511 inode_unlock(inode);
2512 return offset;
2513 }
2514
2515 /*
2516 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2517 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2518 */
2519 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2520 #define LAST_SCAN 4 /* about 150ms max */
2521
2522 static void shmem_tag_pins(struct address_space *mapping)
2523 {
2524 struct radix_tree_iter iter;
2525 void **slot;
2526 pgoff_t start;
2527 struct page *page;
2528
2529 lru_add_drain();
2530 start = 0;
2531 rcu_read_lock();
2532
2533 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2534 page = radix_tree_deref_slot(slot);
2535 if (!page || radix_tree_exception(page)) {
2536 if (radix_tree_deref_retry(page)) {
2537 slot = radix_tree_iter_retry(&iter);
2538 continue;
2539 }
2540 } else if (page_count(page) - page_mapcount(page) > 1) {
2541 spin_lock_irq(&mapping->tree_lock);
2542 radix_tree_tag_set(&mapping->page_tree, iter.index,
2543 SHMEM_TAG_PINNED);
2544 spin_unlock_irq(&mapping->tree_lock);
2545 }
2546
2547 if (need_resched()) {
2548 cond_resched_rcu();
2549 slot = radix_tree_iter_next(&iter);
2550 }
2551 }
2552 rcu_read_unlock();
2553 }
2554
2555 /*
2556 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2557 * via get_user_pages(), drivers might have some pending I/O without any active
2558 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2559 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2560 * them to be dropped.
2561 * The caller must guarantee that no new user will acquire writable references
2562 * to those pages to avoid races.
2563 */
2564 static int shmem_wait_for_pins(struct address_space *mapping)
2565 {
2566 struct radix_tree_iter iter;
2567 void **slot;
2568 pgoff_t start;
2569 struct page *page;
2570 int error, scan;
2571
2572 shmem_tag_pins(mapping);
2573
2574 error = 0;
2575 for (scan = 0; scan <= LAST_SCAN; scan++) {
2576 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2577 break;
2578
2579 if (!scan)
2580 lru_add_drain_all();
2581 else if (schedule_timeout_killable((HZ << scan) / 200))
2582 scan = LAST_SCAN;
2583
2584 start = 0;
2585 rcu_read_lock();
2586 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2587 start, SHMEM_TAG_PINNED) {
2588
2589 page = radix_tree_deref_slot(slot);
2590 if (radix_tree_exception(page)) {
2591 if (radix_tree_deref_retry(page)) {
2592 slot = radix_tree_iter_retry(&iter);
2593 continue;
2594 }
2595
2596 page = NULL;
2597 }
2598
2599 if (page &&
2600 page_count(page) - page_mapcount(page) != 1) {
2601 if (scan < LAST_SCAN)
2602 goto continue_resched;
2603
2604 /*
2605 * On the last scan, we clean up all those tags
2606 * we inserted; but make a note that we still
2607 * found pages pinned.
2608 */
2609 error = -EBUSY;
2610 }
2611
2612 spin_lock_irq(&mapping->tree_lock);
2613 radix_tree_tag_clear(&mapping->page_tree,
2614 iter.index, SHMEM_TAG_PINNED);
2615 spin_unlock_irq(&mapping->tree_lock);
2616 continue_resched:
2617 if (need_resched()) {
2618 cond_resched_rcu();
2619 slot = radix_tree_iter_next(&iter);
2620 }
2621 }
2622 rcu_read_unlock();
2623 }
2624
2625 return error;
2626 }
2627
2628 #define F_ALL_SEALS (F_SEAL_SEAL | \
2629 F_SEAL_SHRINK | \
2630 F_SEAL_GROW | \
2631 F_SEAL_WRITE)
2632
2633 int shmem_add_seals(struct file *file, unsigned int seals)
2634 {
2635 struct inode *inode = file_inode(file);
2636 struct shmem_inode_info *info = SHMEM_I(inode);
2637 int error;
2638
2639 /*
2640 * SEALING
2641 * Sealing allows multiple parties to share a shmem-file but restrict
2642 * access to a specific subset of file operations. Seals can only be
2643 * added, but never removed. This way, mutually untrusted parties can
2644 * share common memory regions with a well-defined policy. A malicious
2645 * peer can thus never perform unwanted operations on a shared object.
2646 *
2647 * Seals are only supported on special shmem-files and always affect
2648 * the whole underlying inode. Once a seal is set, it may prevent some
2649 * kinds of access to the file. Currently, the following seals are
2650 * defined:
2651 * SEAL_SEAL: Prevent further seals from being set on this file
2652 * SEAL_SHRINK: Prevent the file from shrinking
2653 * SEAL_GROW: Prevent the file from growing
2654 * SEAL_WRITE: Prevent write access to the file
2655 *
2656 * As we don't require any trust relationship between two parties, we
2657 * must prevent seals from being removed. Therefore, sealing a file
2658 * only adds a given set of seals to the file, it never touches
2659 * existing seals. Furthermore, the "setting seals"-operation can be
2660 * sealed itself, which basically prevents any further seal from being
2661 * added.
2662 *
2663 * Semantics of sealing are only defined on volatile files. Only
2664 * anonymous shmem files support sealing. More importantly, seals are
2665 * never written to disk. Therefore, there's no plan to support it on
2666 * other file types.
2667 */
2668
2669 if (file->f_op != &shmem_file_operations)
2670 return -EINVAL;
2671 if (!(file->f_mode & FMODE_WRITE))
2672 return -EPERM;
2673 if (seals & ~(unsigned int)F_ALL_SEALS)
2674 return -EINVAL;
2675
2676 inode_lock(inode);
2677
2678 if (info->seals & F_SEAL_SEAL) {
2679 error = -EPERM;
2680 goto unlock;
2681 }
2682
2683 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2684 error = mapping_deny_writable(file->f_mapping);
2685 if (error)
2686 goto unlock;
2687
2688 error = shmem_wait_for_pins(file->f_mapping);
2689 if (error) {
2690 mapping_allow_writable(file->f_mapping);
2691 goto unlock;
2692 }
2693 }
2694
2695 info->seals |= seals;
2696 error = 0;
2697
2698 unlock:
2699 inode_unlock(inode);
2700 return error;
2701 }
2702 EXPORT_SYMBOL_GPL(shmem_add_seals);
2703
2704 int shmem_get_seals(struct file *file)
2705 {
2706 if (file->f_op != &shmem_file_operations)
2707 return -EINVAL;
2708
2709 return SHMEM_I(file_inode(file))->seals;
2710 }
2711 EXPORT_SYMBOL_GPL(shmem_get_seals);
2712
2713 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2714 {
2715 long error;
2716
2717 switch (cmd) {
2718 case F_ADD_SEALS:
2719 /* disallow upper 32bit */
2720 if (arg > UINT_MAX)
2721 return -EINVAL;
2722
2723 error = shmem_add_seals(file, arg);
2724 break;
2725 case F_GET_SEALS:
2726 error = shmem_get_seals(file);
2727 break;
2728 default:
2729 error = -EINVAL;
2730 break;
2731 }
2732
2733 return error;
2734 }
2735
2736 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2737 loff_t len)
2738 {
2739 struct inode *inode = file_inode(file);
2740 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2741 struct shmem_inode_info *info = SHMEM_I(inode);
2742 struct shmem_falloc shmem_falloc;
2743 pgoff_t start, index, end;
2744 int error;
2745
2746 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2747 return -EOPNOTSUPP;
2748
2749 inode_lock(inode);
2750
2751 if (mode & FALLOC_FL_PUNCH_HOLE) {
2752 struct address_space *mapping = file->f_mapping;
2753 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2754 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2755 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2756
2757 /* protected by i_mutex */
2758 if (info->seals & F_SEAL_WRITE) {
2759 error = -EPERM;
2760 goto out;
2761 }
2762
2763 shmem_falloc.waitq = &shmem_falloc_waitq;
2764 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2765 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2766 spin_lock(&inode->i_lock);
2767 inode->i_private = &shmem_falloc;
2768 spin_unlock(&inode->i_lock);
2769
2770 if ((u64)unmap_end > (u64)unmap_start)
2771 unmap_mapping_range(mapping, unmap_start,
2772 1 + unmap_end - unmap_start, 0);
2773 shmem_truncate_range(inode, offset, offset + len - 1);
2774 /* No need to unmap again: hole-punching leaves COWed pages */
2775
2776 spin_lock(&inode->i_lock);
2777 inode->i_private = NULL;
2778 wake_up_all(&shmem_falloc_waitq);
2779 spin_unlock(&inode->i_lock);
2780 error = 0;
2781 goto out;
2782 }
2783
2784 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2785 error = inode_newsize_ok(inode, offset + len);
2786 if (error)
2787 goto out;
2788
2789 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2790 error = -EPERM;
2791 goto out;
2792 }
2793
2794 start = offset >> PAGE_SHIFT;
2795 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2796 /* Try to avoid a swapstorm if len is impossible to satisfy */
2797 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2798 error = -ENOSPC;
2799 goto out;
2800 }
2801
2802 shmem_falloc.waitq = NULL;
2803 shmem_falloc.start = start;
2804 shmem_falloc.next = start;
2805 shmem_falloc.nr_falloced = 0;
2806 shmem_falloc.nr_unswapped = 0;
2807 spin_lock(&inode->i_lock);
2808 inode->i_private = &shmem_falloc;
2809 spin_unlock(&inode->i_lock);
2810
2811 for (index = start; index < end; index++) {
2812 struct page *page;
2813
2814 /*
2815 * Good, the fallocate(2) manpage permits EINTR: we may have
2816 * been interrupted because we are using up too much memory.
2817 */
2818 if (signal_pending(current))
2819 error = -EINTR;
2820 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2821 error = -ENOMEM;
2822 else
2823 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2824 if (error) {
2825 /* Remove the !PageUptodate pages we added */
2826 if (index > start) {
2827 shmem_undo_range(inode,
2828 (loff_t)start << PAGE_SHIFT,
2829 ((loff_t)index << PAGE_SHIFT) - 1, true);
2830 }
2831 goto undone;
2832 }
2833
2834 /*
2835 * Inform shmem_writepage() how far we have reached.
2836 * No need for lock or barrier: we have the page lock.
2837 */
2838 shmem_falloc.next++;
2839 if (!PageUptodate(page))
2840 shmem_falloc.nr_falloced++;
2841
2842 /*
2843 * If !PageUptodate, leave it that way so that freeable pages
2844 * can be recognized if we need to rollback on error later.
2845 * But set_page_dirty so that memory pressure will swap rather
2846 * than free the pages we are allocating (and SGP_CACHE pages
2847 * might still be clean: we now need to mark those dirty too).
2848 */
2849 set_page_dirty(page);
2850 unlock_page(page);
2851 put_page(page);
2852 cond_resched();
2853 }
2854
2855 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2856 i_size_write(inode, offset + len);
2857 inode->i_ctime = CURRENT_TIME;
2858 undone:
2859 spin_lock(&inode->i_lock);
2860 inode->i_private = NULL;
2861 spin_unlock(&inode->i_lock);
2862 out:
2863 inode_unlock(inode);
2864 return error;
2865 }
2866
2867 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2868 {
2869 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2870
2871 buf->f_type = TMPFS_MAGIC;
2872 buf->f_bsize = PAGE_SIZE;
2873 buf->f_namelen = NAME_MAX;
2874 if (sbinfo->max_blocks) {
2875 buf->f_blocks = sbinfo->max_blocks;
2876 buf->f_bavail =
2877 buf->f_bfree = sbinfo->max_blocks -
2878 percpu_counter_sum(&sbinfo->used_blocks);
2879 }
2880 if (sbinfo->max_inodes) {
2881 buf->f_files = sbinfo->max_inodes;
2882 buf->f_ffree = sbinfo->free_inodes;
2883 }
2884 /* else leave those fields 0 like simple_statfs */
2885 return 0;
2886 }
2887
2888 /*
2889 * File creation. Allocate an inode, and we're done..
2890 */
2891 static int
2892 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2893 {
2894 struct inode *inode;
2895 int error = -ENOSPC;
2896
2897 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2898 if (inode) {
2899 error = simple_acl_create(dir, inode);
2900 if (error)
2901 goto out_iput;
2902 error = security_inode_init_security(inode, dir,
2903 &dentry->d_name,
2904 shmem_initxattrs, NULL);
2905 if (error && error != -EOPNOTSUPP)
2906 goto out_iput;
2907
2908 error = 0;
2909 dir->i_size += BOGO_DIRENT_SIZE;
2910 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2911 d_instantiate(dentry, inode);
2912 dget(dentry); /* Extra count - pin the dentry in core */
2913 }
2914 return error;
2915 out_iput:
2916 iput(inode);
2917 return error;
2918 }
2919
2920 static int
2921 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2922 {
2923 struct inode *inode;
2924 int error = -ENOSPC;
2925
2926 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2927 if (inode) {
2928 error = security_inode_init_security(inode, dir,
2929 NULL,
2930 shmem_initxattrs, NULL);
2931 if (error && error != -EOPNOTSUPP)
2932 goto out_iput;
2933 error = simple_acl_create(dir, inode);
2934 if (error)
2935 goto out_iput;
2936 d_tmpfile(dentry, inode);
2937 }
2938 return error;
2939 out_iput:
2940 iput(inode);
2941 return error;
2942 }
2943
2944 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2945 {
2946 int error;
2947
2948 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2949 return error;
2950 inc_nlink(dir);
2951 return 0;
2952 }
2953
2954 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2955 bool excl)
2956 {
2957 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2958 }
2959
2960 /*
2961 * Link a file..
2962 */
2963 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2964 {
2965 struct inode *inode = d_inode(old_dentry);
2966 int ret;
2967
2968 /*
2969 * No ordinary (disk based) filesystem counts links as inodes;
2970 * but each new link needs a new dentry, pinning lowmem, and
2971 * tmpfs dentries cannot be pruned until they are unlinked.
2972 */
2973 ret = shmem_reserve_inode(inode->i_sb);
2974 if (ret)
2975 goto out;
2976
2977 dir->i_size += BOGO_DIRENT_SIZE;
2978 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2979 inc_nlink(inode);
2980 ihold(inode); /* New dentry reference */
2981 dget(dentry); /* Extra pinning count for the created dentry */
2982 d_instantiate(dentry, inode);
2983 out:
2984 return ret;
2985 }
2986
2987 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2988 {
2989 struct inode *inode = d_inode(dentry);
2990
2991 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2992 shmem_free_inode(inode->i_sb);
2993
2994 dir->i_size -= BOGO_DIRENT_SIZE;
2995 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2996 drop_nlink(inode);
2997 dput(dentry); /* Undo the count from "create" - this does all the work */
2998 return 0;
2999 }
3000
3001 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3002 {
3003 if (!simple_empty(dentry))
3004 return -ENOTEMPTY;
3005
3006 drop_nlink(d_inode(dentry));
3007 drop_nlink(dir);
3008 return shmem_unlink(dir, dentry);
3009 }
3010
3011 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3012 {
3013 bool old_is_dir = d_is_dir(old_dentry);
3014 bool new_is_dir = d_is_dir(new_dentry);
3015
3016 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3017 if (old_is_dir) {
3018 drop_nlink(old_dir);
3019 inc_nlink(new_dir);
3020 } else {
3021 drop_nlink(new_dir);
3022 inc_nlink(old_dir);
3023 }
3024 }
3025 old_dir->i_ctime = old_dir->i_mtime =
3026 new_dir->i_ctime = new_dir->i_mtime =
3027 d_inode(old_dentry)->i_ctime =
3028 d_inode(new_dentry)->i_ctime = CURRENT_TIME;
3029
3030 return 0;
3031 }
3032
3033 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3034 {
3035 struct dentry *whiteout;
3036 int error;
3037
3038 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3039 if (!whiteout)
3040 return -ENOMEM;
3041
3042 error = shmem_mknod(old_dir, whiteout,
3043 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3044 dput(whiteout);
3045 if (error)
3046 return error;
3047
3048 /*
3049 * Cheat and hash the whiteout while the old dentry is still in
3050 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3051 *
3052 * d_lookup() will consistently find one of them at this point,
3053 * not sure which one, but that isn't even important.
3054 */
3055 d_rehash(whiteout);
3056 return 0;
3057 }
3058
3059 /*
3060 * The VFS layer already does all the dentry stuff for rename,
3061 * we just have to decrement the usage count for the target if
3062 * it exists so that the VFS layer correctly free's it when it
3063 * gets overwritten.
3064 */
3065 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3066 {
3067 struct inode *inode = d_inode(old_dentry);
3068 int they_are_dirs = S_ISDIR(inode->i_mode);
3069
3070 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3071 return -EINVAL;
3072
3073 if (flags & RENAME_EXCHANGE)
3074 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3075
3076 if (!simple_empty(new_dentry))
3077 return -ENOTEMPTY;
3078
3079 if (flags & RENAME_WHITEOUT) {
3080 int error;
3081
3082 error = shmem_whiteout(old_dir, old_dentry);
3083 if (error)
3084 return error;
3085 }
3086
3087 if (d_really_is_positive(new_dentry)) {
3088 (void) shmem_unlink(new_dir, new_dentry);
3089 if (they_are_dirs) {
3090 drop_nlink(d_inode(new_dentry));
3091 drop_nlink(old_dir);
3092 }
3093 } else if (they_are_dirs) {
3094 drop_nlink(old_dir);
3095 inc_nlink(new_dir);
3096 }
3097
3098 old_dir->i_size -= BOGO_DIRENT_SIZE;
3099 new_dir->i_size += BOGO_DIRENT_SIZE;
3100 old_dir->i_ctime = old_dir->i_mtime =
3101 new_dir->i_ctime = new_dir->i_mtime =
3102 inode->i_ctime = CURRENT_TIME;
3103 return 0;
3104 }
3105
3106 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3107 {
3108 int error;
3109 int len;
3110 struct inode *inode;
3111 struct page *page;
3112 struct shmem_inode_info *info;
3113
3114 len = strlen(symname) + 1;
3115 if (len > PAGE_SIZE)
3116 return -ENAMETOOLONG;
3117
3118 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3119 if (!inode)
3120 return -ENOSPC;
3121
3122 error = security_inode_init_security(inode, dir, &dentry->d_name,
3123 shmem_initxattrs, NULL);
3124 if (error) {
3125 if (error != -EOPNOTSUPP) {
3126 iput(inode);
3127 return error;
3128 }
3129 error = 0;
3130 }
3131
3132 info = SHMEM_I(inode);
3133 inode->i_size = len-1;
3134 if (len <= SHORT_SYMLINK_LEN) {
3135 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3136 if (!inode->i_link) {
3137 iput(inode);
3138 return -ENOMEM;
3139 }
3140 inode->i_op = &shmem_short_symlink_operations;
3141 } else {
3142 inode_nohighmem(inode);
3143 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3144 if (error) {
3145 iput(inode);
3146 return error;
3147 }
3148 inode->i_mapping->a_ops = &shmem_aops;
3149 inode->i_op = &shmem_symlink_inode_operations;
3150 memcpy(page_address(page), symname, len);
3151 SetPageUptodate(page);
3152 set_page_dirty(page);
3153 unlock_page(page);
3154 put_page(page);
3155 }
3156 dir->i_size += BOGO_DIRENT_SIZE;
3157 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
3158 d_instantiate(dentry, inode);
3159 dget(dentry);
3160 return 0;
3161 }
3162
3163 static void shmem_put_link(void *arg)
3164 {
3165 mark_page_accessed(arg);
3166 put_page(arg);
3167 }
3168
3169 static const char *shmem_get_link(struct dentry *dentry,
3170 struct inode *inode,
3171 struct delayed_call *done)
3172 {
3173 struct page *page = NULL;
3174 int error;
3175 if (!dentry) {
3176 page = find_get_page(inode->i_mapping, 0);
3177 if (!page)
3178 return ERR_PTR(-ECHILD);
3179 if (!PageUptodate(page)) {
3180 put_page(page);
3181 return ERR_PTR(-ECHILD);
3182 }
3183 } else {
3184 error = shmem_getpage(inode, 0, &page, SGP_READ);
3185 if (error)
3186 return ERR_PTR(error);
3187 unlock_page(page);
3188 }
3189 set_delayed_call(done, shmem_put_link, page);
3190 return page_address(page);
3191 }
3192
3193 #ifdef CONFIG_TMPFS_XATTR
3194 /*
3195 * Superblocks without xattr inode operations may get some security.* xattr
3196 * support from the LSM "for free". As soon as we have any other xattrs
3197 * like ACLs, we also need to implement the security.* handlers at
3198 * filesystem level, though.
3199 */
3200
3201 /*
3202 * Callback for security_inode_init_security() for acquiring xattrs.
3203 */
3204 static int shmem_initxattrs(struct inode *inode,
3205 const struct xattr *xattr_array,
3206 void *fs_info)
3207 {
3208 struct shmem_inode_info *info = SHMEM_I(inode);
3209 const struct xattr *xattr;
3210 struct simple_xattr *new_xattr;
3211 size_t len;
3212
3213 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3214 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3215 if (!new_xattr)
3216 return -ENOMEM;
3217
3218 len = strlen(xattr->name) + 1;
3219 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3220 GFP_KERNEL);
3221 if (!new_xattr->name) {
3222 kfree(new_xattr);
3223 return -ENOMEM;
3224 }
3225
3226 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3227 XATTR_SECURITY_PREFIX_LEN);
3228 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3229 xattr->name, len);
3230
3231 simple_xattr_list_add(&info->xattrs, new_xattr);
3232 }
3233
3234 return 0;
3235 }
3236
3237 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3238 struct dentry *unused, struct inode *inode,
3239 const char *name, void *buffer, size_t size)
3240 {
3241 struct shmem_inode_info *info = SHMEM_I(inode);
3242
3243 name = xattr_full_name(handler, name);
3244 return simple_xattr_get(&info->xattrs, name, buffer, size);
3245 }
3246
3247 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3248 struct dentry *unused, struct inode *inode,
3249 const char *name, const void *value,
3250 size_t size, int flags)
3251 {
3252 struct shmem_inode_info *info = SHMEM_I(inode);
3253
3254 name = xattr_full_name(handler, name);
3255 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3256 }
3257
3258 static const struct xattr_handler shmem_security_xattr_handler = {
3259 .prefix = XATTR_SECURITY_PREFIX,
3260 .get = shmem_xattr_handler_get,
3261 .set = shmem_xattr_handler_set,
3262 };
3263
3264 static const struct xattr_handler shmem_trusted_xattr_handler = {
3265 .prefix = XATTR_TRUSTED_PREFIX,
3266 .get = shmem_xattr_handler_get,
3267 .set = shmem_xattr_handler_set,
3268 };
3269
3270 static const struct xattr_handler *shmem_xattr_handlers[] = {
3271 #ifdef CONFIG_TMPFS_POSIX_ACL
3272 &posix_acl_access_xattr_handler,
3273 &posix_acl_default_xattr_handler,
3274 #endif
3275 &shmem_security_xattr_handler,
3276 &shmem_trusted_xattr_handler,
3277 NULL
3278 };
3279
3280 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3281 {
3282 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3283 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3284 }
3285 #endif /* CONFIG_TMPFS_XATTR */
3286
3287 static const struct inode_operations shmem_short_symlink_operations = {
3288 .readlink = generic_readlink,
3289 .get_link = simple_get_link,
3290 #ifdef CONFIG_TMPFS_XATTR
3291 .setxattr = generic_setxattr,
3292 .getxattr = generic_getxattr,
3293 .listxattr = shmem_listxattr,
3294 .removexattr = generic_removexattr,
3295 #endif
3296 };
3297
3298 static const struct inode_operations shmem_symlink_inode_operations = {
3299 .readlink = generic_readlink,
3300 .get_link = shmem_get_link,
3301 #ifdef CONFIG_TMPFS_XATTR
3302 .setxattr = generic_setxattr,
3303 .getxattr = generic_getxattr,
3304 .listxattr = shmem_listxattr,
3305 .removexattr = generic_removexattr,
3306 #endif
3307 };
3308
3309 static struct dentry *shmem_get_parent(struct dentry *child)
3310 {
3311 return ERR_PTR(-ESTALE);
3312 }
3313
3314 static int shmem_match(struct inode *ino, void *vfh)
3315 {
3316 __u32 *fh = vfh;
3317 __u64 inum = fh[2];
3318 inum = (inum << 32) | fh[1];
3319 return ino->i_ino == inum && fh[0] == ino->i_generation;
3320 }
3321
3322 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3323 struct fid *fid, int fh_len, int fh_type)
3324 {
3325 struct inode *inode;
3326 struct dentry *dentry = NULL;
3327 u64 inum;
3328
3329 if (fh_len < 3)
3330 return NULL;
3331
3332 inum = fid->raw[2];
3333 inum = (inum << 32) | fid->raw[1];
3334
3335 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3336 shmem_match, fid->raw);
3337 if (inode) {
3338 dentry = d_find_alias(inode);
3339 iput(inode);
3340 }
3341
3342 return dentry;
3343 }
3344
3345 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3346 struct inode *parent)
3347 {
3348 if (*len < 3) {
3349 *len = 3;
3350 return FILEID_INVALID;
3351 }
3352
3353 if (inode_unhashed(inode)) {
3354 /* Unfortunately insert_inode_hash is not idempotent,
3355 * so as we hash inodes here rather than at creation
3356 * time, we need a lock to ensure we only try
3357 * to do it once
3358 */
3359 static DEFINE_SPINLOCK(lock);
3360 spin_lock(&lock);
3361 if (inode_unhashed(inode))
3362 __insert_inode_hash(inode,
3363 inode->i_ino + inode->i_generation);
3364 spin_unlock(&lock);
3365 }
3366
3367 fh[0] = inode->i_generation;
3368 fh[1] = inode->i_ino;
3369 fh[2] = ((__u64)inode->i_ino) >> 32;
3370
3371 *len = 3;
3372 return 1;
3373 }
3374
3375 static const struct export_operations shmem_export_ops = {
3376 .get_parent = shmem_get_parent,
3377 .encode_fh = shmem_encode_fh,
3378 .fh_to_dentry = shmem_fh_to_dentry,
3379 };
3380
3381 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3382 bool remount)
3383 {
3384 char *this_char, *value, *rest;
3385 struct mempolicy *mpol = NULL;
3386 uid_t uid;
3387 gid_t gid;
3388
3389 while (options != NULL) {
3390 this_char = options;
3391 for (;;) {
3392 /*
3393 * NUL-terminate this option: unfortunately,
3394 * mount options form a comma-separated list,
3395 * but mpol's nodelist may also contain commas.
3396 */
3397 options = strchr(options, ',');
3398 if (options == NULL)
3399 break;
3400 options++;
3401 if (!isdigit(*options)) {
3402 options[-1] = '\0';
3403 break;
3404 }
3405 }
3406 if (!*this_char)
3407 continue;
3408 if ((value = strchr(this_char,'=')) != NULL) {
3409 *value++ = 0;
3410 } else {
3411 pr_err("tmpfs: No value for mount option '%s'\n",
3412 this_char);
3413 goto error;
3414 }
3415
3416 if (!strcmp(this_char,"size")) {
3417 unsigned long long size;
3418 size = memparse(value,&rest);
3419 if (*rest == '%') {
3420 size <<= PAGE_SHIFT;
3421 size *= totalram_pages;
3422 do_div(size, 100);
3423 rest++;
3424 }
3425 if (*rest)
3426 goto bad_val;
3427 sbinfo->max_blocks =
3428 DIV_ROUND_UP(size, PAGE_SIZE);
3429 } else if (!strcmp(this_char,"nr_blocks")) {
3430 sbinfo->max_blocks = memparse(value, &rest);
3431 if (*rest)
3432 goto bad_val;
3433 } else if (!strcmp(this_char,"nr_inodes")) {
3434 sbinfo->max_inodes = memparse(value, &rest);
3435 if (*rest)
3436 goto bad_val;
3437 } else if (!strcmp(this_char,"mode")) {
3438 if (remount)
3439 continue;
3440 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3441 if (*rest)
3442 goto bad_val;
3443 } else if (!strcmp(this_char,"uid")) {
3444 if (remount)
3445 continue;
3446 uid = simple_strtoul(value, &rest, 0);
3447 if (*rest)
3448 goto bad_val;
3449 sbinfo->uid = make_kuid(current_user_ns(), uid);
3450 if (!uid_valid(sbinfo->uid))
3451 goto bad_val;
3452 } else if (!strcmp(this_char,"gid")) {
3453 if (remount)
3454 continue;
3455 gid = simple_strtoul(value, &rest, 0);
3456 if (*rest)
3457 goto bad_val;
3458 sbinfo->gid = make_kgid(current_user_ns(), gid);
3459 if (!gid_valid(sbinfo->gid))
3460 goto bad_val;
3461 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3462 } else if (!strcmp(this_char, "huge")) {
3463 int huge;
3464 huge = shmem_parse_huge(value);
3465 if (huge < 0)
3466 goto bad_val;
3467 if (!has_transparent_hugepage() &&
3468 huge != SHMEM_HUGE_NEVER)
3469 goto bad_val;
3470 sbinfo->huge = huge;
3471 #endif
3472 #ifdef CONFIG_NUMA
3473 } else if (!strcmp(this_char,"mpol")) {
3474 mpol_put(mpol);
3475 mpol = NULL;
3476 if (mpol_parse_str(value, &mpol))
3477 goto bad_val;
3478 #endif
3479 } else {
3480 pr_err("tmpfs: Bad mount option %s\n", this_char);
3481 goto error;
3482 }
3483 }
3484 sbinfo->mpol = mpol;
3485 return 0;
3486
3487 bad_val:
3488 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3489 value, this_char);
3490 error:
3491 mpol_put(mpol);
3492 return 1;
3493
3494 }
3495
3496 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3497 {
3498 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3499 struct shmem_sb_info config = *sbinfo;
3500 unsigned long inodes;
3501 int error = -EINVAL;
3502
3503 config.mpol = NULL;
3504 if (shmem_parse_options(data, &config, true))
3505 return error;
3506
3507 spin_lock(&sbinfo->stat_lock);
3508 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3509 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3510 goto out;
3511 if (config.max_inodes < inodes)
3512 goto out;
3513 /*
3514 * Those tests disallow limited->unlimited while any are in use;
3515 * but we must separately disallow unlimited->limited, because
3516 * in that case we have no record of how much is already in use.
3517 */
3518 if (config.max_blocks && !sbinfo->max_blocks)
3519 goto out;
3520 if (config.max_inodes && !sbinfo->max_inodes)
3521 goto out;
3522
3523 error = 0;
3524 sbinfo->huge = config.huge;
3525 sbinfo->max_blocks = config.max_blocks;
3526 sbinfo->max_inodes = config.max_inodes;
3527 sbinfo->free_inodes = config.max_inodes - inodes;
3528
3529 /*
3530 * Preserve previous mempolicy unless mpol remount option was specified.
3531 */
3532 if (config.mpol) {
3533 mpol_put(sbinfo->mpol);
3534 sbinfo->mpol = config.mpol; /* transfers initial ref */
3535 }
3536 out:
3537 spin_unlock(&sbinfo->stat_lock);
3538 return error;
3539 }
3540
3541 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3542 {
3543 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3544
3545 if (sbinfo->max_blocks != shmem_default_max_blocks())
3546 seq_printf(seq, ",size=%luk",
3547 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3548 if (sbinfo->max_inodes != shmem_default_max_inodes())
3549 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3550 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3551 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3552 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3553 seq_printf(seq, ",uid=%u",
3554 from_kuid_munged(&init_user_ns, sbinfo->uid));
3555 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3556 seq_printf(seq, ",gid=%u",
3557 from_kgid_munged(&init_user_ns, sbinfo->gid));
3558 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3559 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3560 if (sbinfo->huge)
3561 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3562 #endif
3563 shmem_show_mpol(seq, sbinfo->mpol);
3564 return 0;
3565 }
3566
3567 #define MFD_NAME_PREFIX "memfd:"
3568 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3569 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3570
3571 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3572
3573 SYSCALL_DEFINE2(memfd_create,
3574 const char __user *, uname,
3575 unsigned int, flags)
3576 {
3577 struct shmem_inode_info *info;
3578 struct file *file;
3579 int fd, error;
3580 char *name;
3581 long len;
3582
3583 if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3584 return -EINVAL;
3585
3586 /* length includes terminating zero */
3587 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3588 if (len <= 0)
3589 return -EFAULT;
3590 if (len > MFD_NAME_MAX_LEN + 1)
3591 return -EINVAL;
3592
3593 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3594 if (!name)
3595 return -ENOMEM;
3596
3597 strcpy(name, MFD_NAME_PREFIX);
3598 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3599 error = -EFAULT;
3600 goto err_name;
3601 }
3602
3603 /* terminating-zero may have changed after strnlen_user() returned */
3604 if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3605 error = -EFAULT;
3606 goto err_name;
3607 }
3608
3609 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3610 if (fd < 0) {
3611 error = fd;
3612 goto err_name;
3613 }
3614
3615 file = shmem_file_setup(name, 0, VM_NORESERVE);
3616 if (IS_ERR(file)) {
3617 error = PTR_ERR(file);
3618 goto err_fd;
3619 }
3620 info = SHMEM_I(file_inode(file));
3621 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3622 file->f_flags |= O_RDWR | O_LARGEFILE;
3623 if (flags & MFD_ALLOW_SEALING)
3624 info->seals &= ~F_SEAL_SEAL;
3625
3626 fd_install(fd, file);
3627 kfree(name);
3628 return fd;
3629
3630 err_fd:
3631 put_unused_fd(fd);
3632 err_name:
3633 kfree(name);
3634 return error;
3635 }
3636
3637 #endif /* CONFIG_TMPFS */
3638
3639 static void shmem_put_super(struct super_block *sb)
3640 {
3641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3642
3643 percpu_counter_destroy(&sbinfo->used_blocks);
3644 mpol_put(sbinfo->mpol);
3645 kfree(sbinfo);
3646 sb->s_fs_info = NULL;
3647 }
3648
3649 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3650 {
3651 struct inode *inode;
3652 struct shmem_sb_info *sbinfo;
3653 int err = -ENOMEM;
3654
3655 /* Round up to L1_CACHE_BYTES to resist false sharing */
3656 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3657 L1_CACHE_BYTES), GFP_KERNEL);
3658 if (!sbinfo)
3659 return -ENOMEM;
3660
3661 sbinfo->mode = S_IRWXUGO | S_ISVTX;
3662 sbinfo->uid = current_fsuid();
3663 sbinfo->gid = current_fsgid();
3664 sb->s_fs_info = sbinfo;
3665
3666 #ifdef CONFIG_TMPFS
3667 /*
3668 * Per default we only allow half of the physical ram per
3669 * tmpfs instance, limiting inodes to one per page of lowmem;
3670 * but the internal instance is left unlimited.
3671 */
3672 if (!(sb->s_flags & MS_KERNMOUNT)) {
3673 sbinfo->max_blocks = shmem_default_max_blocks();
3674 sbinfo->max_inodes = shmem_default_max_inodes();
3675 if (shmem_parse_options(data, sbinfo, false)) {
3676 err = -EINVAL;
3677 goto failed;
3678 }
3679 } else {
3680 sb->s_flags |= MS_NOUSER;
3681 }
3682 sb->s_export_op = &shmem_export_ops;
3683 sb->s_flags |= MS_NOSEC;
3684 #else
3685 sb->s_flags |= MS_NOUSER;
3686 #endif
3687
3688 spin_lock_init(&sbinfo->stat_lock);
3689 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3690 goto failed;
3691 sbinfo->free_inodes = sbinfo->max_inodes;
3692 spin_lock_init(&sbinfo->shrinklist_lock);
3693 INIT_LIST_HEAD(&sbinfo->shrinklist);
3694
3695 sb->s_maxbytes = MAX_LFS_FILESIZE;
3696 sb->s_blocksize = PAGE_SIZE;
3697 sb->s_blocksize_bits = PAGE_SHIFT;
3698 sb->s_magic = TMPFS_MAGIC;
3699 sb->s_op = &shmem_ops;
3700 sb->s_time_gran = 1;
3701 #ifdef CONFIG_TMPFS_XATTR
3702 sb->s_xattr = shmem_xattr_handlers;
3703 #endif
3704 #ifdef CONFIG_TMPFS_POSIX_ACL
3705 sb->s_flags |= MS_POSIXACL;
3706 #endif
3707
3708 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3709 if (!inode)
3710 goto failed;
3711 inode->i_uid = sbinfo->uid;
3712 inode->i_gid = sbinfo->gid;
3713 sb->s_root = d_make_root(inode);
3714 if (!sb->s_root)
3715 goto failed;
3716 return 0;
3717
3718 failed:
3719 shmem_put_super(sb);
3720 return err;
3721 }
3722
3723 static struct kmem_cache *shmem_inode_cachep;
3724
3725 static struct inode *shmem_alloc_inode(struct super_block *sb)
3726 {
3727 struct shmem_inode_info *info;
3728 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3729 if (!info)
3730 return NULL;
3731 return &info->vfs_inode;
3732 }
3733
3734 static void shmem_destroy_callback(struct rcu_head *head)
3735 {
3736 struct inode *inode = container_of(head, struct inode, i_rcu);
3737 if (S_ISLNK(inode->i_mode))
3738 kfree(inode->i_link);
3739 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3740 }
3741
3742 static void shmem_destroy_inode(struct inode *inode)
3743 {
3744 if (S_ISREG(inode->i_mode))
3745 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3746 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3747 }
3748
3749 static void shmem_init_inode(void *foo)
3750 {
3751 struct shmem_inode_info *info = foo;
3752 inode_init_once(&info->vfs_inode);
3753 }
3754
3755 static int shmem_init_inodecache(void)
3756 {
3757 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3758 sizeof(struct shmem_inode_info),
3759 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3760 return 0;
3761 }
3762
3763 static void shmem_destroy_inodecache(void)
3764 {
3765 kmem_cache_destroy(shmem_inode_cachep);
3766 }
3767
3768 static const struct address_space_operations shmem_aops = {
3769 .writepage = shmem_writepage,
3770 .set_page_dirty = __set_page_dirty_no_writeback,
3771 #ifdef CONFIG_TMPFS
3772 .write_begin = shmem_write_begin,
3773 .write_end = shmem_write_end,
3774 #endif
3775 #ifdef CONFIG_MIGRATION
3776 .migratepage = migrate_page,
3777 #endif
3778 .error_remove_page = generic_error_remove_page,
3779 };
3780
3781 static const struct file_operations shmem_file_operations = {
3782 .mmap = shmem_mmap,
3783 .get_unmapped_area = shmem_get_unmapped_area,
3784 #ifdef CONFIG_TMPFS
3785 .llseek = shmem_file_llseek,
3786 .read_iter = shmem_file_read_iter,
3787 .write_iter = generic_file_write_iter,
3788 .fsync = noop_fsync,
3789 .splice_read = shmem_file_splice_read,
3790 .splice_write = iter_file_splice_write,
3791 .fallocate = shmem_fallocate,
3792 #endif
3793 };
3794
3795 static const struct inode_operations shmem_inode_operations = {
3796 .getattr = shmem_getattr,
3797 .setattr = shmem_setattr,
3798 #ifdef CONFIG_TMPFS_XATTR
3799 .setxattr = generic_setxattr,
3800 .getxattr = generic_getxattr,
3801 .listxattr = shmem_listxattr,
3802 .removexattr = generic_removexattr,
3803 .set_acl = simple_set_acl,
3804 #endif
3805 };
3806
3807 static const struct inode_operations shmem_dir_inode_operations = {
3808 #ifdef CONFIG_TMPFS
3809 .create = shmem_create,
3810 .lookup = simple_lookup,
3811 .link = shmem_link,
3812 .unlink = shmem_unlink,
3813 .symlink = shmem_symlink,
3814 .mkdir = shmem_mkdir,
3815 .rmdir = shmem_rmdir,
3816 .mknod = shmem_mknod,
3817 .rename2 = shmem_rename2,
3818 .tmpfile = shmem_tmpfile,
3819 #endif
3820 #ifdef CONFIG_TMPFS_XATTR
3821 .setxattr = generic_setxattr,
3822 .getxattr = generic_getxattr,
3823 .listxattr = shmem_listxattr,
3824 .removexattr = generic_removexattr,
3825 #endif
3826 #ifdef CONFIG_TMPFS_POSIX_ACL
3827 .setattr = shmem_setattr,
3828 .set_acl = simple_set_acl,
3829 #endif
3830 };
3831
3832 static const struct inode_operations shmem_special_inode_operations = {
3833 #ifdef CONFIG_TMPFS_XATTR
3834 .setxattr = generic_setxattr,
3835 .getxattr = generic_getxattr,
3836 .listxattr = shmem_listxattr,
3837 .removexattr = generic_removexattr,
3838 #endif
3839 #ifdef CONFIG_TMPFS_POSIX_ACL
3840 .setattr = shmem_setattr,
3841 .set_acl = simple_set_acl,
3842 #endif
3843 };
3844
3845 static const struct super_operations shmem_ops = {
3846 .alloc_inode = shmem_alloc_inode,
3847 .destroy_inode = shmem_destroy_inode,
3848 #ifdef CONFIG_TMPFS
3849 .statfs = shmem_statfs,
3850 .remount_fs = shmem_remount_fs,
3851 .show_options = shmem_show_options,
3852 #endif
3853 .evict_inode = shmem_evict_inode,
3854 .drop_inode = generic_delete_inode,
3855 .put_super = shmem_put_super,
3856 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3857 .nr_cached_objects = shmem_unused_huge_count,
3858 .free_cached_objects = shmem_unused_huge_scan,
3859 #endif
3860 };
3861
3862 static const struct vm_operations_struct shmem_vm_ops = {
3863 .fault = shmem_fault,
3864 .map_pages = filemap_map_pages,
3865 #ifdef CONFIG_NUMA
3866 .set_policy = shmem_set_policy,
3867 .get_policy = shmem_get_policy,
3868 #endif
3869 };
3870
3871 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3872 int flags, const char *dev_name, void *data)
3873 {
3874 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3875 }
3876
3877 static struct file_system_type shmem_fs_type = {
3878 .owner = THIS_MODULE,
3879 .name = "tmpfs",
3880 .mount = shmem_mount,
3881 .kill_sb = kill_litter_super,
3882 .fs_flags = FS_USERNS_MOUNT,
3883 };
3884
3885 int __init shmem_init(void)
3886 {
3887 int error;
3888
3889 /* If rootfs called this, don't re-init */
3890 if (shmem_inode_cachep)
3891 return 0;
3892
3893 error = shmem_init_inodecache();
3894 if (error)
3895 goto out3;
3896
3897 error = register_filesystem(&shmem_fs_type);
3898 if (error) {
3899 pr_err("Could not register tmpfs\n");
3900 goto out2;
3901 }
3902
3903 shm_mnt = kern_mount(&shmem_fs_type);
3904 if (IS_ERR(shm_mnt)) {
3905 error = PTR_ERR(shm_mnt);
3906 pr_err("Could not kern_mount tmpfs\n");
3907 goto out1;
3908 }
3909
3910 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3911 if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3912 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3913 else
3914 shmem_huge = 0; /* just in case it was patched */
3915 #endif
3916 return 0;
3917
3918 out1:
3919 unregister_filesystem(&shmem_fs_type);
3920 out2:
3921 shmem_destroy_inodecache();
3922 out3:
3923 shm_mnt = ERR_PTR(error);
3924 return error;
3925 }
3926
3927 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3928 static ssize_t shmem_enabled_show(struct kobject *kobj,
3929 struct kobj_attribute *attr, char *buf)
3930 {
3931 int values[] = {
3932 SHMEM_HUGE_ALWAYS,
3933 SHMEM_HUGE_WITHIN_SIZE,
3934 SHMEM_HUGE_ADVISE,
3935 SHMEM_HUGE_NEVER,
3936 SHMEM_HUGE_DENY,
3937 SHMEM_HUGE_FORCE,
3938 };
3939 int i, count;
3940
3941 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3942 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3943
3944 count += sprintf(buf + count, fmt,
3945 shmem_format_huge(values[i]));
3946 }
3947 buf[count - 1] = '\n';
3948 return count;
3949 }
3950
3951 static ssize_t shmem_enabled_store(struct kobject *kobj,
3952 struct kobj_attribute *attr, const char *buf, size_t count)
3953 {
3954 char tmp[16];
3955 int huge;
3956
3957 if (count + 1 > sizeof(tmp))
3958 return -EINVAL;
3959 memcpy(tmp, buf, count);
3960 tmp[count] = '\0';
3961 if (count && tmp[count - 1] == '\n')
3962 tmp[count - 1] = '\0';
3963
3964 huge = shmem_parse_huge(tmp);
3965 if (huge == -EINVAL)
3966 return -EINVAL;
3967 if (!has_transparent_hugepage() &&
3968 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3969 return -EINVAL;
3970
3971 shmem_huge = huge;
3972 if (shmem_huge < SHMEM_HUGE_DENY)
3973 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3974 return count;
3975 }
3976
3977 struct kobj_attribute shmem_enabled_attr =
3978 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3979 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3980
3981 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3982 bool shmem_huge_enabled(struct vm_area_struct *vma)
3983 {
3984 struct inode *inode = file_inode(vma->vm_file);
3985 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3986 loff_t i_size;
3987 pgoff_t off;
3988
3989 if (shmem_huge == SHMEM_HUGE_FORCE)
3990 return true;
3991 if (shmem_huge == SHMEM_HUGE_DENY)
3992 return false;
3993 switch (sbinfo->huge) {
3994 case SHMEM_HUGE_NEVER:
3995 return false;
3996 case SHMEM_HUGE_ALWAYS:
3997 return true;
3998 case SHMEM_HUGE_WITHIN_SIZE:
3999 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4000 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4001 if (i_size >= HPAGE_PMD_SIZE &&
4002 i_size >> PAGE_SHIFT >= off)
4003 return true;
4004 case SHMEM_HUGE_ADVISE:
4005 /* TODO: implement fadvise() hints */
4006 return (vma->vm_flags & VM_HUGEPAGE);
4007 default:
4008 VM_BUG_ON(1);
4009 return false;
4010 }
4011 }
4012 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4013
4014 #else /* !CONFIG_SHMEM */
4015
4016 /*
4017 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4018 *
4019 * This is intended for small system where the benefits of the full
4020 * shmem code (swap-backed and resource-limited) are outweighed by
4021 * their complexity. On systems without swap this code should be
4022 * effectively equivalent, but much lighter weight.
4023 */
4024
4025 static struct file_system_type shmem_fs_type = {
4026 .name = "tmpfs",
4027 .mount = ramfs_mount,
4028 .kill_sb = kill_litter_super,
4029 .fs_flags = FS_USERNS_MOUNT,
4030 };
4031
4032 int __init shmem_init(void)
4033 {
4034 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4035
4036 shm_mnt = kern_mount(&shmem_fs_type);
4037 BUG_ON(IS_ERR(shm_mnt));
4038
4039 return 0;
4040 }
4041
4042 int shmem_unuse(swp_entry_t swap, struct page *page)
4043 {
4044 return 0;
4045 }
4046
4047 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4048 {
4049 return 0;
4050 }
4051
4052 void shmem_unlock_mapping(struct address_space *mapping)
4053 {
4054 }
4055
4056 #ifdef CONFIG_MMU
4057 unsigned long shmem_get_unmapped_area(struct file *file,
4058 unsigned long addr, unsigned long len,
4059 unsigned long pgoff, unsigned long flags)
4060 {
4061 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4062 }
4063 #endif
4064
4065 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4066 {
4067 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4068 }
4069 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4070
4071 #define shmem_vm_ops generic_file_vm_ops
4072 #define shmem_file_operations ramfs_file_operations
4073 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4074 #define shmem_acct_size(flags, size) 0
4075 #define shmem_unacct_size(flags, size) do {} while (0)
4076
4077 #endif /* CONFIG_SHMEM */
4078
4079 /* common code */
4080
4081 static struct dentry_operations anon_ops = {
4082 .d_dname = simple_dname
4083 };
4084
4085 static struct file *__shmem_file_setup(const char *name, loff_t size,
4086 unsigned long flags, unsigned int i_flags)
4087 {
4088 struct file *res;
4089 struct inode *inode;
4090 struct path path;
4091 struct super_block *sb;
4092 struct qstr this;
4093
4094 if (IS_ERR(shm_mnt))
4095 return ERR_CAST(shm_mnt);
4096
4097 if (size < 0 || size > MAX_LFS_FILESIZE)
4098 return ERR_PTR(-EINVAL);
4099
4100 if (shmem_acct_size(flags, size))
4101 return ERR_PTR(-ENOMEM);
4102
4103 res = ERR_PTR(-ENOMEM);
4104 this.name = name;
4105 this.len = strlen(name);
4106 this.hash = 0; /* will go */
4107 sb = shm_mnt->mnt_sb;
4108 path.mnt = mntget(shm_mnt);
4109 path.dentry = d_alloc_pseudo(sb, &this);
4110 if (!path.dentry)
4111 goto put_memory;
4112 d_set_d_op(path.dentry, &anon_ops);
4113
4114 res = ERR_PTR(-ENOSPC);
4115 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4116 if (!inode)
4117 goto put_memory;
4118
4119 inode->i_flags |= i_flags;
4120 d_instantiate(path.dentry, inode);
4121 inode->i_size = size;
4122 clear_nlink(inode); /* It is unlinked */
4123 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4124 if (IS_ERR(res))
4125 goto put_path;
4126
4127 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4128 &shmem_file_operations);
4129 if (IS_ERR(res))
4130 goto put_path;
4131
4132 return res;
4133
4134 put_memory:
4135 shmem_unacct_size(flags, size);
4136 put_path:
4137 path_put(&path);
4138 return res;
4139 }
4140
4141 /**
4142 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4143 * kernel internal. There will be NO LSM permission checks against the
4144 * underlying inode. So users of this interface must do LSM checks at a
4145 * higher layer. The users are the big_key and shm implementations. LSM
4146 * checks are provided at the key or shm level rather than the inode.
4147 * @name: name for dentry (to be seen in /proc/<pid>/maps
4148 * @size: size to be set for the file
4149 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4150 */
4151 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4152 {
4153 return __shmem_file_setup(name, size, flags, S_PRIVATE);
4154 }
4155
4156 /**
4157 * shmem_file_setup - get an unlinked file living in tmpfs
4158 * @name: name for dentry (to be seen in /proc/<pid>/maps
4159 * @size: size to be set for the file
4160 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4161 */
4162 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4163 {
4164 return __shmem_file_setup(name, size, flags, 0);
4165 }
4166 EXPORT_SYMBOL_GPL(shmem_file_setup);
4167
4168 /**
4169 * shmem_zero_setup - setup a shared anonymous mapping
4170 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4171 */
4172 int shmem_zero_setup(struct vm_area_struct *vma)
4173 {
4174 struct file *file;
4175 loff_t size = vma->vm_end - vma->vm_start;
4176
4177 /*
4178 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4179 * between XFS directory reading and selinux: since this file is only
4180 * accessible to the user through its mapping, use S_PRIVATE flag to
4181 * bypass file security, in the same way as shmem_kernel_file_setup().
4182 */
4183 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4184 if (IS_ERR(file))
4185 return PTR_ERR(file);
4186
4187 if (vma->vm_file)
4188 fput(vma->vm_file);
4189 vma->vm_file = file;
4190 vma->vm_ops = &shmem_vm_ops;
4191
4192 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4193 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4194 (vma->vm_end & HPAGE_PMD_MASK)) {
4195 khugepaged_enter(vma, vma->vm_flags);
4196 }
4197
4198 return 0;
4199 }
4200
4201 /**
4202 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4203 * @mapping: the page's address_space
4204 * @index: the page index
4205 * @gfp: the page allocator flags to use if allocating
4206 *
4207 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4208 * with any new page allocations done using the specified allocation flags.
4209 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4210 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4211 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4212 *
4213 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4214 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4215 */
4216 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4217 pgoff_t index, gfp_t gfp)
4218 {
4219 #ifdef CONFIG_SHMEM
4220 struct inode *inode = mapping->host;
4221 struct page *page;
4222 int error;
4223
4224 BUG_ON(mapping->a_ops != &shmem_aops);
4225 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4226 gfp, NULL, NULL);
4227 if (error)
4228 page = ERR_PTR(error);
4229 else
4230 unlock_page(page);
4231 return page;
4232 #else
4233 /*
4234 * The tiny !SHMEM case uses ramfs without swap
4235 */
4236 return read_cache_page_gfp(mapping, index, gfp);
4237 #endif
4238 }
4239 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);